
Shorter Paths to Graph Algorithms

Bernhard Möller and Martin Russling

Institut für Mathematik, Universität Augsburg,
Universitätsstr. 2, W-8900 Augsburg, Germany,

e-mail: {moeller,russling}@uni-augsburg.de

Abstract. We illustrate the use of formal languages and relations in
compact formal derivations of some graph algorithms.

1 Introduction

The transformational or calculational approach to program development has by
now a long tradition (see Burstall, Darlington 1977, Bauer et al. 1985, Bauer
et al. 1989, Meertens 1986, Bird 1989). In it, one starts from a (possibly non-
executable) specification and transforms it into a (hopefully efficient) program
using semantics-preserving rules. Many derivations, however, suffer from the use
of lengthy expressions involving formulae from predicate calculus. However, in
particular in the case of graph algorithms the calculus of formal languages and
relations allows considerable compactification. We use a simplified and straight-
ened version of the framework introduced in Möller 1991 to illustrate this with
derivations of algorithms for computing the length of a shortest path between
two graph vertices and for cycle detection.

2 The Framework

In connection with graph algorithms we use formal languages to describe sets of
paths. The letters of the underlying alphabet are interpreted as graph nodes. As
a special case of formal languages we consider relations of arities ≤ 2. Relations
of arity 1 represent node sets, whereas binary relations represent the edge sets.
The only two nullary relations (the singleton relation consisting just of the empty
word and the empty relation) play the role of the Boolean values. This also allows
easy definitions of assertions, conditional, and guards.

Essential operations on languages are (besides union, intersection, and differ-
ence) concatenation, composition, and join. As special cases of composition we
obtain image and inverse image as well as tests for intersection, emptiness, and
membership. The join corresponds to path concatenation on directed graphs;
special cases yield restriction.

Proofs are either straightforward or given by Möller 1991 and therefore omit-
ted.

2.1 Operations on Sets

Given a set A we denote by P(A) its powerset. The cardinality of A is, as usual,
denoted by |A|. To save braces, we identify a singleton set with its only element.

Frequently, we will extend set-valued operations

f : A1 × · · · ×An → P(An+1) (n > 0)

to the powersets P(Ai) of the Ai. In these cases we use the same symbol f also
for the extended function

f : P(A1)× · · · × P(An) → P(An+1)

defined by

f(U1, . . . , Un)
def
=

⋃
x1∈U1

· · ·
⋃

xn∈Un

f(x1, . . . , xn) (1)

for Ui ⊆ Ai. By this definition, the extended operation distributes through
union in all arguments:

f(U1, . . . Ui−1,
⋃
j∈J

Uij , Ui+1, . . . , Un) =
⋃
j∈J

f(U1, . . . Ui−1, Uij , Ui+1, . . . , Un) .

(2)
By taking J = ∅ we obtain strictness of the extended operation w.r.t. ∅:

f(U1, . . . Ui−1, ∅, Ui+1, . . . , Un) = ∅ . (3)

By taking J = {1, 2} and using the equivalence

U ⊆ V ⇔ U ∪ V = V

we also obtain monotonicity w.r.t. ⊆ in all arguments:

Ui1 ⊆ Ui2 ⇒
f(U1, . . . Ui−1, Ui1, Ui+1, . . . , Un) ⊆ f(U1, . . . Ui−1, Ui2, Ui+1, . . . , Un) .

(4)
Moreover, bilinear equational laws are preserved (see e.g. Lescanne 1982).

2.2 Languages and Relations

Consider an alphabet A. We denote the empty word over A by ε and concate-
nation by •. It is associative, with ε as the neutral element:

u • (v • w) = (u • v) • w , (5)

ε • u = u = u • ε . (6)

As usual, a singleton word is not distinguished from the only letter it contains.
The length of a word u, i.e., the number of letters from A in u, is denoted by
||u||.

2

A (formal) language is a set of words over A. Concatenation is extended
pointwise to languages. Since the above laws are bilinear, they carry over to
languages U, V,W over A:

U • (V •W) = (U • V) •W , (7)

ε • U = U = U • ε . (8)

The diagonal V ∆ over a subset V ⊆ A is defined by

V ∆ def
=

⋃
x∈V

x • x . (9)

A relation of arity n is a language R such that all words in R have length
n. Note that ∅ is a relation of any arity. For R 6= ∅ we denote the arity of R by
arR. There are only two 0-ary relations, viz. ∅ and ε.

