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Abstract

The Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder due to mutations in the NPC1

gene, encoding a transmembrane protein related to the Sonic hedgehog (Shh) receptor, Patched, and involved in intracellular

trafficking of cholesterol. We have recently found that the proliferation of cerebellar granule neuron precursors is signifi-

cantly reduced in Npc1�/� mice due to the downregulation of Shh expression. This finding prompted us to analyze the forma-

tion of the primary cilium, a non-motile organelle that is specialized for Shh signal transduction and responsible, when de-

fective, for several human genetic disorders. In this study, we show that the expression and subcellular localization of Shh

effectors and ciliary proteins are severely disturbed in Npc1-deficient mice. The dysregulation of Shh signaling is associated

with a shortening of the primary cilium length and with a reduction of the fraction of ciliated cells in Npc1-deficient mouse

brains and the human fibroblasts of NPC1 patients. These defects are prevented by treatment with 2-hydroxypropyl-b-cyclo-

dextrin, a promising therapy currently under clinical investigation. Our findings indicate that defective Shh signaling is re-

sponsible for abnormal morphogenesis of the cerebellum of Npc1-deficient mice and show, for the first time, that the forma-

tion of the primary cilium is altered in NPC1 disease.

Introduction

The Niemann-Pick type C1 (NPC1) disease is an autosomal re-

cessive disorder of cholesterol storage caused by the mutation

of either the NPC1 or NPC2 genes, encoding for proteins that co-

operatively mediate the egress of cholesterol from endosomes/

lysosomes (1–4). The deficiency of either protein leads to the ac-

cumulation of endocytosed, unesterified cholesterol and of sev-

eral sphingolipids within the late endosomal/lysosomal (LE/Ly)

compartment (2,3), decreasing the metabolic active pool of

unesterified cholesterol in the cytosol. The disease is considered

a disease of neurodegeneration (5,6). In fact it has been called

‘juvenile Alzheimer’s’ (7) because of its shared characteristics,

including abnormal cholesterol metabolism, neurofibrillary tan-

gles, increased levels of amyloid beta (8) and TDP-43 proteinop-

athy (9).

Most of NPC1 defects are prevented by early treatment with

2-hydroxypropyl-b-cyclodextrin (CD). It was clear from the first
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report, using somatic delivery of cyclodextrins in a mouse

model of NPC1 that highly significant delays in the onset of

symptoms occurred, even though the blood brain barrier (BBB)

was found to block the drug (10). When somatic treatment was

initiated at postnatal day 7, when the BBB is not fully formed in

the mouse, and higher doses were used, the results were more

dramatic (11). The effects are well seen in the developing cere-

bellum where nearly complete correction of the developmental

defects occurs (12,13).

The disease is also a disorder of development with altered

morphogenesis. This is particularly true of the cerebellum, in

which several anomalies of glial cell differentiation and de-

rangement of synaptic input to Purkinje cells (PCs) are respon-

sible for a delay in the acquisition of complex motor skills in

pre-puberal Npc1-deficient mice, and may contribute to the

later PC degeneration (13). Moreover, significantly reduced Sonic

hedgehog (Shh) mRNA levels at the time of terminal granule cell

precursor divisions cause a reduction in cerebellar lobule size at

the end of cerebellar development (12).

There is abundant evidence for the role that Shh signaling

plays in cerebellum development (14–16). In vertebrates, Shh

mostly acts at the level of primary cilium, a microtubule-based

plasma membrane protrusion. Defects in the formation and

structure of primary cilium are associated with syndromes with

altered cerebellar morphogenesis (17). Patched (Ptch), the Shh

receptor, localizes on the plasma membrane of the cilium base

and axoneme and prevents the activation of Smoothened

(Smo), retaining it within intracellular vesicles. Once bound to

Shh, Ptch is removed from the cilia membrane and the inhib-

ition of Smo is relieved, allowing Smo to localize at the cilium

membrane, while the Shh-Ptch complex is internalized and

degraded by lysosomes (reviewed in Ref. 18). The mechanism

responsible for the relief of Smo inhibition in consequence of

Shh binding to Ptch still needs clarification, although evidence

indicates that it depends on the activity of small molecules of

lipid origin, the availability of which is controlled by Ptch

(19,20). A key role in the control of Shh signaling is played by the

kinesin Kif7, an anterograde motor protein that was recently

shown to localize at the cilium tip, where it controls cilium

length and structure (21). Kif7 mediates the activation and

translocation of Gli (glioma-associated) proteins to the tip of the

cilium by physically interacting with Gli transcription factors

and influencing their processing (22). In vertebrates, the zinc-

finger transcription factors Gli1, Gli2 and Gli3 are the effectors

of Shh signaling (23), controlling the expression of genes

involved in cell proliferation and cell cycle progression (24). Gli1

and Gli2 usually act as transcriptional activators and full-length

or a truncated form of Gli3, as transcriptional activator or re-

pressor, respectively (25–27).

A possible effect of NPC1 deficiency on Shh signaling was

previously hypothesized in light of the covalent attachment of a

cholesterol moiety to the C-terminus of the proteolytically gen-

erated active Shh fragment (28). The presence in the NPC1 pro-

tein of a sterol-sensing domain with homology to Ptch (29) also

heightened interest in a possible role of Shh signaling in the dis-

ease. Furthermore, it was shown that NPC1 trafficking antagon-

ists are weak Shh inhibitors (30). However, the fact that NPC1

patients and mice do not display severe birth defects, e.g. holo-

prosencephaly, cyclopia and limb deficiencies, typically

observed in Shh knockout mice (31,32) and patients carrying

mutations in the SHH gene (33), suggests that SHH signaling is

not completely deficient in NPC1 disease. Recently, a mouse

model carrying a mutation in the NAD(P) dependent steroid

dehydrogenase-like (Nsdhl) gene, therefore affecting the

cholesterol synthesis pathway, has been exploited to show that

cholesterol has an essential role in Shh signaling also in cere-

bellar granule cell precursors (34). Without cholesterol, there

was a significant decrease in granule cell proliferation, as we

observed in the Npc1�/� mice (12), and as might be expected in

NPC1 deficiency where intracellular cholesterol transport is

altered, potentially decreasing cholesterol availability for regu-

latory mechanisms. Among these, the regulation of cell cycle

progression (35) and the Shh signal transduction per se (36) are

likely candidates. In fact, the activity of the two main effectors

of Shh pathway, Ptch and Smo is tightly linked to cholesterol

metabolism. Ptch inhibits the enrichment of Smo at the plasma

membrane by modulating the intracellular concentration of

cholesterol (37). Oxysterols, cholesterol derivatives, promote the

translocation of Smo to the primary cilium (38) and are emerg-

ing as crucial modulators of Smo activity (39,40).

