SHORTEST AVERAGE CONFIDENCE INTERVALS
FROM LARGE SAMPLES

By S. 8. WiLks

1. Introduction. The method of fiducial argument [1, 2] in statistics has
gained considerable prominence within the last few years as a method of inferring
the values of population parameters from samples “randomly drawn” from
populations having distribution laws of known functional forms. The method
has also been shown to be applicable [2] to the problem of inferring the values of
statistical functions in samples from samples already observed, assuming all
samples to be drawn from a population with a distribution law of a given func-
tional form. )

The main ideas of a procedure which is sufficient for carrying out fiducial
inference for certain cases of a single population parameter may be summed up
in the following steps:

(a) A sample is assumed to be ‘“‘randomly drawn’ from a population with a

distribution law f(z, 6) of known functional form.

(b) A function ¥(x,, 2z, -, Zn, 6) of the sample values z,, x5, --- , Z, and
parameter 6 is devised, which is a monotonic function of 8 for a given
sample, so that the sampling distribution G(¥)dy of (21, za, -+, Ta, bo)

= o, say, in samples from the population with 8 = 6, is independent of
6y and the z’s, except as they enter into .

(¢) For a given probability « a pair of numbers v. and ¥, is chosen so that
when 6 = 6 , the probability that ., < ¢ < ¥ais 1 — a, or more, briefly,

1) Pa <o <V¥al0=10)=1-a
which can be stated in the alternative form

(d) 6 and 8 being functions of Va , ¥a and the sample, are subject to sampling
fluctuations and it can be stated that the probability is 1 — o that they
will include the true value of 8, whatever it may be, that is, 6, between
them. The statement holds for all values which 6, may take on.

The numbers 8 and 8 are known as fiducial or confidence limits [3] of 6, and
6, 8) a confidence interval for the confidence coeficient 1 — a. We therefore
have the following rule for making inferences about the unknown number 6
once ¢ has been found: For a given sample solve the equations

‘/’(Il‘r‘_’o"'~~rny00) =¢;v \l/(xlyIZy"';xﬂyoo) =‘I/:
166

[Z8 (€
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

=

The Annals of Mathematical Statistics. RINKGIS ®

www.jstor.org



SHORTEST AVERAGE CONFIDENCE INTERVALS 167

for 6. Let 6 and 6 be the two values of 6, formally obtained. The statement
that # and 6 will include the value of 8 in the population actually sampled, if
consistently made in each of an aggregate of cases involving populations having
distributions of the same functional form f(z, 6) will be correct (theoretically)
in 100(1 — «a) per cent of the cases.

If ¥ is a function of statistics ¢; and ¢, of two samples from a population of
known functional form, which is monotonic in each ¢ for given values of the
other, then one can argue fiducially about values of one ¢ from values of the
other one.

For a finite value of n and discrete distributions f(z, 6), it is not possible to
carry through steps (b), (¢), (d) as they are now stated. However, under
certain conditions, it is possible to carry out a procedure for the discrete case
which will allow one to say

3) PO <6 <0|0=20)>21—a

¢ functions which have the property that their sampling distributions are
independent of 6 and the 2’s for a given distribution f(z, 6) are not, in general,
unique. The question then arises as to how (if possible) one can choose ¥
functions and limits ¥, and ¥, so as to get confidence intervals for a given e,
which are shortest or ‘‘best”” in some sense. Neyman [4] has investigated the
problem of obtaining “best”” confidence intervals for the case of small samples.
The object of this paper is to consider the problem for large samples. Under
fairly general conditions it will be seen that a rather simple asymptotic solution
exists for the large-sample case, which is connected in an essential manner with
the method of maximum likelzhood.

2. An asymptotic distribution. Suppose a population II has a distribution
function f(z, 6), where  is a random variable and 6 a parameter. Actually,
f(z, 6) may involve several other parameters whose values may be regarded
as fixed throughout the paper. The problem of arguing fiducially about several
parameters simultaneously will not be considered in this paper. In order to
include the case of a discrete as well as a continuous variate z, we shall consider
the cumulative distribution function (c.d.f.) F(z, 6), which is monotonic and is
such that

F(— »,0) =0, F(4+ »,0)=1,  F(@+c¢ ) > F(z,0)
F(x 4+ 0,60) = F(z, 6),forc > 0,and a < 6 < b.

Thus, F(z', 6) = P(z < 2’| 6). In the case of a continuous variate z, where
f(z, 6) is a probability density function, then dF(z, §) = f(x, 6) dz;in the discrete
case dF(z, 8) = f(x, 6) where f(z, 6) is the probability that variate z takes the
value indicated. We shall be interested in continuous functions ¢(x) for which
the integral [ o(x) dF(z, 6) taken in the Stieljtes sense exists. Limits on integral

signs are understood to be — « and «.
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Now consider a sample 0, of » individuals independently drawn from II, ,
the population for which the c.d.f. is F(z, 6,). Let the values of z in the sample

bexi, s, ---,2,. The probability element associated with the sample is
@) P, = I dF(z:, 60).
=1

Let L = log dP,. Then assuming that log d F(z, 6) = g(z, 8), say, exists for

6 = 6o, and for each z, (except for a set of probablllty 0), we have
L =

(5) =2 g(xi, 0).
a0 i=1

In all ordinary problems in statistics g(z, 6) reduces to éf—(:é—o—? / f(z, 6) where

f(z, 6) is probability in the case where z is a discrete random variable and
probability density in the case of a continuous random variable. Let go denote

g(z, 6o) and ( L) denote %151 with 6 = 6,. Let

© 43 = Bol(go)?] = / gt dF (=, 80).