2.3 Composition

For languages V and W over alphabet A we define their composition V ;W by

V ; W
def
=

⋃
x∈A

⋃
v•x∈V

⋃
x•w∈W

v • w . (10)

If V and W are binary relations this coincides with the usual definition of rela-
tional composition (see e.g. Tarski 1941, Schmidt, Ströhlein 1989).

Composition is associative:

U ; (V ; W) = (U ; V) ; W ⇐ ∀ y ∈ V : ||y|| ≥ 2 . (11)

Composition associates with concatenation:

U • (V ; W) = (U • V) ; W ⇐ ∀ y ∈ V : ||y|| ≥ 1 , (12)

U ; (V •W) = (U ; V) •W ⇐ ∀ y ∈ V : ||y|| ≥ 1 . (13)

We shall omit parentheses whenever one of these laws applies. Moreover, • and
; bind stronger than ∪ and ∩.

Interesting special cases of relational composition arise when one of the
operands has arity 1. Suppose 1 = arR ≤ arS. Then

R ; S =
⋃
x∈R

⋃
x•v∈S

v .

In other words, R ; S is the image of R under S. Likewise, if 1 = ar T ≤ arS,
then S ; T is the inverse image of T under S. For these reasons we may define
domain and codomain of a binary relation R by

domR
def
= R ; A , (14)

codR
def
= A ; R . (15)

3

Suppose now arR = 1 = arS and ||x|| = 1 = ||y||. Then

R ; S =

{
ε if R ∩ S 6= ∅ ,
∅ if R ∩ S = ∅ ,

(16)

R ; R =

{
ε if R 6= ∅ ,
∅ if R = ∅ ,

(17)

x ; R = R ; x =

{
ε if x ∈ R ,
∅ if x 6∈ R ,

(18)

x ; y = y ; x =

{
ε if x = y ,
∅ if x 6= y .

(19)

Because these “tests” will be used frequently, we introduce more readable nota-
tions for them by setting

R 6= ∅ = R ; R , (20)

x ∈ R = x ; R , (21)

(x = y) = x ; y , (22)

R ⊆ S = (R ∪ S = S) . (23)

For binary R and x ∈ domR, y ∈ codR we have

x ; R ; y =

{
ε if x • y ∈ R ,
∅ otherwise .

(24)

Finally, we note that diagonals are neutral w.r.t. composition. Assume P ⊇
domV and Q ⊇ codV . Then

P∆ ; V = V , (25)

V ; Q∆ = V . (26)

2.4 Assertions

As we have just seen, the nullary relations ε and ∅ characterize the outcomes
of certain test operations. More generally, they can be used instead of Boolean
values; therefore we call expressions yielding nullary relations assertions. Note
that in this view “false” and “undefined” both are represented by ∅. Negation is
defined by

∅ def
= ε , (27)

ε
def
= ∅ . (28)

Note that this operation is not monotonic.

4

For assertions B,C we have e.g. the properties

B • C = B ∩ C , (29)

B •B = B , (30)

B •B = ∅ , (31)

B ∪B = ε , (32)

B • C = B ∪ C . (33)

Conjunction and disjunction of assertions are represented by their intersection
and union. To improve readability, we write B ∧ C for B∩C = B •C and B ∨ C
for B ∪ C.

For assertion B and arbitrary language R we have

B •R = R •B =

{
R if B = ε ,
∅ if B = ∅ .

(34)

Hence B •R (and R •B) behaves like the expression

B � R = if B thenR else error fi

in Möller 1989. We will use this construct for propagating assertions through
recursions.

2.5 Conditional

Using assertions we can also define a conditional by

if B thenR elseS fi
def
= B •R ∪ B • S , (35)

for assertion B and languages R,S. Note that this operation is not monotonic
in B.

2.6 Join

A useful derived operation is provided by a special case of the join operation as
used in database theory (see e.g. Date 1988). Given two languages R,S, their
join R 1 S consists of all words that arise from “glueing” together words from R
and from S along a common intermediate letter. By our previous considerations,
the beginnings of words ending with x ∈ A are obtained as R ; x whereas the
ends of words which start with x are obtained as x ; S. Hence we define

R 1 S
def
=

⋃
x∈A

R ; x • x • x ; S . (36)

Again, 1 binds stronger than ∪ and ∩.

5

Join and composition are closely related. To explain this we consider two
binary relations R,S ⊆ A •A:

R ; S =
⋃
z∈A
{x • y : x • z ∈ R ∧ z • y ∈ S} ,

R 1 S =
⋃
z∈A
{x • z • y : x • z ∈ R ∧ z • y ∈ S} .