We now present evidence that the expression and subcellu-

lar localization of Shh effectors and ciliary proteins are severely

disturbed in Npc1-deficient mice. We also present evidence of

shortened primary cilia in NPC1 mouse model brains and fibro-

blasts from NPC1 patients, providing further support to the idea

of Shh signaling deficiency in the developing cerebellum of

NPC1 model mice.

Results

Altered expression of Shh downstream effectors

Previous data obtained in our laboratory showed that a signifi-

cant reduction of Shh transcripts correlates with the defective

proliferation of granule neuron precursors in the cerebella of 2-

week-old Npc1-deficient mice, allowing us to trace the onset of

this defect between PN12 and PN14 (12). To better characterize

the likely contribution of anomalous Shh signaling to this de-

fect, we have now determined whether the Npc1-deficiency af-

fects the expression of Shh effectors, including Ptch, Smo, Kif7

and Gli1, Gli2 and Gli3. We analyzed the level of transcripts

mentioned above on PN12 mouse cerebella by real time reverse

transcriptase polymerase chain reaction (RT-PCR), observing

that the deficiency of Npc1 was associated with a severe dysre-

gulation of the expression of all components analyzed. In par-

ticular, the expression levels of Ptch, Smo and Gli3 were

significantly reduced, whereas those of Gli1, Gli2 and Kif7 were

significantly increased (Fig. 1). The administration of CD to

Npc1-deficient mice re-established the expression of all factors

to levels similar to those of wtmice. Moreover, it is worth noting

that the dysregulation of Shh signal transduction largely antici-

pated the proliferation defect of GN precursors, as indicated

by the finding that abnormal transcript levels were

already observed in Npc1-deficient cerebella of PN7 mice

(Supplementary Material, Fig. S1).

To better characterize Ptch and Smo expression, we also per-

formed western blot analyses in Npc1-deficient mice of increas-

ing ages (PN12, PN18 and PN45). A comparison of Ptch and Smo

proteins between cerebella of wt and untreated or CD-treated

Npc1-deficient mice is shown in Figure 2. This analysis con-

firmed the significant reduction in Ptch and Smo proteins of

Npc1-deficient mice, already observed in transcript levels, ex-

cept that a significant reduction of Ptch protein appeared from

PN18 onward, but not at PN12. The administration of CD re-

established in the Npc1-deficient mice, protein levels similar to

those of wt ones.
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The subcellular localization of Ptch and Smo is severely

impaired in Npc1-deficient cerebella

A recent study reported that Ptch and Smo localize at the level

of the growth cone and within processes of cerebellar neurons

during postnatal development, whereas in PCs, granule neurons

and interneurons of the adult cerebellum they predominantly

localize at the postsynaptic site (41). We investigated this issue

by immuno-electron microscopy, observing a Ptch and Smo

subcellular localization in wt mouse cerebella that is in agree-

ment with previous observations (41). Protein abundance and

subcellular localization, however, were profoundly altered in

Npc1-deficient mice (Fig. 3). Specifically, in untreated or CD-

treated PN18 wt mice, Ptch (Fig. 3C and D) and Smo (Fig. 3H and

K) immunopositive vesicles were associated with postsynaptic

densities within dendritic spines of PCs. Sometimes, post-

synaptic densities themselves appeared positive (Fig. 3C and D,

Ptch; 3K, Smo). Both factors, however, were frequently found in

vesicular elements within small and large dendritic spines

(Fig. 3E, Ptch; 3J and L, Smo), as also associated with their

plasma membrane (Fig. 3F, Ptch; 3J, Smo), independently of the

presence of an established synapse. Moreover, frequent immu-

nopositive membrane pits and vesicles were seen approaching

(or coming from) the spine plasma membranes (Fig. 3B, Ptch; 3L,

Smo). Large immunopositive vesicles were also observed within

the PC soma, often close to the sites of protein synthesis and

maturation (endoplasmic reticulum (rer) and Golgi) (Fig, 3A,

Ptch; 3I, Smo). Less frequently, both Ptch and Smo immunoposi-

tive vesicles were also clustered in pre-synaptic boutons that

granule cells form on PC dendrites, distributed both among syn-

aptic vesicles and very close to the active sites (Fig. 3A and G,

Ptch). The presence of Ptch and Smo immunopositive vesicles

recycled from the plasma membrane and clustered in multive-

sicular bodies (mvb) (degradation sites) was the most striking

feature characterizing PCs of Npc1-deficient mice (Fig. 3N, Ptch;

3U, Smo). Ptch and Smo immunopositive small vesicles within

pre-synaptic boutons (Fig. 3P and Q, Ptch; 3W, Smo), PC soma

(Fig. 3M, Ptch) and dendrites (Fig. 3O, Ptch; 3V, Smo) were also

Figure 1. Altered expression of Shh downstream effectors in Npc1�/� mice. Transcript levels were determined by semi-quantitative real-time PCR of total RNA of PN12

wt (empty bars), Npc1�/� (full bars) and Npc1�/� CD (dashed bars) mice. Histograms indicate the mean 6 S.E.M. of values obtained in three independent assays.

