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Abstract
Communication is a key part of society that we make huge investments in. Each message has to both arrive
quickly and use minimal network resources. Moreover, communications must sometimes also remain private, so
encryption is used to prevent third parties from listening in. However, standard classical encryption protocols
are proven not to be secure against quantum adversaries. With quantum communication we have a method that
does provably attains perfect secrecy, even against adversaries with unlimited (quantum) computational power.
It is, however, infeasible to have a direct quantum connection between all users of quantum communications.
We thus look into the possibilities of a quantum network, which is able to connect arbitrary users of the network
as if they had direct quantum channel available.

Once such a quantum network is built, we will need to route quantum messages effectively to their destina-
tion. In this work, we take the first step in studying network structures for quantum networks on a high level,
and their accompanying routing algorithms. Current ongoing research into quantum communication with
satellites and the possibility of a global network made the case of a quantum network of satellites relevant. We
will consider a simplified model where each satellite can perform quantum communication with its immediate
neighbours, and can create quantum virtual links that form shortcuts through the network.

The first step towards a quantum network that we take is the structure of the network. Using virtual links
as shortcuts we can reduce the maximum distance between nodes (the diameter) by an exponential factor. Let
|V | be the size of the set of all vertices in a graph, equal to the number of satellites. Then for the case of
satellites we give a network structure with the following properties:

• The diameter of the graph is 4 log2
(

|V |−2
10

)
+3 = O(log |V |). This means that the distance between any

two nodes in the graph will scale logarithmically in the number of nodes.

• The maximum degree of a vertex is 12 log2
(

|V |−2
10

)
+ 6 = O(log |V |). The degree of a vertex is directly

related to the size of its quantum memory. Since quantum memories are currently limited in size, it is
important for feasibility reasons that the degree stays low.

With a logarithmic scaling, the diameter and degree scale well for large graphs. This is especially relevant for
networks, which can become large. A lower distance between vertices also allows quantum communications to
fail less often, in effect decreasing the communication time. We can thus achieve a much smaller diameter by
using virtual links, while the degree of each vertex remains low.

We furthermore give a routing algorithm for finding the shortest path on this network structure that only
uses local information at each vertex to route, where local information is the nearby surroundings of a vertex.
The routing algorithm has the following properties:

• The space complexity of the algorithm is O(log5 |V |) per vertex. A small space complexity implies little
memory usage of the algorithm. Since network routers are typically small computers, the small memory
requirement allows them to run this algorithm.

• The time complexity of the algorithm is O(log2 |V |) per vertex. A small time complexity allows network
nodes to compute the next step in the path in minimal time. The time necessary to communicate
decreases with decreasing time complexity.

For large enough |V |, our algorithm outperforms standard routing algorithms such as Dijkstra’s algorithm by
an exponential factor. Furthermore, we have proved that the local routing algorithm always gives a shortest
path. Local routing transitions well into a real world implementation, so that every network router can make
simple decisions for routing.

E. Schoute
Delft, August 2015
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1
Introduction

Communication is a key part of society that we have built huge intercontinental computer networks for. The
global network uses large undersea network cables, satellite communications and local fine grained connections
to connect every business and home. Each message has to both arrive quickly and use minimal network
resources. Moreover, communications must sometimes also be kept private, so we use authentication and
encryption to prevent third parties from listening in. Quantum mechanics has showed us that perfect privacy is
attainable, even when faced with adversaries of unlimited computation power. So far, quantum communication
mostly uses only a direct connection from one point to another. Ideally, though, we would like to have a
quantum network to connect any user to any other user on that network, while still being fast, efficient and
also perfectly secure.

1.1. Why Quantum Networks
A driving force for quantum networks is the security of modern-day encryption protocols such as RSA and the
Advanced Encryption Standard (AES) [DR99]. These protocols are not proven to be secure against adversaries
with classical computers. It has not been shown to be impossible to find a solution in polynomial time to the
factoring problem that these encryption standards rely on. Moreover, they are proven to be insecure against
adversaries with a quantum computer, which can solve factoring in a polynomial number of steps. For some
communications it is not only important they remain secret on the short term, but they should also remain
secret on the long term. And since a large enough quantum computer can break the encryption, someone could
store communications being sent today and decrypt them once such a quantum computer becomes available.
The Dutch national intelligence agency has also published a white paper warning about this issue [Alg15],
which estimates the arrival of such a quantum computer in 15 to 20 years. Even though other encryption
techniques have been developed for post-quantum security, it is still unproved that these are secure against a
quantum attacks. However, it is proved that quantum communication would be resistant even against quantum
attacks [LC99; SP00]. A protocol named Quantum Key Distribution can distribute perfectly secure keys to
the communicating parties. These keys may then be used to classically send perfectly secure communications.

A unique feature of quantum networks is the possibility to create virtual links, in addition to the physical
connections the network is bound to. Quantum network nodes have some fixed physical connections they may
use to establish an entangled pair with each other, which requires a little time [Ber+13]. An analogue for
such an entangled pair are two mobile phones that can only communicate among themselves using what is
called teleportation. Two users of a quantum network that each have one phone can then perform quantum
communication. Furthermore, a user may send their quantum phone to someone else in what is called an
entanglement swap, Entanglement swapping is illustrated in Fig. 1.1, where Bob swaps entanglement so that
Alice and Charlie share an entangled pair. The new holders of the entangled pair may then communicate as if
they were connected by direct connection. The communication does require some classical information to be
sent over the network as well, thus quantum communication cannot be faster than classical communication.
The connection between the entangled pairs does not have to be along one of the physical quantum connections,
but instead can be seen as a virtual connection between network nodes. A drawback, though, is that the virtual
links are used up on every communication. Once a virtual link has been established it will also only be available
for use until it expires, which is related to the lifetime of entanglement (currently at most on the 10 millisecond
scale [Ber+13]). The lifetime of entanglement is still significantly being improved on, which allows for better
preparation of the network, as virtual links will not have to be refreshed so often.

To perform quantum communication the sender and receiver must share an entangled pair. If the sender
and receiver are not directly connected with a physical connection, then intermediate nodes may perform

1



1.2. Contribution 2

Alice Bob Charlie

1a 1b 2a 2b

Alice Bob
Cl. Data

Charlie

1a 1b

Figure 1.1: At first, Alice and Bob share entanglement, and Bob and Charlie share entanglement (connected dots). Bob performs
an entanglement swap that requires the entanglement with both Alice and Charlie, which entangles Alice with Charlie [NC10].
This procedure moves the entanglement of Bob with Alice (1b), to Charlie, using the entanglement between Bob and Charlie
(2a,2b). This also requires some classical data to be sent to Charlie, and the entanglement between Bob and Charlie is consumed
by the teleportation. Bob may re-establish entanglement with a physical connection.

entanglement swaps to create a pair between sender and receiver. A virtual link is established between any
sender and receiver in this way. However, each swap also has a certain failure probability which may force
retries to establish a virtual link. By continuously creating virtual links, even when there is no communication
going on, it is possible to have some set of virtual links already available once communication is requested.
If these links are properly positioned in the network, then they reduce the number of entanglement swaps
necessary to perform quantum communication between arbitrary senders and receivers. Note that the total
number of entanglement swaps is not reduced by the use of virtual links, as the number of swaps required to
establish a virtual link is the same as trying to perform quantum communication directly. This also implies
that it is harder to establish a long virtual links than a short virtual link, since it requires more swaps to be
established. Nonetheless there are less failures than when a virtual link has to be established from scratch,
which in turn reduces the time necessary for a user of the network to communicate. All in all, with quantum
networks it is possible to establish virtual connections in advance even when there is no communication going
on, reducing the time a future user of the network needs to communicate. Once a user shares a virtual link
with the intended receiver they may then perform perfectly secure quantum communications.

Some basic structures of quantum networks have advantages and disadvantages. If we take the network that
has a virtual link from every node to every other node then communication is trivial. However, it requires every
node to maintain as many connections as there are nodes in the network (except itself), where each connection
requires one quantum phone to be stored. Each phone is one out of a pair of quantum bits (qubits). Currently,
the largest quantum memories are of the size of ten qubits, and scaling these memories is not practically
feasible because of the costs involved. Thus it is not feasible to build completely connected networks using
virtual links.

Alternatively, there is the network that uses only physical connections and no virtual links. This network
does not require storing more than two qubits, since each vertex may set up an entangled pair and perform
entanglement swaps with them immediately. The disadvantage is that network has a higher risk of failure,
since it requires more entanglement swaps to establish a connection.

Furthermore, it needs to be possible to route on the network, which requires a routing algorithm. The
algorithm should run quickly, so that any communication is not delayed by the routing. Since entangled pairs
have such a short lifetime, the algorithm must be quick enough to use the available entanglement. We also
want the memory usage of the algorithm to be low, so that network nodes (which are typically small computers)
are able to run the algorithm. A standard routing algorithm called Dijkstra’s algorithm [KT06] requires every
node to know the entire network structure, which is why it is infeasible for large scale networks as the size of
memory in each device is limited to reduce costs. By limiting the available information of a node to only its
nearby vertices, which is local information for that node, we can reduce the required memory significantly.

1.2. Contribution
In this thesis we propose a feasible and fast network structure for satellites together with a routing algo-
rithm. We look at satellites because of current research into quantum communications with satellites, and
the possibility of a global quantum network. There are only few satellites needed to enable communications
from one side of the Earth to the other. We assume that these satellites can only perform direct quantum
communication with other nearby satellites. The satellites are modelled as nodes in a network that are spread
out over a sphere, where each node has a limited quantum memory size. Because of the limitations on the
quantum memory, this problem may also be viewed as a resource distribution problem, where the resources
to be distributed are the virtual links. When designing the quantum network we ask the following research
questions:

1. What network structure using virtual links can we prepare ahead of time such that the number of
swapping operations to establish a long distance link is minimized for every pair of nodes that may wish
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to communicate?

2. Is it feasible to implement this network considering the current technological limitations, such as the size
of quantum memory?

3. How can we efficiently route on the network? Ideally, we would like a routing algorithm which requires
only local information at each node, and is computationally efficient.

We will now go into further detail for each of these questions.

1.2.1. Distributing Entanglement and Feasibility
The first step is designing a network structure that can be added on top of the existing physical network of
satellites. We have seen the pros and cons of a fully connected network and a network with only physical links.
Instead, we give a network that is somewhere between the two extremes. This network has a distance between
any two nodes that is logarithmic in the number of nodes, but still requires only a logarithmic size memory.
The limited memory size makes implementing such a network feasible, since the high cost prevents us from
having large quantum memories.

Prior work on quantum networks only looks into point-to-point communication, or networks that lie on a
line. As such we take a high-level approach to this novel problem, and not concern ourselves with noise, lifetime
of qubits, or the procedure for establishing such long-distance links. However, we have kept the number of long
distance virtual links to a minimum, since they require more entanglement swaps to create. We assume that
there is some process which continuously establishes entangled pairs, and refreshes the virtual links. Instead,
we look at the distribution of resources and the possibilities of quantum networks, keeping in mind the limited
size of quantum storage in a quantum computer. The scientific contribution of our network model is thus a
first step towards of the novel properties and possibilities of quantum networks, and an insight into future
research of quantum networks.

1.2.2. Routing Algorithm
A routing algorithm on the network structure that can be performed by the network nodes is also desired. We
have seen that Dijkstra’s algorithm, and other algorithms which require global information, do not suffice for
this purpose. We use the structure of the network to prove properties about shortest paths in that network.
One of these properties shows that it is possible to route in a towards certain nodes if the destination is not
nearby. This allows us to formulate an algorithm that calculates the shortest path, but that does not require
the network nodes to know the global structure, since it only has to know whether the destination is nearby.

Another scientific contribution is thus a routing algorithm on the network structure. This algorithm requires
only a logarithmic computation time and classical memory in the number of nodes. This implies the algorithm
scales well with the size of the network and is suitable to run on network nodes, which have only limited
computation power and memory.

In the upcoming Chapter 2 we will give a short introduction of the required knowledge for this thesis. For
the following results, we first giving a high-level overview and explain our reasoning, which is later followed
by technical details proving the results. We give a high-level over of our network model in Chapter 3, and
later prove the correctness of our statements in Section 3.2. Then we proceed with a high level overview of
the network structure analysis and the routing algorithm in Chapter 4, followed by the proofs of the results
in Chapter 5. At the end we will conclude and discuss our results and possible future research in Chapter 6.



2
Background

In this chapter we give a quick introduction of relevant background knowledge to understand this thesis. This
includes networks (Section 2.1), algorithmics (Section 2.2) and finally quantum mechanics (Section 2.3). We
also give an overview of the current state of the art in Section 2.4 that gives some pointers for further reading.

2.1. Networks
A network may been seen as result of connecting computers such that they may communicate. The resulting
structures may be very regular and easy to grasp, or they can be complex systems which are the subject of a
line of research called Complex Networks. For this section we reference [Mie06] which gives a basic introduction
of classical computer networks.

A network is usually represented in a graph, as can be seen in Fig. 2.1. All computers in a network are
represented by a node which is also known as a vertex, while the connections are represented by edges. In
this thesis we will restrict ourselves to simple graphs, where an edge may be used in both directions, edges are
unweighted, there is at most one edge between two vertices, and there are no edges to a vertex itself (loops).
Let the graph be defined as G = (V,E), where V is the set vertices and E the set of edges. Because the graph
is undirected it is assumed that {v, u} ∈ E = {u, v} ∈ E, as edges are sets of two vertices. Then the degree of
a vertex v ∈ V is

deg(v) =
∑

(v,u)∈E

1 . (2.1)

And the set of neighbours of a vertex N is

N(v) = {u|(v, u) ∈ E} . (2.2)

A path in a network is a sequence of nodes prescribing in which order nodes are visited to travel from a
starting vertex to the end vertex. A path Pα1,αi

from α1 to αi, is expressed as the following list

Pα1,αi
= [α1, α2, . . . , αi−1, αi] .

This path can only be valid if all edges {αj−1, αj} ∈ E for j ∈ [1, 2, . . . , i]. Let us define the distance function

Figure 2.1: A 5× 5 grid network, depicted as a graph. Every circle is a computer node in the network, and a line between nodes
(an edge) represents a connection.

4
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as the minimum length of a path required to reach v from u, and ∞

d(u, v) =

{
min{|Pu,v|} if Pu,v exists,
∞ otherwise.

(2.3)

Then a graph is called connected if for all v, u ∈ V

d(u, v) ̸=∞ , (2.4)

i.e. there is a path between any two vertices. A related quantity is the connectivity, which expresses the
minimum number of edges or vertices that have to be removed, in order for a graph to become unconnected.
We precisely define the edge connectivity λ(G) as

λ(G) = min
E′⊆E

{|E′| : G′ = (V,E \ E′) is not connected} . (2.5)

Another interesting network quantity is the diameter D(G)

D(G) = max
x,y∈V

{d(x, y)} , (2.6)

which expresses the maximum distance between any two vertices.

2.2. Algorithmics
A computer program is nothing more than a long list of basic instructions a computer must perform, this list
of instructions is also called an algorithm. When given an algorithm for a certain problem, it is crucial to
assess not only its correctness, but also how fast it is and how much memory it uses. We will introduce the
reader to a way of thinking about algorithms which characterises the usability on a real computer, formalised
in Algorithm Analysis.

But what is exactly meant by a small amount of time or when does an algorithm use little memory?
Algorithm Analysis tries to address these issue by introducing constructs for classification of the complexity of
algorithms, which in our case is the time complexity (how long the program runs) and the space complexity (how
much space the program needs). For a more extensive introduction we refer to Sipser [Sip06] for an introduction
to the theory of computation, and Kleinberg & Tardos [KT06] for algorithm design. We will mostly restrict
ourselves to worst-case analyses where the goal is to upper bound the complexity of an algorithm.

In run-time analysis we concern ourselves with the number of instructions a program will perform depending
on the input size. Say we have some algorithm in Qoogle Maps which finds the fastest way to travel between
any two of the N cities on a map. Suppose that the algorithm requires at most 2N2 logN + 50N + 100 steps
to calculate this path. Here a step may be defined as one instruction of a normal computer processor. (In
formal Algorithm analysis Turing Machines are used to define what an instruction is [Sip06], but that is not
relevant to our purposes.) For small N we can see that 50N + 100 will be a significant contributor to the
run-time complexity, but the 2N2 logN will overtake its contribution at N = 19. For algorithms we are mostly
interested in the behaviour for large N , which is why we use the O (big-O) notation. Given some runtime
function T (n) ∈ R

+ of an algorithm, then it is asymptotically upper-bounded by O(f(n)) for f(n) ∈ R
+, some

constant c > 0, and an integer constant n0 > 1 if [GT10]

T (n) ≤ c · f(n) , for n ≥ n0 . (2.7)

The Qoogle Maps run-time function can be written as

T (N) = 2N2 logN + 50N + 100 .

Then an O(f(N)) which upper bounds T (N) is

f(N) = N2 logN .

However, f(N) = N3 would also be a valid answer as logN is upper bounded by O(N).
A space analysis uses many of the same properties as run-time analysis, but then applied to the memory used

by the algorithm depending on the input size. Again we here keep the definition of unit of memory unspecified,
but it may be considered within a constant factor of bits (this is also defined using Turing Machines [Sip06]).
We look again at Qoogle Maps, which requires N for storing the cities and at most N(N − 1) for storing the
roads between cities, thus requiring N + N(N − 1) total space. We can upper bound the worst-case space
complexity of the Qoogle Maps by O(N2).
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2.2.1. Routing Algorithms
Routing must be performed f some vertex in the network wants to communicate with another vertex that
is not a neighbour, such that they are able to send data to each other. When performing routing on a
network, we usually want to calculate All Pairs of Shortest Paths (APSP) in the graph. A common algorithm
which calculates the distance between all vertices is the Floyd-Warshal algorithm [Flo62]. A more hierarchical
structure is used for the Internet, called the Border Gateway Protocol (BGP), which clusters large areas of
the Internet and routes between them [RLH06]. But within each cluster still what is essentially an APSP
problem must be performed However, storing all shortest paths that a node may ever use, costs a significant
amount of memory. An amount that is linear in the number of nodes in the network, thus an APSP solution
is insufficient.

