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Abstract 

We present the analysis of all possible shortenings which oc- 
cur for composite gauge invariant conformal primary superfields 
in SU(2,2/N) invariant gauge theories. 

These primaries have top-spin range y < Jmax < N with 
^max = Ji + ^2) (^15^2) being the SL(2J C) quantum numbers 
of the highest spin component of the superfield. 

In Harmonic superspace, analytic and chiral superfields give 
Jmax = y series while intermediate shortenings correspond to 
fusion of chiral with analytic in JV = 2, or analytic with different 
analytic structures in JV = 3,4. 

In the AdS/CFT language shortenings of UIR's correspond 
to all possible BPS conditions on bulk states. 

An application of this analysis to multitrace operators, cor- 
responding to multiparticle supergravity states, is spelled out. 

1    Introduction 

The recent interplay between supergravity in AdS^ and superconformal 
SU(Af) Yang-Mills theories in the large A/" limit [44, 25, 54] has lead 
to a deeper investigation of SU(2,2/N) superconformal algebras and 
their UIR's both on bulk states and on superfield boundary operators. 

A complete identification of highest weight UIR's was given in ref. 
[15] for JV = 1 and further extended to any JV by Dobrev and Petkova 
[10] and also in [5, 45]. 

Since Yang-Mills theories are built only with a finite number of su- 
persingleton fields, having Jmax < 1 (these are the basic multiplets of 
the 4 dimensional superconformal theory) only a subclass of all possible 
UIR's are realized in QFT, nevertheless the variety of such representa- 
tions is still rather rich and many different shortenings may occur. 

Short multiplets have an important aspect in the AdS/CFT cor- 
respondence because they have "protected" conformal dimensions and 
therefore allow a reliable comparison between quantities computed in 
the bulk versus quantities derived in the CFT^ [52, 12]. 
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A particular example of such a phenomenon are the K-K masses 
of bulk states which belong to short SU{2J2/N) UIR's [26]. For such 
states in the N = 4 case, corresponding to IIB supergravity on AdS^ x 
Ss [29], it is possible to give, at least for large JV, an "exact" operator 
realization in terms of 4d shortened superconformal fields [11, 2]. 

Another example of such a correspondence has been worked out in 
the literature [24, 6] by comparing IIB supergravity on AdS^ x Tn [48] 
and a specific 317(2,2/1) invariant 5f[/(A/r) x SU{J\f) Yang-Mills theory 
constructed by Klebanov and Witten [42]. 

Already in this simple N = 1 example it was realized that N — 1 
chiral superfields [13] are only a particular case of short representa- 
tions. Indeed it was shown [6] that semishort multiplets occur in the 
K-K spectrum of IIB supergravity on AdS^ x Tn, with the very subtle 
implication that some square root formulae for the conformal dimen- 
sions, giving in general irrational numbers, become perfect squares for 
particular relations of the quantum numbers of the bulk states, precisely 
corresponding to semi-shortening conditions, which imply rational con- 
formal dimensions. 

For N > 1 SCFT4S the shortening and semi-shortening is even 
richer because maximal shortening (which means half of the total num- 
ber of #'s) can occur either with chiral superfields or with "Grassmann 
(G-)analytic" superfields [18]-[32]. 

This may happen because a new class of UIR's occur for Af > 2 
which have no N = 1 analogue (class C) in the classification given 
below [10]). 

The N = 2 hypermultiplets and the N = 3,4 Yang-Mills field 
strength multiplets (supersingletons) belong precisely to this class of 
UIR's together with an infinite tower of recurrences. At the same, in 
superspace they are described by the new type of short (G-analytic) 
superfields (see [18]-[19] for N = 2 and [31, 32] for N = 3,4). 

A crucial ingredient to understand the occurrence of different short- 
enings for composite superconformal primaries in Af = 2,3,4 theories is 
the use of harmonic superspaces [19, 20, 39, 31] with harmonic variables 

on UH\N-I ? i-e-5 the coset given by non-Abelian R-symmetry modded 

by its Cartan subalgebra (the maximal torus). 
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Analytic superfields (in harmonic superspace) correspond to a new 
class of TV > 2 UIR's which have no N = 1 analogue. Moreover for N > 

2, since the above coset has many complex variables, different types of 
analyticity may occur and this allows for an even richer structure of 
shortenings when composites of superfields with different G-analytic 
structure are considered. 

The present paper is organized as follows: 

In Section 2 we review the unitarity bounds of highest weight UIR's 
of SU{2,2/N) (N > 2) and of PSU{2,2/4) for N = 4. 

In Section 3 we consider extended superspaces with harmonic vari- 

ables in vu)N-i for N = 2,3,4 in subsections 1, 2, 3 respectively. G- 

analytic properties of "supersingleton" representations (the would-be 
massless fields on the boundary) are explained together with different 
analytic structures occurring for JV = 2, 3,4. 

Note that although iV = 3 Yang-Mills is believed to be the same of 
N = 4, certainly this is not the case for the bulk theory since N = 6 

supergravity on AdS^ is not the same as Af = 8 [30]. 

This can be understood from the fact that there is a ring of operators 
which reproduces the N — 6 supergravity states [12, 38]. 

Another fact is that N = 3 harmonic superspace provides an off- 
shell formulation of maximally supersymmetric Yang-Mills theory 
which is not available in its own N = A superspace [20, 40]. 

The three subsections are written in an independent way, so that 
the reader not interested can skip any of them. 

In Section 4 we consider an application to multitrace operators in 
N = 4 Yang-Mills theory by showing that all such operators have some 
superconformal irreducible components which are short with different 
types of shortenings. 

In the AdSs/CFT^ correspondence they should correspond to mul- 
tiparticle BPS supergravity states preserving respectively |, | and | 
supersymmetries. The first two types of states occur in the double-trace 
operators while the third type starts to occur for triple-trace operators. 
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In Section 5 a summary of our results is presented. Some technical 
material related to properties of harmonic superspace is collected in an 
appendix. 

2    Highest weight UIR's of SU(2,2/N):   a 
review 

The 5t7(2,2/iV) superalgebra has a 5-grading decomposition [3, 27, 28]: 

CN = Cl + & + C0 + £-* + C'1 (2.1) 

with respect to its maximal compact subalgebra £0 = SU(2) x SU(2) x 
C/(l) x U(N). 

A highest weight state is defined as 

/:-2|fi>=/:-1|fi>=o. (2.2) 

A highest weight UIR representation is specified by a UIR rep. of £1 

with respect to £0. The eigenvalues of the two U(l) respectively denote 
EQ (the AdS energy) and the [7(1) R-charge. 

The "compact basis" is suitable to discuss bulk states, i.e., UIR's 
on AdS5. In the AdS/CFT correspondence the CFT operators are 
naturally described in the "non-compact basis" [28], in which the high- 
est weight state is mapped into a space-time superfield whose lowest 

component 0(x, 6)\x=e=o is a irreducible representation of 5L(2, C) x 
0(l,l)x J7(iV). 

In this correspondence the (J11J2) quantum numbers denote a 
SX(2, C) irreducible representation and EQ —> £ denotes the dilata- 
tional weight (conformal dimension). 

A space-time superfield, whose lowest component corresponds to a 
highest weight state, is called a "primary" (or quasi-primary) conformal 
superfield. Needless to say that 5C/(2,2/N) will have "supercasimir" 
operators which are at least 3 + N = rank(S77(2,2) x U(N)) (3 + N- 1 
for N = 4 if we consider the superalgebra PSU(2, 2/4) [5] as we will 
do in the present paper). 
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In what follows it will be convenient to define "Poincare" super- 
casimirs for the SU(N) part of the superconformal algebra in order to 
study the irreducible content of the superfields in Harmonic superspace 
(HSS). The other quantum number properties will be straightforward. 

Since a UIR of 5)7(2,2/iV) is denoted by its highest weight state, 

we will mainly denote such rep. [15] by D(£, Ji, J2;r;ai,... ,ajv-i)j 
where ai,... ,0^-1 are the Dynkin labels of SU(N).  For a given iV 
we call ai = a, a2 = 6, 0,3 = c,  Here £ is the conformal dimension 
of <l>(x = 0,9 = 0) and (Ju J^r) its 5L(2,C) and U(l) R-symmetry 
quantum numbers. 

In the next sections we will only consider the cases with Ji = J2 = 0 
and supersingletons with top spin J < 1. 

The quantum numbers of the highest weight state are subjected to 
some unitarity bounds [10], whose thresholds correspond to the several 
possible shortenings of UIR's of 311(2,2/N). 

When the maximal possible number of bounds are fulfilled then the 
UIR becomes extrashort, in the sense that it gives the least possible 
number of states for a given set of unitarity bounds. 

Examples of such extrashort UIR's are the "supersingletons" and 
the bulk "massless" reps., which in the CFT language correspond to 
boundary massless fields and to conserved current operators respec- 

tively [11, 14]. 

Supersingletons [16] are called "ultrashort" because their degrees of 
freedom are not enough to correspond to particle states on AdS bulk. 

On these UIR's space-time derivative constraints are imposed on 
the conformal primary operators. For all other shortenings no space- 
time derivative constraints are imposed but rather a relation between 
different 9 components of the conformal superfield at hand. 

The highest weight UIR's of the superconformal algebras 
SU(2, 2/N) fall in three categories, depending on the quantum numbers 
of the highest weight state 

V(£, Ju J2] r, mi,... , mN-i) (2.3) 
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where £ and (Ji, J2) label the dimension and the SX(2,C) spin re- 
spectively, r is the U{1) R-symmetry and (mi,... ,m#_i) the Young 
tableaux (YT) labels of SU(N) ( m = ^X"1 m*). 