Asterisks indicate statistically significant differences (*P < 0.05; **P <0.01; ***P < 0.001).

Figure 2. The expression of Ptch and Smo is downregulated in Npc1-deficient cerebella. Western blot analysis of Ptch and Smo protein expression in the cerebella of

PN12, PN18 and adult wt (empty bars), Npc1�/� (full bars) and Npc1�/� CD (dashed bars) mice. Histograms indicate the abundance (mean 6 S.E.M.) of each protein

determined by densitometry of protein bands obtained in three independent experiments, taking b-actin as internal reference. Asterisks indicate statistically signifi-

cant differences (*P < 0.05; **P < 0.01; ***P < 0.001).
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Figure 3. The subcellular distribution of Ptch and Smo is severely impaired in PN18 Npc1-deficient mouse cerebellum compared with wt, and recovers after CD treat-

ment. Anti-patched in wt mice without CD treatment (A–D). (A) Two large immunopositive vesicles (arrows) are localized within a pre-synaptic bouton approaching a PC

soma. Within the cell, a large immunopositive vesicle (open block arrow) is associated with a cistern of the rer). (B) Immunopositive plasma membrane pit (arrowhead)

within a dendrite. (C) Immunopositive vesicle (arrow) very close to an immunolabeled post-synaptic density in a dendritic spine. (D) Immunopositivity associated with

a postsynaptic density within a dendritic spine facing a pre-synaptic bouton. Anti-patched in wt mice after CD treatment (E–G). Amount and localization of patched immu-

noreactivity does not vary after CD treatment compared with untreated animals. (E) Immunopositive vesicles (arrows) within a terminal dendrite of a PC. (F) Large clus-

ter of immunoreactivity (arrow) in between two dendritic spines and a synaptic bouton. (G) Immunopositive vesicles (arrow) within a pre-synaptic bouton contacting a

dendritic spine. Anti-smoothened in wt mice without CD treatment (H–J). (H) Large and heavily immunopositive vesicles (arrows) are in the proximity of a post-synaptic spe-

cialization within a PC dendrite, flanked by synaptic boutons; (I) in the cell body of a PC, proximal to the plasma membrane, (J) in a dendritic spine. The plasma mem-

brane of the spine is also decorated by immunoreactivity. Anti-smoothened in wt mice after CD treatment (K and L). Amount and localization of immunoreactivity does not

vary after CD treatment compared with untreated animals. (K) An immunopositive vesicle (arrow) in a dendritic spine is localized in the proximity of a post-synaptic

density, also immunopositive. (L) Immunopositive vesicle (arrow) localized within a dendrite, which in turn bears immunolabeled plasma membrane pits (upper left
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observed. However, the occurrence of immunopositive elem-

ents was dramatically less compared with that observed in wt

mouse specimens, a reduction that was particularly pro-

nounced for Smo. A similar pattern of subcellular distribution of

Ptch and Smo immunopositive elements was also observed in

PN45 wt and Npc1-deficient mice (Supplementary Material, Fig.

S2), with the difference that immunopositivity in adult null

mice was even more scanty than that observed in CD-untreated

PN18 null mice. Moreover, Npc1-null adult mouse cerebella

showed consistent neurodegeneration (Supplementary

Material, Fig. S2). Conversely, PN18 and PN45 Npc1-null mice

that had received the CD treatment recovered Ptch and Smo

immunopositivity, the pattern and intensity of which were

similar to those of age-matched wt mice. This indicates that the

re-wiring of the Shh signal transduction is among the molecular

mechanisms underlining the CD beneficial effect on rescuing

the anomalies of cerebellar morphology (12).

The expression of markers of primary cilium shaft is
significantly reduced in Npc1-deficient mouse cerebella

Abnormal patterns of expression and subcellular localization of

Ptch and Smo indicate that, besides a reduced level of Shh lig-

and availability, Npc1-deficiency leads to a widespread disor-

ganization of the machinery involved in Shh signal reception

and transduction. In light of the finding that molecular compo-

nents of this machinery localize at the primary cilium, we asked

whether defective primary cilia are responsible for abnormal

cerebellum morphogenesis and Shh signaling. To address this

question we analyzed the expression levels of ACIII and c-tubu-

lin, two well-established markers of the cilium shaft and basal

body (42,43), respectively. The comparison of protein extracted

from wt and either untreated or treated Npc1-deficient mice of

increasing ages (PN12, PN18 and PN45) showed a significant re-

duction in both markers at all PN ages, suggesting defective cil-

iogenesis (Fig. 4). To verify this possibility we sought to visualize

primary cilia by immunofluorescence (IF) and/or immunohisto-

chemistry (IHC) on histological sections of wt and Npc1-

deficient mouse cerebella. Unfortunately, this analysis was ex-

tremely challenging due to the tight packaging of the granule

neurons of both the external and internal layers of PN12 and

adult cerebella, although scanty and stubby primary cilia

could be visualized (Supplementary Material, Fig. S3).

Meanwhile, we also noticed that the detection and identifica-

tion of primary cilium at the level of hippocampus was easier

(Supplementary Material, Fig. S4), likely because hippocampal

neurons mostly complete their differentiation prior to birth

(44). Conversely, neurons of the postnatal cerebellum are still

differentiating at PN12 and thus display a highly variable pri-

mary cilium presence, position and length, as differentiating

neurons do (45).