Instead, it is possible to calculate the shortest path on demand. The standard algorithm for finding a single
shortest path in a graph is called Dijkstra’s algorithm [KT06, Ch. 4.4]. In a nutshell, it increases its search
radius in steps, looking at the vertices that are closest to the starting vertex first. The runtime of Dijkstra’
algorithm is O(|E| log |V |), but also requires every node to store the entire network topology resulting in a
space complexity of O(|E| + |V |) per node, since each edge and each vertex in the graph must be stored in
every node. Thus Dijkstra’s algorithm is also insufficient. We instead give a routing algorithm which has a
logarithmic run-time, and also a logarithmic memory size. This is only possible by limiting the information
every node needs to its direct surroundings, which is also called a local algorithm.

2.3. Basic Quantum Mechanics
In this section we introduce the parts of quantum mechanics that are relevant to understanding this thesis.
For a more thorough understanding we refer to the self-contained books by Nielsen and Chuang [NC10] or by
Mark Wilde [Wil13], which are suitable for people new to the field of quantum mechanics.

Quantum mechanics is a new field, but still older than that of modern Computer Science. Discrete energy
states in physical systems were first hypothesised by Ludwig Boltzman in 1877 and this was later followed up
by the work of Henrich Hertz, Max Planck and Albert Einstein. Since then, quantum mechanics come to full
speed for experimental implementations of a quantum computer. Providing a mathematical framework for
physical theories, quantum mechanics allows us to explain the behaviour of matter and energy on the scale of
atoms [NC10].

Originally rejected by Einstein, Podolsky and Rosen (EPR) in their famous EPR paper [EPR35], quantum
mechanics has survived the rigorous testing performed so far. Later, Bell published his paper disproving the
possibility of a local hidden variable model that could reproduce the predictions of quantum mechanics in
what is now known as Bell’s Theorem [Bel64]. A simple game was later proposed in [Cla+69] where the
optimal classical strategy achieves a lower success rate than a quantum strategy. The optimal bound on a
classical strategy has been called the CHSH inequality [Cla+69], which was later experimentally exceeded using
quantum strategies [AGR81; ADR82]. Another question was whether a quantum state may be cloned, which
was originally disproved in [WZ82] This has far-reaching implications in for example quantum cryptography,
where it is not possible to perfectly intercept communication between two parties.

Quantum cryptography studies the use of quantum mechanics for securing communication between parties
from unauthorized access. One important application of quantum mechanics is Quantum Key Distribution
(QKD), where a private key is transmitted in such a way that it may only be intercepted with vanishingly low
probability. In QKD the goal is to have information-theoretic security, where even an adversary with unlim-
ited computational power cannot decrypt the message [Weh08], assuming only that the quantum mechanics
framework is correct. One of the most famous publications in this field is the BB84 protocol [BB84], which
provably achieves secure QKD [LC99; SP00]. It can even be shown that if the eavesdropped is only bounded
by the speed of light (no-signaling) that secure key distribution is still possible [BHK05].

An important application of quantum computing is the quantum Fourier transform (QFT), which achieves
an exponential speed-up compared to the classical discrete Fourier transform [NC10]. Algorithms that use the
QFT are the Deutsch-Jozsa algorithm for deciding if a function is constant (always outputs ’0’ or ’1’) or balanced
(output ’0’ half the time and ’1’ the other half) in O(1), as opposed to O(2n−1) for a classical algorithm [DJ92].
Shor’s algorithm for finding the prime factors p and q of an integer r = pq in O(n2 logn log logn) as opposed
to exponential run-time for a classical algorithm [Sho97]. Unrelated to the QFT, but nonetheless a major
discovery is Grover’s algorithm for finding entries in a database in O(

√
n) as opposed to an expected n

2 for
any classical algorithm [Gro96]. Thus giving a quadratic speed-up for any exhaustive search.

Physically, quantum bits (qubits) may be implemented with various techniques that exhibit quantum
behaviour. One such technique uses nitrogen-vacancy centres in diamond where an electron is stored, of which
the spin may be used to represent a qubit [Ber+13]. Another technique is called trapped ions, where an ion
is stabilised such that its energy state represents the quantum state [DM10]. Both techniques use photons to
perform quantum communications, and have the possibility of being used in a quantum network. There are
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more possible physical implementations of qubits, but it is yet unclear how these can be used in a quantum
network and thus not relevant for this thesis.

2.3.1. Mathematical Framework
We begin by introducing the two quantum states |0⟩ and |1⟩ (pronounced “ket 0” and “ket 1”) using bra-ket
notation, which are similar to the 0 bit and 1 bit [NC10]

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. (2.8)

These states are represented as 2-dimensional vectors. The conjugate transpose of these states are also denoted
as ⟨0| and ⟨1| (pronounced “bra 0” and “bra 1”)

⟨0| = |0⟩† =
(
1 0

)
, ⟨1| = |1⟩† =

(
0 1

)
. (2.9)

Now it is easier to compactly denote the products between these states, e.g.

⟨0|0⟩ =
(
1 0

)(1
0

)
= 1 , |0⟩ ⟨1| =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)
. (2.10)

However, quantum states do not only consist of a ‘0’ and ‘1’ such as in classical computers, but also all
linear combinations between |0⟩ and |1⟩. Such a superposition of ‘0’ and ‘1’ can be described in a general
one-qubit state |ψ⟩

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α

β

)
, (2.11)

where α, β ∈ C and |α|2 + |β|2 = 1. Thus |ψ⟩ is a normalised vector in the 2D complex vector space C
2.

We can define a two-qubit state |ψ⟩ as follows

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =




α00

α01

α10

α11


 (2.12)

Or for any number of qubits

|ψ⟩ =
∑

x∈{0,1}n

αx |x⟩ , (2.13)

where
∑

x

|αx|2 = 1 . (2.14)

A multiple qubit state is a system where multiple qubits are allowed to interact. This leads to behaviour that
is very unlike classical qubits, such as entanglement (Section 2.3.4).

A useful operator for multi-qubit states is the tensor-product ⊗ which extends an n dimensional state |ψ⟩
and a p dimensional state |ϕ⟩ to one np dimensional state. The tensor product can be applied to the vector
representation, where it is known as the Kronecker product, which is defined as [NC10]

|ψ⟩ ⊗ |ϕ⟩ =




α0

α1

...
αn


⊗ |ϕ⟩ =




α0 |ϕ⟩
α1 |ϕ⟩

...
αn |ϕ⟩


 . (2.15)

It is common to leave out the tensor product similarly to multiplication

|ψ⟩ |ϕ⟩ ≡ |ψ⟩ ⊗ |ϕ⟩ . (2.16)

The tensor product has the following properties:

1. For a scalar z and states |ψ⟩ and |ϕ⟩

z(|ψ⟩ ⊗ |ϕ⟩) = z |ϕ⟩ ⊗ |ψ⟩ = |ϕ⟩ ⊗ z |ψ⟩ . (2.17)
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2. It also has the right-distributive property among states, given some other state |ζ⟩

(|ψ⟩+ |ϕ⟩) |ζ⟩ = |ψ⟩ |ζ⟩+ |ϕ⟩ |ζ⟩ . (2.18)

3. And also left distributivity
|ζ⟩ (|ψ⟩+ |ϕ⟩) = |ζ⟩ |ψ⟩+ |ζ⟩ |ϕ⟩ . (2.19)

An example for the tensor product with matrices in

|0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=




0
1
0
1


 (2.20)

An example of an entangled state is

|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩√
2

=




1√
2

0
0
1√
2


 . (2.21)

You can see that if the first qubit 0, then the second qubit is that as well, and vice versa.

2.3.2. Quantum Operations
Of course it is possible to perform operations on the quantum states so that some computation is performed,
or a different requested state is reached. The first type of operations that we look at are one-qubit gates. The
Pauli-X operation or bit-flip gate is specified as

X =

(
0 1
1 0

)
. (2.22)

We can see that if we apply this gate to an arbitrary state |ψ⟩ we get

X |ψ⟩ =
(
0 1
1 0

)(
α

β

)
=

(
β

α

)
,

which has flipped the α |0⟩ to α |1⟩ and β |1⟩ to β |0⟩. Some more common operations are Pauli-Z, Pauli-Y
and the Hadamard gate

Z =

(
1 0
0 −1

)
, (2.23)

Y =

(
0 −i
i 0

)
, (2.24)

H =
1√
2

(
1 1
1 −1

)
. (2.25)

You may have noticed that these gates meet a certain property: They are unitary. This means that for
any gate U must hold that

U†U = UU † = I , (2.26)

where U † is the adjoint or conjugate transpose of U : U † = UT and I is the identity matrix. Indeed, all
quantum gates have this property, so that the requirement |α|2 + |β|2 = 1 for a state in Eq. (2.11) is not
broken after a gate is applied, and so that any operator is invertible.

For two-qubit gates there is one important operator, the CNOT, which is specified as

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.27)

This gate will invert the second qubit it operates on, depending on the value of the first bit and can be
expressed as |A,B⟩ → |A,B ⊕A⟩, where ⊕ is modulo 2 addition. Of course the CNOT gate also meets the
requirement that it is unitary.
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The fact that gates have to be unitary has a certain effect on the possible operations, they have to be
reversible. It must always be possible to apply U † on the state U |ψ⟩ to get back |ψ⟩. Thus non-reversible
operations such as a XOR or NAND are not possible in the quantum world. For example, while there is unitary
that transforms |A,B⟩ → |A,B ⊕A⟩, there is not unitary which does some transformation |A,B⟩ → |A⊕B⟩.
Since from the value |A⊕B⟩ it is not revert to the values of A and B. Operations may be extended to any
number of qubits, as long as the meet the unitary requirement.

Using the tools so far, we can prove that a quantum state |ψ⟩ cannot be cloned. This was first shown
in [WZ82], and we give a proof from [NC10]. Suppose the initial state is |ψ⟩ ⊗ |s⟩, where |s⟩ is the state we
want to clone |ψ⟩ to. Then there must be some unitary U so that

|ψ⟩ ⊗ |s⟩ U→ U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩ . (2.28)

If we then want also want to clone a state |ϕ⟩ it must also hold for the same ‘cloning’ unitary U that

U(|ϕ⟩ ⊗ |s⟩) = |ϕ⟩ ⊗ |ϕ⟩ . (2.29)

We then take the inner product of Eqs. (2.28) and (2.29)

(⟨ϕ| ⊗ ⟨s|)U †U(|ψ⟩ ⊗ |s⟩) = (⟨ϕ| ⊗ ⟨ϕ|)(|ψ⟩ ⊗ |ψ⟩) , (2.30)
(⟨ϕ|ψ⟩ ⊗ ⟨s|s⟩) = ⟨ϕ|ψ⟩ ⊗ ⟨ϕ|ψ⟩ , (2.31)

⟨ϕ|ψ⟩ = (⟨ϕ|ψ⟩)2 . (2.32)

The equation x = x2 has only two solutions, x = 0 or x = 1. Thus either |ϕ⟩ and |ψ⟩ are orthogonal so that
⟨ϕ|ψ⟩ = 0 or they are equal |ψ⟩ = |ϕ⟩ so that ⟨ϕ|ψ⟩ = 1. Thus there does not exist a cloning unitary for
general |ψ⟩ and |ϕ⟩.

2.3.3. Measurement
Now that we are able to create some basic quantum states and perform operations on them, how can the
classical world get results from those quantum states? Quantum measurements allow us to gain information
about the state the system was in. However, the measurements are different from what we are used to, they
actually modify the state itself, something that may be surprising.

A set of measurements operators is defined as {Mm}, where m indicates the measurement outcome. The
probability for measuring outcome m in a state |ψ⟩ is given by

Pr[m] = ⟨ψ|M†
mMm|ψ⟩ , (2.33)

and the state after measurement is
Mm |ψ⟩
Pr[m]

. (2.34)

It is required that ∑

m

M†
mMm = I , (2.35)

so that the probabilities of measurement sum up to one

∑

m

Pr[m] =
∑

m

⟨ψ|M†
mMm|ψ⟩ = ⟨ψ|

(
∑

m

M†
mMm

)
|ψ⟩ = ⟨ψ| I |ψ⟩ = 1 . (2.36)

As an example, we can perform measurements in the computational basis Mcomp = {|0⟩0 , |1⟩1} of the state
|ψ⟩ = α |0⟩+ β |1⟩. The probabilities of measuring an outcome Mx is given by Pr[x]

Pr[0] = ⟨ψ|0⟩ ⟨0|ψ⟩ = |α|2 ,
Pr[1] = ⟨ψ|1⟩ ⟨1|ψ⟩ = |β|2 .

And we know that |α|2 + |β|2 = 1, thus all probabilities indeed sum up to one. After the measurement with
Mcomp the state after measurement |ψ′⟩ will be

|ψ′⟩ =
{
|0⟩ if measured 0 ,
|1⟩ otherwise .

(2.37)

From these results we can see that the measurement itself has determined the post-measurement state of |ψ⟩.
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|q0〉 = |0〉 H •

|q1〉 = |0〉 ⊕

Figure 2.2: Entangling two qubits to form an EPR pair. First a Hadamard (the H in a box) is applied on q0, then a CNOT is
applied to form the Bell state |β00⟩ =

|00⟩+|11⟩√
2

as show in Eq. (2.46). A CNOT is represented as the control gate with a black
dot, and the changed qubit with an ⊕. Thus, if |q0⟩ = |1⟩ then |q1⟩ → |q1 ⊕ 1⟩.

Figure 2.3: The teleportation of a qubit |ψ⟩ from Alice to Bob, where Alice has the qubits a0, a1 and Bob b0. First a Bell state
is prepared using a1 and b0 according to Fig. 2.2. Next, the arbitrary state a0 is entangled with part of the Bell state a1 using
a CNOT. Finally, a0 and a1 are measured after a Hadamard on a0 (the box with a needle readout), to produce two classical
correction bits (double lines) such that a conditional Z and conditional X may be applied on b0. When Bob receives these classical
bits from Alice, he may apply a correction on b0 such that he ends up with |b0⟩ = |ψ⟩. So, as long as Bob receives the correction
bits from Alice, he may move b0 anywhere after the initial Bell state is created.

2.3.4. Entanglement
Another interesting property of quantum mechanics, is that two qubits can be entangled. This roughly means
that there is a correlation of information between the two qubits. In contrast to entanglement, a separable
state has the form [Weh15]

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ . (2.38)

When the state |ψ⟩ is not separable, it is called entangled. It must then hold that

|ψ⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ . (2.39)

We can find examples of entangled states in the Bell states or EPR states (after Einstein, Podolsky and
Rosen) [NC10]

|β00⟩ = |Φ+⟩ =
|00⟩+ |11⟩√

2
, (2.40)

|β10⟩ = |Φ−⟩ =
|00⟩ − |11⟩√

2
, (2.41)

|β01⟩ = |Ψ+⟩ =
|01⟩+ |10⟩√

2
, (2.42)

|β11⟩ = |Ψ−⟩ =
|01⟩ − |10⟩√

2
. (2.43)

It is not possible to break these states into two separate qubits, i.e. |βij⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩.
We can produce the |β00⟩ by performing a Hadamard and a CNOT operation

CNOTAB(HA ⊗ IB)(|0⟩A ⊗ |0⟩B) = CNOTAB(HA |0⟩A ⊗ IB |0⟩B) (2.44)

= CNOTAB

( |0⟩A + |1⟩A√
2

⊗ |0⟩B
)

(2.45)

=
|00⟩AB + |11⟩AB√

2
, (2.46)

where we have indicated the qubit being operated on with a subscript A and B. This same process can also
be graphically shown, using the circuit diagram in Fig. 2.2.

Using entanglement it is possible to move a quantum state from one party, Alice, to another called Bob
without the presence of a quantum channel. This is called quantum teleportation. In the beginning Alice and
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Bob prepare a shared Bell state |a1b0⟩ = |β00⟩ and may then move far apart. Note that |β00⟩ ≠ |a0⟩ ⊗ |b0⟩
since it is entangled, so we cannot separate it into two qubits. At some point in time Alice can then send an
arbitrary one-qubit state |ψ⟩ to Bob by following the circuit diagram in Fig. 2.3.

If we extend the picture a little bit and assume that Alice and Bob share an EPR pair |β⟩AB , and there
is a third party called Charlie with whom Bob also shares an EPR pair |β⟩BC , then we can perform what is
called entanglement swapping. By teleporting Bob’s qubit in |β⟩AB to Charlie it is possible to create an EPR
pair between Alice and Charlie |β⟩AC . This process may be repeated multiple times, creating an entangled
pair between nodes which are far apart [BVK98]. Once an entangled pair has been created between Alice and
the far-away party, Alice may then send her quantum state using teleportation.

So far we have only talked about states that are entangled between two parties, but it is possible to extend
this to any number of parties. The GHZ state (after Greenberger, Horne and Zeilinger) is an entangled state
shared between 3 parties, it is defined as [Gre+90; Wil13]

|ΨGHZ⟩ =
|000⟩+ |111⟩√

2
. (2.47)

Indeed, we can define a similar state for N parties

|Ψ⟩ = |0⟩
⊗N

+ |1⟩⊗N

√
2

, (2.48)

where |ψ⟩⊗N
= |ψ⟩1⊗|ψ⟩2 . . .⊗|ψ⟩N . An interesting property of the GHZ state is that if the qubits in a GHZ

state are distributed over multiple parties, then if any one party loses their qubit, the entire state becomes
disentangled. Thus if anyone decides not to cooperate, all quantum advantage is lost.

2.3.5. Mixed States
We can generalise the quantum states we have seen so far, which are vectors, to matrices. The state |ψ⟩ is
equivalent to the density operator ρ = |ψ⟩ ⟨ψ| [Weh15]. Note that the rank of ρ is one, as it has one eigenvalue
with eigenstate |ψ⟩. Density operators with rank one, are also called pure states.

Opposed to pure states, are mixed states. One example of a mixed states is one where either |ψ1⟩ is
prepared with 1/2 probability, or |ψ2⟩ is prepared with 1/2 probability. It is not the case that these two states
are in a superposition, because only one state occurs at any time. The real state is a mixture of the two

|ψ⟩ = 1

2
|ψ1⟩ ⟨ψ1|+

1

2
|ψ2⟩ ⟨ψ2| .

If a state |ψx⟩ is prepared with some probability Pr[x], then the mixed state will be

ρ =
∑

x

Pr[x] |ψx⟩ ⟨ψx| . (2.49)

Applying a unitary U to a mixed state performed as

ρ
U→ UρU † (2.50)

Measuring mixed states is also slightly different than measuring pure states. The measurement probability of
x given a set of measurement operators {Mx} is given by

Pr[x] = tr(M†
xMxρ) , (2.51)

where the trace operator is defined as

tr(M) = tr



a00 . . . an0
... . . . ...
a0n . . . ann


 =

n∑

i=0

aii . (2.52)

A property that we use often is that the trace is cyclic, i.e.

tr(AB) = tr(BA) . (2.53)

The post-measurement state is
MxρM

†
x

Pr[x] . (2.54)
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One useful application of mixed states is the representation of subsystem of a larger multipartite quantum
state. If we have the shared state |ψ⟩AB how do write out the state that only Alice has or that Bob has? To
this end we use the partial trace operator [NC10]

ρA ≡ trB(ρAB) , (2.55)

and it is defined as [Weh15]

trB(ρAB) =
∑

ijkl

γklij |i⟩ ⟨j| ⊗ tr(|k⟩ ⟨l|) =
∑

ij

(
∑

k

γkkij

)
|i⟩ ⟨j| .