Let us define the quantities: 

X(J,r,2-)   =   2 + 2J-r + — 

Y(r,2-)   =   -r + — (2.4) 

Then we have [10] (Ji = JL, J2 = JR): 

. A) t > X{J2, r, 2**) > X(Jx, -r, 2m! - 2f), 
(or Ji -> J2, r -> -r, 2f ^ 2m! - 2f), for Ji J2 > 0. 

• B) £ = y(r, 22) > X(Ji, -r, 2m! - 2f), 
(or Ji ^ J2, r -> -r, 2f -> 2m1 - 2f), for Ji J2 = 0, Ji = J. 

• C) £ = mi, r = 2f - mi, Ji = J2 = 0 

"Massless"  representations in the ^rf^s bulk correspond to the 
threshold in A) when £ = 2 + Ji + J2, r = —Ji + J2, in B) when 
£ — — r — 2 + J and in C) when £ = mi = 2. 

In these cases the CFT superfield is such that "current" components 

of the form «/a1...Q2ai,ai-d2«23 wtih £j = 2 + si + 52, are conserved: 

^ ^ai--a2s1)Q!i---d2s2  =:: " V^'^j 

We will call the superfield in question "current superfield". The "super- 
singletons" (massless conformal fields) occur in B) for £ = — r = 1 + J 

and in C) for £ = mi = 1. These representations are "ultrashort" and 
the field components Oav..a2s obey the equatons of motion: 

dai"lOai...a2s =0       (nO = 0iors = 0). (2.6) 

It is a general fact of AdS reps,   that "massless bulk" UIR's are 
contained in the product of two singletons [16]. 

In the SOFT language this means that a "current superfield" is 
bilinear in the supersingleton superfields as one can easily check. 
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Other shortenings, which do not involve space-time constraints on 
component fields, will be called "short multiplets" or "short superfields" 
where the shortening has a ring structure, namely it is preserved by 
multiplication of superfields. 

As we will see in the next section, this corresponds to the concept 
of "chirality" and Grassmann analyticity in Harmonic superspace. 

Shortenings of this type occur in B) and C). 

Finally, there are other types of shortenings which are not of this 
type; we will call them "semishort". They can appear in A) B) C) and 
typically correspond to superfields which satisfy second or higher or- 
der constraints in covariant derivatives (second order constraints define 
the so-called linear superfields). In all the above cases no space-time 
constraints on component fields are implied. 

Here we will consider the cases iV = 2,3,4; the N = 1 case has been 
treated elsewhere [15, 17, 46]. 

We shall use Dynkin labels (DL) [ai,... ,an_i] for SU{n), which 
are related to the YT labels (mi,... , mn_i) as follows: 

mi = 

k=l 

J2aki    i = l,...,n-l. (2.7) 

A crucial ingredient in our analysis will be the use of harmonic su- 
perspace (x,9,u), with "harmonic" variables u parametrizing the coset 
SU{N)/U{l)N-\ 

We will separately consider the cases N = 2,3,4 and for iV = 4 
we will restrict the analysis to the PSU(2,2/4) algebra (r = 0) [10, 5], 
since it is the latter which is appropriate to N = 4 super Yang-Mills 
theory. 

3    Extended harmonic superspaces and 
short superfields 

We are interested in realizing the highest weight UIR's of 5C/(2,2/7V) 
on superfields and harmonic superfields. 
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We shall consider an TV-extended D = 4 superspace (without cen- 
tral charges) with Grassmann coordinates manifestly covariant with 
respect to the SU(N) group 

z = (**, 0?j t) (3.1) 

using spinor indices of SX(23 C) and indices in the fundamental rep- 
resentations of SU(N) i, k,... = 1,... , N. (Note that the alternative 

convention 9a\ 0i is sometimes used in the literature.) 

The covariant opeartors in superspace are the spinor derivatives (see 
(A. 18)). Using them one can define constrained superfields describing 
various irreducible representations of extended supersymmetries. The 
construction of supercurrents and superactions from the constrained 
superfields have been discussed in Refs. [52, 36]. 

For N > 1 the standard superspace (3.1) can be enlarged to a "har- 
monic superspace" (HSS) [19] by considering an extra set of "harmonic 
coordinates" u which provide an 5£/(iV)-covariant parametrization of 
the coset space 

M=q(TT(   f
U{N) ...    „,        (X> = iVy (3.2) 

S (U(nx) x ... x U{nP)) \j^ j 

Note that such spaces are known in the mathematical literature under 
the name of "flag manifolds" [50, 32, 43]. An exhaustive list of these 
space and the corresponding HSS's and of their properties for N = 
2,3,4 is given in Ref. [39]. The choice of the subgroup depends on 
the practical use made of the harmonic variables. In our context it 
is crucial to use the highest-dimensional manifold of type (3.2) which 
occurs by dividing SU(N) by its Maximal Torus: 

SU(N) 

Mi))1 Mc = T^^T • (3-3) 

This is a manifold of complex dimension iV(iV — l)/2. The advantage 
of this choice is that the residual symmetry ([/(l))^-1 is the smallest 
one possible. This gives us maximal flexibility in defining subspaces 
of the full iV-extended superspace in an SU(N) covariant way. Such 
subspaces contain only a subset of the 47V Grassmann variables and 
are therefore called Grassmann (G-)analytic. They can be viewed as 
an alternative to the familiar chiral subspaces [13]. 
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The N = 2 and N = 3 HSS's based on the cosets SU(2)/U{1) and 
SU(3)/U(i) x [/(I), correspondingly, have been introduced for the off- 
shell description of all the N = 2 supersymmetric theories and of N = 3 
supersymmetric Yang-Mills theory (SYM) [19]-[40]. The realization of 
the superconformal group in these HSS's has been studied in Refs. 
[23, 21]. An N = 4 HSS involving the manifold SU(4)/S(U(2) x U(2)) 

has been used in Ref. [31] to give an interpretation of the on-shell con- 
straints of N = 4 SYM as combined G- and harmonic (H-)analyticities. 
There it was shown that the on-shell superfield strength of TV = 4 SYM 
is an analytic (i.e., short) superfield (and, similarly, for N = 3 SYM). 
In Ref. [34] this observation was generalized to composite operators 
made out of iV = 4 SYM field strenghts and it was suggested that this 
property might significantly restrict the correlation functions of ana- 
lytic composite operators. This idea has subsequently been applied to 
the study of iV = 2 and N = 4 CFT's in Refs. [35]. The notion of har- 
monic superspace and of G-analyticity was generalized to an arbitrary 
N in [31, 32]. Note that H-analyticity is also important in HSS's of 
lower space-time dimension [33, 56]. 

In what follows we shall consider the irreducible superfield represen- 
tation of SU(2,2/N) using the G- and H-analyticities related to the 
choice (3.3). 

3.1    The N = 2 case 

N = 2 HSS has been introduced for the off-shell description of the 
hypermultiplet and gauge and supergravity multiplets [19]. Here we 
start by describing the shortening effect of G- and H-analyticities on 
the on-shell matter and gauge N = 2 multiplets satisfying their free 
equations of motion. We review the basic facts about the SU(2)/U(1) 

HSS in the Appendix. 

The hypermultiplet (or N = 2 matter multiplet), which is the su- 
persingleton in the AdS literature, can be described by an ordinary 
superfield which is an SU(2) doublet q%(z) and satisfies the on-shell 
constraints [53]: 

D&Hz) = DW(z) = 0. (3.4) 
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Now, let us project the 577(2) doublets Dl
a,q

l and D^ with the har- 

monics u] and ul 

I>i = ^uJ,    g^^X1,    ^2d = Adt4. (3.5) 

This allows us to equivalently rewrite the on-shell constraints (3.4) in 
the form of G-analyticity conditions in HSS: 

D1
aq

l = D2aql = 0. (3.6) 

The crucial point now is that by letting the superfield q1 have a non- 
trivial harmonic dependence one can solve the constraints eqs. (3.6) in 

terms of a G-analytic superfield ql (xA, 02,9 , u) = q+ in the appropriate 
analytic basis (A. 17). This superfield describes the hypermultiplet off 
shell. It is an infinite-dimensional representation of supersymmetry be- 
cause of the infinite harmonic expansion on the coset SU(2)/U(1) ~ 52. 
In order to put it back on shell we need to restrict the arbitrary har- 
monic dependence down to the initial linear one (3.5). This is achieved 
with the help of the harmonic derivatives defined in the Appendix. We 
remark that the harmonic derivative D2 commutes with the spinor ones 
from eq. (3.6), 

[D^Dl] = [D^Dn] = 0 , (3.7) 

i.e., preserves G-analyticity. Thus, the free equation of motion of the 
hypermultiplet takes the form of a harmonic (H-)analyticity condition: 

Dlq1 = 0 , (3.8) 

where   one   uses   the   harmonic   derivative   in   the   analytic   basis 
(see (A.20)). 