Primary cilia of Npc1-deficient neurons and NPC1
patient fibroblasts display a reduced length

Our analysis of primary cilium morphology in hippocampal sec-

tions showed that adult hippocampal cells of both dentate

gyrus and cornus ammonis had longer cilia as compared with

PN12, in agreement with previous studies (46,47). Based on this

observation, and in light of the similarities between cerebellum

and hippocampus with respect to the expression of Shh signal-

ing components (48), we thought it was reasonable to perform

morphological analyses of cilia on sagittal sections of adult

hippocampus. We therefore analyzed the fraction of ciliated

cells and the length of primary cilia on the hippocampus of

adult wt mice and compared them to those of either untreated

or CD-treated Npc1-deficient mice. Primary cilia were routinely

detected with antibodies directed to ACIII. This analysis showed

that the fraction of hippocampal neurons provided with cilia

was significantly reduced in Npc1-deficient hippocampi com-

pared with the wt ones (Fig. 5A and B). Strikingly, the cilia of

Npc1-deficient neurons also displayed a 25% length reduction

with respect to wt. The treatment with CD led neurons of Npc1-

deficient mice to display a fraction of ciliated cells and cilium

length similar to those of wt mice (Fig. 5B and C), indicating that

defective ciliogenesis was rescued by the CD administration. In

contrast, CD administration had no effect on the neurons of wt

mice (Fig. 5A–C).

Besides neurons, fibroblasts represent a convenient model

system for studying ciliogenesis, as they respond to Shh stimu-

lation, even though they do not release the Shh ligand (49). We

therefore took advantage of NPC1 human fibroblasts to deter-

mine whether the defective ciliogenesis observed in neurons of

Npc1-deficient mice was also a feature of the disease in

humans. To this aim, we first performed co-IF analyses on wt

and NPC1 human fibroblasts of acetylated a-tubulin that binds

microtubules and thus allows the visualization of the primary

cilium axoneme, and c-tubulin, a specific marker of the basal

body. Consistent with our findings in the mouse model, both

the fraction of NPC1 human fibroblasts provided with cilia and

the cilium length was significantly reduced when compared

with fibroblasts from healthy controls (Fig. 6A). In light of these

findings, we next assessed the effect of CD on cilium length in

human fibroblasts. To this end, the culture medium of control

and NPC1 fibroblasts was supplemented with increasing con-

centrations of CD and the cilium length was determined by IF.

arrowheads) and intracellular membrane profiles (open block arrow). Another large immunopositive pit (lower right arrowhead) is observed in the nerve fiber running

close by. Anti-patched in Npc1-deficient mice without CD treatment (M–Q). (M) Large immunopositive vesicles (open arrowheads) are moving from cisterns of the rer to the

Golgi apparatus (g). (N) A cluster of mvb contain immunopositive vesicles (arrows) recycled from the plasma membrane. (O) Very large aggregate of immunoreactivity

localized near to the post-synaptic membrane of a PC dendrite. (P) Immunopositive small vesicles (arrow) tightly juxtapose to the plasma membrane of a synaptic bou-

ton. (Q) Immunopositive vesicle (arrow) within a pre-synaptic bouton. Anti-patched in Npc1-deficient mice after CD treatment (R–T). Amount, intensity, size and localization

of the immunoprecipitates increase after CD treatment compared with untreated animals. (R) Large, single immunopositive vesicles (arrows) travel along adjacent par-

allel fibers (Ax). (S) Large vesicular aggregates of immunoreactivity (arrows) localized in the soma of a PC. (T) Immunoreactivity (arrow) decorates a portion of the

plasma membrane of a dendritic spine and fills an invaginating plasma membrane pit (arrowhead) in the adjacent nerve fiber (f). Anti-smoothened in Npc1-deficient mice

without CD treatment (U–W). (U) Immunopositive (arrow) mvb within a PC soma. Close by, another mvb is immunonegative. (V) Immunopositive vesicles (arrows) within

a dendritic spine. f, nerve fibers. (W) Small immunopositive vesicles (arrow) localized close to the pre-synaptic membrane of a bouton. Anti-smoothened in Npc1-deficient

mice after CD treatment (X–Z). Amount, intensity, size and localization of the immunoprecipitates increase after CD treatment compared with untreated animals. (X) A

large aggregate of immunoreactivity, clustered around a vesicular structure (arrow), is localized within a PC soma. Close by, an immunopositive vesicle (arrowhead) is

associated with the plasma membrane. (Y) Immunopositive vesicles (arrow), clustered in a synaptic bouton, are tightly juxtaposed to the pre-synaptic plasma mem-

brane. (Z) Intense aggregates of immunoreactivity are associated with a post-synaptic density in a dendritic spine. Common abbreviation: d, dendrites; s, dendritic

spines; b, presynaptic boutons. Scale bar: 1 lm.
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The exposure of cells to CD resulted in a significant rescue of

the cilium length of Npc1-deficient fibroblasts, no CD effect

being observed in control fibroblasts (Fig. 6B). In particular, both

CD concentrations caused a significant improvement, which

was more pronounced with the higher concentration.

Discussion

The findings of this study expand the present knowledge of the

molecular and cellular mechanisms that underlie the mild cere-

bellar hypoplasia of Npc1�/� mice (12), by demonstrating that

Figure 4. The expression of primary cilium shaft markers is significantly reduced in Npc1-deficient mouse cerebella. Western blot analysis of primary cilium markers,

ACIII and c-tubulin, in cerebella of PN12, PN18 and adult wt (empty bars), Npc1�/� (full bars) and Npc1�/� CD (dashed bars) mice. Histograms indicate the abundance

(mean 6 S.E.M.) of each protein determined by densitometry of protein bands obtained in three independent experiments, taking b-actin as internal reference.

Asterisks indicate statistically significant differences (*P < 0.05; **P < 0.01).

Figure 5. Primary cilia of Npc1-deficient neurons display a reduced length. (A) Detection of primary cilia of the hippocampus of adult wt and Npc1�/� mouse, either un-

treated or CD-treated, by IF with antibodies against ACIII (green). Representative fields of confocal images are shown in the figure. Scale bar: 2.5 lm. Nuclei were stained

with propidium iodide (red). Insets (bottom right) higher magnifications. Scale bar: 5 lm. (B, C) Histograms indicate (mean 6 S.E.M.) the proportion of ciliated cells and

the primary cilium length of adult wt (empty bars) and Npc1�/� (full bars) mouse, either untreated (empty dashed bars) or CD-treated (full dashed bars), determined by

examining 800 cells per experimental group. Asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01).
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Shh signal generation and reception at the primary cilium are

negatively affected by Npc1-deficiency. This conclusion is in

agreement with genetic studies in both mouse models and con-

genital human syndromes that have extensively demonstrated

the dependence of normal cerebellar morphogenesis and size

on Shh signaling at the level of primary cilium (15,50). In add-

ition, our results emphasize the influence of cholesterol

metabolism on the Shh pathway, as already suggested by the

finding that the congenital malformations of Smith-Lemli-Opitz

syndrome, which is due to mutations in the gene encoding the

cholesterol biosynthetic enzyme 7-dehydrocholesterol reduc-

tase, are similar to those caused by aberrant Shh signaling (51).