If we then apply the partial trace on a separable state, we get

trB(ρAB) = trB(ρA ⊗ σB) = ρA tr(σB) = ρA .

Thus the global state ρAB does not give more information about the separate state ρA. However, if we apply
the partial trace to one of the Bell states we get

trB(|β00⟩ ⟨β00|) =
trB(|00⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨00|+ |11⟩ ⟨11|)

2

=
|0⟩ ⟨0| ⟨0|0⟩+ |0⟩ ⟨1| ⟨1|0⟩+ |1⟩ ⟨0| ⟨0|1⟩+ |1⟩ ⟨1| ⟨1|1⟩

2

=
|0⟩ ⟨0|+ |1⟩ ⟨1|

2
,

which is a mixed state. Thus Alice does not have maximal knowledge about her state, but if we include
knowledge about Bob’s state, then we would have a pure state |β00⟩.

We have seen that the state Alice is by itself a mixed state, which does not contain any information about
the entanglement with Bob. The state I /2 is also known as the maximally mixed state π, which is a classical
uniform distribution over orthogonal states [Wil13]

π =
1

d

∑

x∈X
|x⟩ ⟨x| = I

d
,

where d is the dimension of the state. Measuring the maximally mixed in any basis will result in a uniform
distribution over the outcomes.

2.3.6. Noise
Thus far we have assumed that we have closed quantum systems that do not interact with the outside world.
Unfortunately, quantum computers are delicate instruments that are influenced by the environment. For
example, if a qubit is represented by position of an electron then the charged particles around it influence the
quantum system.

So far we have been using |0⟩ and |1⟩ as our main tools for computation. Because of its simplicity it is also
called the computational basis. Nevertheless, there are many more bases which are of use in algorithms, such
as the Hadamard basis defined by

MHadamard =

{
|+⟩ = |0⟩+ |1⟩√

2
=

1√
2

(
1
1

)
, |−⟩ = |0⟩ − |1⟩√

2
=

1√
2

(
1
−1

)}

or any other combination of two vectors that are orthogonal, which means that any vector |v⟩ ∈ C
2 can be

written as a linear combination of the basis {|v1⟩ , |v2⟩}.
In the previous example of noise, we have seen that all off-diagonal elements of ρ disappear. The components

along the diagonal are precisely align with the computational basis that we used. It is, however, possible that
the noise is applied along a different basis if we used some different unitary U , such that different components
of the state are lost.

There are many different noise models that affect the state in various way. First there is a type of noise,
called bit flip channel, that applies an X to the state with some probability 1− p

E(ρ) = pρ+ (1− p)XρX† .

The phase flip channel is similar but applies a Z

E(ρ) = pρ+ (1− p)ZρZ† .
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A different kind of noise the depolarizing noise, which depolarizes ρ to the maximally mixed state I /2 with
probability 1− p

E(ρ) = pρ+ (1− p) I
2
.

There are of course many more types of noise models, but a basic understanding of how noise acts on a quantum
system is sufficient for understanding the next topic, entanglement purification.

2.3.7. Entanglement Purification
Let us assume that we have n entangled states that are not perfectly entangled. Quantum algorithms frequently
require perfectly entangled states (singlets) to operate, is it possible to convert these n states to m near-perfect
singlets? This situation occurs often in quantum communication, where channels are noisy but the protocols
require some high-quality states to function. We will discuss a technique that is often used to combat noise
called entanglement purification [Ben+96], which is also know as entanglement distillation [NC10]. For this
thesis we require entanglement distillation to create perfect entanglement between network nodes over long
distances.

We will illustrate how purification works according to a simplified example [Wil13, Ch. 18]. Assume there
is some pure state shared between Alice and Bob that is partially entangled for θ ∈ [0, π/4]

|ψ⟩ = cos(θ) |00⟩AB + sin(θ) |11⟩AB . (2.56)

Alice and Bob do not have just one, but two of these states and they want a maximally entangled state to use
in a quantum algorithm. The complete state |Ψ⟩ of the two partially entangled systems is

|Ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2 = cos2(θ) |00⟩AB |00⟩AB + sin2(θ) |11⟩AB |11⟩AB

+ cos(θ) sin(θ) |00⟩AB |11⟩AB + sin(θ) cos(θ) |11⟩AB |00⟩AB

= cos2(θ) |00⟩A |00⟩B + sin2(θ) |11⟩A |11⟩B
+ cos(θ) sin(θ) |01⟩A |01⟩B + sin(θ) cos(θ) |10⟩A |10⟩B . (2.57)

From this we observe that states with zero or two “ones” are not entangled, but the states with one “one”
are maximally entangled. Thus we define a measurement Mi on Alice’s system that measures the number of
“ones” in the system i

MH =
{
M0 = |00⟩A ⟨00|A ,

M1 = |01⟩A ⟨01|A + |10⟩A ⟨10|A ,

M2 = |11⟩A ⟨11|A
}

(2.58)

Bob can perform the same measurement on his own system. There are three possible outcomes if Alice and
Bob then measures |Ψ⟩ with MH on their systems. With probability cos4(θ) + sin4(θ) we get M0 or M2 and
the algorithm fails, because the resulting state is not entangled. Even so, we get the maximally entangled
state with probability 2 cos2(θ) sin2(θ)

|Ψ′⟩ = |01⟩+ |10⟩√
2

= |β01⟩ , (2.59)

where β01 is one of the Bell states (2.42). It is possible to generalise this procedure to an arbitrary number
of imperfectly entangled pure states [Wil13]. In the limit of the number of states the probability of failure
becomes negligible and the dimension of the purified state grows exponentially.

For pure states the optimal algorithm for purification is known [Wil13], but for mixed states it is not. Mixed
states are also of interest in this thesis, because noise creates mixed states in general. There are some algorithms
known that perform purification on generalised mixed states [Ben+96; Hor+09], but the information so far is
sufficient for understanding the thesis.

2.4. Related Work
We give an overview of the current state of the art for quantum networks, and implementations of quantum
systems for networks. These systems have an impact on the physical limitations of networks, which influence
the parameters in our model. Additionally, we give an overview of the state of the art in graph theory that
has the closest relation to the networks we will construct.
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2.4.1. Quantum Networks
The process of creating entanglement over a network is noisy, which is why it is non-trivial to create perfect
EPR-pairs (singlets) between connected nodes using entanglement swapping. This problem can be alleviated
by performing entanglement distillation, which uses multiple sets of noisy entangled pairs and distills one less
noisy pair from them [Ben+96; Dür+99; Hor+09]. Because it is impossible to clone a quantum state, it is also
not possible to build simple signal amplifiers. Closely related to distillation and error correction, there has
recently been interest in creating a quantum repeater, which uses the ideas of distillation to be able to create
entanglement over large distances [San+11; Mun+15]. These methods aim to create repeaters that do not
require an exponential amount of resources in the distance between endpoints [Bri+98]. Normally the noise
on the state grows exponentially with the distance, but with these new type of repeaters it may be possible
to create distilled pairs at longer distances, that use only a logarithmic amount of noisy entangled pairs and
a polynomial time overhead. We will specify quantum networks that have connections over large distances,
which is why these techniques are also essential to this thesis.

There have also been developments on a higher level of abstraction, on the network layer, where this
thesis also contributes. One field is percolation theory, where randomised networks spontaneously become
fully connected once the probability of establishing a connection exceeds a percolation threshold [SA94]. An
analogue also exists for quantum networks called entanglement percolation, where the question is how to most
effectively establish entanglement between nodes in a quantum network. It turns out that transforming the
quantum network using simple local operations and classical communication (LOCC) to a network that has a
significantly lower threshold [ACL07; CC09], so that establishing a connection has a lower failure probability.
Some unique applications of quantum networks are also being investigated, for example the synchronization
of clocks around the world [Kom+14].

The specific implementations have an impact on the properties of the network. Properties such as the decay
rate of entanglement in time, the coherence time of a qubit, the communication noise, the time needed to create
entanglement, and the quantum memory size. All quantum technologies use photons to communicate over long
distances, although the quantum memory itself is implemented in various ways. There has been a study of the
feasibility of a quantum internet in [Kim08], which compared some of the technologies in that time. Currently,
one possible implementation are spins in nitrogen-vacancy (NV) centres in diamond [Ber+13; Pfa+14]. The
coherence time in NV centres is relatively long, but generating entanglement also takes a long time. Another
possibility is the use of trapped ions [DM10], where they have an entanglement event approximately every 8.5
minutes [Moe+07]. Compared to the nanosecond scale coherence time, this is extremely long. A generalized
overview for photon communications is given in [Mun+15].

2.4.2. Graph Theory
The properties we are interested in for a quantum network have much in common with graph theory, where a
lot of research has already been performed. In this thesis we will use a recursive definition of graphs and that
is why we looked into their definitions and properties. There is some work in relation to in graph coloring,
where the goal is to assign a color to each vertex so that none of its neighbours have the same color while
minimizing the total amount of different colors assigned. As it turns out, recursive graphs have properties that
allow efficient colorization [Bea76; GL98] and many other linear-time algorithms [BPT92]. Another line of
research within graph theory is graph homeomorphism, where by subdividing and smoothing edges the goal is
to generate a subgraph which is equivalent to a secondary graph [FHW80]. For the analytical analysis of the
graph, it may be desirable to have a mathematical definition. Spectral graph theory is a field that specialises
in the properties of graphs defined in adjacency matrices [GYZ13]. Furthermore, there has been research
into forming hierarchies in graphs for routing, which is relevant to our problem since we also define a certain
hierarchy in our graph [Gei+08].

For our graphs we want to minimize the diameter while also limiting the degree of each node. The base
structure of the graph is already fixed, but we can add edges to this graph to lower the diameter using
entanglement. This problem, if turned into a decision problem with a YES and NO answer, is known as
Minimum Bounded Diameter Augmentation [Cre+05] (MBDA). Unfortunately, this problem is NP-complete,
so there do not exist polynomial-time algorithms for finding an optimal solution (under the assumption that
P ̸= NP). It is, however, tractable by approximation for a constant node degree [Fra+13] (specifically an FPT
4-approximation). Because a spherical graph can also be drawn on the plane, it is also a planar graph [GT87].
Algorithms restricted to planar graphs are more tractable than general graphs. The MBDA problem is equiv-
alent to solving the dominating set problem [LMS92], to which an Polynomial-Time Approximation Scheme
(PTAS) is given in [Bak94]. Thus it may also be possible to approach this problem using a polynomial-time
approximation algorithm and generate a set of edges E′ so that for the graph G = (V,E ∪ E′) the diameter
D(G) is minimized. An added difficulty will be limiting the degree of each node, so that a small quantum
storage is sufficient.



3
Network Model

In this chapter we give a high-level overview of our network model and resolve our first two research questions
detailed in Section 1.2.1. We will explain the intuition and the motivation behind the choices we have made
and the algorithms that have been formulated. Furthermore, we will also give some important theorems that
are later proved. The Section 3.2 will go into the technical details and the proofs themselves. In this work we
will mostly disregard classical communication and routing, as those problems have already been solved.

The starting point of our problem are satellites in space that can perform quantum communication with
nearby satellites. Furthermore, we assume that the satellites are evenly spread out over the surface of a sphere,
called the earth. We model this problem using a network graph. The satellites can be mapped to network
nodes in the graph, while the satellites that can communicate are connected with edges. Nodes can perform
entanglement swapping and entanglement purification to create entangled pairs between nodes that are not
adjacent. We will add virtual links to this graph by approximating a sphere.

3.1. Approximating a Sphere
To the given graph we want to add edges that both decrease the diameter of the graph, and limit the degree
of all nodes. We do this by starting with a base graph, the icosahedron, and performing a procedure on that
graph until every vertex in it equals a vertex in the given graph. To approximate a sphere and have a uniform
distribution we look at platonic solids, the only 5 three-dimensional polyhedra that are regular. We will add
vertices to a platonic solid, in such a way that the resulting graph better approximates a sphere. For prior work
we look at 3D modelling, where it is a common problem to approximate smooth surfaces from few polygons.
A standard algorithm in 3D modelling for subdividing polyhedra is Loop subdivision [Loo87]. This algorithm
requires triangular polygons, which leave only the tetrahedron, octahedron and icosahedron to choose from.
Loop subdivision performs approximation iterations in what are called subdivisions. In each subdivision, a
vertex is placed on the middle of edges and new nodes are connected to their nearby neighbours. The platonic
solid which when subdivided resembles a sphere the most, is the icosahedron. We thus start with a graph
representation of the icosahedron, which is scaled so that all 12 vertices are placed on the sphere.

We will use Loop subdivision to approximate the sphere, but save all edges that are generated during the
algorithm. These edges will later function as the long-distance virtual links. In every subdivision iteration
a vertex is placed on every edge, which is then connected to the endpoints of that edge, and also to nearby
new vertices. An example of subdivision is given in Fig. 3.1, which illustrates how we can subdivide an
icosahedron to approximate a sphere. The subdivision for one face is shown in detail in Fig. 3.1, which also
includes the long-distance links. Each vertex in the subdivided graph can be placed on the sphere, so that
they are distributed uniformly over the sphere. We assume that the number of vertices in the given graph can
be generated by the subdivision algorithm, so once the graph has been subdivided enough times each vertex
maps to one of the satellites.

After subdivision, we assume there is some procedure that will distribute entanglement over the graph,
such that each edge is an entangled pair. The procedure that generates these long-distance entanglements
runs continuously. Old entanglements may decohere, which means that they become useless after some time
(on the scale of microseconds). However, once long-distance entangled links are established and purified, we
need fewer entanglement swaps to communicate. Which in turn results in a lower error rate, because each
entanglement swap introduces some noise.

15
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(a) The base icosahedron (b) One subdivision (c) Two subdivisions

Figure 3.1: Approximating the sphere by subdividing edges of the icosahedron. By iteratively performing this procedure, the
resulting graph closer and closer approximates a sphere.

Entanglement Distribution
So how is entanglement distributed so that the resulting network is equal to the subdivided graph? Let us
assume that we have subdivided once, which results in 42 nodes (3.18) that are spread on every face of the
icosahedron as given in Fig. 3.2b. The algorithm places every vertex in the graph on the sphere, such that
the vertices are uniformly distributed. The physical connections of every vertex are contained in the edges
that were generated last, the edges that are the shortest length. Thus physical network nodes only have to
ability to perform direct quantum communications through black solid edges, they are the physical connections.
Entanglement can be established between two adjacent nodes using the physical connection. Then, to create
for example the edge {α1, α3} ∈ E, an entanglement swap is performed by β1 ∈ V on the entanglement that
can be created using physical connections between {α1, β1} and {β1, α3}. If purification of the entanglement
is successful, perfect entanglement is established between α1 and α3. If it is not, the process is restarted to
try again. Once successful, the nodes α1 and α3 can communicate directly using this entangled pair, as if they
were adjacent. The same procedure is also followed by β2 and β3 to create {α1, α2} and {α2, α3} respectively.

For more subdivisions, such as in Fig. 3.2c, we perform the above procedure 3 times to create the edge
{α1, α3}. First by γ2 and γ6 to create {α1, β1} and {β1, α3}, then by β1 to create {α1, α3}. This uses up the
entanglement created between {α1, β1} and {β1, α3} though, so these edges will have to be created once again.

Graph Notation
Let us define some of the notation we use to describe subdivided graphs. The set of vertices in the subdivided
graph G is V , and let E be the set of edges. The following notation is used for vertices

α, β, γ, η, π ∈ V all vertices, (3.1)
Vi ⊆ V the vertices after i iterations, (3.2)
Li ⊆ Vi the vertices generated in the i-th iteration. (3.3)

For references to edges we use

{α, β} ∈ E all undirected edges, (3.4)
Ei ⊆ E the edges generated in the i-th iteration. (3.5)

And for the graph

G = (V,E) the simple graph, (3.6)

Gi = (Vi,
i∪

ℓ=0

Eℓ) the graph after i iterations. (3.7)

There is a difference between the way Vi and Ei are defined, which will later be useful in the proofs. The
intuition is that in subdivision iteration i + 1 all vertices in Vi and all edges in Ei are used. Another useful
term is that of a layer, which may be compared to the layers in an onion. For each subdivision another layer
is added to the graph. So layer i would refer to all vertices and edges in Li and Ei. When we refer to going up
layers, that means that we are increase i for Li and Ei. Conversely, going down the layers means decrease i.
From now on, if we refer to V , E or the graph G then they refer to the subdivided graph, not general graphs.

With the graph notation we can give the pseudocode for subdivision algorithm in Algorithm 3.1.

3.1.1. Graph Properties
The subdivided icosahedron possesses several interesting properties relevant to our problem statement.
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α1 α2

α3

(a) A face of the icosahedron not subdivided, k = 0.

α1 α2

α3

β1

β2

β3

(b) A face of the icosahedron subdivided once, k = 1.
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α3

β1
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γ5γ6
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γ8
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(c) A face of the icosahedron subdivided two times, k = 2.

Figure 3.2: Example steps in the subdivision algorithm on one face of the icosahedron, for given subdivide(k). In the first
subdivision, βi are placed on edges {αi, αj} ∈ E0, and connected to other nearby βi. The edges between αi are kept in the graph
(red, dashed). The second iteration better shows which edges are added on a subdivision. For example, γ8 is connected to all 4
nearby γi, and the vertices β1 and β3 on the edge that was subdivided into γ8 (black, solid). Again the edges of the previous
graph are kept (red, dash & blue, dash dot). The colored and dashed (dotted) edges are long-distance connections that reduce
the graph diameter. The physical connections are those edges that are on the last layer. So if k = 2 is the final subdivision, then
the black solid edges in Fig. 3.2c are the physical connections.

First and foremost, the graph must have a small diameter, while still having a small degree for each vertex.
A small diameter is desired to reduce the number of entanglement swap necessary to establish a communication.
If two vertices are not adjacent, then entanglement swaps have to performed until they are, only then can they
communicate securely. We will show that the graph diameter scales logarithmically in the number of nodes,
i.e. an exponential increase in the number of nodes results in only a linear increase in diameter.