This harmonic equation implies a number of constraints on the com- 
ponents of the superfield q1. Take, for instance, the leading component 
(j)l(x, u) = 91|6>=o- Off shell it has an infinite harmonic expansion going 
over the irreducible products of the harmonics u]'2: 

00 

fix, u)^J2 ^-^-^(zR • • • <+A • • • < • (3-9) 
71=0 

Now, the harmonic derivative converts any u2 into w1, so eq.   (3.8) 
implies the vanishing of all the terms in (3.9) but the first one, 

£)2V
1(a;,w) = 0 =» (t)1(x,u) = (/)i(x)ul

i . (3.10) 
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The same argument can be applied to the higher-order components 
of the superfield. Thus, the spinor component ipa(x,u) = Daql\o=o 

satisfies the constraint 

D2rl>a(x,u) = DlDlql\e^ = D^q1^ - 0 (3.11) 

(see (3.6)). Since this component is chargeless, the harmonic condition 
(3.11) implies that it is a singlet, ^^{x.u) = il)a(x). In a similar way 
one can find the complete expansion of the on-shell superfield: 

ql = ^(aOuJ + e^a{x) + t^x&ix) + iO^ d^^uj        (3.12) 

where all the components satisfy their free massless equations of mo- 
tion. We clearly see that this superfield is "short" in the sense that 
it only depends on half of the Grassmann variables of the full N = 2 
superspace. It is even "ultrashort" in the sense that the top spin in 
it is 1/2 instead of the maximal spin 1 allowed in a G-analytic scalar 
superfield. 

It is useful to note the relations 

(D2)2ql = (Drfq1 = 0 (3.13) 

which can again be derived from the basic constraints. They are the 
covariant form of the statement that the superfield is linear in O2 and 

6 , as can be seen from the expansion (3.12). 

When rewritten in the central basis coordinates x, 6^ 6 , the on-shell 
hypermultiplet superfield recovers its original form 

q1 = vtf(z) (3.14) 

of an SU(2) doublet. In fact, this observation can be given an invariant 
meaning as follows. We remark that the harmonic derivatives Dj form 
the algebra of SU(2) 

[Dj, D?] = 8jD[ - SiDf (3.15) 

realized on the superfield ql. As explained in the Appendix, the deriva- 
tive D^ is the positive root ("creation operator") of this algebra. Then 
the condition (3.8) simply defines the highest weight of an SU{2) rep- 
resentation.   The quantum number associated to this representation 
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("superisospin") coincides with this of the first component. To see this 
we write down the Casimir of this 577(2), 

C2 = DjD/ = i(£>0)2 + D0 + 2DlDl (3.16) 

where I}0 = Dl - D2
2 is the U{1) charge operator. Then, applying 

this Casimir to the on-shell superfield ql satisfying the H-analyticity 
constraint (3.8) and using the fact that it carries a definite U(l) charge, 
D®ql = g1, we obtain 

<V = I?1 • (3-17) 

We see that ql is an eigenfunction of the Casimir, realizing the doublet 
(isospin 1/2) representation, just like its first component (see (3.10)). 
The important point here is that the harmonic derivatives Dj commute 
with the supersymmetry generators, therefore C2 is the superisospin 
Casimir of the entire Poincare supersymmetry algebra. Note that this 
algebra has another Casimir, that of superspin. We can apply similar 
arguments to compute the value of this Casimir on the superfield ql. 

Indeed, the G-analyticity conditions (3.6) are equivalent to demanding 
that the positive odd roots of the Poincare supersymmetry algebra 
annihilate ql. This ensures that the superspin also takes a definite 
eigenvalue, so the on-shell superfield ql realizes an irrep of Poincare 
supersymmetry (see in this context Ref. [47] for a general discussion of 
irreducibility conditions on superfields). 

The above analysis can be repeated for other superfields satisfying 
both the G- and H-analyticity conditions but carrying different U(l) 

charges. Take, for instance, the off-shell linear multiplet. In HSS it is 
described by a G-analytic superfield L11 of U(l) charge +2 [22]. Unlike 
the hypermultiplet g1, this time the H-analyticity condition 

DlL11 = 0 (3.18) 

does not put the superfield on shell. The only restriction on the compo- 
nents involving space-time derivatives is that the vector in L11 must be 
divergenceless. The SU(2) Casimir now takes the eigenvalue 4 which 
corresponds to isospin 1 (triplet irrep). To put this superfield on shell, 
an additional constraint is required, 

(D2)2Ln = 0 . (3.19) 
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This H-analytic superfields of charge +2 is not ultrashort. H-analytici- 
ty for superfields of charge q > +3 still makes them irreducible but does 
not yield any constraints on the remaining components. 

Now we turn to the other basic multiplet of N = 2 supersymmetry, 
that of SYM. The free on-shell ultrashort Maxwell multiplet is described 
by a chiral (harmonic independent) superfield satisfying an additional 
second-order constraint 

DMW = 0 ,    D^DSW = 0 . (3.20) 

In the chiral basis, the on-shell components of this superfield are 

W = 4,(x) + 0fXi(x) + e^Fap . (3.21) 

This is another example of an ultrashort multiplet (its expansion goes 
only up to 02, as compared to 04 for a generic chiral N = 2 superfield). 

We do not consider here the non-Abelian generalization of the HSS 
description of the hypermultiplet and gauge multiplet [19, 55]. It should 
be stressed that the linear H-analyticity condition (3.8) is valid for 
gauge-invariant superfields only, otherwise it should contain a harmonic 
connection. 

We can now use the two objects above, the on-shell hypermultiplet 
q1 and the SYM field strength W as building blocks which will allow us 
to construct all the short representations of SU'(2,2/2). By adapting 
the series A), B), C) from Section 2 for N = 2 we have [14]: 

A) £> 2 + 2J2-r + 2J>2 + 2J1+r + 2J,     JxJ2 > 0 ; 

B) £ = -r + 21 > 2 + 2 J + r + 2/,    J^ = J, J2 = 0 ; 

C) £ = 21,    Jl = J2 = r = 0. (3.22) 

A general long multiplet, belonging to the A) series, contains 4 0's, 4 0's 
and Jmax = 2 (in the case of Ji = J2 = 0 for the highest weight state, 
i.e., for the 9 = 9 = 0 superfield component). In terms of our building 
blocks this series corresponds to chiral-antichiral multiplication of the 
type WW, or to analytic-antianalytic multiplication of hypermultiplets 
of the type q1q2 (where q2 = Dfq1 is a superfield satisfying "antiana- 
lyticity" constraints), or to products of both. 

Series B) for J = 0, / = 0 corresponds to chiral multiplets which 
can be obtained by the following operator series: 

Tr[Wp] (3.23) 
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(p = 1, £ = — r = 1 is the on-shell SYM multiplet itself defined in 
(3.20)). These superfields depend on the 4 left-handed Of and one 
immediately sees that the top spin in their expansion belongs to the 
Lorentz representation (1,0). The above series is chiral (short) and for 
N = 2 may be called "tensor multiplet" tower [30], since the maximum 

spin is (1,0) (with / = 0 and £^0) = 1 +p). 

Series C) corresponds to the analytic multiplication of hypermulti- 

plets: 

Inv^1)27 (3.24) 

where the symbol Inv means a gauge invariant product. The case 
7 = 1/2 corresponds to the on-shell hypermultiplet itself. The lowest 
component of these superfields is in the isospin / 51/(2) representation. 
The superfields depend on the 2 left-handed 0% and the 2 right-handed 

0 a, so the top spin (for / > |) is a (|, |) vector in the isospin 7-1 
51/(2) representation with dimension £^i^=2I + l. For 7=1 the 

vector is "conserved" and gives a "current" superfield (this is the linear 

multiplet (3.18)). 

There is another intermediate shortening in the B) series (J = 0) 
obtained by multiplying chiral with G-analytic superfields: 

Invite1)21]. (3.25) 

This superfield is G-analytic in a weaker sense than either W or g1, 
satisfying only the constraint (dropping the Inv symbol) 

^[W^q1)21} = 0 , (3.26) 

—Id 
and so it depends on the 4 0^ and on the 2 0 . Thus, the top spin in 
it is § = (1,1). 

There are other even shorter multiplets when the component fields 
satisfy "space-time constraints" i.e., conservation laws (transversality) 
or equations of motion. This happens when the dimension takes a 
particular value. 

In A) WW has £ = 2 (Ji = J2 = 0), r = 0, 7 = 0 and corresponds 
to the conserved stress-tensor multiplet. There is a similar object in 
the analytic-antianalytic multiplication of q1 and q2 = D\ql . 
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The superfield Wpq1 satisfies the additional linearity constraint (see 
(3.13) and (3.20)) 

(A)2^1] = 0 , (3.27) 

so it depends on the 4 0's and only linearly on 01. In B) £ = 1 and in C) 
/ = I correspond to the basic "super-singleton" UIR of 311(2,2/2). In 

the AdS/CFT language the £ = 2, r = Ji = ^ = / = 0 (in A)) and £ = 
2,r = Ji = J2 = 0, J = 1 (in C)) correspond to massless graviton and 
gauge bosons ("current superfields"). Semishort multiplets, obeying to 

"A) treshold", also exist. They are WWn, n > 1, (D(iDj\WWn) = 0) 
with £=l + n, r = l — n i.e., £ = 2 — r. 

3.2    The TV = 3 case 

3.2.1    The  N = 3 super Yang-Mills multiplet 

The N = 3 Yang-Mills multiplet is described by the field strength 
superfield [36, 20] Wij(x,9) = eijkW

k defined by anticommuting the 
gauge-covariant spinor derivatives: 

{Vid,Vi/j} = c^Wy (3.28) 

or by the conjugate superfield W*3. It the Abelian case this superfield 
satisfies the following on-shell constraints: 

DiWjt = liSp^Wu - SlD*WkJ), (3.29) 

Di&Wjk + Dj&Wik = 0 (3.30) 

and their complex conjugates. 

The SU(3)/U(i) x U(l) HSS has been introduced for the off-shell 
description of the N = 3 Yang-Mills theory [20]. Here we shall use this 
superspace for the classification of the short on-shell N = 3 multiplets. 
Some basic facts about N = 3 HSS are given in the Appendix. 