More recently, the ablation of 3b-hydroxysterol dehydrogenase,

an enzyme involved in one of the later steps of cholesterol

Figure 6. Primary cilia of NPC1 patient fibroblasts display a reduced length. (A) Detection of primary cilia of cultured human fibroblasts from healthy control (right) and

NPC1 patients (left), by IF with antibodies against acetylated a-tubulin (green) and c-tubulin (red). Representative fields are shown in the figure. Insets (bottom right),

higher magnifications. Nuclei were stained with DAPI. Scale bar: 20lm (panels) and 5 lm (insets). Histograms indicate (mean 6 S.E.M.) the proportion of ciliated cells

(right) and the primary cilium length (left) of control (empty bars) and NPC1 patients (full bars) (B). Detection of primary cilia of cultured human fibroblasts from healthy

control and NPC1 patients cultured for 24h in the presence of 400 or 800 lM CD and immunostained with antibodies against acetylated a-tubulin (green).

Representative fields are shown in the figure. Insets (upper right) higher magnifications. Histograms indicate (mean 6 S.E.M.) the proportion of ciliated cells and the

primary cilium length of healthy controls (n ¼ 4) and NPC1 patients (n ¼ 7) determined by examining at least 100 cells per experimental group. Asterisks indicate statis-

tically significant differences (***P < 0.001). Scale bar: 20 lm (panels) and 5 lm (insets).
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biosynthesis, demonstrated the absolute requirement for chol-

esterol biosynthesis in the developing CNS after the complete

formation of the BBB (34). Because Npc1 deficiency severely af-

fects granule cell proliferation and Shh signaling is significantly

down-regulated, it is likely that the developing cerebellum is

very dependent on cholesterol, perhaps attached to Shh (28), as

also suggested by the finding that the deficiency for the essen-

tial embryonic carrier of cholesterol, apolipoprotein B, particu-

larly affects the hindbrain formation (52).

The addition of fatty acids (53) improves Shh hydrophobicity

and localization to lipid rafts which are increased in primary

cilia, since ciliary membranes are unusually enriched in sterols,

glycolipids and sphingolipids (54). However, the finding of a sol-

uble, diffusible and cholesterol-modified form of Shh in condi-

tioned media, a form which had a gradient in the chick limb,

argues against an essential role of the Shh-cholesterol and lipid

raft association for Shh signaling (55), although this notion is

now heavily discounted (56). Another alteration observed in

Niemann-Pick C1 that may be relevant to Shh signaling in pri-

mary cilium is the elevated caveolin-1 level (57), since Ptch as-

sociates with caveolin-1 in lipid rafts (58). An excess of Ptch is

likely to require greater amounts of Shh ligand for inhibition of

the repression it exerts on Smo. Moreover, the fact that Ptch

contains a sterol-sensing domain (29) and is involved in the ef-

flux of cholesterol from the cell (37), likely contributing to the re-

pression of Smo, also argues for a negative effect of cholesterol

dishomeostasis on Shh signaling in NPC1 disease.

Our measurements of mRNA levels of Shh pathway compo-

nents, Ptch and Smo, and downstream effectors Gli1-3, in PN7

and PN12 cerebella, have shown that they are consistently dys-

regulated in Npc1�/� mice. While the down-regulation of Ptch

and Smo transcripts is in agreement with the decreased avail-

ability of Shh ligand in Npc1-deficient cerebella (12), the explan-

ation for the changes we observed in the expression levels of

Kif7 and Gli factors is quite puzzling. In particular, instead of an

increase, we would have expected a reduction of Gli1 and Gli2

transcripts, due to their expression being directly regulated by

Shh (49). On the other hand, the decrease of Gli3 mRNA levels in

the cerebellum of Npc1�/� mice is consistent with the presence

of a defective Shh signaling leading to abnormal cerebellar mor-

phogenesis. Gli3, one of 3 Gli downstream effectors of Shh, has

both activator and repressor forms. It has been well shown to

play a critical role in Shh signaling in the developing cerebellum

where it coordinates growth and 3D patterning (59). The level of

Gli3R is regulated by Shh to control neural stem cell proliferation

(60). Importantly, as suggested by our data, not only is the cere-

bral cortical size regulated by primary cilia and Gli3 activity (61),

but also the cerebellum. The dysregulation of Gli transcription

factors is possibly linked to a disorganization of the primary cil-

ium tip compartment, as suggested by the abnormal expression

of Kif7 in Npc1�/� mice. Kif7, the vertebrate homolog of

Drosophila Costal2, is a kinesin motor protein belonging to the

kinesin-4 family, which regulates the activity of Cubitus interrup-

tus (the Drosophila homolog of the Gli transcription factors)

(62,63). It was recently shown that Kif7-mutant neural progeni-

tors and cultured fibroblasts have abnormally long primary cilia

with structural defects at the ciliary axoneme (21). Our data are

consistent with the notion that Kif7 over-expression leads to

shorter cilia and decreased Shh signaling.

The overall reduction and marked disorganization of Ptch

and Smo subcellular localization which we have shown in

Npc1-deficient mice by transmission electron microscopy fur-

ther supports the presence of defective Shh signal reception in

our murine model of NPC1 disease. Particularly intriguing is the

presence of Ptch and Smo immunopositive vesicles recycling

from the plasma membrane and clustered in mvbs (degradation

sites) in PCs of Npc1�/� mice; this indicates a severe impairment

of autocrine Shh signaling in these cells and may explain their

selective vulnerability to Npc1-deficiency.