Proposition 3.1.1 (Graph Diameter). The diameter of the subdivided graph D(Gk), where k ∈ N0, is

D(Gk) ≤ 2k + 3 = 4 log2
( |V | − 2

10

)
+ 3 .

Furthermore, we upper bound the degree of each node. For every edge connected to a node, some quantum
bit must be stored in a quantum memory. These quantum memories are currently limited in size, and for
practical applications must be kept small. We show that the degree of every node scales logarithmically in the
total number of nodes.
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Algorithm 3.1: Subdivision algorithm of the icosahedron. A vertex is placed on each edge in Ei and
then connected to nearby vertices. The new vertices are grouped in Li+1, and the new edges in Ei+1.

Data :G0 = (V0, E0) the icosahedron.
Input : k ∈ N, the number of subdivisions.
Output :G = (V,E), the subdivided graph.

1 Function subdivide(k) is
2 for i← 0 to k − 1 do
3 Li+1 ← ∅
4 p← empty Map : V → e // A mapping of a vertex to its edge
5 for e ∈ Ei do
6 α← midpoint of e on sphere.
7 Li+1 ← Li+1 ∪ {α}
8 p(α)← e // Remember which edge created α

9 end
// Generate the edges

10 Ei+1 ← ∅
11 for α ∈ Li+1 do
12 (e = (β1, β2))← p(α)
13 Ei+1 ← Ei+1 ∪ {{α, β1}, {α, β2}} // Create edges to vertices in Vi
14

// The vertices β3, β4 that form triangles with β1 and β2
15 β3, β4 ∈ Vi : adjacent to β1 and β2
16 triangles ← edges in {β1, β2, β3}, {β1, β2, β4}
17 W ← {γ : p(γ) ∈ triangles} \ {α}
18 Ei+1 ← Ei+1 ∪ {{α, γ} : γ ∈ W} // Create edges to vertices in Li+1

19 end
20 Vi+1 ← Vi ∪ Li+1

21 end
22 return Gk = (Vk,

∪k
i=0Ei)

23 end

Proposition 3.1.2 (Vertex Degree). The degree of every vertex v ∈ V in the subdivided graph as a function
of |V | is upper bounded by

deg(v) ≤ 12 log2
( |V | − 2

10

)
+ 6.

3.2. Technical Details
In this section we will prove properties of the subdivided graph that are important for the physical implemen-
tation, as well as the usefulness of the network model. We prove how the number of subdivisions k relates to
the number of nodes |V | and edges |E|. Additionally, what the maximum degree is of any node in the graph,
which is relevant for the amount of quantum memory required to implement such a node. Furthermore, we
look at the diameter of the graph. With a small diameter we know that few entanglement swaps are necessary
to connect sender and receiver.

First we look at the size of |V | and |E| depending on the number of subdivisions k. The subdivision
algorithm (Algorithm 3.1) consists of multiple iterations, let i be the current iteration. Per subdivision, a
vertex is placed on each edge e ∈ Ei. A new vertex is connected to 2 to vertices in Vi, and 4 nearby and
new vertices in Li. The edges to the new vertices should not be counted double, thus every new vertex adds
(2 + 4/2)|Ek−1| = 4|Ek−1| edges. The icosahedron starts with 30 edges, so that

|Ei| =
{
30 if i = 0 ,

4|Ei−1| otherwise
(3.8)

= 4i · 30 . (3.9)
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The total number of edges is

|E| = |
k∪

i=0

Ei| =
k∑

i=0

4i · 30 (3.10)

=
30(1− 4k+1)

1− 4
(3.11)

= 10 · 4k+1 − 10 , (3.12)

where we have used the direct formula for a geometric series. A vertex is placed on the midpoint of each edge
in Ei, so that the number of vertices Vi (3.2) is

|Vi| =
{
12 if i = 0

|Vi−1|+ |Ei−1| otherwise
(3.13)

= |Vi−2|+ |Ei−2|+ |Ei−1| (3.14)
= |V0|+ |E0|+ . . .+ |Ei−1| (3.15)

= 12 +
i−1∑

l=0

4l30 (3.16)

= 12 +
30(1− 4i)

1− 4
(3.17)

= 10 · 4i + 2 . (3.18)

Then the total number of nodes |V | = |Vk|.
Next we analyse the diameter and degree of the graph. A small degree will allow the algorithm to run

with smaller quantum memories, while a smaller diameter is desired to have less entanglement swaps per
communication. Less swaps results in a lower error rate, since each swap introduces noise into the state.

Proposition 3.2.1 (Graph Diameter). The diameter of the graph D(Gk), where k ∈ N0 is the number of
subdivision iterations, is

D(Gk) ≤ 2k + 3 = 4 log2
( |V | − 2

10

)
+ 3 .

Proof. We give a proof using a recurrence relation over k. Let D(G) be the diameter function on a graph
G. Let Gk = (Vk,

∪k
l=0Ek) be the graph at iteration k.

Basis: D(G0) ≤ 2 · 0 + 3 = 3, which holds because the icosahedron has a diameter of 3.
Induction hypothesis: Assume that D(Gk−1) = 2(k − 1) + 3.
Induction: For any vertex α ∈ Lk it is possible to reach a vertex in layer Lk−1 in one step. Thus

D(Gk) ≤ D(Gk−1) + 2 (3.19)
IH
= 2(k − 1) + 3 + 2 (3.20)
= 2k + 3 (3.21)
(3.23)
= 4 log2

( |V | − 2

10

)
+ 3 . (3.22)

As such the diameter upper bound is proven.

Proposition 3.2.2 (Vertex Degree). The degree of every vertex v ∈ V in the subdivided graph as a function
of |V | is upper bounded by

deg(v) ≤ 12 log2
( |V | − 2

10

)
+ 6.

Proof. We show that the degree is upper bounded by calculating the number of vertices any vertex is
connected to, when there have been k subdivisions. The exact formula for |Vk| is found in Eq. (3.18). For
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some number of subdivisions k

|Vk| = 10 · 4k + 2 ⇐⇒ k = log4
( |Vk| − 2

10

)
= 2 log2

( |Vk| − 2

10

)
. (3.23)

A vertex on the base icosahedron α ∈ V0 is connected to 5 vertices β ∈ V0. However, any other vertex
α ∈ Li, for i ̸= 0, is connected to 6 vertices β ∈ Vi, because of how the algorithm connects new vertices to
their parents and their neighbours. In every subdivision iteration j : j > i a new midpoint vertex γ is added
to Lj+1, and an edge {α, γ} ∈ Ej+1 as well. This edge is in turn again subdivided on the next iteration
(j+1). Because the degree of the vertex α is the same as its number of edges, each vertex will add as many
nodes as its degree in each subdivision iteration. Thus degree of a vertex α ∈ V is upper bounded by

deg(α) ≤
{
5(k + 1) if α ∈ V0
6k otherwise,

(3.24)

< 6(k + 1) (3.25)

= 12 log2
( |V | − 2

10

)
+ 6 . (3.26)

Thus proving the upper bound on the degree of every vertex.

Thus both the degree and the diameter are logarithmic in the number of vertices |V |. Which means that these
parameters scale well for large |V |.



4
Routing Algorithm

It must also be possible to route on the subdivided icosahedron, preferably in a manner that is both fast and
requires little (classical) memory, as posed by our last research question in Section 1.2.2. To that end, we
started looking into defining structures of the graph. With knowledge of these structure it is possible to define
such a routing algorithm. We will give a high-level overview of our approach and reasoning for this algorithm.
In Chapter 5 we will go into the technical details of the results and the proofs.

4.1. Graph Structure
An important property of every vertex, except those on the lowest layer, is that it has been generated from an
edge. This edge has two endpoints, which in turn are also generated from edges, etc. The relation structure
that this assumes is tree-like, but may contain splitting and joining branches. Because two vertices generate
one vertex on subdivision, we call them parents of the child vertex. The parents of the parents are then, of
course, grandparents. The parent relation is illustrated in Fig. 4.1.

Besides some of the definitions given in Section 2.1 we precisely define the language used that is specific
to the subdivided graph. We denote the set of all finite lists (i.e. tuples) of elements from a set A using [A],
that is,

[A] = {[a1, a2, . . . , an] : n ∈ N and a1, . . . , an ∈ A} . (4.1)

We use the following notation for the family of all finite sets of elements from A:

A∗ = {{ a1, a2, . . . , an } : n ∈ N and a1, . . . , an ∈ A} . (4.2)

We define the layer function which maps from vertices to their layer number

l : V → N ,

l(α) = k : α ∈ Lk . (4.3)

And the direct parent function which gives the vertices that are on the edge that generated α

p : V → V ∗ ,

p(α) = {β : β ∈ (N(α) ∩ Vl(α)−1)} . (4.4)

For simplicity we also define the parents of a set of vertices such that we can use them interchangeably

p : V ∗ → V ∗ ,

p(A) = {π : α ∈ A , π ∈ p(α)} . (4.5)

A path between α and β is usually represented by Pα,β , which is a list of vertices including the endpoints.
Another useful function is the list concatenation operator ++ which is defined as

[a1, . . . , an] ++ [b1, . . . , bm] ≜ [a1, . . . , an, b1, . . . , bm] . (4.6)

List concatenation is used mostly to construct paths.

21
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Figure 4.1: The parents of γ1 and γ9 visualised as a path on the graph. For clarity edges not in E2 have been left out. The edge
between α1 and β2 created γ1 so they are the direct parents (blue, solid arrow). In turn β2 was created by the edge (α1, α2)
which are the second order parents of γ1 (red, dashed arrow).

Example
To illustrate what the parents are, we give an example using Fig. 4.1. The direct parents of γ1 are connected
through one hop to γ1

p(γ1) = {β2, α1} ,
and of γ9 they are

p(γ9) = {β2, β3} .
The parents on layer zero (p0(α)) are all nodes connected by a path of length 2, stopping at the first node on
a layer less than 1, i.e. any αi. Thus

p(p(γ1)) = {α1, α2} ,
p(p(γ9)) = {α1, α2, α3} ,

where we first used (4.4) and then (4.5).
Furthermore, it turns out that vertices that are connected must share one parent, which we call the common

parent. We use the notation πα,β to signify the unique common parent of any α, β ∈ V that are connected.
Here π is intended as a mnemonic for parent.

Proposition 4.1.1 (Common Parent). If any two vertices of α1, α2 ∈ V are connected by an edge, they
have some unique common parent πα1,α2

.

The sphere graph also has the property that, when routing between two vertices, it is never shorter to route
through edges on a higher layer than either vertex. This means that when routing between two vertices on
some layer larger than k, then we may ignore any edges Eh and vertices Lh with h > k. This greatly reduces
the number of options when routing between vertices, if the layer of the destination is known.

Theorem 4.1.2 (No Higher Edge). Let α0 ∈ Li and αm ∈ Lj have a distance of m. Then all paths between
α0 and αm of length m do not use an edge in Eh, where h > max(i, j).

Now that we know higher layers are uninteresting for routing, we can start analysing what happens if two
vertices are far apart. We show that when two vertices on the same layer α, β ∈ Lk and are at least 3 distance
apart d(α, β) ≥ 3, then there is a shortest path between them that uses only lower layer vertices. So when
we can guarantee that two vertices are some distance apart, we may assume that there are some parents of α
and β, πα and πβ , that have d(πα, πβ) = d(α, β)− 2. Thus there are some parents that are on a shortest path
between α and β.
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Theorem 4.1.3 (Three Hops). Consider a shortest path Pα1,αm+1
of length m ≥ 3 between two vertices on

the same layer α1, αm+1 ∈ Lk, k > 0. Then there exists a path also of length m that contains only vertices
in Vh, h < k between α1 and αm+1, except for α1 and αm+1.

This hints to the presence of a routing algorithm which routes through the parents when it knows that α
and β are some distance apart. However, vertices always have two parents, so it remains to see which parent
should be chosen. This will be addressed in the next section, on the labelling of nodes.

Example
To illustrate how the common parent works, we give a small example using Fig. 4.1 once more. From the
figure it is possible to see that the common parent πγ1,γ9

= β2, because both share that same direct parent.
Some other examples showing the existence of common parents

πγ1,β2
= β2 ,

πβ2,β3
= α2 .

However, α1 and α2 do not share a common parent, even though they are connected, since they are on the
base layer. And γ1 and β3 also do not share a common parent, because they are not connected. While γ1 and
β3 do share a common ancestor (α2), the common parent is only applicable to direct parents.

4.2. Labelling
Every vertex gets a label which should uniquely identify where the vertex is located. As seen in the previous
section, we also want to know which layer the vertex is on, and how far away we are from it. The label
must also be small in size, as it functions as a data header included in every transmission over the network,
indicating where the data must go. If the labelling is able to do so, we will be able to construct an efficient
routing algorithm.

Every vertex is labelled similarly to a hierarchical routing scheme such as Internet Protocol (IP) which is
widely used for routing in the current computer networks. Every node is assigned a unique ID, which is simply
a unique integer. The label contains this unique ID, and the node’s ancestry tree which includes the parents,
then the grandparents, etc. It is constructed as a list of sets, i.e. [{a}, {. . .}, {. . .}, . . .], where a ∈ [|Vk|] is the
unique ID. In addition, let [. . .]k denote the k-th element of a list. First we define an unfiltered label for a
vertex α with parents {β1, β2}, which simply copies the labels of its parents into its own label, but places itself
at index 1

labelu : V → [V ∗] ,

labelu(α) =





[{α}] if v ∈ V0 ,
[{α}]++[labelu(β1)1 ∪ labelu(β2)1,

. . . , labelu(β1)ℓ ∪ labelu(β2)ℓ]
otherwise.

(4.7)

where ℓ is the minimum size of either parent label, since we want to stay within their bounds

ℓ = min (|labelu(β1)| , |labelu(β2)|) . (4.8)

The unfiltered label stops at the first occurrence of an element in the base layer ℓ, because the labelu is
undefined for any higher indices. Intuitively, labelu(α)2 are the first-order parents of α, the parents to which v
has a direct connection. Followed by labelu(α)3, which are the second-order parents of α, i.e. the grandparents.
All the way to labelu(α)k which must contain vertices in the base icosahedron V0.

Currently, the unfiltered label may have duplicate elements. Duplicate elements take up more space, so
they are removed. We construct the filtered label as follows

labelf : V → [V ∗] ,

labelf(α)k =

{
labelu(α)k if k ≤ 2 ,

labelu(α)k \
∪k−1

i=1 labelu(α)i otherwise.
(4.9)

Then the filtered label can be defined as

labelf(α) = [labelf(α)1, labelf(α)2, . . . , labelf(α)ℓ] . (4.10)

We also define the term adding to the label, because it simplifies talking about the labeling.
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α1 α2β2γ1

γ2

γ3

γ4γ7 γ9

η1 η2 η3 η4

[{α1}]

[{γ3}, {α2, β2}][{η2}, {β2, γ1}, {α1, α2}]

[{η4}, {γ3, α2}]

Figure 4.2: An example for the filtered labelling scheme in Eq. (4.10), with only vertices on the edge (α1, α2) shown. The filtered
labels of the nodes α1, η2, γ3 and η4 are shown.

Definition 4.2.1 (Adding to a Label). Consider some vertex γ that has a label label(γ). Then we define
that vertex α adds vertex β ∈ p(α) to the label, iff α ∈ label(γ)k and β ∈ label(γ)k+1.

Example
In Fig. 4.2 we give an example on how the label is constructed. For α1, the ID is α1, and it is already on layer
0, thus the label is [{α1}]. A node on the second layer is γ3, which has as parents α2 and β2. Because α2 ∈ V0,
the label stops here and results in label(γ3) = [{γ3}, {α2, β2}]. Located on the third layer is η4, with parents
{γ3, α2}. Because α2 ∈ V0, the label ends here, becoming [{η4}, {γ3, α2}]. Lastly, η2 is also located on the
second layer, with parents {γ1, β2}. In turn β2 has parents {α1, α2} which are in V0, thus the label stops here.
The parents of γ1 which are {β2, α1} are not added to the label again, because they are duplicates. First, α1

is not added again, because β2 already added it to the set label(η2)2. And secondly, β2 is not added because
it has already occurred previously in label(η2)1.

4.2.1. Simplifying the Label Further
We can simplify the labeling further, by removing what we define as simple vertices. A simple vertex is a
vertex of which one of the parents has already been added to the label. Intuitively that means when routing
from a high layer to a low layer you want to skip simple vertices, because their parent has already occurred in
the label so we could have routed through that instead. A simple vertex occurs at the same or later index in
the label than their parent, so there must be an equally short or shorter path to that parent.

Definition 4.2.2 (Simple Vertex). Consider a vertex α ∈ labelf(α)ℓ, for some integer ℓ. If there exists a
vertex

β ∈
ℓ∪

i=1

labelf(α)i

where β ∈ p(α), then we call α simple.

The most interesting property of simple vertices is that any simple vertex will only add at most one vertex
to the filtered label, that must also be simple. This property of simple vertices is formalised in the following
proposition.

Proposition 4.2.1 (Simple Vertex Properties). A simple vertex in labelf(α)ℓ will add no more than one
vertex to labelf(α)ℓ+1. Moreover, if a parent was added to the label by a simple vertex, it is also simple.

That means that once a vertex is simple, it and its parents will never become non-simple, which in turn implies
that we can remove them and still retain all possible non-simple vertices. Only if they would add non-simple
parents, then it may be the case that routing through them would be interesting. So we can remove any simple
vertex from the label.

labels(α)k = labelf(α)k \ {β ∈ labelf(α)k : β is simple} . (4.11)

Example
An example for simple vertices is given in Fig. 4.3. The ancestry tree for ε is drawn, which is a fictitious child
of η2 and β2 in Fig. 4.2. We can see that the simple vertices may occur at the same index as their parent, and
that simple vertices only add simple vertices to the label when duplicates are filtered out. We can indeed see
that duplicate entries for β2 and α1 are removed in accordance to Eq. (4.10). More importantly, when routing
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ϵ1

η2β2

γ1 β2α1α2

α1 β2

i = 1

i = 2

i = 3

i = 4

label(ε1)i

Figure 4.3: The ancestry tree is given of a node ε1 which is the child node of η2 and β2 in Fig. 4.2. Only as an example the
filtered label is continued for i = 4, where it would normally stop at i = 3. η2 is simple (blue, circled), because its parent β2 is
in label(η2)i, for i ≤ 2. It adds only one vertex to the filtered label, γ2, which is also simple. The nodes β2 and α1 (red, crossed
out) already occur in the tree previously, and are thus filtered out. A simple vertex always adds at most one vertex to the tree,
which is also simple.

to α1 from ε1 we can see that it is faster to route through β2 which is 2 hops, than it is through η2 which
takes 3 hops. That is because β2 is a parent of η2, so if going to ancestors that are far away, it is better to
skip simple vertices.