Thus, whereas R ; S just states whether there is a path from x to y via some
point z ∈ Q, the relation R 1 S consists of exactly those paths x • z • y. In
particular, the relations

R ,
R 1 R ,
R 1 (R 1 R) ,

...

consist of the paths of edge numbers 1, 2, 3, . . . in the directed graph associated
with R.

Other interesting special cases arise when the join is taken w.r.t. the minimum
of the arities involved. Suppose 1 = arR ≤ arS. Then

R 1 S

=
⋃
x∈A

R ; x • x • x ; S

=
⋃
x∈R

x • x ; S .

In other words, R 1 S is the restriction of S to R. Likewise, for T with 1 =
ar T ≤ arS, the language S 1 T is the corestriction of S to T .

If even arR = arS = 1 we have

R 1 S = R ∩ S . (37)

In particular, if arR = 1 and ||x|| = 1 = ||y||,

R 1 R = R , (38)

x 1 R = R 1 x =

{
x if x ∈ R ,
∅ if x 6∈ R ,

(39)

x 1 y = y 1 x =

{
x if x = y ,
∅ if x 6= y .

(40)

For binary R, x ∈ domR, and y ∈ codR this implies

x 1 R 1 y =

{
x • y if x • y ∈ R ,
∅ otherwise .

(41)

6

In special cases the join can be expressed by a composition: Assume arP =
1 = arQ. Then

P 1 R = P∆ ; R , (42)

R 1 Q = R ; Q∆ . (43)

By the associativity of composition (11) also join and composition associate:

(R 1 S) ; T = R 1 (S ; T) , (44)

R ; (S 1 T) = (R ; S) 1 T , (45)

provided arS ≥ 2.
Moreover, also joins associate:

R 1 (S 1 T) = (R 1 S) 1 T . (46)

2.7 Closures

Consider a binary relation R ⊆ A•A. We define the (reflexive and transitive)
closure R∗ of R by

R∗
def
=

⋃
i∈IN

Ri , (47)

where, as usual,

R0 def
= A∆ , (48)

Ri+1 def
= R ; Ri . (49)

It is well-known that R∗ is the least fixpoint of the recursion equations

R∗ = A∆ ∪R ; R∗ = A∆ ∪R∗ ; R . (50)

Let G be the directed graph associated with R, i.e., the graph with vertex
set A and arcs between the vertices corresponding to the pairs in R. We have

x ; Ri ; y =

{
ε if there is a path with i edges from x to y in G ,
∅ otherwise .

(51)

Likewise,

x ; R∗ ; y =

{
ε if there is a path from x to y in G ,
∅ otherwise .

(52)

For s ⊆ A, the set s ; R∗ gives all points in A reachable from points in s via
paths in G, whereas R∗ ; s gives all points in A from which some point in s can
be reached. Finally,

s ; R∗ ; t =

{
ε if s and t are connected by some path in G ,
∅ otherwise .

(53)

7

As usual, we set

R+ def
= R ; R∗ = R∗ ; R . (54)

Analogously, we define the path closure R⇒ of R by

R⇒
def
=

⋃
i∈IN

iR , (55)

where now

0R
def
= A , (56)

i+1R
def
= R 1 iR . (57)

It is the least fixpoint of the recursion equations

R⇒ = A ∪R 1 R⇒ = A ∪R⇒ 1 R . (58)

The path closure consists of all finite paths in G. Hence

x 1 R⇒ 1 y (59)

is the language of all paths between x and y in G. Analogously to R+ we define
the proper path closure by

R→
def
= R 1 R⇒ = R⇒ 1 R = R⇒\A . (60)

3 Graph Algorithms

We now want to apply the framework in case studies of some simple graph
algorithms.

3.1 Length of a Shortest Connecting Path

Specification and First Recursive Solution. We consider a finite set A of
vertices and a binary relation R ⊆ A • A. The problem is to find the length of
a shortest path from a vertex x to a vertex y. Therefore we define

shortestpath(x, y)
def
= min(edgelengths(x 1 R⇒ 1 y)) , (61)

where, for a set S of (non-empty) paths,

edgelengths(S)
def
=
⋃
s∈S

(||s|| − 1) (62)

calculates the set of path lengths, i.e., the number of edges in each path, and,
for a set N of natural numbers,

min(N)
def
=

{
k if k ∈ N ∧ N ⊆ k; ≤ ,
∅ if N = ∅ .