The overall disorganization of Shh signaling, along with the

shortening of primary cilia, raises the possibility of considering

NPC1 disease a ciliopathy. In fact, recent studies have linked de-

fects of genes encoding for ciliary proteins to various cerebellar

disorders (64), laying the basis for a coherent definition and

classification of human ciliopathies. These are genetic diseases

initially grouped by clinicians on the basis of most striking clin-

ical features (Bardet Biedl syndrome for its polydactyly, obesity

and retinitis pigmentosa, now known to be the result of muta-

tions of �10 different ciliary genes; and Joubert syndrome for its

cerebellar dysplasia but now known to be sometimes associated

with diverse features, including those of Bardet-Biedl syndrome,

with �15 ciliary protein genes, possibly mutated). The relative

severity of the cilia defects can vary from place to place, even

within different brain areas (65), likely explaining the different,

but partially overlapping, clinical features among ciliopathies.

Post-mortem findings in the brain of Joubert syndrome were

described as total aplasia of the cerebellar vermis with dysplasia

and numerous heterotopias of cerebellar nuclei (66). Such cere-

bellar dysplasia, along with retinal abnormalities (67) and anos-

mia, (68) are shared between Niemann-Pick C1 mutants and

other ciliopathies. Thus, a good case can be made for classifying

the pre-inflammation and neurodegenerative stages of

Niemann-Pick C1 as a ciliopathy.

A putative candidate for altered ciliogenesis in NPC1 disease

is altered autophagy, although the role of autophagy in NPC1 dis-

ease has so far been controversial. Pacheco et al. (69) observed

increased levels of basal autophagy as indicated by elevated

amounts of LC3-II in NPC1 deficient mouse and human fibro-

blasts cultured in the presence of non-delipidated serum.

However, when autophagic flux was measured, instead of just

monitoring amounts of LC3-II, impaired degradation and accu-

mulation of autophagosomes was observed (70). These results ob-

tained with cultured fibroblasts were also extended to NPC1

cultured neurons and the autophagic defect was shown to lead to

decreased viability of the mutant neurons (71). Such a defect

could be caused by the altered ciliogenesis we detected; alterna-

tively, the shortened cilia could be influenced by the altered

autophagy, due to primary cilium formation and autophagy being

two mutually regulated processes during serum starvation (72).

However, these authors also studied the balance between the

two processes by blocking the intracellular flagellar transport,

suggesting that limitations of these ciliary components by

autophagy limits ciliary growth; this suggests that autophagy

may be primary. However, it is worth noting that the shortened

cilia we have detected in human mutant fibroblasts were found

while the cells were well supplied with cholesterol and protein,

namely conditions that certainly do not increase autophagy.

The findings of this study are significant because they: (i)

correlate the defective Shh signaling to the mild hypoplasia of

the cerebellum and; (ii) show for the first time that the forma-

tion of the primary cilium is altered in NPC1 disease.

Materials and Methods

Animals and treatments

Npc1�/� mice with BALB/cJ background obtained from heterozy-

gous crosses were exposed to a 12-h light–dark cycle, receiving
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food and water ad libitum. Pup genotypes were identified by PCR

analysis of tail DNA as described (73). Treatment with CD

(Sigma-Aldrich, Milan, Italy) was performed by two subsequent

subcutaneous injections of either a 20% solution (w/v; 4000mg/

kg body weight) of CD in phosphate buffered saline (PBS) or

plain PBS, for controls, to 4- and 7-day-old mice Npc1�/� and

wild-type (wt) littermates (12,74). Experimental protocols and

related procedures were approved by the Italian Ministry of

Public Health. All efforts were made to minimize animal suffer-

ing, according to European Directive 2010/63/EU.

Cell culture and treatments

Human fibroblasts were obtained from skin biopsies from seven

patients affected by NPC1 disease, and six healthy controls. All

NPC1 disease patients presented the classical biochemical

phenotype characterized by massive LE/LY accumulation of

unesterified cholesterol in cultured fibroblasts, and diagnosis

was confirmed by sequencing both NPC1 and NPC2 genes. All

patients presented mutations in the NPC1 gene (Table 1, RefSeq

cDNA NM_000271.4). Written consent was obtained from all

subjects involved in the study.

Fibroblasts were cultured and maintained in Dulbecco’s

modified Eagle’s medium (Gibco, Paisley, UK) supplemented

with 10% fetal calf serum and 50mg/ml penicillin/streptomycin,

in a humidified atmosphere containing 5% CO2 at 37 �C. To

induce primary cilium formation, cells were cultured in

a serum-free medium for 24h in the absence or presence of CD

(final concentration of 400 or 800 lM).

Immuno-electron microscopy

PN18 and adult Npc1�/� and wt mice were deeply anesthetized

by an intraperitoneal injection of a mixture of xylazine (20mg/

kg) and ketamine (34mg/kg) and then transcardially perfused

with freshly depolymerized 4% paraformaldehyde (PFA) and

0.05% glutaraldehyde in a 0.1 M phosphate buffer (PB). Cerebella

were dissected out, post-fixed in the same fixative overnight

(ON) at 4 �C and cut into 50 lm thick sagittal sections using a

vibratome. Sections were first cryoprotected in 10% dimethyl

sulfoxide (DMSO) þ 1% glycerol (10min at 4 �C) and 20% DMSO þ

2% glycerol (2� 10min at 4 �C), and then frozen-thawed four

times in liquid nitrogen-cooled isopentane, for tissue perme-

abilization. After a brief wash in PB, endogenous peroxidases

were blocked by incubation in 10% methanol and 3% H2O2 in 0.1

M PB (10min at RT). Sections were rinsed again, incubated in a

blocking solution (1% bovine serum albumin, BSA, 10% normal

goat serum, NGS, in 0.1 M PB) for 1h at RT and then in the

primary antibodies, rabbit anti-Ptch and rabbit anti-Smo,

diluted in 1% BSA, 1% NGS in 0.1 M PB (Table 2).