One can define three different harmonic projections of the Abelian 
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on-shell superfield W^: 

^23 = Wl = ^viWij , (3.31) 

^3 = -W2 = tiiujW" , (3.32) 

T^12 = W3 = ni^W^- . (3.33) 

By projecting the on-shell constraints (3.29), (3.30) with the appro- 
priate harmonics one finds sets of G-analyticity constraints on each of 
these superfields. They lie in three different analytic superspaces with 
six odd coordinates (see the Appendix). The existence of such ana- 
lytic superspace involving unequal numbers of left- and right-handed 
odd variables was first pointed out in [21] and then generalized to the 
so-called (N,p,q) superspaces in [31]. 

Consider, for example, the superfield W1 satisfying the following 
conditions of G-analyticity [31] 

DMW
1
 = DMWl = D^W1 = 0 (3.34) 

meaning that 

w1 - w1(xA,e2,es ,e\u) (3.35) 

in the appropriate analytic basis (A. 17). 

The G-analytic superfield Wl is a harmonic superfield with an infi- 
nite expansion on the harmonic coset. In order to get back the original 
constrained harmonic-independent superfield Wij{x,6) we need to im- 
pose conditions of H-analyticity. To this end we should use only the 
harmonic derivatives corresponding to the positive roots of SU(S) (see 
the Appendix). These are: 

DlW1 = DlW1 = DlW1 = 0 . (3.36) 

As expected, they form a closed algebra (CR structure) with the spinor 
derivatives in (3.34), i.e., preserve G-analyticity. Note that only the 
first of eqs. (3.36) is the true equation of motion. The second one is 
purely kinematical and the third one is a corollary of the first two, since 
Dl = [DlB*\. 

The H-analyticity conditions (3.36) have the meaning of SU(3) ir- 
reducibility conditions. Indeed, the derivatives Dj form the algebra of 
SU(3) 

[Dj, D«} = 5fD[ - SiDf (3.37) 
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realized on the superfield W1. Then (3.36) just defines the highest 
weight of an irrep. To find out which one, we can write down the 
Casimirs of this SU(3), 

C2 = D'jDf ,        C3 = DlDicD? (3.38) 

and rearrange the derivatives so that all the analytic ones from eq. 
(3.36) are on the right. Then, applying these Casimirs to the on-shell 
superfield Wl and using the fact that it carries a definite U{1) x U(l) 

charge, 

DlW1 = W1 ,    DgW1 = DiW1 = 0 , (3.39) 

we find that W1 is an eigenfunction of the Casimirs. Since the harmonic 
derivatives are supersymmetric invariant, we can switch back to the 
basis in superspace where the 0's are not projected with harmonics. 
There Wl = Wlu} = u^ulWij and we come back to the original form 
(3.31). Thus, the super-5C/(3) quantum numbers of the superfield W1 

coincide with those of its first component. 

The G-analytic superfield is also an eigenfunction of the superspin 
Casimir. The reason is that it is annihilated by half of the odd gener- 
ators (spinor derivatives), so it is a highest weight of the entire N = 3 

Poincare supersymmetry algebra. Moreover, the close examination of 
the components below shows that they are on shell, satisfying massless 
equations of motion. Thus, Wl realizes an irrep of conformal super- 
symmetry as well. 

It is easy to prove that W1 also obeys linearity conditions with 
respect to each 9: 

(D^W1 = (D2D3)Wl = (D^W1 = (DtfW1 = 0 . (3.40) 

This is done by using the harmonic derivatives, e.g., 

DliD^W1 = 2(D1D2)W1 = 0 =►  (D^W1 = 0 . (3.41) 

Further, by examining the components of the superfield W1 one 
finds that the top chargeless component lies very low in the 9 expansion: 

F% = Ufa^W1\o. (3.42) 
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Acting with harmonic derivatives on the higher-order spinor derivatives 
(components) of W1 one can easily show that all of them are expressed 
in terms of space-time derivatives of the preceding components. In 
this way, one finally obtains the components of the ultrashort on-shell 
superfield W1: 

W1 = (f>l+1% + ^Aga - 0£A2a - iO«eiPdap4>2 

+0*4*% - Ml*e20!d{Q&Xlfi) . (3.43) 

where the physical fields satisfy massless field equations. 

One can treat the projection W2 = —Wis in a similar way.   The 
spinor and harmonic derivatives annihilating W2 are 

Dl D16l, D3dn Dl Dl D2 . (3.44) 

The harmonic conditions make the leading component [W2]^ an irrep 
of SU(3), and thus give definite super-5C/(3) quantum numbers to the 
whole superfield. The corresponding linearity conditions are 

(Z)1)2^2 = (D^^W2 = (D3)2W2 = (D2)2W2 = 0 . (3.45) 

The Abelian superfield W2 lives in a rotated version of the G-analytic 
superspace (A.17): 

W2«,0i, fc, 0\ ti) (3.46) 

x'A=x + iOrf1 - ie2t + i63t . (3.47) 

The components of W2 are obtained from those of W1 (3.43) by ex- 
changing 1 with 2. It is evident that W2 = D\W1^ so both superfields 
describe the same on-shell vector multiplet. 

Finally, consider the harmonic projection of the N = 3 superfield 

W12 = ultfW* . (3.48) 

The on-shell constraints on W13 are equivalent to the following G- 
analyticity conditions: 

D^W12 = D2
aW

12 = DMW
12
 = 0 . (3.49) 
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This Abelian superfield lives in yet another version of the G-analytic 
superspace (A.17), 

W12(xl9s,e\9\u). (3.50) 

In addition, it satisfies the harmonic constraints 

DJW12 = DlWU = DlW12 = 0 . (3.51) 

From these constraints follow the linearity conditions 

(DS)2W12 = (DtfW12 = (D2)
2W12 = 0 . (3.52) 

This superfield has the following components: 

w12=r - * A. - oi%+*%+>w%r 
- WSt'd^t3 - f^F^ + it&n*^ ■   (3-53) 

Once again, this is another equivalent description of the same N = 3 
on-shell SYM multiplet. 

3.2.2    Series of short N — 3 multiplets 

The A), B), C) UIR's of the SU(2,2/3) algebra are given by adapting 
the quantities X, Y to the N = 3 case with mi = a + 6, m2 = a where 
[a, 6] are the 5t/(3) Dynkin labels. 

It then follows that (m = mi + m2 = 2a + 6): 

A)  £>2 + 2J2-r + -a+-6>2 + 2Ji + r + -a+-6  (3.54) 

which implies: 

-r   >   Ji - J2- g(o-6) 

£   >   2 + Ji + J2 + a + 6 (3.55) 

(or r —> —r, Ji -> J2, a —> b) 



SHORTENING OF PRIMARY OPERATORS ... 1169 

B)      J1 = J,J2 = 0 

e=-r + ^a+\b>2 + 2J + r + \a+U   (3.56) 

which implies: 

-r   >   l + J-Ua-b) 

£   >   1 + J + a + b (3.57) 

(or Ji —y J2, r —> -r. a->b) 

C)    ^ = 72 = 0,    £ = a + b,    r = \(a-b) (3.58) 

The Yang-Mills (supersingleton) multiplet corresponds to series 
1 

"3* C) fora = 0, 6 = 1, r=-i 

Now, let us realize these abstract short representations in terms of 
the SYM superfields W. The series C) for a = 0 corresponds to the 
tower with maximal shortening: 

Tr(W1)b = C[0ib]. (3.59) 

This is a superfield depending on 4 0's and 2 #'s, consequently the 
maximum spin (b > 1) is J = | in the Lorentz representation (1, |). 
The first component is a scalar with dimension £ = b and r-charge 
r = -6/3 in the [0,6] UIR of SU(S). The case 6 = 1 is the ultrashort 
Yang-Mills singleton W1. 

The short H-analytic superfields for 6 = 2,3 have the the following 
chargeless components: 

(D2nD3)2C[0,2} ,    BlD^DrfCM . (3.60) 

All the higher components are space-time derivatives of the lower ones. 
In the case 6 > 4 H-analyticity does not lead to any extrashortening, 
e.g., the superfield CfO, 4] contains an independent top component 

(DyiD^iD^C^A} . (3.61) 
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The complete C) series of short multiplets can be obtained by taking 
the products 

(W1)b(W12)a = C[a,b} (3.62) 

(we omit the traces). The first components of these superfields contain 
analytic harmonics with a + b indices ) 1 and a indices 2 corresponding 
to the UIR [a, b] of SU(3). We obtain the generic short operator of the 
C) series with £ = a + 6, r = |(a — b) and with Jmax = 2 = (1,1), since 

this operator contains 4 0, 4 9. 

Now, let us consider C[a, b] as an abstract G-analytic superfield 

C[a,b] = C[a,b]{02,e3,d\tf) 

with the given SU(S) quantum numbers. The H-analyticity conditions 
for these representations are the same as those for the building block 
W1 (see (3.36)), 

DlC[a, b] = DlC[a, b] = DlC[a, b] = 0 . (3.63) 

This is equivalent to imposing an 517(3) irreducibility condition. Using 
both G- and H-analyticity one can derive various constraints on the 
components. For instance, we find the following highest chargeless 
components in the simplest cases: 

DlD^D^^Cll, 1] , (3.64) 

(D2)2(Dz)2Dli&D2$)C[l,2} , (3.65) 

(D2)2^3)2^)2!^!^. (3.66) 

From these levels of the expansion on the corresponding superfields 
should become short. Note, however, that there is an additional linear- 
ity constraint in the case a = 1, 

(D2)
2C[1,6] = 0, (3.67) 

which follows from the properties of W in the product (3.62) but 
cannot be obtained from H-analyticity alone. 