(63)

8

It is obvious that edgelengths is strict and distributes through union. Moreover,
for unary S,

edgelengths(S 1 T) = 1 + edgelengths(S ; T) , (64)

and

min(M ∪N) = min(min(M) ∪min(N)) , (65)

min(0 ∪M) = 0 . (66)

For deriving a recursive version of shortestpath we generalize this to a function
sp which calculates the length of a shortest path from a set S of vertices to a
vertex y:

sp(S, y)
def
= min(edgelengths(S 1 R⇒ 1 y)) . (67)

The embedding
shortestpath(x, y) = sp(x, y) (68)

is straightforward.

We calculate

sp(S, y)

= {[definition]}

min(edgelengths(S 1 R⇒ 1 y))

= {[by (58)]}

min(edgelengths(S 1 (A ∪ R 1 R⇒) 1 y))

= {[distributivity]}

min(edgelengths(S 1 A 1 y) ∪ edgelengths(S 1 R 1 R⇒ 1 y))

= {[by (37)]}

min(edgelengths(S 1 y) ∪ edgelengths(S 1 R 1 R⇒ 1 y)) .

By (39) the subexpression S 1 y can be simplified according to whether
y ∈ S or not.

Case 1: y ∈ S.

min(edgelengths(S 1 y) ∪ edgelengths(S 1 R 1 R⇒ 1 y))

= {[by (39), since y ∈ S]}

min(edgelengths(y) ∪ edgelengths(S 1 R 1 R⇒ 1 y))

= {[definition of edgelengths]}

min(0 ∪ edgelengths(S 1 R 1 R⇒ 1 y))

= {[by (66)]}

0 .

9

Case 2: y 6∈ S.

min(edgelengths(S 1 y) ∪ edgelengths(S 1 R 1 R⇒ 1 y))

= {[by (39), since y 6∈ S]}

min(edgelengths(∅) ∪ edgelengths(S 1 R 1 R⇒ 1 y))

= {[strictness, neutrality]}

min(edgelengths(S 1 R 1 R⇒ 1 y))

= {[by (64)]}

min(1 + edgelengths(S ; R 1 R⇒ 1 y))

= {[distributivity]}

1 + min(edgelengths(S ; R 1 R⇒ 1 y))

= {[definition]}

1 + sp(S ; R , y) .

Altogether we have derived the recursion equation

sp(S, y) = if y ∈ S then 0 else 1 + sp(S ; R , y) fi . (69)

Note, however, that termination cannot be guaranteed for this recursion. To
make progress in that direction we show some additional properties of sp.

Lemma 1. sp(S ∪ T , y) = min(sp(S, y) ∪ sp(T, y)).

Proof. sp(S ∪ T , y)

= {[definition]}

min(edgelengths((S ∪ T) 1 R⇒ 1 y))

= {[distributivity]}

min(edgelengths(S 1 R⇒ 1 y) ∪ edgelengths(T 1 R⇒ 1 y))

= {[by (65)]}

min(min(edgelengths(S 1 R⇒ 1 y)) ∪ min(edgelengths(T 1 R⇒ 1 y)))

= {[definition]}

min(sp(S, y) ∪ sp(T, y)) .
ut

We now consider again the case y 6∈ S. From (69) we obtain

sp(S ; R , y) ≤ sp(S, y) , (70)

and hence

10

sp(S, y)

= {[by y 6∈ S and (69)]}

1 + sp(S ; R , y)

= {[by (70)]}

1 + min(sp(S, y) ∪ sp(S ; R , y))

= {[by Lemma 1]}

1 + sp(S ∪ S ; R , y) ,

so that a second recursion equation for sp is

sp(S, y) = if y ∈ S then 0 else 1 + sp(S ∪ S ; R , y) fi . (71)

Now, although the first parameter is non-decreasing in each recursive call, still
nontermination is guaranteed if there is no path from S to y. However, in that
case by finiteness of A the recursive calls of sp eventually become stationary, i.e.,
eventually S = S ∪ S ; R holds, which is equivalent to S ; R ⊆ S. We consider
that case in the following lemma:

Lemma 2. If y 6∈ S and S ; R ⊆ S then S 1 R⇒ 1 y = ∅, i.e., there is no
path from set S to vertex y, and therefore sp(S, y) = ∅.

Proof. Using the least fixpoint property of R⇒ we use computational induction
(see e.g. Manna 1974) to show S 1 R⇒ 1 y ⊆ ∅. We use the predicate

P [X]
def⇔ S 1 X 1 y ⊆ ∅ .