Final Label
Sometimes there are non-simple vertices in labels(α) which have no parents in the next label entry. Except
in the last label entry, these vertices are also undesired. If routing to a far away ancestor, then we would like
to traverse the ancestry tree as fast as possible, by continuously following the non-simple parents of vertices.
However, if a vertex has no non-simple parents, then it is a dead end in this traversal. Thus, only vertices
that do have non-simple parents should be chosen, and there is always at least one such choice, so we remove
non-simple vertices that do not have parents in the label. As such we arrive at the final labelling

label : V → [V ∗] ,

label(α)k =

{
labels(α)k if k = |labels(α)|,
labels(α)k \ {β ∈ labels(α)k : p(β) ∩ label(α)k+1 = ∅} otherwise,

(4.12)

label(α) = [label(α)1, label(α)2, . . . , label(α)ℓ] . (4.13)

Pseudocode for the construction of the label is given in Algorithm 4.1. We may remove simple vertices while
constructing the label, as they never add non-simple parents. This has been applied in Line 8 in Algorithm 4.1,
the labelling algorithm. Moreover, we remove vertices that do not add any non-simple parents to the label by
going backwards over the label and checking if any parents are in the label.

The remaining vertices in the label also have some interesting properties. Very important is the fact that
|label(α)i| ≤ 3, for any i. This greatly limits the size of the label, as desired. Furthermore, every two vertices
for an entry in the label are adjacent.

Lemma 4.2.2 (Non-Simple Vertex Bound). The label size |label(α)ℓ| ∈ {1, 2, 3}, for any α ∈ V and integer
ℓ. Additionally, for any α, β ∈ label(α)ℓ : α ̸= β it holds that {α, β} ∈ E.

4.3. Routing Algorithm
In this section we give a high-level routing algorithm for finding the shortest path on the sphere. We also need
to keep in mind that the algorithm should eventually be transformed in a local form, where each node can
route using only information about nearby nodes and the labelling, as we will see in Section 4.4. The general
intuition of the routing algorithm is that when two vertices are not close to each other, then it is possible to
route towards a lower layer as indicated in the Three Hops theorem (Theorem 4.1.3). The nodes in the lower
layer will then be two steps closer to each other. We will show that the labelling takes care of the selection of
nodes to a lower layer, so that it does not matter which vertex we choose from the label. All vertices in the
label at a certain index are equivalent, as long as the destination is still far away.

But first we need to define what far away means. We found a sufficient condition while proving the
equivalence of vertices in the label. Given the sender vertex α ∈ V and the receiver β ∈ V , and any γ ∈ p(α)
and η ∈ p(β), then it must hold that d(α, β) > 3 and d(γ, η) > 3 for α and β to be far away. We give an
algorithm that searches the neighbourhood of nodes using a brute force approach, guarantees that d(α, β) > 3
and d(γ, η) > 3, and always returns a path of at most length 6. Thus we named this algorithm path6. We
will later see that the neighbourhood is limited in such a way that the complexity of this algorithm is still
acceptable. It results in the following lemma for path6:
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Algorithm 4.1: Labelling of vertices. When the graph is constructed, each vertex is given a label that
will allow efficient routing. The labelling is similar to IP addressing, because a hierarchical structure is
used.

Data :G = (V,E), the complete graph.
Input : α ∈ V
Output : label(α), the label of α

1 Function label(α) is
2 labels(α)1 = {α} // First we construct labels(α) according to Eq. (4.11)
3 D ← ∅ // The set of vertices that have already occurred in the label
4 i← 2

5 while p(label(α)fi−1) exists do
6 labelnew ← p(labels(α)i−1) \ D // Remove vertices that have already occurred (4.10)
7 D ← D ∪ label(α)new

8 labels(α)i ← labelnew \{β : β is simple} // Remove simple vertices (4.11)
9 i← i+ 1

10 end
11 k ← |label(α)| // The length of the label

// Remove vertices with no non-simple parents (4.12), to construct label(α) (4.13)
12 label(α)k ← labels(α)k
13 for i← k − 1 to 1 do
14 label(α)i ← labels(α)i \ {β ∈ labels(α)i : p(β) ∩ label(α)i+1 = ∅}
15 end
16 return [label(α)1, label(α)2, . . . , label(α)k]
17 end

Lemma 4.3.1 (path6 Distance). Consider two vertices α, β ∈ V for which path6(α, β) (Algorithm 4.2) does
not find a path. Then d(α, β) > 3. Additionally, for any πα ∈ p(α) and πβ ∈ p(β), d(πα, πβ) > 3.

To guarantee termination of the routing algorithm, path6 must always find a path if given two vertices
on the base layer α, β ∈ V0. However, the diameter of the icosahedron is 3, which means there are some
pairs of α and β where N(α) ∩ N(β) does not find a path, and p(α) nor p(β) exist for these nodes. That is
why there is a part in path6 handling exactly this situation. We use a standard algorithm for routing on the
icosahedron called Dijkstra’s algorithm, which runs in O(|E| log |V |) [KT06]. Moreover, we can restrict it to
only G0, according to Theorem 4.1.2. We know that the number of elements in |E0| is O(1) and for |V0| it is
also O(1), so executing this will not have a significant impact on space or time complexity.

Algorithm 4.2: The algorithm path6 searches the neighbourhood of α and β for a path of maximum
length 6. For simplicity, we assume p(γ) = ∅ given that γ ∈ V0.

Input : α, β ∈ V
Output : Pα,β the path from α to β, of maximum length 6. Otherwise nothing.
Function path6(α, β) is

// Calculate the neighbourhoods of α and β, and also of the parents and grandparents
Nα ← {α} ∪N(α) ∪N(p(α)) ∪N(p(p(α)) // Note: Includes non-simple parents
Nβ ← {β} ∪N(β) ∪N(p(β)) ∪N(p(p(β))

if ∃γ : γ ∈ Nα ∩Nβ then
γmin ← minγ {d(α, γ) + d(β, γ)} // Take the closest γ

return Pα,γmin ++ Pγmin,β // And return the path to and from it
else if d(α, β) = 3 : α, β ∈ L0 then // Handle an edge case on the icosahedron

return dijkstra(α, β) // Use Dijkstra's algorithm [KT06] on G0 to find a path
end

end

We are then able to show that it does not matter which parent is taken from the label, if path6 does not
find a path. With the guarantees on the distance, we are able to show that there always exists a shortest path
going through the parents. It remains to show that any vertex in the label is indeed on a shortest path, and
that not some other vertex is strictly faster. We prove exactly this, in the Label Routing Theorem.
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Theorem 4.3.2 (Label Routing). Consider two nodes α, β ∈ V, l(α) ≥ l(β) so that path6(α, β) (Al-
gorithm 4.2) cannot determine a path between them. Then for every node π1 ∈ label(α)2 holds that
d(π1, β) = d(α, β)− 1, i.e. they are on a shortest path between α and β.

Using this theorem, we can create a routing algorithm that constructs a shortest path. If path6 is not able
to find a path, we use Label Routing to show that we can route to a parent in the label. Additionally, we
pick a parent at random, to more uniformly spread the routes over the nodes. Since connections are single-use
it is desirable to have many different paths, as a high load will result in more delay. The pseudocode of the
routing algorithm is given in Algorithm 4.3. Note that Theorem 4.3.2 assumes that α is on at least as high a
layer as β. Nonetheless if α is on a lower layer, we can swap α and β so that the theorem still applies, so that
we just have to take π1 ∈ label(β)2. Which is exactly what the algorithm does, thus allowing us to prove the
optimality.

Theorem 4.3.3 (Sphere Routing Optimality). Consider vertices α, β ∈ V with a distance m, the sphere
routing algorithm (Algorithm 4.3) will find a path Pα,β also of length m.

Algorithm 4.3: High-Level Routing Algorithm. The paths to α and β are accumulated in Pα and Pβ .
Once α and β are close enough, path6 will connect them.

Input : α, β ∈ V , sender and receveiver respectively.
Output : Pα,β the path from α to β
Function path(α, β) is

return pathRecursive(α, β, [ ], [ ])
end
Input : α, β ∈ V , sender and receiver respectively.

Pβ , Pβ ∈ [V ] the path from the starting vertices to α and β

Output : Pα,β the path from α to β
Function pathRecursive(α, β, Pα, Pβ) is

if ∃path6(α, β) then
return Pα++ path6(α, β) ++reverse(Pβ)

else
// Increment the path to a parent in the label of α or β.
if l(β) > l(α) then

βnew ← randomElement(label(β)2) // Choose randomly on multiple options
return path(α, βnew, Pα, Pβ ++ [β])

else // Else l(α) ≥ l(β)
αnew ← randomElement(label(α)2) // Choose randomly on multiple options
return path(αnew, β, Pα ++ [α], Pβ)

end
end

end

4.4. Local Routing Algorithm
We will adapt the algorithm given in Algorithm 4.3 to an algorithm which does not require global information
to route. This is important for any routing algorithm that is used in real world networks. If every network
node has to able to calculate a shortest route, then each vertex must store the entire network structure. That
would mean the locally stored data grows linearly with the network size in every vertex. However, we want
an algorithm that will perform well even when the number of nodes grows large. Thus we cannot store the
entire network structure, but must restrict the data to what every vertex knows about itself and its limited
surroundings. In addition, we argue why the local algorithms are equivalent to their global counterparts. Then
the proof of optimality for the global algorithm will also guarantee the optimality of the local algorithms.

In a local algorithm we assume the perspective of a single network node, that must be able to route any
incoming data packets towards the next hop that on a shortest path. Once some vertex α wants to route to
β and sends his data packets to α′, it is as if α′ wants to route to β and performs the same operations as α.
This continues until β has been reached. That means that the α in the algorithm will refer to the node the
data packet is currently at. The only exception will be the result of path6, which precalculates a path of at
most 6 hops that can be blindly followed by any vertex on this path.
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4.4.1. Local path6 Algorithm
First, the path6 algorithm in Algorithm 4.2 has to be adapted for a neighbourhood search from the perspective
of the sender α ∈ V as seen in the global path6 algorithm (Algorithm 4.2). The first issue we encounter, is
that the current position of the receiver β ∈ V is unkown, as the receiver β also moves in the global algorithm.
Let β′ be the current value of the receiver β in the global algorithm. The movement of β′ is restricted to
label(β), so we can assume that β′ ∈ label(β). All possible possitions of β′ can thus be contained in in the set

Lβ =
∪

i

label(β)i . (4.14)

Furthermore, the global path6 algorithm calculates N(β). But it is not possible for α to calculate N(β),
because that would require global information about the network structure, as β is not known before commu-
nication occurs. Let Nα be the entire neighbourhood that is searched by the global path6 algorithm

Nα = {α} ∪N(α) ∪N(p(α)) ∪N(p(p(α)) . (4.15)

Then we can see that if there is some node γ ∈ Nα ∩N(β), then β ∈ N(γ) and γ ∈ Nα. Thus we can find β

using N(Nα).
Finally, the global algorithm also uses p(β). But α only knows the parents of β that are in label(β) and

not the simple parents, which have to be included if the algorithm is to be correct. Again, we can see that if
there is a node γ ∈ Nα ∩ p(β), then β ∈ children(γ) and γ ∈ Nα. Thus β ∈ children(Nα). The same applies
to p(p(β)), but we require children(children(Nα)).

Using these three changes, we can create a local algorithm of path6 that is given in Algorithm 4.4. If for
any β′ ∈ Lβ there is a path6, that means that there is path of maximum length 6 to the ancestry tree of β (as
introduced in Section 4.2). A nice property of the distance d(γ, β) (as defined Eq. (2.3)) is that it is equal to
the index γ occurs in label(β)

d(γ, β) = i ⇐⇒ γ ∈ label(β)i , (4.16)
which can be calculated with a linear search over label(β), and the label is small as seen in Lemma 4.2.2, so
this can be done efficiently. Furthermore, d(γ, α) can also be calculated quickly as shown in the time and space
complexity analyses (Section 4.4.3).

Example
We give some examples to gain insight into the transformation given. Some of the cases that we encounter in
the global path6 algorithm include N(α)∩N(p(β′)), or N(α)∩ p(p(β′)), or even N(p(p(α))∩N(p(p(β′)). The
first case can be translated as

N(α) ∩N(p(β′)) =⇒ N(N(α)) ∩ p(β′) =⇒ β′ ∈ children(N(N(α))) . (4.17)

The second case
N(α) ∩ p(p(β′)) =⇒ β′ ∈ children(children(N(α))) , (4.18)

while the last case is equivalent to

N(p(p(α)))) ∩N(p(p(β′))) =⇒ β′ ∈ children(children(N(N(p(p(α)))))) . (4.19)

4.4.2. Local Routing Algorithm
Now that we have transformed the global path6 algorithm into a local version, we can look at the remainder
of the routing algorithm (Algorithm 4.3). If path6 is not applied, either α or β should perform a step through
their label depending on their relative layer. However, we are now routing from α to β and do not know at
what layer β currently is. Suppose that β should perform a step in the global algorithm, and not α. If it did,
then it still would not change Lβ , since we assumed β can be anywhere in its label. So we can assume that β
is at a lower or equal layer to α, which then allows us to perform a step towards some α′ ∈ label(α). This will
repeat until path6 has found a path. And as shown in Section 4.3 a path6 will eventually be found.

But what happens once we have found a vertex β′ ∈ Lβ that is on the ancestry tree of β? Routing should
go up the layers now, instead of down. More specifically, up the layers on a shortest path towards β. First
the node must know that it is now on the ancestor tree of β, which is indicated by the flag d. Then routing
can be performed towards β. We know that β′ ∈ label(β)i for some i. We also know that it does not matter
which γ ∈ label(β)i−1 is chosen, because the global algorithm also chooses γ at random when routing from
label(β)i−2. Thus any βnew ∈ label(β)i−1 ∩ N(β′) will be reachable by β′, and is still on a shortest path
towards β. Such a βnew exists, because there must be a child of β′ that added β′ to label(β) and is non-simple
(Proposition 4.2.1). Since β′ ∈ label(β)i it also cannot be the case that this child was removed in any of the
label filtering steps (Eqs. (4.11) and (4.12)).
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Algorithm 4.4: A local variant of path6 (Algorithm 4.2). To perform path6 α can either store its
path6-neighbourhood (as shown), or request it through the classical network.

Data : α ∈ V , the current node.
Nα ← {α} ∪N(α) ∪N(p(α)) ∪N(p(p(α)), the neighbourhood of α.
Nα

2 ← Nα ∪N(Nα). Include N(α) ∩N(β) seen from α’s side.
Nα

3 ← Nα
2 ∪ children(Nα

2 ) ∪ children(children(Nα
2 )). Finally, include p(β) and p(p(β)) in the

search from the perspective of α.
Input : β ∈ V , the destination.
Output : Pα,γ the path from α to a vertex γ ∈ V towards β of maximum length 6. Otherwise nothing.
Function path6(β) is

Lβ ←
∪

i label(β)i // The entire ancestry tree of β

if ∃γ : γ ∈ Nα
3 ∩ Lβ then

γmin ← minγ {d(α, γ) + d(γ, β)} // Take the closest γ

return Pα,γmin

else if d(α, β′) = 3 : α ∈ L0, β
′ ∈ L0 ∩ Lβ then // Handle an edge case on the icosahedron

return minβ′∈L0∩Lβ
{dijkstra(α, β)} // Use Dijkstra's algorithm on G0 to find a path

end
end

Algorithm 4.5: Local Routing Algorithm. A vertex α receives a data packet (β, d) and sends it along
according to the return value.

Data : α ∈ V , the current node.
N(α) ∈ V ∗, the IDs of the direct neighbourhood of α.

Input : β ∈ V , the destination.
d ∈ {0, 1}, d stands for ‘down’, signalling if a path6 has been reached.

Output : γ ∈ [V ], the next nodes to route to.
Function localPath(β, u) is

if α = β then
Destination reached

else if u = 0 then
if ∃path6(α, β) then

u← 1
return path6(α, β)

else
// Decrease the layer to a parent in the label of α.
αnew ← randomElement(label(α)2) // Choose randomly on multiple options
return [αnew]

end
else

// Increase the layer to a child that is in the label of β.
i : α ∈ label(β)i
βnew ← randomElement(label(β)i−1 ∩N(α)) // Choose randomly on multiple options
return [βnew]

end
end
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4.4.3. Complexity Analysis
The local algorithms path6 and the routing algorithm must also be fast and use little memory. This can be
checked by performing a time- and space-complexity analysis. Because the algorithm is local, we look at the
complexities per vertex. The space complexity is related the amount of memory stored per vertex, and we
show that it scales poly-logarithmically with the number of vertices |V |.

Theorem 4.4.1 (Local Space Complexity). The space complexity per vertex of the local routing algorithm
is O(log5 |V |).

Furthermore, we also show that the time complexity, related to the running time, scales poly-logarithmically
in the number of vertices |V |.

Theorem 4.4.2 (Local Time Complexity). The time complexity of the local routing algorithm is O(log2 |V |)
per vertex.

Since the diameter of the graph D(G) = 4 log2
(
n−2
10

)
+ 3 = O(log |V |) (Proposition 3.1.1) and every vertex

uses O(log2 |V |) run-time, the complete routing of any packet will take at most O(log3 |V |) time.



5
Routing Technical Details

In this chapter we will go into detail of the theorems used in Chapter 4, proving their correctness. But first, we
give an outline of our proving strategy that may be used as a guide through our proofs (Section 5.1). Only then
we follow with the proofs of the graph properties (Section 5.2), then the labelling (Section 5.3), the routing
algorithm optimality (Section 5.4) and finally the complexity analysis of the algorithm (Section 5.5).

5.1. Proof Outline
The proofs are structured into four sections: Graph Properties, Labelling, Proof of Optimality and Complexity
Analysis. Each section builds on the theorems of the previous. We give an outline of the theorems proved in
each section and how they result in the next theorem.

Graph Properties The parents of a node have a few simple properties that are formalised in propositions,
that of the common parent, the connectedness of parents and the layer of a vertex. We use these properties
in proofs to show that there exist certain parents that can be routed through.