The multiplet which is dual to the graviton multiplet of N = 6 
supergravity in AdS5 is given in (3.64) (C[l, 1]). Indeed the top com- 
ponent is the spin 2 (1,1) graviton multiplet with £ = 4. This is a 

"current superfield". 
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Note that (3.62) for b = a is invariant under an additional r-phase 
Wi -+ eiaWi which commutes with the SU(2,2/3) algebra [12, 37]. 

By selecting the r invariant singlets C[a,a] we obtain a tower of 
spin 2 short multiplets which are | BPS states of N = 6 supergravity 
[12, 36]. Other cases in this class of analytic representations have no 
semishortening. 

The next series of representations is given by the products 

(W^iW2)* = B[a,b] . (3.68) 

This superfield satisfies only one G-analyticity condition, 

DSaB[a,b] = 0 .=► B[a,b] = B[a,b}(eue2,93J
1 ,tf) . (3.69) 

This implies that the top spin in it is Jmax = | = (|, 1). Further, the 
same H-analyticity constraints as in (3.36), 

DlB[a, b] = DlB[a, b] = DlB[a, b] = 0 (3.70) 

imply that the first component belongs to the UIR [a, 6]. The dimension 
and r-charge of this superfield are 

£ = 2a + b ,        r = -\(2a + b) . (3.71) 

One can prove the following constraints: 

DliaD2p)B[aJb} = 0, (3.72) 

(DtfDteBia, b] = (DifD^Bla, b] - 0 . (3.73) 

Thus, this representation can contain all 6 0's and bilinear scalar com- 
—1—2 

bination {6 9). 

The superfields -B[l,6] satisfy the following additional conditions: 

(Z?1)25[l,6] = (A)2S[l,6] = 0 (3.74) 

which follow from the properties of W2. The superfield jB[l, 0] = W1]^2 

is even further constrained: 

{D2)2B[\, 0] - (Pi)2B[l, 0] = 0 . (3.75) 
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We find the following highest chargeless components: 

DlD^DteBM , (3.76) 

JDiZJjCZ?3)2^!^!,!], (3.77) 

(DlD2){D3)2(D1)
2B[2,l}. (3.78) 

This means that these superfields are semishort. 

These representations belong to the B) series (J = 0). 

The series A) corresponds typically to superfields with 6 9, 6 9 and 
for Ji = J2 = 0 contains multiplets with Jmaa; = 3 = (§, §). 

The last series (still corresponding to the B) shortening) can be 
constructed by taking the products 

(WlY+q+n(W2)q+n(Wl2)n = B'[q + 2n,p] ,    n > 1 . (3.79) 

It lives in the same superspace with 10 spinor coordinates as S[a,6] 
and has its first component in the SU(3) UIR [q + 2n,p]. It is clear 
that one can find members of both series having their first components 
in the same UIR, Bf[q + 2n,p] and B[q + 2n,p]. However, the two 
short multiplets are not equivalent. The dimension and r-charge of the 
B'lq + 2n,p] series are £ = p + 2q + 3n, r = — |(p + 2g + n) whereas for 
the B[q + 2n,p] series they are £ = p + 2q + 4n, r = — |(p + 2q + 4n). 

In conclusion we can say that the short analytic JV = 3 representa- 
tions are defined by the choice of the lowest harmonic representation, 
the Grassmann dimension and the quantum numbers £ and r. 

3.3    The N = 4 case 

3.3.1    The TV = 4 SYM multiplet 

The iV = 4 Yang-Mills multiplet is described by the field strength 
superfield Wlj(x,9) satisfying the reality condition [52, 36] 

1   ;„■ 

Wij = -eijklWkl ,        Wife, = Wkl 
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and the following on-shell constraints: 

DnW* = l(SiDldlW
lk - S'D^W1!) , (3.80) 

D^W^ + DJ
aW

ik = 0 . (3.81) 

Note that both forms of W contain F^ and Fd^, so we do not use W 

for N = 4 superfields. 

We shall rewrite these constraints in N = 4 HSS. To this end we have 
to chose one of the harmonic coset spaces for the group 817(4) listed 
in Ref. [39]. It should be pointed out that a harmonic interpretation 
of the N = 4 SYM constraints has for the first time been proposed 
in Refs. [31]. It makes use of the harmonic coset SU(4)/S(U(2) x 
U(2)). This is sufficient to show that the on-shell W is a G-analytic 
superfield depending only on half of the odd variables. However, the 
residual symmetry S(U(2) x U(2)) in the approach of Ref. [31] turns out 
too restrictive for the analysis of all representations. In order to have 
maximal flexibility we shall use harmonics on the coset SU(4)/U(1)3 

(see the Appendix for details of the definition and the basic properties). 

With the help of these harmonics we can introduce three indepen- 
dent projections of the on-shell field strength: 

W12   =   ultfWV =-W34 (3.82) 

W1Z   =   ulu3
jW

ij = W42 (3.83) 

W23   =   vZtfW*' = Wu • (3.84) 

It is easy to see that the constraints on W^ imply that these three 
superfields belong to three different G-analytic subspaces of HSS. For 
example, the projection W12 satisfies the G-analyticity constraints cor- 
responding to the following spinor derivatives: 

Dl
aW

12 = D2
aW

12 = D3aW12 = D^W12 = 0 . (3.85) 

In the appropriate basis in superspace (A.17) the analytic W12 has the 
form 

W12 = W12(xA,03,0i,d\e2,u) . (3.86) 

We see that W12 depends on only 8 out of the 16 (95s of the full N = 4 

superspace. It is then obvious that its 9 expansion can in principle go 
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up to spin 2: 

W12 = ... + nffiJfiA^ + ... . (3.87) 

This is an example of a short multiplet (a generic N = A superfield 
expansion goes up to spin 4). In fact, W12 is even shorter, as we shall 
see in the next subsection. 

In order to achieve equivalence with the original constraints (3.80), 
(3.81) we have to eliminate the non-trivial harmonic dependence of W. 

This is done by imposing conditions of H-analyticity, in addition to G- 
analyticity. As in the cases iV = 2,3, we choose the set of six harmonic 
derivatives corresponding to the positive roots of 5(7(4): 

DJW12 = 0,        I,J= 1,2,3,4,   I<J. (3.88) 

They define the highest weight of an 517(4) irrep. In fact, among 
them only three are independent, (Z^1 , Df , D^)W12 = 0, but it is 
often convenient to use all the six. The implications of the condition 
D^W12 = 0 on the leading component in the 6 expansion of W12 = 

(j)l2(x, u) + ...  are easy to see: 

D^^ulu2) = P'Wulu) - 0 =► <F> = -^ (3.89) 

since the harmonic variables commute. In other words, the component 
(f) is in the 5C/(4) UIR [0,1,0]. The remaining harmonic conditions 
eliminate any dependence on the other harmonics in (j)l2{x,u). The 
same argument shows that the remaining components of the superfield 
either belongs to UIR's of 5(7(4) (if they are not expressed in terms 
of the lower components or just vanish), so that in the end the entire 
superfield recovers its original trivial harmonic dependence shown in 
eq. (3.84). 

The harmonic conditions (3.88) ensure that the superfield W12 forms 
a representation of supersymmetry with fixed 5/7(4) super-quantum 
numbers. Indeed, the harmonic derivatives Dj form the algebra of 

St/(4), 

[Dl D«) = 5«DL - 5iD? (3.90) 

realized on W12. At the same time, these derivatives are super-covari- 
ant, i.e., commute with the supersymmetry generators. Therefore the 

5(7(4) Casimir operators 

Cn = DllDJl ...Dfr,        n = 2,3,4 (3.91) 
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are automatically super Casimirs. Now, the SU(4) algebra (3.90) al- 
lows us to rewrite (3.91) in such a way that all the Dj with I < J 

appear on the right, after which we can make use of the conditions 
(3.88). Thus, the Casimirs are reduced to polynomials of the charge 
operators Df and take eigenvalues on the superfield Wu determined 
by its charges. The conclusion is that the supermultiplet described by 
W12 has definite 517(4) quantum numbers which coincide with those of 
its first component. 

In exactly the same way one can show that the other two projections 
of the field strength live in the two alternative G-analytic subspaces 
involving only 8 0's each: 

W13{a/A70290A,6\t,u), (3.92) 

x,
A = x- i^t + 9zt - e2f - e4t); 

W2S(xleu94,e\6\u) , (3.93) 

^ = x - 1(9$ + 9zt - 92t - 9$) , 

where the corresponding G-analytic bases in superspace have been 
used. 

In addition, these G-analytic superfields satisfy H-analyticity con- 
ditions which can be obtained from eq. (3.88) by permuting the indices. 
As before, they make the superfield an irrep of 5C7(4). It should be 
stressed that these analyticity conditions are flat (linear) for all Ws 

in the Abelian theory or when applied to gauge-invariant composite 
operators of the type TrPT71 in the non-Abelian theory. 

3.3.2    Series of short multiplets 

The UIR's of the P5C/(2,2/4) superalgebra fall in three classes [10, 14]: 

A)    ^>2 + Ji + J2 + a + 6 + c, 

h - J\ > -(c - a)    (or Jx «-» J2, a ^ c)   (3.94) 

Massless bulk multiplets correspond to maximal shortenings with 

Ji — Ji, & — b = c = 0 
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B)   e=hc + 2b + 3a) >2 + 2J+i(3c + 26 + a), 

J1 = J^J2 = 0   (3.95) 

(or Ji 4-> J2, a 4-> c) with £> l + J + a + 6 + c, 1 + J < |(a-c) 

• 

C)    £ = 2a + b,    a = c,     Jl = J2 = {) (3.96) 

Series C) contains the Yang-Mills multiplet for a = 0, b = 1 and 
the K-K tower of short multiplets for b = p > 1 and a = c = 0. 