The induction base P [∅] is trivial by strictness. For the induction step we have
to show P [X] ⇒ P [A ∪R 1 X]. Assume P [X]. We calculate

S 1 (A ∪R 1 X) 1 y

= {[distributivity]}

S 1 A 1 y ∪ S 1 R 1 X 1 y

= {[by (37)]}

S 1 y ∪ S 1 R 1 X 1 y

= {[by (39), since y 6∈ S, and neutrality]}

S 1 R 1 X 1 y

= {[by (42)]}

S∆ ; R 1 X 1 y

⊆ {[by S∆ ⊆ S • S and monotonicity]}

S • S ; R 1 X 1 y

11

⊆ {[by S ; R ⊆ S and monotonicity]}

S • S 1 X 1 y

⊆ {[by P [X] and monotonicity]}

S • ∅

= {[strictness]}

∅ .

Now the claim is immediate from the definition of sp. ut

Altogether we have:

shortestpath(x, y) = sp(x, y) ,

sp(S, y) = if y ∈ S then 0
else if S ; R ⊆ S then ∅

else 1 + sp(S ∪ S ; R , y) fi fi .

(72)
Now termination is guaranteed, since S increases for each recursive call and is
bounded by the finite set A of all vertices.

Improving Efficiency. One may argue that in the above version accumulating
vertices in the parameter S is not efficient because it makes calculating S ; R
more expensive. So, in an improved version of the algorithm, we shall keep as
few vertices as possible in the parameter S and the set of vertices already visited
in an additional parameter T , tied to S by an assertion. Let

sp2 (S, T, y)
def
= (S ∩ T = ∅ ∧ y 6∈ T) • sp(S ∪ T , y) , (73)

with the embedding

shortestpath(x, y) = sp2 (x, ∅, y) . (74)

Now assume S ∩ T = ∅ ∧ y 6∈ T . Again we distinguish two cases:

Case 1: y ∈ S.

sp2 (S, T, y)

= {[definition]}

sp(S ∪ T , y)

= {[by y ∈ S ⊆ S ∪ T and (72)]}

0 .

12

Case 2: y 6∈ S.

sp2 (S, T, y)

= {[definition]}

sp(S ∪ T , y)

= {[by y 6∈ S ∪ T and (72)]}

if (S ∪ T) ; R ⊆ S ∪ T then ∅
else 1 + sp(S ∪ T ∪ (S ∪ T) ; R , y) fi

= {[set theory]}

if (S ∪ T) ; R ⊆ S ∪ T then ∅
else 1 + sp(((S ∪ T) ; R)\(S ∪ T) ∪ (S ∪ T) , y) fi

= {[definition and y 6∈ S ∪ T]}

if (S ∪ T) ; R ⊆ S ∪ T then ∅
else 1 + sp2 (((S ∪ T) ; R)\(S ∪ T) , S ∪ T , y) fi .

Altogether,

shortestpath(x, y) = sp2 (x, ∅, y) ,

sp2 (S, T, y) = (S ∩ T = ∅ ∧ y 6∈ T) •
if y ∈ S
then 0
else if (S ∪ T) ; R ⊆ S ∪ T

then ∅
else 1 + sp2 (((S ∪ T) ; R)\(S ∪ T) , S ∪ T , y) fi fi .

This version still is very inefficient. However, a simple analysis shows that the
assertion of sp2 can be strengthened by the conjunct T ; R ⊆ S ∪ T . Thus, one
can simplify the program to

shortestpath(x, y) = sp3 (x, ∅, y) ,

sp3 (S, T, y) = (S ∩ T = ∅ ∧ y 6∈ T ∧ T ; R ⊆ S ∪ T) •
if y ∈ S
then 0
else if S ; R ⊆ S ∪ T

then ∅
else 1 + sp3 ((S ; R)\(S ∪ T) , S ∪ T , y) fi fi .

The formal derivation steps for this are similar to the ones above and hence we
omit them.

Termination is guaranteed, since T increases for each recursive call and is
bounded by the finite set A of all vertices.

13

Note that a tail-recursive variant can easily be derived from sp3 by introduc-
ing an accumulator. A corresponding algorithm in iterative form can be found
in the literature, e.g. in Gondran, Minoux 1979 (but there unfortunately not
faultless).

Further, our algorithm also solves the problem whether a vertex y is reachable
from a vertex x, since

reachable(x, y) = (shortestpath(x, y) 6= ∅) . (75)

3.2 Cycle Detection

Problem Statement and First Solution. Consider again a finite set A of
vertices and a binary relation R ⊆ A •A. The problem consists in determining
whether R contains a cyclic path, i.e., a path in which a node occurs twice.