These are followed by two key theorems for routing, Theorem 5.2.4 (No Higher Edge) and Theorem 5.2.5
(Three Hops). No Higher Edge shows that any shortest path between vertices may ignore edges on higher
layers than either vertex, greatly reducing the number of possibilities since we can ignore children. Three Hops
furthermore shows that if two vertices are on the same layer and at least 3 hops apart, then there must be
a shortest path that goes through the parents. This can then be extended to two vertices on different layer
of any distance in Corollary 5.2.6. These Theorems already hint towards a routing algorithm that makes use
of the parents of nodes to route, as there almost always seems to be some parent that is on a shortest path,
except when they are already nearby.

Labelling We have seen that parents are interesting for finding the shortest path, but since each node has
two parents we do not know which parent is on the shortest path. As it turns out, each vertex has at least one
parent that must always be on the shortest path, if there is any parent on the shortest path. We show this by
constructing a label and filtering it. Furthermore, it is necessary for another vertex to know who to route to.
The labelling of vertices must also indicate the location of each vertex if a node does not have access to global
information.

The first type of vertices that are not necessarily on a shortest path are duplicates in the label, vertices
that have already occurred in the label. The second type are simple vertices (Definition 4.2.2) which can
be removed from the label without trouble as shown in Proposition 5.3.1 (Simple Vertex Properties). Lastly,
vertices that do not add parents to the label can also be removed, because they are a dead-end when routing
to lower layers. Then in Lemma 5.3.2 (Non-Simple Vertex Bound) we show that there are no more than 3
remaining non-simple vertices at any label index, greatly limiting the size of the label. Furthermore, the case
analysis in the proof gives insight into the possible configurations of each label entry. As it turns out, all
vertices in a label entry must be connected. Because they are connected, they also must be on the same layer
(Corollary 5.3.3).

Proof of Optimality Here we show that the global routing algorithm (Algorithm 4.3) produces a shortest
path. To do so, the path6 algorithm (Algorithm 4.2) first makes sure that the sender and receiver are at
least a minimum distance apart as shown in Lemma 5.4.1 (path6 Distance). Then we can use the Three Hops
Theorem to guarantee that some parent is in the shortest path.

31
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The algorithm blindly picks some vertex in the label, if path6 does not find a path. It remains to show
that the remaining vertices in the label after filtering are always on a shortest path, if a minimum distance is
guaranteed. In Theorem 5.4.2 (Label Routing) we show that picking some vertex from the label is never worse
than a simple vertex (which were removed from the label), nor is it worse than picking any other non-simple
vertex where the necessity of the third label filtering is shown (4.12). We have argued in Section 4.3 that the
path6 algorithm is optimal, and we have shown that routing to the parents in the label is optimal if path6
does not find a path. Thus in all cases the algorithm finds an optimal path, as shown in Theorem 5.4.3.

Complexity Analysis We have argued that the local algorithm is equivalent to the global algorithm in
Section 4.4. But it is also important that the local routing algorithm is efficient and uses little memory.
Because the algorithm is local, we look at the complexities per vertex. The space complexity is related to
the amount of memory stored per vertex, and we show that it scales poly-logarithmically with the number
of vertices |V | (Theorem 5.5.1). Furthermore, we also show that the time complexity, related to the running
time, scales poly-logarithmically in the number of vertices |V | (Theorem 5.5.2).

5.2. Graph Properties
In this section we prove properties of the graph that are very useful for analysis. First we look at vertices,
their parents and layering. Later, we look at how shortest paths are structured in the graph. Which nodes
these paths use, and how the distance and layer of nodes dictate what nodes the path uses.

5.2.1. Vertex Properties
In a path, a sequence of vertices that are adjacent follow each other. We show that adjacent vertices have a
common parent, which is of interest when we want to reroute path through the parents. A common parent of
vertices α, β ∈ V is

πα,β ∈ Πα,β =

{
{α} if α = β ,

(p(α) ∪ {α}) ∩ (p(β) ∪ {β}) otherwise.
(5.1)

Which is defined in this way so that the common parent of a node and itself, is itself. And the common parent
of two different nodes is either a common direct parent in p(α) ∩ p(β). Or if α ∈ pk(β) then α = πα,β and
vice versa. We will now pose some facts of the graph, that that follow from the generation algorithm and will
be used often in later proofs. First, is that two adjacent vertices always share a parent, their common parent.
Furthermore, we show that the two parents of a node are always connected to each other. And finally, that
the layer of a vertex depends on the maximum layer of its parents.

Proposition 5.2.1 (Common Parent). If any two vertices of α1, α2 ∈ V are connected by an edge, they
have some unique common parent πα1,α2

.

Proof. If α1 = α2 then πα1,α2
= α1. Otherwise, we consider two cases, depending on the layers of α1 and

α2.

1. If l(α1) = l(α2) then on Line 18 of the subdivision algorithm (Algorithm 3.1) the vertex α1 is connected
to its neighbours Γ = (N(α) ∩ Lk) of layer k. In this step two triangles are defined to connect α1 to
its neighbours, where each triangle only contains edges with at least one endpoint being in p(α1). The
edges of these triangles generate the set Γ and α1. Then by construction it holds that all neighbours
Γ have a parent in common

p(α1) ∩ p(γ) ̸= ∅ for all γ ∈ Γ.

Since α1 ̸= α2, it must furthermore be the case that p(α1) ̸= p(α2), because the edge p(α1) ∈ E only
generates one vertex. Thus there is a unique common parent

πα1,α2
∈ p(α1) ∩ p(α2) .

2. When l(α1) ̸= l(α2), then assume without loss of generality (w.l.o.g.) that l(α1) > l(α2). Because the
vertices are connected and l(α1) > l(α2) it must be the case according to Eq. (4.4) that α2 ∈ p(α1).
Thus α2 = πα1,α2

.

Proposition 5.2.2 (Parents Connected). Consider some vertex α ∈ Vk, k > 0, then for its parents
{β1, β2} = p(α) holds that there is an edge {β1, β2} ∈ E.
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Figure 5.1: An illustration of the proof of Theorem 5.2.4. In black are given three possible shortest paths. It is not possible to
construct a shortest path by replacing a hop with going through a higher layer (red, solid arrow). Additionally, any number of
hops through a higher layer, may be replaced by going through a lower layer instead (blue, dotted arrow).

Proof. By construction of the graph, specifically on Line 13 of the graph generation algorithm (Algo-
rithm 3.1), α is connected to its parents. These parents are chosen such that they are connected on Line 5
of the graph generation algorithm, because α is placed as a midpoint on the edge. Thus proving that there
is an edge {β1, β2} ∈ E.

Proposition 5.2.3 (Vertex Layer). Consider a vertex α ∈ Lk : k > 0, then

l(α) = max
β∈p(α)

{l(β)}+ 1 . (5.2)

Proof. Let k = l(α). Then by construction of the graph (Line 5 of Algorithm 3.1), there is an edge
e = {β, γ} ∈ Ek−1 that α is midpoint on. The endpoints of this edge are the parents of α, {β, γ} = p(α).
Because e ∈ Ek−1, we know that either l(β) = k − 1 or l(γ) = k − 1. But l(β) < l(α) and l(γ) < l(α), so
l(α) = max(l(β), l(γ)) + 1.

5.2.2. Properties for Routing
An important property of the sphere graph, is that when routing between vertices it is never useful to use edges
in Ek for higher k than either vertex. Let α ∈ V be a sender and β ∈ V a receiver. Then this result allows us
to ignore the possibility of routing through a higher layer than l(α), when analysing the neighbourhood N(α).
That is, if we know l(α) ≥ l(β). Any path is symmetric, so when l(α) < l(β) we can analyse the inverted
situation instead, where β is the transmitter and α the receiver. In proofs by contradiction we will use to
signal a contradictory statement.

Theorem 5.2.4 (No Higher Edge). If m is the distance between vertices α0, αm ∈ V , and
k = max(l(α0), l(αm)). Then for all paths between α0 and αm of length m holds that they do not
use an edge in Eh, where h > k.

Proof. We give a proof by induction over m, the distance between α0 and αm. An illustration of the proof
is given in Fig. 5.1.
Basis: m = 1. By construction of the graph, we know that all edges in Ei are subdivided to obtain Ei+1.
This continues recursively until the highest layer is reached. This implies that

∀α0∀α1 ∈ Vk , {α0, α1} /∈ Eh . (5.3)

Thus there is no shortest path of length 1 that use an edge in Eh.
Induction hypothesis: If there are two vertices α, αm ∈ V such that the distance between them is of
length m = ℓ− 1 and k = max(l(α0), l(αm)), then there exists no path of length ℓ− 1 that uses an edge in
Eh, h > k.
Induction: m = ℓ. First consider all shortest paths Pα0,βm−1

of length m − 1 from α0 to a vertex βm−1

that satisfies
βm−1 ∈ (Vk ∩N(αm)) .

By the Induction Hypothesis (IH) all Pα0,βm−1
cannot contain an edge in Eh, or they would be longer than

m− 1. That means that for any edge in Ek, two or more edges have to be traversed in Eh. When Pα0,βm−1

is extended using an edge in Eh, then the destination cannot be reached in one hop. Thus the path using
an edge in Eh is longer than m hops.
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πα1,α2
πα3,α4

πα2,α3

α2

α5

α3α1 α4

Figure 5.2: An illustration for the proof of Theorem 5.2.5, in the case that l(α2) = l(α3). There exists a triangle
{πα1,α2

, πα2,α3
, πα3,α4

} such that there is an edge {πα1,α2
, πα3,α4

} ∈ E. Now the original path Pα1,α4
(blue, solid arrow)

can be rerouted through a lower layer P̂α1,α4
(red, dashed arrow).

Let us prove by contradiction that there are no paths of length m− 1 to some vertex on a higher layer
γm−1 ∈ Li : i > k

Pα0,γm−1
= [α0, γ1, . . . , γm−2, γm−1]

which satisfy γm−1 ∈ N(αm), such that αm can be reached in m hops through γm−1. For a contradiction
assume there is some path Pα0,γm−1

. Then we know that γm−2 ̸∈ p(γm−1), or else {γm−2, αm} ∈ E

according to Proposition 5.2.2 because αm ∈ p(γm−1) as l(αm) < l(γm−1). This would contradict that
the distance between α0 and αm is m. Nor is γm−1 ∈ p(γm−2) because that would contradict the IH
for the path Pα0,γm−1

, as it would use an edge to a higher layer than l(γm−1). So l(γm−2) = l(γm−1).
Together with Proposition 5.2.1, that implies there is some common parent πγm−2,γm−1

for which holds that
γm−2 ̸= πγm−2,γm−1

̸= γm−1. Let us call this parent πγm−2,γm−1
= π2,1 for simplicity.

The path

Pα0,γm−2
= [α0, γ1, . . . , γm−2]

has length m − 2, and Proposition 5.2.2 implies that {π2,1, αm} ∈ E, because αm ∈ p(γm−1). Thus it is
possible to construct a shortest path of length m− 1

Pα0,π2,1
= Pα0,γm−2

++ [π2,1] .

Which must be a shortest path, or else the distance between α0 and αm would be less than m. So Pα0,π2,1

contains an edge
{γm−2, π2,1} ∈ Ei, where i = l(γm−2) = l(γm−1) > l(α0) . (5.4)

But i > l(π1,2), so i > max{l(π2,1), l(α0)}, thus contradicting the IH. Because the IH implies there is no
shortest path from α0 to π2,1 which uses an edge on a higher layer than max{α0, π2,1}.

Thus we can conclude that the only paths of length m−1 are Pα0,βm−1
, for which we have already proven

that the Theorem holds.

Now that we know higher layers are uninteresting for routing, we can start analysing what happens if two
vertices are far apart. We show that when two vertices α, β ∈ V are on the same layer and d(α, β) ≥ 3, then
we there is some path between α and β that uses only lower layer vertices, except α and β. So when we can
guarantee that two vertices are some distance apart, we may assume that there is a parent in πα ∈ p(α) and
a parent in πβ ∈ p(β) that have d(πα, πβ) = d(α, β) − 2. Thus there are some parents that are on a shortest
path between α and β.

Theorem 5.2.5 (Three Hops). Consider a shortest path Pα1,αm+1
of length m ≥ 3 between two vertices on

the same layer α1, αm+1 ∈ Lk, k > 0. Then there exists a path also of length m that contains only vertices
in Vh, h < k between α1 and αm+1, except for α1 and αm+1.

Proof. We give an inductive proof over m, the shortest path length between a pair of vertices on the same
layer k.
Basis: Let there be a shortest path of length m = 3 given by [α1, α2, α3, α4]. The way vertices are generated,
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any vertex on layer k > 0 is connected to two parents. It is sufficient to prove that the path

P ′
α1,α4

= [α1, πα1,α2
, πα3,α4

, α4] (5.5)

exists, where πα,β is the common parent defined in Eq. (5.1). Additionally, we know that

πα1,α2
̸= πα3,α4

, (5.6)

or the shortest path would only be 2 hops. Let us prove by contradiction that this path does exist.
Assume that P ′

α1,α4
does not exist. This implies

{πα1,α2
, πα3,α4

} /∈ E . (5.7)

Because of Proposition 5.2.2 we know that if πα1,α2
̸= πα2,α3

then {πα1,α2
, πα2,α3

} ∈ E, and if πα3,α4
̸= πα3,α4

then {πα2,α3
, πα3,α4

} ∈ E. Therefore, together with Eq. (5.6) if

πα1,α2
= πα2,α3

=⇒ {πα1,α2
, πα3,α4

} ∈ E . (5.8)
πα2,α3

= πα3,α4
=⇒ {πα1,α2

, πα3,α4
} ∈ E . (5.9)

The final case is πα1,α2
̸= πα2,α3

̸= πα3,α4
. Let us show that the following holds

l(α2) = l(α3) . (5.10)

For contradiction assume l(α2) ̸= l(α3). W.l.o.g. assume l(α2) < l(α3), then πα2,α3
= α2. That also means

that l(α3) = l(α4) = k = l(α1), or the path would already satisfy Eq. (5.5). Thus l(α2) < l(α1), and so
πα1,α2

= α2. But this contradicts the assumption that πα1,α2
̸= πα2,α3

, which means that Eq. (5.10) holds.
Thus p(α2) = {πα1,α2

, πα2,α3
} and p(α3) = {πα2,α3

, πα3,α4
}, because the common parents are distinct.

Together with Eq. (5.10), we can say that because on Line 18 of the subdivision algorithm (Algorithm 3.1)
the following triangle must exist or there would be no edge (α2, α3)

{πα1,α2
, πα2,α3

, πα3,α4
} =⇒ {πα1,α2

, πα3,α4
} ∈ E . (5.11)

This is also illustrated in Fig. 5.2. Thus in all cases for Pα1,α4
there exists an edge {πα1,α2

, πα3,α4
} ∈ E, so

it is always possible to construct P ′
α1,α4

.
Induction hypothesis: Assume that for all shortest path of length 3 ≤ m < ℓ− 1 there exists a shortest
path that contains only vertices β ∈ Vh, h < k between α1 ∈ Lk and αm ∈ Lk, except for α1 and αm.
Induction: m = ℓ− 1: Let there be a shortest path between α1 and αℓ of length ℓ− 1

Pα1,αℓ
= [α1, · · · , αℓ−1, αℓ] . (5.12)

We distinguish cases by the relation between l(αℓ−1) and l(αℓ). Note that l(αℓ−1) ̸> l(αℓ) because of
Theorem 5.2.4.

1. Consider the case that l(αℓ−1) = l(αℓ). Then we can create a shortest path of length ℓ − 2 between
α1 and αℓ−1 using the Induction Hypothesis (IH)

Pα1,αℓ−1
= [α1, β2, · · · , βℓ−2, αℓ−1] (5.13)

that uses edges e ∈ Eh, except the first and last hop. Extend Pα1,αℓ−1
with a hop to αℓ so that we get

a new shortest path from α1 to αℓ of length ℓ− 1

P ′
α1,αℓ

= [α1, · · · , βℓ−2, αℓ−1, αℓ]. (5.14)

We know that βℓ−2 ∈ p(αℓ−1), because it must be in a lower layer than αℓ−1 (IH). Additionally, there
must be some common parent παℓ−1,αℓ

. Parents are connected according to Proposition 5.2.2. Thus
we can construct a shortest path of length ℓ which meets the criteria of the theorem by replacing αℓ−1

with παℓ−1,αℓ

P̂α1,αℓ
= [α1, · · · , βℓ−2, παℓ−1,αℓ

, αℓ] .
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2. Otherwise l(αℓ−1) < l(αℓ). Then there must be some minimal i so that for the set A =
{αi, αi+1, . . . αℓ−1} it holds that ∀α ∈ A : l(α) < l(αℓ). For all vertices in the subpath α′ ∈ Pα1,αi−1

holds that l(α′) = l(αℓ), or else i is not minimal or Theorem 5.2.4 would be violated for a path
between α′ and αℓ−1. For the same reason it cannot be the case that there is some i < j < ℓ for
which l(αj) > l(αℓ).
It is now possible to transform the vertices in the subpath Pα1,αi−1

= [α1, . . . , αi−1] to vertices for
which the theorem holds. It must be the case that l(α1) = l(α2) = . . . = l(αi−1), or Theorem 5.2.4
would be violated. We first show that i ̸≥ 5. For a contradiction assume i ≥ 5, then we can apply the
IH to create a path

P ′
α1,αi−1

= [α1, β2, . . . , βi−2, αi−1] (5.15)

through a lower layer. But βi−2 and αi are both parents of αi−1, so they are connected according to
Proposition 5.2.2. We can thus remove αi−1 to create a shorter path from α1 to αℓ, contradicting the
assumption that Pα1,αℓ

was a shortest path. Thus it must be the case that i < 5.
There remain only three cases, i = 2, i = 3 and i = 4. If i = 2 then the path already fulfills the
theorem. If i = 3, we replace α2 with πα1,α2

which must be connected to α3, because α3 is also a
parent of α2. If i = 4, we do the same and replace α2 with πα1,α2

, and α3 with πα2,α3
which again

must be connected. Finally, πα2,α3
must be connected to α4 to complete the path.

In all cases it is possible to construct a path according to the theorem.

We have shown for vertices on the same layer that it is possible to route through their parents, if they are
at least 3 hops apart. However, we want to generalise this statement to vertices on any layer. Using the proof
in Theorem 5.2.5 we can show that if routing to a lower layer, there is always some parent which is on the
shortest path.

Corollary 5.2.6 (Lower Layer Path). Consider vertices

α0, αm ∈ V : l(α1) < l(αm) . (5.16)

with d(α1, αm) = m. Then there exists a path also of length m that contains only vertices β ∈ Vh, h < l(α1)
between α0 and αm, except α0.