After a rinse in PB, sections were incubated with the appro-

priate secondary antibody (Table 2) for 1h at RT. Antibody

binding sites were revealed for 10min in 0.05% 3,30-diaminoben-

zidine and 0.1% H2O2 in 0.1 M PB. After a thorough wash in PB,

sections were post-fixed in 1% osmium tetroxide (1h at 4 �C),

rinsed in bi-distilled chilled water (1 h) and 50% ethyl alcohol

(5min), en-block stained for 20min in 1% uranyle acetate in 70%

ethyl alcohol, and dehydrated in a series of ascending ethyl al-

cohol and propylene oxide. After an ON incubation in a mixture

1:1 of propylene oxide: Epon epoxy resin (Fluka; Sigma-Aldrich),

and 4h in Epon, samples were flat embedded and polymerized

for 3 days at 60 �C. Ultra thin sections were cut both tangential

and orthogonal to the embedded vibratome sections, collected

on copper grids, counterstained with a 0.2% lead citrate aqueous

solution and viewed at a Philips EM208S electron microscope

connected to a Megaview III video camera. Acquired images

were adjusted for light and contrast with the Adobe Photoshop

CS6 software.

Light microscopy histology, immunohistochemistry and
immunofluorescence

Npc1þ/þ (wt) and Npc1�/� mice of postnatal days 12 (PN12), 18

(PN18) and 45 (adult) (4 mice/genotype/age), treated or not with

CD, were anaesthetized, as described above, and then transcar-

dially perfused with freshly depolymerized 4% PFA in 0.1 M PBS.

Brains were then further fixed in 4% PFA ON at 4 �C, cryopro-

tected with sucrose (30% in PBS), embedded in FSC22 Clear R

Frozen Section Compound (Leica Biosystems, Milan, Italy) and

serially sectioned (slice thickness 25 lm) using a Leica CM 1900

cryostat. Sagittal sections were placed in PBS, separated into in-

dividual wells of a 24-well plate. Free floating sections were

then permeabilized with 0.3% Triton X-100 in PBS supplemented

with 2% NGS and 10mg/ml BSA (Sigma-Aldrich). All incubations

and washes were carried out in PBS. Sections were incubated

with antibodies against the ciliary marker Adenylate cyclase III

(ACIII) (Santa Cruz Biotechnologies; or ProteinTech Group,

Milan, Italy) (Table 2) ON at 4 �C and processed for IHC or IF.

In IHC assays, staining was revealed by using the rabbit

Vectastain Elite ABC kit (Vector Laboratories Inc., Burlingame,

CA, USA) and peroxidase substrate Vector VIP (Vector

Laboratories Inc.), according to the manufacturer’s instructions.

IF assays were performed using free-floating brain sections and

cultured human fibroblasts. After the incubation with the pri-

mary antibody, brain sections were washed three times in PBS

and incubated with Alexa Fluor 488- or 555-conjugated second-

ary antibodies (Invitrogen, Milan, Italy) (Table 2) for 1h at RT.

Table 1. Genotype of patients included in the study

Patient Allele 1 Allele 2

NPC1 c.2819C>T (p.S940L) c.2833G>A (p.D945N)

NPC2 c.3056A>G (p.Y1019C) c.3056A>G (p.Y1019C)

NPC3 c.710C>T (p.P237L) c.3304C>T (p.L1102F)

NPC4 c.3182 T >C (p.I1061T) c.3182 T >C (p.I1061T)

NPC5 c.3424T>C (p.M1142T); c.1943T>A (p.L648H) c. 298T>A (p.C100S)

NPC6 c.1421 C>T (p.P474L) c.1501G>T (p.D501Y)

NPC7 c.2291C>T (p.A764V) c.2819C>T (p.S940L)

All patients presented a classical biochemical phenotype characterized by massive lysosomal accumulation of unesterified cholesterol. The lysosomal accumulation of

unesterified cholesterol was demonstrated by filipin staining.
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Nuclei were stained with Hoechst 33258 (Sigma-Aldrich).

Sections were transferred on glass slides and mounted by using

the Vectashield Mountain Medium (Vector Laboratories).

Human fibroblasts, grown on glass cover slips, were fixed with

4% PFA, permeabilized with an ice-cold solution of methanol/

acetone (1:1) for 10min at �20 �C and blocked in 2% BSA in PBS.

Cells were then incubated ON at 4 �C with the primary antibod-

ies directed against acetylated alpha-tubulin (Sigma-Aldrich)

and c-tubulin (Sigma-Aldrich) and thereafter with the appropri-

ate Alexa Fluor 555- or 488-labeled secondary antibodies (Life

Technologies, Invitrogen, Milan, Italy), for 1h at 37 �C. Cover

slips were mounted with the DAPI-containing VECTASHIELD

Mounting Medium (Vector Laboratories). Immunodetection spe-

cificity was assessed by omitting the primary antibody in IHC

and IF assays. A list of primary and secondary antibodies used

is provided in Table 2.

Measurements of primary cilia

Imaging and quantification of the fraction of ciliated cells and

cilium length was performed using a Leica TCS NT confocal

laser (Leica Microsystem) with a 40� and 100� immersion ob-

jective lens and �4 optical zoom, a Leica DMI 6000B microscope

connected to a Leica DFC350FX camera (Leica Microsystems)

and a Zeiss Axioplan microscope. Due to the differences in the z

resolution of the confocal microscope, compared with the x and

y planes, only cilia that were �90� to the incident light were se-

lected. Serial optical z-sections were collected for each image.