Lemma 3. The following statements are equivalent:
(1) R contains a cyclic path.
(2) R+ ∩A∆ 6= ∅.
(3) R|A| 6= ∅.
(4) R|A| ; A 6= ∅.
(5) A ; R|A| 6= ∅.

Proof. (1) ⇒ (2) Let p = u • x • v • x • w with x ∈ A and u, v, w ∈ A(∗) be a
cyclic path. Then x • x ∈ R+ and the claim follows.

(2) ⇒ (3) Assume x • x ∈ R+ and let n be the smallest number such that

there are x0, . . . , xn ∈ A with

n−1⋃
i=0

xi • xi+1 ⊆ R and x0 = x = xn. Then

|A|
•
i=0

ximodn is a path as well and hence the claim holds.

(3)⇒ (4) Trivial, since R|A| ; A is the domain of R|A|.
(4)⇒ (5) Trivial, since a relation with nonempty domain also has a nonempty

codomain.
(5)⇒ (1) We have y ∈ A ; R|A| iff there is an x ∈ A and a path from x to y

with |A|+ 1 nodes. By the pigeonhole principle this path must contain at least
one node twice and hence is cyclic. ut

By (5) we may specify our problem as

hascycle
def
= (A ; R|A| 6= ∅) .

To compute A ;R|A| we define Ai
def
= A ;Ri and use the properties of the powers

of R:
A0 = A ; R0 = A ; A∆ = A ,
Ai+1 = A ; Ri+1 = A ; (Ri ; R) = (A ; Ri) ; R = Ai ; R .

The associated function
f : X 7→ X ; R

14

is monotonic. We now prove a general theorem about monotonic functions on
noetherian partial orders. A partial order (M,≤) is noetherian if every descend-
ing sequence in it becomes stationary or, equivalently, if each of its nonempty
subsets has a minimal element.

Theorem 4. Let (M,≤) be a noetherian partial order and let f : M → M be
monotonic.
(1) If for x ∈ M we have f(x) ≤ x, then x∞

def
= glb {f i(x) : i ∈ IN} exists and

is a fixpoint of f .
(2) If for x, y ∈M we have f(x) ≤ x and x∞ ≤ y ≤ x, then also y∞ exists and
x∞ = y∞.
(3) If M has a greatest element > then >∞ is the greatest fixpoint of f .

Proof. (1) By assumption we have f1(x) = f(x) ≤ f0(x) = x. Now a straight-
forward induction using monotonicity shows f i+1(x) ≤ f i(x) for all i so that the
f i(x) form a descending chain. Since M is noetherian, the chain of the f i(x) has
to become stationary, i.e., there is some k such that fk(x) = fk+1(x). But then

f j(x) = fk(x) for all j ≥ k and hence fk(x) = glb X, where X
def
= {f i(x) : i ∈

IN}, so that x∞ = fk(x). But then x∞ = fk(x) = fk+1(x) = f(fk(x)) = f(x∞),
i.e., x∞ is a fixpoint of f .
(2) A straightforward induction using monotonicity of f shows that x∞ ≤
f i(y) ≤ f i(x) for all i ∈ IN. Hence x∞ is a lower bound for Y

def
= {f i(y) : i ∈ IN}.

Let z be another lower bound for Y . Then z is also a lower bound for X defined
in (1) and hence z ≤ x∞. Hence x∞ = glb Y = y∞.
(3) Trivially, f(>) ≤ >, and hence >∞ exists by (1). Let x be a fixpoint of f .
A straightforward induction using monotonicity of f shows that x ≤ f i(>)
for all i ∈ IN, so that x is a lower bound for {f i(>) : i ∈ IN}. But then
x ≤ >∞ = glb {f i(>) : i ∈ IN}. ut

A similar theorem has been stated by Cai, Paige 1989.

Corollary 5. If >∞ ≤ x for some x ∈M then >∞ = x∞.

Proof. By (2) of the above theorem. ut

To actually calculate x∞ we define a function inf by

inf (y)
def
= (x∞ ≤ y ≤ x) • x∞

which determines x∞ using an upper bound y. We have the embedding x∞ =
inf (x). Now from the proof of the above theorem the following recursion is
immediate:

inf (y) = (x∞ ≤ y ≤ x) • if y = f(y) then y else inf (f(y)) fi .

This recursion terminates for every y satisfying f(y) ≤ y, since monotonicity
then also shows f(f(y)) ≤ f(y), so that in each recursive call the parameter

15

decreases properly. In particular, the call inf (x) terminates. This algorithm is
an abstraction of many iteration methods on finite sets.