Proof. We give a proof by induction over m, the length of the shortest path.
Basis: m = 1: Then there is a direct hop from α0 to α1. This path also satisfies the corollary.
Induction hypothesis: If there is a shortest path Pα0,αℓ−1

of length m = ℓ− 1 between vertices

α0, αm ∈ V : l(α0) < l(αm) . (5.17)

Then there exists a shortest path also of length ℓ− 1 that contains only vertices β ∈ Vh, h < l(α0).
Induction: m = ℓ: The proof is similar to Item 2 of Theorem 5.2.5. There is a shortest path of length ℓ

Pα0,αℓ
= [α0, α1, . . . , αℓ] . (5.18)

Then there must be some minimal i so that for the set A = {αi, αi+1, . . . αℓ} holds that ∀α ∈ A : l(α) ≤ l(αℓ).
For all vertices in the subpath α′ ∈ Pα0,αi−1

holds that l(α′) > l(αℓ). Or either i is not minimal if we can
add an αi−1 to A, or Theorem 5.2.4 would be violated for a path between α′ and αℓ if there is vertex β

between α′ and αℓ which has l(β) > l(α′). For the same reason it cannot be the case that there is some
i < j < ℓ for which l(αj) > l(αℓ).

It is possible to transform the vertices in the subpath Pα0,αi−1
= [α0, . . . , αi−1] to vertices in a path

P ′
α0,αi−1

for which the Corollary holds, in exactly the same manner as given in Theorem 5.2.5. The path
P ′
α0,αi−1

++ Pαi,αℓ
fulfills the Corollary.

5.3. Labelling
In Definition 4.2.2 we have defined the simple vertex, which have some interesting properties that are formally
proved. The most interesting property is that any simple vertex will only add at most one simple vertices to
the filtered label. That means that once a vertex is simple, it and its parents will never become non-simple.
Which in turn implies that we can remove them and still retain all possible non-simple vertices (as we shall
see later, this is indeed what we do).
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Proposition 5.3.1 (Simple Vertex Properties). A simple vertex in labelf(α)ℓ will add no more than one
vertex to labelf(α)ℓ+1. Moreover, if a parent was added to the label by a simple vertex, it is also simple.

Proof. We will show that once a vertex is simple, it must have some parent that does not get added to the
filtered label at index ℓ+1. Given is a simple vertex γ ∈ labelf(α)ℓ for some ℓ > 1. Using the definition of a
simple vertex (Definition 4.2.2), we recall a parent β ∈ p(γ) has already occurred in the filtered label. The
parent β is not added once again to the filtered label, because duplicates are filtered out. There must also
be a second parent β2:

{β, β2} = p(γ).

According to Proposition 5.2.2 {β, β2} ∈ E. We will analyze this case-by-case:

1. If l(β) > l(β2), then both γ and β will add β2, because β2 ∈ p(γ) and β2 ∈ p(β). Because each label
index is a set, we can view this as only β adding β2 to the filtered label. Thus the simple node γ does
not add any nodes to the filtered label.
For this argument to hold, it must not be the case that β uses this same argument to defer the parent
to γ, which would mean that the argument is cyclical. But l(β) < l(γ) as β ∈ p(γ), so γ ̸∈ p(β). Thus
it is impossible for the argument to become cyclical.

2. If l(β) = l(β2), then the fact that β and β2 are connected allows us to conclude that there is a common
parent β ̸= πβ,β2

̸= β2 (Proposition 5.2.1) which will be added to the filtered label by β. This occurs
in the same step where γ adds β2 to the filtered label. That causes β2 to also be simple, because β2
is adjacent to its parent πβ,β2

.

3. If l(β) < l(β2), then β ∈ p(β2). Thus β2 will also be simple, as it is adjacent to its parent β.

Thus for all cases, γ adds at most one parent to labelf(α)ℓ+1, which is also simple.

The labelling as defined in Eq. (4.11) for labels(α) and Eq. (4.13) for label(α) has some properties that we will
use often in later proofs. Very important is the fact that |labels(α)i| ≤ 3, for any i. This greatly limits the
size of the labelling, since |label(α)i| ≤ |labels(α)i|. In the proof we perform a case analysis, that we will refer
to in later proofs.

Lemma 5.3.2 (Non-Simple Vertex Bound). The label size |labels(α)ℓ| ∈ {1, 2, 3}, for any α ∈ V and integer
ℓ. Additionally, for any α, β ∈ labels(α)ℓ : α ̸= β it holds that {α, β} ∈ E.

Proof. We will prove this lemma using induction over a constrained set of cases.
Basis: We know that the label starts with only one non-simple node α, at labels(α)1. The parents {β1, β2} =
p(α) will be added to the label at the next index, if l(α) > 1. Either α has one non-simple parent and one
simple parent, or it will have two non-simple parents. Simple vertices are removed according Eq. (4.11),
leading to a label size of 1 or 2. The parents are also adjacent, according to Proposition 5.2.2. The lemma
thus holds for the base case, and results in one of the induction step cases.
Induction hypothesis: Assume that |labels(α)ℓ−1| ∈ {1, 2, 3}, and that all vertices in labels(α)ℓ−1 are
pairwise adjacent. The label is thus in one of the following configurations:

1. One non-simple vertex.

2. Two non-simple and adjacent vertices.

3. Three non-simple and pairwise adjacent vertices.

We will show that the induction step will only result in one of these cases.
Induction: According to the Induction Hypothesis (IH) labels(α)ℓ−1 is in one of three configurations, we
will handle each case individually.

1. The number of non-simple vertices is 1 for labels(α)ℓ−1. Given that there is only one non-simple vertex
that can add two parents, we know that this can result in:

(a) One non-simple vertex and one simple vertex, where the simple vertex is filtered out according
to Eq. (4.13).

(b) Two non-simple and adjacent vertices,
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2. There are 2 non-simple and adjacent vertices in the label. Let the two non-simple vertices be called
α1, α2 ∈ labels(α)ℓ−1. Because they are adjacent, there must be a common parent πα1,α2

according to
Proposition 5.2.1. This common parent is not equal to either α1 or α2, or else one of them would be a
simple vertex (as its parent is in the label) Furthermore, there are parents β1 ∈ p(α1) and β2 ∈ p(α2)
which are distinct from the common parent β1 ̸= πα1,α2

and β2 ̸= πα1,α2
.

We will show that β1, β2 and πα1,α2
are all pairwise adjacent. There exist edges {πα1,α2

, β1}, {πα1,α2
, β2} ∈

E according to Proposition 5.2.2. The edge {β1, β2} also exists in E, because l(α1) = l(α2) and the
way vertices are connected on Line 18 of the graph construction algorithm (Algorithm 3.1). The
construction algorithm step implies there is a triangle {β1, πα1,α2

, βx}, where βx is a parent of α2.
Since α2 has only one other parent besides πα1,α2

, we must have that β2 = βx and thus β1 and β2 are
adjacent.
Apart from that, we will also show that this case may only results in either 1 non-simple vertex plus
2 simple vertices, or 3 non-simple vertices. A fact that is used later in a proof.

Subproof No 2 Non-Simple. For a contradiction, assume that 2 vertices γ1, γ2 ∈ {β1, πα1,α2
, β2} are

non-simple, and the last vertex, γ3, is simple. That means that either γ1 ∈ p(γ3) or γ2 ∈ p(γ3). We
also know that l(γi) < l(α1) = l(α2) for i ∈ {1, 2, 3}. Together with the fact that l(γ1) = l(γ2) (or one
of them would be simple, see also the proof of Corollary 5.3.3), we know that

l(γ1) = l(γ2) < l(γ3) . (5.19)

Assume w.l.o.g. {γ1, γ2} = p(α1). From Eq. (5.19) and Proposition 5.2.3 we can see that l(α2) =
l(γ3) + 1, while l(α1) = l(γ1) + 1. Thus

l(α1) = l(γ1) + 1 < l(γ3) + 1 = l(α2) . (5.20)

However, that would mean α1 ∈ p(α2), so α2 is simple, contradicting the assumption that it is non-
simple. A similar contradiction is reached for {γ1, γ2} = p(α2). Thus γ1 ̸= πα1,α2

̸= γ2, or one of these
cases would occur.
The only remaining case is that γ1 = β1 and γ2 = β2 (or the inverse). Then there must be some
child α3 ∈ V on the edge between γ1 and γ2, with l(α3) = l(γ1) + 1. It must also be the case
that l(γ1) < l(πα1,α2

), or it would not be simple. So l(α1) = l(α2) = l(πα1,α2
) + 1 according to

Proposition 5.2.3. As before, we have seen that {β1, πα1,α2
, β2} form a triangle, so by construction

there must be edges {α1, α3}, {α2, α3} ∈ E. But l(α3) = l(γ1) + 1 < l(πα1,α2
) + 1 = l(α1), so α3

is also a parent of α1 and α2. This contradicts the assumption that only β1, β2 and πα1,α2
are the

parents. ■

Thus this can result in the following cases:

(a) One non-simple vertex and the rest is simple. Thus two of the common parents in the triangle
were simple and are removed from the label.

(b) Three non-simple vertices that are all pairwise adjacent.

3. The number of non-simple vertices is 3 and they are all pairwise adjacent. Let the non-simple vertices
be called α1, α2, α3. Because these vertices are all pairwise adjacent, they form a triangle. Additionally,
with the same reasoning as in Item 2 of the induction step

l(α1) = l(α2) = l(α3) , (5.21)

thus these vertices were generated in the same iteration of the graph generation. A triangle
{α1, α2, α3} with Eq. (5.21) is only formed by three parents in a triangle {β1, β2, β3}, according to
Line 18 of the graph generation algorithm (Algorithm 3.1). Thus there exist three common parents
{πα1,α2

, πα1,α3
, πα2,α3

} = {β1, β2, β3} that are distinct and also adjacent.
This can result in the following cases:

(a) One non-simple vertex and the rest is simple.
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(b) Two non-simple and adjacent vertices, and the rest simple.
(c) Three non-simple vertices that are pairwise adjacent.

So for all given cases the lemma holds, and each case results in one given in the IH.

With the non-simple vertex properties in the label we can give a succinct proof that any two vertices at
the same label index must be on the same layer.

Corollary 5.3.3 (Same Layer Label). Consider two vertices α, β ∈ labels(γ)i for some integer i. Then
l(α) = l(γ).

Proof by Contradiction. Assume w.l.o.g. l(α) < l(β). Then α ∈ p(β) as they are connected (Lemma 5.3.2).
But that implies β is simple, as α has occurred in the label, leading to a contradiction.

Corollary 5.3.3 together with Proposition 5.2.3 also implies that if β ∈ labels(α)i, and p(β) ⊆ labels(α)i+1,
then l(γ) = l(β) − 1 : γ ∈ p(β). As l(π1) = l(π2) : {π1, π2} = p(β). So it gives a direct restriction on the
layer of the parents in the label. Furthermore Lemma 5.3.2 and Corollary 5.3.3 also hold for the final labelling,
since vertices are only removed from the label.

5.4. Proof of Optimality
Given the Algorithm 4.3 we will now show that this algorithm produces a shortest path. We will first analyse
the path6 algorithm (Algorithm 4.2), which will give us a lower bound on the distance between the sender α and
the receiver β (Lemma 5.4.1) If we know that d(α, β) ≥ 3 we can then apply Theorem 5.2.5 and Corollary 5.2.6
to ensure there is some path through the parents of α and β. We will show that the filtering we have applied
to the labelling has resulted in non-simple vertices which are all equally good to route through, if α and β are
far apart (Theorem 5.4.2). Finally, we can combine these facts to show that Algorithm 4.3 produces a shortest
path in Theorem 5.4.3.

We start off by giving a lower bound on the distance between α and β if path6 does not find a path.

Lemma 5.4.1 (path6 Distance). Consider two vertices α, β ∈ V for which path6(α, β) (Algorithm 4.2) does
not find a path. Then d(α, β) > 3. Additionally, for any πα ∈ p(α) and πβ ∈ p(β), d(πα, πβ) > 3. Finally,
for grandparents γα ∈ p(πα) and γβ ∈ p(πβ), d(γα, γβ) ≥ 3.

Proof. For the case d(α, β) = 0 or d(α, β) = 1, a solution is found with {α}∩{β}, and {α}∩N(β) respectively.
If d(α, β) = 2 then N(α) ∩N(β) will find it.

For d(α, β) = 3 there are two cases:

1. If l(α) = l(β) and d(α, β) = 3. Then we can use the Theorem 5.2.5 Theorem to show that there
must be some parents γα ∈ p(α) and γβ ∈ p(β), so that γα ∈ N(γβ) because d(γα, γβ) = 1. Thus
N(α) ∩N(p(β)) ̸= ∅ for d(α, β) = 3.

2. Otherwise l(α) ̸= l(β). Assume w.l.o.g. that l(α) > l(β). By Corollary 5.2.6 we know there is some
vertex in p(α) on a shortest path Pα,β . Thus N(p(α)) ∩N(β) will always find the shortest path Pα,β .

To show that d(πα, πβ) > 3 we closely investigate Nα and Nβ . We remove the entries not containing
p(α) and p(β)

N̂α = N(p(α)) ∪N(p(p(α))) , (5.22)
N̂β = N(p(β)) ∪N(p(p(β))) . (5.23)

Then we can see that the above proof also holds for p(α) and p(β). Since p(p(α)) is never used in the proof,
we can replace p(α) with some γ ∈ p(α) and η ∈ p(β) to create

N̂α = N(γ) ∪N(p(γ)) , (5.24)
N̂β = N(η) ∪N(p(η)) . (5.25)

For which we can see that the same proof applies if α = γ and β = η.



5.4. Proof of Optimality 40

Finally, we need to show that d(γα, γβ) ≥ 3. Let us look at the entries containing γα and γβ

Ñα = N(p(p(α))) , (5.26)
Ñβ = N(p(p(β))) . (5.27)

With the same steps as for α and β for d(α, β) ≤ 2 we can show that N(p(p(α)) ∩N(p(p(β) finds all paths
if d(γα, γβ) < 3. Thus d(γα, γβ ≥ 3 if path6 does not find a path.

Using the guarantee on the distance between α and β that path6 gives, we show that if path6 did not find
a path then all vertices in label(α)2 are equidistant from β. This allows us to chose any vertex in label(α)2
at random. Conversely, this will also be useful when routing up the layers towards β in the local algorithm
(Section 4.4). Because any vertex in label(α)2 may be chosen to be in the shortest path, it also does not matter
which vertex is chosen if coming from a vertex γ ∈ label(β)3 and routing towards β.

Theorem 5.4.2 (Label Routing). Consider two nodes α, β ∈ V, l(α) ≥ l(β) so that path6(α, β) (Al-
gorithm 4.2) cannot determine a path between them. Then for every node π1 ∈ label(α)2 holds that
d(π1, β) = d(α, β)− 1, i.e. they are on a shortest path between α and β.

Proof. By Lemma 5.4.1 we know that d(α, β) > 3, or path6(α, β) would have found a path. The same holds
for the parents

d(πα, πβ) > 3 : πα ∈ p(α), πβ ∈ p(β) . (5.28)

From Theorem 5.2.4 we also know that only vertices η ∈ N(α) : l(α) ≥ l(η) are relevant. We first show that
routing through π1 is not worse than routing through some simple parent π2 ∈ p(α), if it exists. Then we
show that if there are two non-simple parents, then routing through π1 is not worse than the other parent.
We first assume for a proof by contradiction that d(π2, β) < d(π1, β).

Because l(β) ≤ l(α) we can apply either Theorem 5.2.5 or Corollary 5.2.6 to see that there is a shortest
path that includes π2. Furthermore, if l(β) = l(α) then there is some parent πβ ∈ p(β) in the shortest path,
otherwise let πβ = β. In both cases d(π2, πβ) ≥ 3, because if πβ = β then d(π2, πβ) = d(α, β)− 1, otherwise
the distance is guaranteed by Eq. (5.28).

We can then show that there is a shortest path through the parents of π2. If π2 is simple, then l(α) =
l(π2) + 1 (Proposition 5.2.3), if it is non-simple then still l(α) = l(π2) + 1. Thus it also holds that

l(π2) ≥ l(πβ) . (5.29)

since l(α) > l(πβ). Once again, since we do not know whether l(πβ) = l(π2) or l(πβ) < l(π2). In the
former case, let us call γβ ∈ p(β) the parent the shortest path goes through, otherwise γβ = πβ . We can
then apply Theorem 5.2.5 or Corollary 5.2.6 once more to see that there is a parent γπ2

∈ p(π2) which has
d(γπ2

, β) = d(π2, β)− 1 on the path.

Pπ2,γβ
= [π2, γπ2

, γ1, γ2, . . . , γβ , πβ ] , (5.30)

where for convenience we have assumed that if γβ = πβ the last hop is not performed.

Subproof Simple Parents. Let π2 be a simple parent, then it must have a parent already in the label. The
parent in the label can only be π1, as π1 and α are the only other vertices in the label up to index 2.
From Eq. (5.30) we can see that γπ2

is on the shortest path. However, parents of a node are connected
(Proposition 5.2.2), i.e. {ππ, π1} ∈ E, so at most d(π1, β) = d(γπ2

, β) + 1 = d(π2, β), which contradicts the
assumption d(π2, β) < d(π1, β). Thus, for all cases, routing through π1 is never worse than routing through
π2. ■

Subproof Non-Simple Parents. We will show that it does not matter which non-simple parent is routed to.
Consider the case that {π1, π2} = p(α) and π1, π2 are non-simple, so {π1, π2} = labels(α)2. Note that
π1 ∈ label(α)2, as per the theorem. We know that l(π1) = l(π2), according to Corollary 5.3.3. For a
contradiction assume that d(π2, β) < d(π1, β).