The discussion of the properties of the G-analytic superfield W12 above 
applies to any of its powers 

(W12Y = C[0,p,0] (3.97) 

(or to TY(W
12

)
P
 in the non-Abelian case). The notation indicates the 

Dynkin SU(4) labels [0,p, 0] of the first component of the superfield. 

These superfields satisfy the set of G-analyticity conditions 

(Dl Dl D^, D4d)C[0,p,0] - 0 , (3.98) 

and are therefore short multiplets (maximal spin 2= (1,1)). As before, 
the harmonic conditions 

i5iCr[0Jp,0] = 0,        /,J=1,2,3,4,   I<J (3.99) 

ensure irreducibility under 517(4). Indeed, consider the leading com- 
ponent 

^...wofe..*)^... uiyhUi... ui = 0 .(3.100) 

This condition eliminates the symmetrization between the indices of the 

first and second set and thus renders the field irreducible, belonging to 
the 5£/(4) UIR [0,p, 0]. The alternative proof of irreducibility makes 
use of the positive root or the Casimir argument above. 
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The series above corresponds to K-K towers of IIB supergravity 
on AdS5 x 55 [41] and it was obtained using the oscillator method by 
Gunaydin and Marcus [26]. Its relation with analytic superfields with 

harmonic variables of SU(2)xsu(2)xu(i) [^ was discussed in [2]. 

Another way of obtaining new short representations is to multiply 
two WJs with different G-analyticities, e.g., 

[wl2(e3,6i,e\f)r<[wn(02,e4,6\e3)}o = c[q,p,q]      (3.101) 

(we postpone the discussion of the role of the traces to the next section, 
and from now on we omit the traces). The lowest component of the 
corresponding irreducible superfield belongs to the UIR [g,p, q] with 
p + 2q indices 1, p + q indices 2 and q indices 3 in the corresponding 
rows of the YT. (Note that interchanging W12 and Wu would give an 
equivalent series). It is clear that such superfields satisfy only a subset 
of the G-analyticity conditions above: 

Dl
aC[q,p,q] =SjC7[flf,p>«] = 0 (3.102) 

and thus depend on 12 out of the total of 16 #'s. As a consequence, the 
value of the spin in their expansions cannot exceed 3 = (§,§). Next, 
we have to impose the set of H-analyticity constraints 

DJC[q,p,q] = 0,        /,J=1,2,3,4,   KJ (3.103) 

which are clearly compatible with the G-analyticity of C[g,p, q]. Note 
that they coincide with those for the preceding series (3.99) which is 
needed for consistency if we set q = 0. As before, the effect of these 
conditions is to single out the SU(4) UIR [q,p,q]. Indeed, the leading 
component 

0(n...W?)O,..iP+,)(fc,..^)Mii ... ^^ ... ^y^ .    ^        (3>104) 

becomes irreducible after imposing the constraints involving D^ D^ 

D3 (they remove all possible symmetrizations among the different sets 
of indices). The above series corresponds to the shortening C) in (3.96). 

The third possibility corresponds to the shortening B) in (3.95). It 
involves all the three G-analytic W's: 

C[q + 2n,p, q] = [(W12y+q+n{W13)q+n(W23)n] . (3.105) 
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This time there is only one G-analyticity condition left, 

D4aC[q + 2n,p, q] = 0. (3.106) 

Consequently, the superfield depends on 14 0's (8 left-handed and 6 
right-handed) and the spins in its expansion can go up to 7/2 = (2, |). 
The H-analyticity constraints are 

DJC[q + 2n,p,q} = 0,        /, J= 1,2,3,4,   I<J. (3.107) 

Once again, they look the same as those for the C[0,p, 0] series (3.99) 
and for the C[g,p,g] series (3.103) (needed for consistency). The irrep 
corresponding to the leading component now is [q + 2n,p, q]. 

Concluding this subsection we note that there exist other G-analytic 
 1 2 3 

subspaces involving 10 out of the 16 0% for example, 9^2 ,9 ' ' • How- 
ever, superfields living in such subspaces cannot be obtained by multi- 
plying WJs. 

3.3.3    Extra shortening of N=4 superfields 

As in the cases N = 2,3 before, the N = A representations can in 
some case be semishort. The simplest example is the superfield W12 

itself, which is ultrashort. Due to the G- and H-analyticity constraints 
(3.85), (3.88) it describes the on-shell N = 4 ultrashort SYM multiplet 
containing six scalars </?* = — 07't, four spinors Am (and their conjugates 

A^) and the field strength F^, F7x . Thus, its 9 expansion is effectively 

shorter than that of a generic G-analytic superfield of the type (3.86). 

w12 = 012 + q A4Q - 04*A3Q + 6*% - e2X + 0^*3, + 0 V* J^ 

+ wse^d^ + iff^d^ - iep2^^ - iff^d^14 

+ ie^d^d^xl + e^t{&thd^d^ . (3.108) 

To see this take, for instance, the component at 9^9 . It can be de- 

fined using the spinor derivatives of W12 at 9 = 0, A2^> = D^D^W12^. 
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Now, W12 is subject to the H-analyticity conditions (3.88), in par- 
ticular, D^W12 = 0. Applying this to the component and using the 
G-analyticity condition D^W12 = 0, we find 

D}A% = DiD^W^lo = ida$W
12\o = id^12 . (3.109) 

The resulting harmonic equation has the obvious solution A2^  = 

Inspecting the superfield expansion (3.108) one sees that each 9 (or 
0) appears only linearly. This means that the superfield W12 satisfies 
Grassmann linearity conditions of the type, e.g., 

(D3)2W12 = 0 . (3.110) 

Once again, this constraint can be easily derived by using the basic G- 
and H-analyticity properties of W12. Indeed, denote A1233 = (D3)2W12 

and hit it with the harmonic derivatives D^ , D2: 

D^A1233 = D2A1233 = 0 . (3.111) 

These two constraints ensure the SU(4) reducibility of (the leading 
component of) A1233 by eliminating all the symmetrizations between 
indices projected with different harmonics. Then we can rewrite it as 
A1233 = A3 and by hitting it with D31 we find 

D£Al = Al = 0 =* ,41233 = 0. (3.112) 

In the same way one can readily prove the following relations 

(D3DA)W12 = (D^W12 = 0 , (3.113) 

(D3)2W12 = (D4)2W12 = (DrfW12 = (D2)2W12 = 0 .       (3.114) 

Another way to find out that the superfield W12 is ultrashort is to 
notice that the components 

*3. = Df^W12 ,        F-$ = D^D^W12 (3.115) 

are the highest (in this case the only) chargeless ones in the expan- 
sion. Adding one more spinor derivative (i.e.,, moving a step up in the 
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expansion) produces a charged component which is eliminated by the 
harmonic conditions. For example, take i/>3 = D3DiD2Wl2\o and hit it 
with D£: 

Ds€aj3 = DlDlDl&D2^\ = -ida&D^W12\0 = -ida&xl 

=*     €ap = -id
™%- (3-116) 

Thus, we can say that the expansion of the superfield W12 ends at the 
level of 2 #'s (in the sense that all the higher components are expressed 
in terms of derivatives of the lower ones). We call such superfields 
ultrashort. 

The linearity property of W12 is of course lost when we start mul- 
tiplying them. Nevertheless, (W12)2 and (W12)3 are still shorter than 
a generic superfield of the same G-analyticity type. According to the 
general discussion in section 2, p = 2 gives a "current" superfield while 
p = 3 gives a semishort multiplet. Indeed, let us examine the top 
component of C[0,p, 0] - {W12)?: 

$(o,P-4,o)  ^  (JD
3D4A^2)2(Wrl2)|,|fco - (3.117) 

For p > 4 this is a field containing an SU(4) irrep which survives all the 
harmonic conditions (for p = 4 it becomes a singlet), so the superfield 
is not ultrashort. For p = 3 we find singlets at the level of 6 0's: 

(D^iD^D^D^CiQ, 3,0] ,        Z^^^Ctf), 3,0] . 

(3.118) 

They are not affected by the harmonic conditions and indeed, by tak- 
ing the expansion (3.108) of a single W12 to the third power we do 
find such components. Any higher component will carry a charge 
and will be killed by the harmonic conditions (for instance, if)4 = 

D3(DADiD2)2(Wl2)3\e=o is annihilated by D]). Thus, the expansion 
of C[0,3,0] ends at 6 0's. 

Similarly, for C[0,2,0] = (W12)2 we find the singlets 

(D3)2p4)2C[0,2,0], 

DlD^D^D^ClO^O] , 
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which are indeed present in the square of the expansion (3.108). Thus, 
C[0,2,0] is another extrashort superfield ending at 4 #'s, it is in fact a 
"current superfield". 

In the cases of the series C[g,p, q] with q > 1 and C[q + 2n,p,q] 

with n > 1 the same analysis shows that the top component is always 
present. In the case (W12)P+1W1S the superfield is linear in 02 because 
this is the property of W13 and Wu does not depend on #2- Similarly, 
the product (w12y^+1 (Wls)q+1W23 is linear in 9^ The above cases 
correspond to semishortening. These superfields are even shorter for 
certain values of p and q, but this requires an additional analysis. 

4    Multitrace operators and multiparticle 
states 

The analysis of different classes of N = 4 conformal supermultiplets 
obeying different types of shortening conditions has an interesting ap- 
plication to some "states" which are not K-K states but have rather 
the interpretation of "multiparticle states" [1, 7] in the AdS/CFT cor- 
respondence. 