We now return to the special case of cycle detection. By finiteness of A the
partial order (P(A), ⊆) is noetherian with greatest element A. Therefore A∞
exists. Moreover, we have

Corollary 6. A|A| = A∞.

Proof. The length of any properly descending chain in P(A) is at most k + 1.
Hence we have Ak+1 = Ak and thus Ak = A∞. ut

So we have reduced our task to checking whether A∞ 6= ∅, i.e., whether
inf (A) 6= ∅. For our special case the recursion for inf reads (omitting the trivial
part W ⊆ A)

inf (W) = (A∞ ⊆ W) • if W = W ; R thenW else inf (W ; R) fi .

We want to improve this by avoiding the computation of W ;R. By the above
considerations we may strengthen the assertion of inf by adding the conjunct
W ; R ⊆ W . We define

src(W)
def
= W\(W ; R) .

This is the set of sources of W , i.e., the set of nodes in W which do not have a
predecessor in W .

Now, assuming W ; R ⊆ W , we have W = W ; R ⇔ src(W) = ∅ and
W ; R = W\src(W) so that we can rewrite inf into

inf (W) = (A∞ ⊆ W ∧ W ; R ⊆ W) •
if src(W) = ∅ thenW else inf (W\src(W)) fi .

This is an improvement in that src(W) usually will be small compared to W ;
moreover, the computation of src(W) can be facilitated by a suitable represen-
tation of R.

Plugging this into our original problem of cycle recognition we obtain

hascycle = hcy(A) , (76)

where

hcy(W) = (A∞ ⊆ W ∧ W ; R ⊆ W) •
if src(W) = ∅ thenW 6= ∅ else hcy(W\src(W)) fi ,

(77)

which is one of the classical algorithms which works by successive removal of
sources (see e.g. Berghammer 1986). Note that Lemma 3(4) suggests a dual
specification to the one we have used; replaying our development for it would
lead to an algorithm that works by successive removal of sinks.

16

Improving Efficiency. We want to improve the computation of the sets src(W).
We observe that

x ∈ src(W)
= x ∈W\(W ; R)
= x ∈W ∧ x 6∈ W ; R
= x ∈W ∧ R ; x ∩ W = ∅
= x ∈W ∧ |R ; x ∩ W | = 0 .

So we define for W ⊆ A the relation in(W) by

x ; in(W)
def
= |R ; x ∩W | . (78)

Hence x ; in(W) gives the indegree of x w.r.t. W and

src(W) = W ∩ in(W); 0 . (79)

In a final implementation, in(W) will, of course, be realized by an array. We aim
at an incremental updating of in in the course of our algorithm. We calculate

x ; in(W\src(W))

= {[definition]}

|R ; x ∩ (W\src(W))|

= {[set theory]}

|(R ; x ∩ W)\src(W)|

= {[|A\B| = |A| − |A ∩ B|]}

|(R ; x ∩ W)| − |R ; x ∩ W ∩ src(W)|

= {[src(W) ⊆ W]}

|(R ; x ∩ W)| − |R ; x ∩ src(W)|

= {[definition]}

x ; in(W)− x ; in(src(W)) .

For binary relations f, g with the same domain and subsets of IN as codomains
and arithmetic operator o we define f o g by

x ; (f o g)
def
= (x ; f) o (x ; g) . (80)

Then
in(W\src(W)) = in(W)− in(src(W)) . (81)

For the computation of in we observe that

in(∅) = 0 , (82)

where
x ; 0

def
= 0 . (83)

If S 6= ∅ and q ∈ S is arbitrary we have

17

x ; in(S)
= x ; in(q ∪ S\q)
= |R ; x ∩ (q ∪ S\q)|
= |(R ; x ∩ q) ∪ (R ; x ∩ S\q)|
= |R ; x ∩ q|+ |R ; x ∩ S\q|
= x ; in(q) + x ; in(S\q) ,

where
x ; in(q) = if q ; R ; x then 1 else 0 fi . (84)

Then
in(S) = in(q) + in(S\q) . (85)

We forego a transformation of in into tail recursive form, since this is completely
standard using associativity of +.