Two-dimensional projections of cilia were acquired from a min-

imum of 30 cells for each area (CA1 of hippocampus) and cilium

length was measured using the ‘z projection’ function of Image J

NIH software (NIH Image, Bethesda, MD). When the length of

cilia was determined by using optical microscopes, the cover

slips were pressed hard against microscope slides to flatten

most of the cilia. Only cilia that were flattened into one plane

were selected for image acquisition and cilium length measure-

ment (75). The distance from the base to the tip of the cilium

was measured by tracing the length of the cilium, using Image

J’s segmented line tool (rsb.info.nih.gov/ij). The fraction of cili-

ated cells in a given field was determined by counting the num-

ber of cilia and the number of nuclei and expressed as a % of

total cells. Cilia prevalence was measured in 10 fields (almost 25

cells/field) in three separate experiments, giving a total of 800

mouse cells and 100 human fibroblasts respectively per experi-

mental group.

RNA preparation and real-time RT-PCR

Total RNA was extracted from cerebella of PN7-PN12, wt and

Npc1�/� mice, treated or not with CD, using the RNeasy Lipid

Tissue mini kit (Qiagen, Hilden, Germania). cDNA was synthe-

sized using the NZY First-Strand cDNA Synthesis kit (NZYtech,

Campus do Lumiar, Lisboa), following the protocol supplied by

the manufacturer. Real-time RT-PCR was performed by using

the KAPA SYBR qPCR kit (Kapa Biosystems, Boston, USA) with

the following cycling conditions: 95 �C for 10min, then 35 cycles

at 95 �C for 10 s and 62 �C for combined annealing/extension for

30 s. The QuantiFast PCR primers were: Mm_Ptch_SG (Cat No.

QT00149135), Mm_Gli1_SG (Cat No. QT00173537), Mm_Gli2_SG

(Cat No. QT00291711), Mm_Gli3_SG (Cat No. QT00102256) and

Mm_Rps16_SG (Cat No. QT0009256) (S16 ribosomal protein);

Mm_Smo_F: GCTGCCACTTCTATGACTTCT R: GCCGATTCTTGA

TCTCACAGT; Mm_Kif7_F: CTGGAGAAGGAACTAGGTCG R:TTT

CCAGGCAGAGGCTTCTC. Gene expression levels between ex-

perimental groups were analyzed using the 2DDCt method (76).

cDNA amounts were normalized to Rps16 and expressed as the

fold-increase over control. Expression levels were also normal-

ized to Gapdh (not shown).

Table 2. Antibodies used

Antibody Company Dilution

WBa IHC/IF/TEMb

Primary anti-c-tubulin Sigma Aldrich; no.T5192 1:2000 1:500

anti-c-tubulin Sigma Aldrich; no.T6557 1:10000 1:5000

anti-acetylated tubulin Sigma Aldrich; no.T6793 1:6000 1:1500

anti-ACIII (C-20) Santa Cruz; sc-588 1:200 1:100

anti-ACIII ProteinTech Group Inc; no.19492-1-AP 1:1000 1:50

anti-GAPDH Sigma Aldrich; no.G9545 1:10 000 —–

anti-patched AbCam; no.Ab53715 1:500 1:1000

anti-smoothened AbCam; no.Ab38686 1:250 1:500

anti-b-actin AbCam; no.ab6276 1:5000 —–

Antibody Company Dilution

WBa IHC/IF/TEMb

Secondary Horseradish peroxidase-conjugated

goat anti-rabbit IgG

Thermo Fisher Scientific; no.32460 1:200 —–

Horseradish peroxidase-conjugated

goat anti-mouse IgG

Thermo Fisher Scientific; no.32430 1:650 —–

Biotinylated goat anti-rabbit IgG Vector Laboratories, Burlingame; no.PK-6101 —– 1:200

Biotinylated goat anti-mouse IgG Vector Laboratories; no.PK-6102 —– 1:200

Goat anti rabbit IgG Covance; no.SMI-5030C 1:400

Activity-select PA anti-rabbit Covance; no.SMI-4010L —– 1:100

Alexa Fluor 488 conjugated goat anti-rabbit Thermo Fisher Scientific; no.A-11008 —– 1:500

Alexa Fluor 488 conjugated goat anti-mouse Thermo Fisher Scientific; no.A-21422 —– 1:500

aWB, western blot assay.
bIHC, immunohistochemistry; TEM, transmission electron microscopy.
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Western blot analysis

For western blot analyses, total protein from PN12, PN18 and

PN45 Npc1�/� and wt littermate cerebella (four mice/genotype/

age) were extracted with RIPA buffer (Sigma-Aldrich) supple-

mented with protease and phosphatase inhibitors (Roche Life

Science Indianapolis, IN, USA), as previously described in (77).

Protein concentration was routinely determined by Bradford’s

colorimetric assay (Bio-Rad, Milan, IT). Equal amounts of total

protein/lane were fractionated by electrophoresis on a 4-12%

gradient SDS-polyacrylamide gel (Bolt Bis-Tris Plus gels, Life

Technologies) or 10% gel pre-cast (Bio-Rad). Fractionated pro-

teins were transferred to PVDF membranes (GE Healthcare,

Little Chalfont, UK) and, after blocking, membranes were incu-

bated ON at 4 �C with the primary antibodies, washed, incu-

bated with the appropriate secondary antibody for 1h at RT and

developed with the SuperSignal West Dura reagent (Thermo

Scientific/Pierce, Rockford, IL, USA). The primary and secondary

antibodies used are reported in Table 2. Immunopositive bands

were quantified by using a Gel Doc 2000 videodensitometer

(Biorad, Hercules, CA, USA).

Statistics

Statistical analyses were performed using the GraphPad Prism

version 5.0d (GraphPad, La Jolla, CA). Data is expressed as mean

values 6 SEM. Statistically significant differences were analyzed

by one- and two-way ANOVA and Tukey post hoc tests. P-values

<0.05 were considered significant. The unpaired student’s t-test

was used to evaluate differences between wt and Npc1�/� at PN7.

Supplementary Material

Supplementary Material is available at HMG online.
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