In iV = 4 Yang-Mills theory these states correspond to the decom- 
position of the product of some "short" (single trace) K-K multiplets 
into irreducible superconformal blocks. Such blocks necessarily contain 
multitrace (rather than single trace) [8, 9, 7] Yang-Mills gauge-invariant 
operators which in general are not in the same representations of the 
"short" K-K multiplets. 

In this section we will make the analysis for the most general double- 
trace and triple-trace gauge invariant operators of N = 4 Yang-Mills. 
The extension to higher multitraces is in principle straightforward. 

Let us denote by 012, 013, </>23 the lowest 9 components of the three 
superfields W12, W13, W23.   Consider now the gauge invariant opera- 
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tors: 

s)      Tr[(012r] 
d)      Tr[(012)^]Tr[(013)9] 

t)      ^[(^^^jTrK^^^Trf^23)71] (4.1) 

Sequence 5) is the usual K-K tower of IIB supergravity on AdS^ x 55. 
It gives all multiplets with Jmaa; = 2 (more precisely a (1,1) tensor in 
the [0,p - 2,0] UIR of 517(4)) and the first component is 

Tr (^ • • • (f)£p)    symmetric traceless (4.2) 

where (f)£ is a scalar in the [0,1,0] of 5(7(4) defined as: 

4>e = We\g=o = tfhW*. (4.3) 

Sequences d) are the double-trace operators. The 9 = 0 term is con- 
tained in the product 

Trtf1 • • • <^+«)Tr (0mi • • - <r*) (4.4) 

where each single trace is symmetric traceless. 

As an illustrative example consider for instance the product of two 
lowest components of the "current" multiplet: 

Tr 1^2) _ Ie*Vm&J Tr UV4) - -e^V71^ 
6 £ > 6-        -     -n) (4.5) 

It contains the irreducible SU(4) components: 

20x20   =      105     +      84      +      20      +       1 
[0,4,0] [2,0,2] [0,2,0] [0,0,0] 

(4.6) 

The (105) and (84) correspond to two short multiplets with top spin 
(1,1) and (§, §) respectively, while the last two are long multiplets with 
top spin (2,2). The latter acquire anomalous dimensions in perturba- 
tion theory as shown in refs. [7]-[4]. 

The first two UIRs are contained in Tr (</>12)2 Tr (</>12)2 and 
Tr ((f)12) Tr ((/>13) respectively, while the last two correspond to UIRs 
superfields with 80, 86. 
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The multiplets in (4.4)decompose in long (Jmaa: = 4) and short 
multiplets (Jmax = 2,3). The virtue of the multiplication in d) is that 
precisely it singles out all shortening occurring in (4.4). 

Note that the operator 

Tr(^12)£Tr((/)12)m (4.7) 

gives the same UIR as Tr(012)^m i.e., V(e + m, 0,0; 0, £ + m, 0). This 
means that the [0,p, 0] UIR obtained in any multitrace operator is a 
short multiplet. The same type of argument will apply to the other 
shortenings. 

Analogously, an operator of the type 

Tr ([012] V3P) (4.8) 

would correspond to a single trace first component (9 = 0) operator: 

Tr^1---^/1-..^™ (4.9) 

where some antisymmetrization of two a, b indices occurs so it would 
not be a superconformal primary operator in super Yang-Mills theory 
[54] (although it would be conformal primary in an Abelian theory 
where traces are removed, since in that case it would coincide with 
(</>12)^((/>13)m). Also note that in a rank 1 Abelian theory only s) would 
survive because in that case all antisymmetrizations of c/)1 would vanish. 
These considerations also imply that no single power of any (j)12 (or 
013, (j)23) should occur in the product (since Tr^ = 0) then implying 
that linear semishort operators (i.e., operators satisfying a D2 = 0 
constraint) do not occur in SU(J\f) Yang-Mills theory. 

From the general class of shortening we see that d) contains the 
irreducible pieces which correspond to the shortening of: 

Tr[(<l>12)p+q+k] x Tr[(<l>13)q-k],    0 < k < q ' (4.10) 

i.e., to highest weight states of the type V(2q+p, 0,0; q—k,p+2k, q—k), 

the new one being the k = 0 one, with Dynkin label [g,p, q] (k = q — 1 
is missing because Tr</>13 = 0). This is precisely the UIR singled out by 
the H-analyticity constraints (3.103) 

All these states have quantized dimensions and lie in multiplets with 

Jmax = 3, unless k = q, for which Jmax = 2. 
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ll p+2c 

2i 2P+q 

3i sq 

Figure 1: [q,p, q] representation. 

Let us apply this to the cases of double-traces with d < 6. The rational 
to restrict to s), d), t) families is the following: 

• Tr[((/>12)2] x Tr[((/>13)2]. 

In this case p = 0, q = 2, so the two short reps, are the [0,4,0] 
(Jmax = 2) and [2,0,2] (Jmax = 3). It has been confirmed by di- 
rect calculation that indeed two such objects are not renormalized 
in perturbative theory (at one loop). 

• Tr[(^12)3]xTr[(^13)2]. 

In this case p = 1, q = 2. The short multiplets are in the [0,5,0] 
and [2,1,2]. 

• Tr[(012)3] x Tr[(^13)3]. 

In this case p = 0, q = 3. The short multiplets are in the [0,6,0], 
[3,0,3] and [2,2,2]. 

• Tr[(^12)4] x Tr[(<£13)2]. 

In this case p = 2, q = 2. The short multiplets are in the [0,6,0] 
and [2,2,2]. 

It is thus obvious that the number of short multiplets is precisely q 

of which q — 1 have Jma:E = 3 and one has Jmax — 2. 

We now consider triple-trace operators where a new type of short- 

ening (Jmax = I) OCCUrS. 

The generic triple-trace operator is: 

Tr[(012)^+ri]Tr[(^13)^n]Tr[(^23)n] 

with dimension d = p + 2q + 3n. 

(4.11) 
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The above expressions single out the short multiplets contained in 
the following triple-trace operator composites: 

TV(Z1 • • • /»+«+")Tr((j)mi ■ ■ ■ ^m«+")Tr(^1 • • • <t)Sn) (4.12) 

The new phenomenon here is that three types of short multiplets with 

Jmax — 2,3 and | occur. The new short multiplet is a "chiral" superfield 
whose first component is in the [q+2n, p, q] of 577(4) and with a Jmax = 
| state in the (2, |) rep. of SX(2?C). This is the UIR singled out by 
the constraints (3.107) From the analysis of the product of: 

Tr [(W12Y+q+n}Tv [(Wls)q+n]Tr [(W23)n} (4.13) 

it follows that the above triple-trace operators contain all the shorten- 
ings which occur in: 

Tr [(<j>12)p+q+n+x}Tr [(^13)<'+n+fc-a:]Tr [(023)n-fe], 

0<k<n,0<x<q + 2k   (4.14) 

if k < p, or 

Tr [((f)Uy+k+n+x}Tr [(013)?'+<7+n-I]Tr [(</>23)n-fc], 

0<k<n,0<x<p + q + k   (4.15) 

for k>p. 

p + 2q + 2n + k 

p + q + 2n- k + x 

q + 2n - x 

Figure 2: [q + 2n — x, p — k + 2x, q + 2k — x] representation, for k <p\ 

0<k<n,0<x<q + 2k. 

The first triple trace operator is (d = 6): 

Tr[(012)2]Tr[(013)2]Tr[(023)2],    (p = q = 0; n = 2) (4.16) 

For A; = 0, x = 0 it gives the [0,0,4] + [4,0,0] (Jmax = |). For A; = 2, it 
gives all the shortenings already occurred in Tr[(012)4+a:]Tr[(013)2~a:]. 
These are the [0,6,0] and [2,2,2] (JTOax = 2 and 3 respectively). 
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p + 2q + 2n + k 

q + 2n + x 

p + q + 2n — k — x 

Figure 3: [p + q + 2n — k — x, — p + k + 2x, p + q + k — x] representation, 
for k > p; 0 < k < n, 0 < x < p + q + k. 

This completes the analysis of the shortenings of double and triple 
trace operators. Of course, due to their ring structure, higher multiple 
trace operators can be obtained by further multiplying structures as in 
s) d) t) then obtaining the same type of shortening as in the previous 
composite operators. 

The bulk interpretation of these composite operators is that there 
are some multiparticle BPS states in the supergravity side. 

The "non-renormalization" of the [0,4,0] and [2,0,2] short multi- 
plets contained in the two graviton-multiplets particle state was shown 
in N = 4 Yang-Mills perturbation theory in ref. [4, 51]. The latter 
reference extended the analysis for the (0,p, 0) block to all multitrace 
components. Its relation with shortening was established in ref. [2] and 
[14]. 

From the shortening conditions we see that while the usual K-K 
states are | BPS (since the superfield does not depend on 4 0L, 4 0R) 

the new short classes correspond to | BPS (2 0L, 2 0R) and | BPS 

(2 0R). The lowest dimensional j BPS operators occur for highest 
weight £>(4,0,0; 2,0,2) (double-trace) while the lowest dimensional | 
BPS states occur for highest weights X>(6,0,0; 4,0,0) + c.c. 

5    Conclusion 

In the present paper we have analyzed all possible shortenings which 
are obtained by composite operators made out of the field strength 
gauge multiplets and hypermultiplets (for iV = 2). 
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These shortenings are characterized by subspaces of HSS's which do 
not depend on a certain number of (fermionic) 9 variables. 

If a certain subspace (of the full superspace with 4iV 6 variables) 
does not depend on n fermionic coordinates, then a superfield on such 
a space is generally called f^ BPS in analogy with a particle state 
interpretation. 