Now we can administer the source sets more efficiently: We introduce addi-
tional parameters for carrying along src(W) and in(W) and adjust these param-
eters by the technique of finite differencing (see e.g. Partsch 1990). We set, for
S ⊆ W ⊆ A and relation f ,

hc(W,S, f)
def
= (S = src(W) ∧ f = in(W)) • hcy(W) , (86)

with the embedding

hcy(W) = hc(W, src(W), in(W)) . (87)

Now

hc(W,S, f)

= {[definitions]}

if src(W) = ∅ thenW 6= ∅ else hcy(W\src(W))

= {[assertion]}

if S = ∅ thenW 6= ∅ else hcy(W\S)

= {[embedding]}

if S = ∅ thenW 6= ∅ else hc(W\S , src(W\S) , in(W\S))

= {[introducing auxiliaries]}

if S = ∅ thenW 6= ∅
else let T

def
= W\S

let g
def
= in(T)

in hc(T, src(T), g) fi

= {[by (81) and (79)]}

if S = ∅ thenW 6= ∅
else let T

def
= W\S

let g
def
= f − in(S)

in hc(T, T ∩ g ; 0, g) fi .

18

A final improvement would consist in merging the computation of g with that
of T ∩ g ; 0 using the tupling strategy (see e.g. Partsch 1990).

4 Conclusion

The calculus of formal languages and relations has proved to speed up deriva-
tions, in particular the way from “non-operational” specifications involving the
closures R∗ and R⇒ to first recursive solutions. But also the tuning steps in im-
proving the recursions have benefitted from the quantifier-free notation. If the
resulting derivations still appear lengthy, this is to a great deal due to the fact
that the assertions have been constructed in a stepwise fashion (for mastering
complexity) rather than in one blow. Further case studies which should demon-
strate the viability of the approach in more complicated examples are under way.
Also, we are working on the definition of a more general program development
language based on this approach. While other authors use a purely relational ap-
proach employing mostly even only binary relations, we find that relations with
their fixed arity are too unflexible and lead to a lot of unnecessary encoding and
decoding.

Acknowledgement

We are grateful to H. Partsch and to the anonymous referees for a number of
valuable remarks.

References

F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz, E.
Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T.A. Matzner, B. Möller, F. Nickl,
H. Partsch, P. Pepper, K. Samelson, M. Wirsing, H. Wössner: The Munich project
CIP. Volume I: The wide spectrum language CIP-L. Lecture Notes in Computer
Science 183. Berlin: Springer 1985

F.L. Bauer, B. Möller, H. Partsch, P. Pepper: Formal program construction by trans-
formations — Computer-aided, Intuition-guided Programming. IEEE Transactions
on Software Engineering 15, 165–180 (1989)

R. Berghammer: A transformational development of several algorithms for testing the
existence of cycles in a directed graph. Institut für Informatik der TU München,
TUM-I8615

R. Bird: Lectures on constructive functional programming. In M. Broy (ed.): Con-
structive methods in computing science. NATO ASI Series. Series F: Computer
and systems sciences 55. Berlin: Springer 1989, 151–216

R.M. Burstall, J. Darlington: A transformation system for developing recursive pro-
grams. J. ACM 24, 44–67 (1977)

J. Cai, R. Paige: Program derivation by fixed point computation. Science of Computer
Programming 11, 197–261 (1989)

C.J. Date: An introduction to database systems. Vol. I, 4th edition. Reading, Mass.:
Addison-Wesley 1988

M. Gondran, M. Minoux: Graphes et algorithmes. Paris: Eyrolles 1979

19

P. Lescanne: Modèles non déterministes de types abstraits. R.A.I.R.O. Informatique
théorique 16, 225–244 (1982)

Z. Manna: Mathematical theory of computation. New York: McGraw-Hill 1974
L.G.L.T. Meertens: Algorithmics — Towards programming as a mathematical activity.

In J. W. de Bakker et al. (eds.): Proc CWI Symposium on Mathematics and Com-
puter Science. CWI Monographs Vol 1. Amsterdam: North-Holland 1986, 289–334

B. Möller: Applicative assertions. In: J.L.A. van de Snepscheut (ed.): Mathematics of
Program Construction. Lecture Notes in Computer Science 375. Berlin: Springer
1989, 348–362

B. Möller: Relations as a program development language. In B. Möller (ed.): Construct-
ing programs from specifications. Proc. IFIP TC2/WG 2.1 Working Conference on
Constructing Programs from Specifications, Pacific Grove, CA, USA, 13–16 May
1991. Amsterdam: North-Holland 1991, 373–397

H.A. Partsch: Specification and transformation of programs — A formal approach to
software development. Berlin: Springer 1990

G. Schmidt, T. Ströhlein: Relationen und Graphen. Berlin: Springer 1989. English
version: Relations and graphs (forthcoming)

A. Tarski: On the calculus of relations. J. Symbolic Logic 6, 73–89 (1941)

20