Consider the path in Eq. (5.28). It is the case that γπ2
̸= ππ2,π1

, or the assumption d(π2, β) < d(π1, β)
would not hold as they would have an equal distance to β. The label filtering of Eq. (4.13) implies that π1
has at least one non-simple parent. So there must be three non-simple parents if γπ2

̸= ππ2,π1
according

to Item 2 in Lemma 5.3.2, because π2 is also non-simple and thus adds a distinct non-simple parent to
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labels(α)2. Note that it is not known whether

ππ2,π1

?∈ label(α)2 , or (5.31)

γπ2

?∈ label(α)2 . (5.32)

Let us call the other parent of π1, γπ1
, where

γπ1
∈ p(π1) : γπ1

̸= ππ2,π1
. (5.33)

The vertices {γπ1
, ππ2,π1

, γπ2
} form a triangle, as shown in Item 2 in Lemma 5.3.2. They are also at the

same index in labels(α), so
l(γπ2

) = l(γπ1
) = l(ππ2,π1

) , (5.34)

as shown in Corollary 5.3.3. Thus, the layer of these vertices is fixed at l(π2) = l(γπ2
) + 1 as shown in

Proposition 5.2.3. From that we can conclude that l(γπ2
) ≥ l(γβ), since l(π2) > l(γβ). This in turn shows

that for the vertices in the path of Eq. (5.30)

l(γπ2
) ≥ l(γi) , (5.35)

for integer i, according to Theorem 5.2.4.
We need to show that d(γπ2

, γβ) ≥ 3, so that there is a path through a lower layer. From Lemma 5.4.1
we know that if γβ ∈ p(p(β)) then this holds, since γπ2

∈ p(p(α)). However, if γβ = πβ then still N(p(p(α))∩
N(p(β)) will guarantee that they are separated by a distance of 3 or more. The same holds for πβ = β.
Finally, if γβ = πβ = β, then N(p(p(α))∩N(β) will guarantee the distance. Thus know that there must be
a γ1 and γ2 in Pπ2,β , and γ2 ̸= γβ . But it could be the case that γ3 = γβ .

1. If l(γ1) < l(γπ2
) then γ1 is a parent of γπ2

, and thus also of either ππ2,π1
or γπ1

(Item 3 of Lemma 5.3.2).
That means there exists a path through π1 of equal distance to β, if we assume w.l.o.g. that γπ1

is
adjacent to γ1 then it is possible to traverse

[π1, γπ1
, γ1] . (5.36)

This is equal in length to
[π2, γπ2

, γ1] . (5.37)

2. Otherwise if l(γπ2
) = l(γ1) or l(γπ2

) = l(γ1) = l(γ2). Then we can transform the path using Corol-
lary 5.2.6 to another shortest path which starts with a vertex in p(γπ2

). Then we can apply the same
reasoning as in Item 1 to show that there is a shortest path through π1.

3. Finally, if l(γπ2
) = l(γi) for i ∈ {1, 2, 3}, we can use Theorem 5.2.5 to create a lower layer path

Pγπ2
,γ3

= [γπ2
, η1, η2, γ3] . (5.38)

Again η1 ∈ p(γπ2
) so we can apply Item 1.

In all cases of Pπ2,β there is an equivalent length path starting at π1 so both non-simple parents π2 and π1
must have an equal distance to β. ■

We know that path6 does a neighbourhood search and finds the minimal path in that neighbourhood.
Otherwise, if Algorithm 4.3 routes to a lower layer using the label then that is also on a shortest path. So in
all cases the algorithm performs a move that is on the shortest path, as we will show.

Theorem 5.4.3 (Sphere Routing Optimality). Consider vertices α, β ∈ V with a distance m, the sphere
routing algorithm (Algorithm 4.3) will find a path Pα,β also of length m.

Proof. The routing algorithm Algorithm 4.3 consists of two cases. If α and β are close to each other, then
path6(α, β) will apply and find a shortest path using a brute force search in the neighbourhood of α and β.
Otherwise, Theorem 5.4.2 applies. If l(α) = l(β) then α may always route to a parent γ ∈ label(α)2. The
cases l(α) < l(β) and l(α) > l(β) are synonymous, in the former β routes to a parent in label(β)2, and in
the latter α does to a parent in label(α)2. In all cases the routing algorithm performs a step which is on
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βi

αxαy

βi−2

βi−1

βi+1

βi+2

γ1 γ2 γj

Parents, L<ℓ

Siblings, Lℓ

Children, L>ℓ

Figure 5.3: The neighbourhood of a node, which is directly related to the size complexity. Some edges of the neighbours are
drawn using a light gray line. The node βi stores the IDs of 2 parents, 4 siblings, and O(k) children, where k is the number of
layers.

a shortest path between α and β. Lastly, the algorithm will always terminate by path6, as shown in the
discussion in Section 4.3. Thus the routing algorithm returns the shortest path between α and β.

We have proved for all cases that routing through π1 is never worse than through a different vertex in
p(α), if path6(α, β) cannot determine a path. Theorem 5.2.5 and Corollary 5.2.6 with d(α, β) > 3 imply
that there is no sibling γ ∈ N(α) : l(γ) = l(α), which is strictly closer to β than some parent in p(α). Thus
any π1 ∈ label(α)2 will be on a shortest path to β if path6 does not find a path.

5.5. Complexity Analysis
The size of the node ID of α ∈ V can be expressed as

|IDα| = ⌈log2(|V |)⌉ = O(k) , (5.39)

where the number of layers is (3.23)

k = 2 log2
( |V | − 2

10

)
. (5.40)

The ID is saved as a unique binary number in the graph. Since there are |V | IDs, it has size ⌈log2(|V |)⌉. We
will first analyse the space complexity of the data stored in every vertex. Using that information we are able
to analyse the time complexity of routing per vertex.

Theorem 5.5.1 (Local Space Complexity). The space complexity per vertex of the local routing algorithm
is O(log5 |V |).

Proof. First we analyze the space complexity of the labelling, followed by that of Nα
3 with in between less

significant contributors to the space complexity.
For every i ∈ {1, . . . , l(α)}, |label(α)i| ≤ 3 (Lemma 5.3.2). Where every entry is an ID, resulting in a

label size of (5.39)
3 · l(α) · log2 |V | = O(k2) . (5.41)

A vertex must store its own label, and receive a label of the target node β, which has a space complexity of
O(k2).

We assume that the data Nα
3 for the local path6 algorithm (Algorithm 4.4) is stored in the network

node. Alternatively, it may also request it over the network, but this costs time instead of space. The
neighbourhood of a node is illustrated in Fig. 5.3. The number of children of a node is (Section 5.2)

k∑

i=l(α)+1

6 = 6(k − l(α)) = O(k) . (5.42)

The neighbourhood of a node N(α) thus has 2+4+6(k− l(α)) = O(k) vertices in it, and children(α) has at
most 6(k − l(α)) = O(k) vertices in it. Thus Nα

3 , the largest set contains O(k2) neighbours, each of which
have O(k2) children. So in total, with the ID size, |Nα

3 | = O(k2 · k2 · k) = O(k5), because we only need to
store the IDs of nodes in this set and not their labels. Since |Nα| < |Nα

2 | < |Nα
3 | the space complexity of

the neighbourhood is
|Nα

3 | = O(k5) . (5.43)
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For α ∈ V0, it is also necessary to store G0 to perform Dijkstra’s algorithm on it, according to the last
case of path6. But |G0| = O(1), so this is negligible. The d flag is also of negligible size, O(1). The main
routing algorithm in Algorithm 4.5 stores the label of α and β, but those have already been taken into
account. Storing the IDs of the neighbourhood of α is O(k2). Thus in total the space complexity per vertex
is O(k2 + k5 + 1 + k2) = O(k5).

Now that we know the sizes of the data structures, we can use that information in the time complexity
analysis. Given two sets A and B, where the size complexity is |A| = O(x) and |B| = O(y). Then the time
complexity of A ∩B is

O(min(x, y)) . (5.44)

We can achieve this by taking each element from the smallest set, and checking presence in the other set. If
we assume each element of the smallest set has size O(z), then hashing it will takes O(z), finding the element
in a hash set amortized O(1), and an equality comparison O(z). However, even then the time complexity is
equal to the set size O(n · (z+ z+1+ z)) = O(nz), if n is the number of elements in the smallest set.

Theorem 5.5.2 (Local Time Complexity). The time complexity of the local routing algorithm is O(log2 |V |)
per vertex.

Proof. First we investigate the time complexity of path6 (Algorithm 4.4), going from top to bottom. It is
assumed that Nα

3 is already stored on the network node. The largest contributor to the time complexity is
computing the intersection Nα

3 ∩ Lβ . As shown in the space complexity analysis (Theorem 5.5.1), the size
of the Nα

3 set is O(k5) (5.43) and of Lβ is O(k2) (5.41). The time complexity of the intersection Nα
3 ∩ Lβ

then is O(k2) (Eq. (5.44))
Once an intersection has been found we know the set of possible γ ∈ Nα

3 ∩Lβ , which we will call Γ. We
know that Γ ⊆ Lβ , so |Γ| = O(k2). To calculate d(α, γ) and δ(γ, β) we perform the following steps. For
every γ ∈ Γ we assume the implementation has stored a breadcrumb trail to α, which is a path Pγ,α of size at
most 6 indicating the shortest path to α (of size O(1)). Thus we can calculate d(α, γ) in O(1). So mapping
∀γ ∈ Γ→ d(α, γ) takes O(k2) time complexity.

To calculate d(γ, β) an iterative step is performed through label(β)i for i = 1, 2, . . . , | label(β)|. For every
i β′ ∈ Γ : β′ ∈ label(β)i is checked, and if so d(γ, β) = i. Again, looking up β′ in Γ takes O(k(k + k)) =
O(k2) because of the ID size, hashing, and the amortized O(1) lookup in a hash set. In this way we map
∀γ ∈ Γ→ d(β, γ) in O(k2).

Summing both these maps to d(α, γ)+d(β, γ) takes no longer than O(k2). Finding the minimum in this
data structure can be done through a linear traversal in O(k2), because the data is of size O(k2). Thus it
is possible to calculate minγ{d(α, γ) + d(β, γ)} in O(k2). As seen before, the path from α to γmin is readily
available for a given γ in O(1) by a breadcrumb trail. Finally, there is an edge case in which Dijkstra’s
algorithm is required. First we need to calculate L0 ∩ Lβ , which takes O(k2) because L0 is of size O(k)
elements, and Lβ is O(k2). The Dijkstra algorithm has a time complexity of O(|E0| log |V0|) [KT06] because
it runs on G0. However, |V0| = O(k) and |E0| = O(k) as they contain IDs, thus Dijkstra’s algorithm runs
in O(k). Finding the minimum path over β′ ∈ L0 ∩ Lβ is only O(k · k) = O(k), as the set L0 ∩ Lβ is has at
most 3 elements and Dijkstra runs in O(k). Thus the total time complexity of path6 is

O(k2) = O(log2 |V |) . (5.45)

Using the time complexity of path6, we can calculate the complexity of the main routing algorithm. First
is a check α = β which is O(k) because of the ID size. Then u = 0 is insignificant with a complexity of O(1).
Followed by a call to path6, of which we have seen that the time complexity is O(k2). Finding αnew is only
O(k) because label(α)2 ≤ 2, and each entry is an ID of O(k). Finally, finding i : α ∈ label(β)i is O(k2),
because we have to do a linear search through label(β) and compare each element with the ID of α in O(k).
The neighbourhood search label(β)i−1 ∩N(α) is O(3(k + k)) = O(k), because we have to look up at most
3 IDs in the N(α) set. Finally, creating the lists [αnew] and [βnew] is O(k). Thus the total time complexity
of the algorithm is

O(k2) = O(log2 |V |) , (5.46)

proving the theorem.

Since the diameter of the graph D(G) = 2k + 3 = O(k) (Proposition 3.2.1) and every vertex takes O(k2),
the routing of any packet will take at most O(k · k2) = O(log3 |V |) time.



6
Conclusion

Research into quantum mechanics has shown that it is possible to communicate with perfect secrecy. To do so,
quantum entanglement is required between communicating parties. Even though it is possible to establish a
direct physical connection between all parties on a small scale, this quickly becomes infeasible for a large number
of participants. A solution to this problem is a quantum network, where entanglement between distant parties
may be established by performing entanglement swaps. We approached the novel problem of the structure
of quantum networks by investigating the case of satellites with quantum communication capabilities. We
modelled satellites around the earth as network nodes and suggested improvements to the resulting network.

The network created by satellites can be improved by creating entanglement between distant nodes, so that
the diameter of the graph is reduced significantly. We give a subdivision algorithm which starts from a base
icosahedron and adds more and more nodes to the graph, until the desired number of nodes is reached. The
graphs that are generated in this way are used to structure the physical and virtual links in the network in a
recursive and structured fashion. The resulting network has a diameter that is upper bounded by a logarithm
in the number of nodes. With a lower diameter the communication time decreases, since less entanglement
swaps are necessary to establish entanglement between endpoints, and each swap may fail. As such, it is less
likely that retries are necessary to establish a connection with a lower failure rate. Furthermore, the network
has a logarithmic upper bound on the quantum memory size that is required of every network node, so that
the network can be physically implemented even with the constraints on quantum memory size.

Because of the structure in the network it is also possible to give a routing algorithm for the shortest
path that uses only local information. Standard routing algorithms such as Dijkstra’s algorithm require every
network node to have global knowledge of the network, but for large networks this comes at a cost of a large
classical memory size. We instead proposed an algorithm which only requires information about its direct
surroundings, and a memory size that is an exponential factor smaller, which is logarithmic in the number
of nodes. To do this, we first analysed the structure of the network model and proved that long paths can
always be routed through the parents of nodes. We then created a labelling that uniquely identifies nodes in
the graph, and allows nodes to route with local knowledge even though they are not in the neighbourhood
of the destination. With the labelling, we proposed a global routing algorithm for finding shortest paths
that we proved the optimality of. This global algorithm can then be rewritten into a local algorithm that
requires only local knowledge of a network router to route. Furthermore, the local routing algorithm is also
exponentially faster than a standard routing algorithm such as Dijkstra’s algorithm, since it has a run-time
that is logarithmic in the number of nodes.

6.1. Discussion and Future Work
During this project we encountered some interesting extensions to our problem that we would like to discuss
and may lead to future lines of research.

6.1.1. Implementation Parameters
We have greatly restricted the physical parameters involved in creating entanglement, and left the distribution
of entanglement to some background process. Some of the parameters that are relevant to the distribution of
entanglement are:

Coherence time of entanglement Once entanglement has been established, the entangled state will slowly
lose its entanglement until it is no longer usable. Depending on this parameter, it may be impossible to
create very long links since states could decohere too much before proper entanglement can be established.

44
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Entanglement event time The time it takes to create entanglement between two physically adjacent ver-
tices also influences how easily a path can be established. If the event time is very long, then any
previously generated entanglement will have already decohered before an entanglement swap can be
made.

Noise introduced by local operations We have talked about how entanglement swaps can introduce noise,
so that it is better to have less entanglement swaps for any communication. Besides entanglement swaps,
noise may also be introduced by other operations performed on the quantum states.
For one, we assumed that every step in the entanglement distribution process results in only perfectly
entangled states, because of purification. However, because of local errors, purification cannot create
perfectly entangled states. Depending on the amount of error introduced, it may be less feasible to
construct longer-distance links, since the number of states to perform successful purification increases
with increasing noise. For long-distance links this means more repeated entanglement swapping and
purification steps to create multiple redundant states, so that they can be purified.
Other operations that may also introduce noise include measurements and correction rotations that have
to be performed after a teleportation.

Thus the process of distributing entanglement depends on the underlying implementation. This may also
influence the design of the graph, since some structures may not be feasible. It would be interesting to see
the influence of these parameters on quantum networks, and which requirements are essential for correct
functioning.

6.1.2. Multipartite Entanglement
In this thesis we assume that entanglement is only distributed in pairs, but it is also possible to create en-
tanglement between an arbitrary number of nodes, which is called multipartite entanglement. This could
reduce the number of qubits necessary to store for the virtual links, since only one qubit has to be stored per
multipartite entanglement instead of one per virtual link. There has also been some related research into entan-
glement percolation which we have seen in Section 2.4.1. Maybe there is some way to transform multipartite
entanglement to quickly establish connections between a sender and a receiver. However, multipartite states
decohere faster than two-party entangled states, where the time to decohere decreases for increasing number
of participants. This has to be taken into account for the feasibility of a network making use of multipartite
states, and especially large multipartite states.

6.1.3. Robustness of the Graph
It is also interesting to see how well the graph and routing algorithm perform with many simultaneous requests.
Since each entangled pair is single-use only, it is desirable to spread paths so that more valuable resources are
used less. Longer distance virtual links are harder to create, so we would like them to be used less than shorter
links. However, since the shortest path is usually through some ancestors of nodes, it seems likely that edges
on lower layers will have a higher demand than on higher layers for randomly selected senders and receivers.

To analyse this problem, we have attempted to analytically express the total number of paths that pass
through any one edge. But this analysis was severely complicated by the fact that many edges, even within
one layer, have different numbers of paths passing through them. Thus edges on a layer are not uniform, nor
were the vertices. We can see this from the simple and non-simple vertices. Non-simple vertices will have
more paths using them, because they are faster to reach lower layers. Thus we decided to perform simulations
instead, to gain some insight into the performance. Unfortunately, these simulations are not in a presentable
form yet, but may be referenced at [Sch15].

Furthermore, it may be possible to specify what happens when a virtual link is unavailable. One solution is
to route through a higher layer instead. If a lower layer edge is unavailable, there could be a replacement path
through two higher layer edges. If these are unavailable, then even higher layer edges could be used. Since all
faces form triangles it may also be trivially possible to route through using the other two edges in the triangle
instead.

6.1.4. Varying Level of Detail
It may also be interesting to see what happens when some part of the sphere is less densely or more densely
populated by vertices. For example, some area above Europe or America may have more satellites than the
Great Pacific ocean. In the subdivided graph this can be achieved by subdividing some faces of the graph a
different amount of times than others.

The algorithm uses only local information, except for the label of the destination. Since the label is still
of the same structure for all areas of the graph, no matter the amount of subdivisions of other areas on the
graph, we believe that the routing scheme is able to handle these differences in detail.



6.1. Discussion and Future Work 46

6.1.5. Generalisation of Recursive Graphs
The subdivided icosahedron has a recursive structure, where each triangle contains three triangles, that again
contain three triangles, etcetera. If we have some other graph that also contains such a recursive structure,
would the same entanglement distribution strategy and a similar routing algorithm then also apply? For
example, the grid network can be seen as a recursive graph that starts as a square, and adds more and more
internal squares. We do not know if it is possible to generalise these recursive graphs.

However, we do believe that the approach followed in this thesis may apply to more recursive graphs than
just the sphere. The labelling only relies on the set of parents that generate a node, which can be extended
to any number of parents that generate a node. Then the question remains if variations of No Higher Edge
(Theorem 5.2.4) and Three Hops (Theorem 5.2.5) also hold on these graphs. If so, then it may be possible
to show that routing through the parents is also a feasible strategy on these graphs. But if the number of
parents is not a constant, then all operations involving the label will at least also have an equivalent complexity
increase.
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