Moreover, if n = nL + UR then the highest spin of such a superfield 
is 

(Jl,</2) = 

f2N-nL  2N-nR 
(5.1) 

4 4      / 

We can summarize the set of subspaces, for each TV, by the pair (m,, n^). 

All possible shortenings found from the analysis of section 3 are 
summarized in the following table. 

AT {nL,nR)    (Ji,J2)    BPS 

(2,2) V2' 2) 
1 
2 

iV = 2 (0,4) (1,0) 
1 
2 

(0,2) (1,1) 
1 
4 

(2,4) (l,i) 
1 
2 

;v = 3 (2,2) (1,1) 
1 
3 

(0,2) (1,1) 
1 
6 

(4,4) (1,1) 
1 
2 

N = i (2,2) (3   3^ 
V2' 2) 

1 
4 

(0,2) (2,|) 1 
8 

All these representations refer to UIR's with highest weight states 
with Ji = J2 = 0. In this case the generic "long multiplets" (massive 
non-BPS states) have Ji = J2 = 1, |, 2 for Af = 2,3,4 respectively. 

Short multiplets have "protected dimensions" in conformal field the- 
ories. This is not the case for long multiplets whose dimension is then 
renormalized. 

We found, as an application of these results, that some multiparticle 
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state channels, occurring in AdS5 x S5 compactifications of IIB string 
theory, correspond to such short representations. 

The AdS/CFT correspondence of supergravity with large Af gauge 
theories then predicts that supergravity correlators in these channels 
would exhibit "canonical dimensions", then implying a new kind of 
"non-renormalization theorems" for TV = 4 super Yang-Mills theory. 
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A      Appendix 

A.l    Harmonic variables 

We introduce harmonic variables on the coset SU(N)/U(1)N~1 in the 
form of SU(N) matrices uf or their complex conjugates u}. Here i 

is an index of the fundamental representation of SU(N) whereas I = 
1,2,... , N is an index denoting the set of N — 1 U(l) charges. The 
choice of the charges for N = 2,3,4 is as follows: 

Ar = 2: «J = uW , «? = uS"1* ; 

N = 3 : u] = u^ , u* = uj-1'1* , uf = uf'^ ; (A.l) 

N = 4 : u] = nf'0'1) , «? = t^ , uf = v?^ , uj = ^'^ ; 

the conjugates have the opposite charges, e.g., in N = 2 u\ = -u^"1), 
t4 — u1^.  The fact that the ^?s form an SU(N) matrix implies the 
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following constraints: 

tW = Si , (A.2) 
u e SU(N) : ulu) = 5* , (A.3) 

^••iw<---< = l- (A.4) 

Exceptionally, in the case N = 2 one can raise and lower the indices of 
the harmonics with the help of the Levi-Chivita symbol 

£ik£    — 0% ?     ^    — —^12 — 1 . 

This property allows us to identify the two sets of harmonics ul and 
i . 
r ul- 

u] = ^^2 = ^22 = Wl , U,2 = -SijU{ = -WH = ^ 

Note that in ref. [19], where the N = 2 harmonic variables have been 
introduced for the first time, the notation uf was used. Here we prefer 
to have an uniform notation valid for any N. 

The harmonic functions are supposed to transform homogeneously 
under U(l)N~l, i.e., they carry definite U(l) charges. This means 
that the dependence on the matrix variables u is considered modulo 
U(l)N~l transformations, which provides an SU(N) covariant way to 
parametrize the coset SU(N)/U(l)N~l. These functions are given by 
their infinite harmonic expansions on the coset. For instance, the func- 
tion fl(u) will have the following expansion in N = 2: 

f1(u) = fiul + f^uyjul + --- (A.5) 

going over the totally symmetrized multispinors (irreps) of SU(2). In 
N = 3 this expansion is considerably richer, 

Z1 (ti) = /X1 + /f!y uju* + ^ttftiju* + h{ij)4ui + •■•       (A.6) 

and goes over all possible irreps of SU(3) such that after projection 
with u's the total charge will be that of f1. 

The harmonic coset SU^/Uil)"-1 has N(N - l)/2 complex di- 
mensions. Correspondingly, there are as many covariant derivatives on 
it. In our SU(N) covariant description of the coset these derivatives 
are made out of the operators 

duf   Ujdv}1 
«i - <^1 - fe (A.7) 
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which respect the defining constraints (A.2), (A.3). The third con- 
straint (A.4) implies that the charge-like operators dj are not indepen- 
dent, 

f>/ = 0. (A.8) 
7=1 

These derivatives act on the harmonics as follows: 

tfjuf = 8«ul ,       dfrx = -SWJ . (A.9) 

So, the N — 1 U(l) charges are counted by the derivatives 

N = 2 :      H = d\-dl- 

N = 3 

N = 4 

H = d\-dl,    H' = d$- di ; (A.10) 
H = dl-dl,    H' = dl-di,    H" = dl + d2

2-dl-di. 

The remaining N(N — l)/2 derivatives dj, I < J (or their conjugates 
dj,   I    >    J)   are   the   true   harmonic   derivatives   on   the   coset 
SU{N)/U{l)N-\ 

It is important to realize that the set of TV2 — 1 derivatives dj (taking 
into account the linear dependence (A.8)) form the algebra of SU{N): 

[dLdft^SKdl-Sld? . (A.11) 

The Cartan decomposition of this algebra L+ + L0 + L~ is given by the 
sets 

L+ = {a;, KJ},  L0 = ja/, 2a/ = ol,   L- = {a/, I>J}. 

(A.12) 

It becomes clear that imposing the harmonic conditions 

d}fKl-~K*(u) = 0,    I < J (A.13) 

on a harmonic function with a given set of charges Ki... Kq defines 
a highest weight of an SU(N) irrep. In other words, the harmonic 
expansion of such a function contains only one irrep which is determined 
by the combination of charges Ki... Kq. For instance, in N = 2 we 

have (see (A.5)) 

^1/1(ti) = 0 =* /1(ti) = /iuJ> (A.14) 
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and, similarly, in N = 3 (see (A.6)) 

dlf'iu) = dlfl(u) = dlJ\u) = 0 =» f\u) = fu] . (A.15) 

Note that not all of the conditions (A.15) are independent since d\ = 
[^2 5^1]- Written down in a complex parametrization of the coset, con- 
ditions (A. 13) take the form of harmonic (H-)analyticity conditions 
on the function f{u). It is important to realize that for certain com- 
binations of charges the condition (A. 13) may not have a non-trivial 
solution. For example, the function f2{u) cannot be H-analytic since 

32
1/2(w) = /^=0 =►/* = (). 

A.2    Grassmann analyticity 

The introduction of harmonic coordinates allows one to define various 
subspaces of the full iV-extended superspace involving only a subset of 
the Grassmann coordinates without breaking SU(N). Indeed, we can 
rewrite the supersymmetry transformations in terms of the harmonic- 
projected Grassmann variables as follows: 

60° = eX , (A. 16) 

where OJ — Ofu), 9 = ufO \ Now, we can shift xaP in a variety of 
ways such that the transformation of the new variable does not involve 
some of the projections of 6 or 9. Thus we obtain subspaces of the full 
superspace closed under supersymmetry. Such superspaces are called 
Grassmann (G-)analytic. Here are some examples: 

iV = 3 

N = 4: 

xf = x°0 + i(9«92(5 - e*0ip), 9%, 0ld; (A.17) 

xf = x"* +i{e$tfP + 0gtP -9(*9IP), 9%, &*, t"; 

xf = x** + i{9%t" + &$* - 9(?91P - 9%92P), 

na    na    77
1Q:

    Z2(i 

In these examples the G-analytic superspace has the minimal odd di- 
mension possible, i.e., half of the total number 4iV. In this sense the 
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G-analytic superspaces are analogs of chiral superspace, which also in- 
volves the left- or right-handed half of the odd variables. However, an 
important difference is that in the cases N > 2 one can also have G- 
analytic superspaces with intermediate odd dimensions, i.e., 8 and 10 
in N = 3 and 10, 12 and 14 in N — 4. The reason is that the harmonics 
on the coset SU(N)/U(1)N~1 allow one to break the spinor variables up 
into JV independent projections, whereas the chiral projection always 
picks a spinor in the fundamental representation of SU(N). 

An equivalent definition of G-analyticity is to consider superfields 
satisfying constraints involving the spinor derivatives D^ and D^. 

These derivatives commute with supersymmetry and satisfy the fol- 
lowing algebra 

{Dk
a,D

lp} = 0, 

{Dk&,Dlp} = 0, (A.18) 

{Dk
a,Dl0} = i6?da$. 

which resembles the supersymmetry algebra. Now, projecting them 
with harmonics, we can impose a number of G-analyticity conditions 
on the superfields $(rr, 0,9). For example, the conditions corresponding 
to the subspaces (A. 17) are 

N = 2 :        D1^^ D2a<f> = 0 ; 

^ = ^,^ = 0; (A.19) 

D1/* = DSM<f> = 0 . 

It is clear that this can be done with any subset of D's and D's as long 
as they anticommute. 

The role of the shifts of x in (A. 17) is to define a G-analytic basis 
in which the derivatives in (A.19) become torsion-free, e.g., 

D^ = d], ,    D2* = d2a ,    etc. 

Of course, the spinor derivatives which do not belong to the analytic 
set still involve space-time derivatives in this basis. More important, 
the harmonic derivatives acquire torsion terms in the G-analytic basis. 
Thus, in the bases (A. 17) one has 

Dl = dl - iepipdap - e«dl
a +1%*,   etc. (A.20) 

This implies that the condition of H-analyticity on harmonic superfields 
§{XA,0I6,U) involves space-time derivatives of the components. 

N = A 
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