Ey(p) will be used to denote the mathematical expectation of ¢ in samples from
I, , i.e. when the population distribution is dF(z, 6,). We shall consider the
sampling theory of

(%)
) Yo = \ 00 /o
Vvn 4,

in large samples, from IT; .
Let 5™ (t) be ‘the characteristic function of ¥ for samples from IIo ; it is
defined by Eo(e***). Then

e (1) = {Eo[exp<\;;igf40>] } "

{Eo[l + \/zt_go 2;3102 3(]0 o (o1 + 1452)]}
where ¢, and ¢ are real functions of ¢, z, n and 6y, such that if | Eo(ge)’ | < K < o0,
(i.e. the third moment of g, is finite when § = 6;), for a < 6 < b, then Eolgis.]
and Eo[gip:] are uniformly bounded for some t-interval §(which includes ¢ = 0
as an interior point) for n larger than some no and for 6, on any fixed subinterval
of the interval (a, b). Suppose that F(z, 6) is such that

9) / —dF(z, 6) = /dF(x 6) = 0, a<6<hb.

(8)

This condition implies that the range of z be independent of 6.
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If nis allowed to increase indefinitely, then we have at once that o§™ () tends to
¢ uniformly in the interval 5. We now make use of a theorem [5] which
states that if an unlimited sequence of random variables z°, £®, ..., z™ ...
with c.d.f.’s FP(z), FP(x), ---, F™(z) --- have corresponding characteristic
functions ¢ (), @) - -+ ¢ (t) - -- then a necessary and sufficient condition
for F*(z) to converge uniformly to a c.d.f. F(z) at each point of continuity of
F(z) on the interval (— o, ) is that the sequence of characteristic functions
converge uniformly to a function ¢;(f) on an interval |{| < e for some ¢ > 0.
The characteristic function ¢(f) associated with F(x) will then be identical with
#1(t) and the sequence ¢”(t), - - - o™ (f) - - - converges to (f) uniformly in every
finite ¢-interval.

From this theorem it follows at once that, since ¢ is the characteristic
function of a variate distributed normally with mean 0 and variance 1, the
asymptotic c.d.f. of ¥, for large samples is given by

(10) F(yo) = 1 " e da
° V2T Jw )
We may conveniently summarize the foregoing results in the following
THEOREM 1. Let 1, 23, - - -, T, be the values of z in a sample of independ-

ently drawn individuals from a population Tl which has a c.d.f. F(x, 6), such that
fora < 6, < b,

(a) a% dF (z, 6) exists for all 2’s except possibly for a set of probability 0;

(b) Eol(g8)] is finite; for n > no,

(c) condition (9) is satisfied.
Then the asymptotic c.d.f. of Yo for large samples defined in (7) is given by (10).

The statistical significance of this Theorem is that if we know the functional
form f(z, 6) (for which the first derivative f’(z, 6) with respect to 6 exists) of the
distribution function of a population II and if the sample z;, =z, ---, z, is
“randomly drawn” from I , then the quantity

- f’(xi) 00)
T S (i, 6o)
T /(- aN2]
[ /‘/ [(.Ll(xy 00))
\V'n E
L\f, )/
is a random variable which is approximately normally distributed with mean 0
and variance 1 in repeated large samples. It will be noticed that the quantity
in the numerator of (11), is simply the derivative with respect to 6, at § = 6,
of the logarithm of the likelihood of 6 for the given sample. o is a function of
the sample 0, and the true value 6, of the parameter 8, and the thing that makes
Yo a random variable is the random nature of the sample; 6, is a fixed but un-

known number. Thus, for example, when 1 — o = .95 in (1) and knowing
that we have “‘randomly drawn’’ a large sample 0, from a population I, with

(11) Yo =
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distribution f(z, 6) of known functional form, we can say that the probability is
.95 that the sample will produce a value of ¥, in the interval —1.96 to 41.96
that is,

(12) P(—1.96 < Yo < 1.96 |6 = 6) = .95.

This statement holds, whatever may be the value of the unknown 6,. Now,
the inequality —1.96 < yo < 1.96 is equivalent to the inequality, § < 6, < 8
because of the monotonic nature of ¥, as a function of §,. Hence (12) is equiva-
lent to

(13) PO <6, <8|6=6)=.95
where 9 and § are obtained by solving yo = = 1.96 for §,. The fiducial limits
@ and @ will thus be functions of the sample and will be subject to sampling

variations. In general, of course, one could choose any probability level 1 — a,
and find ¥, so that

(14) P(—ye <o <Va|lb=106)=1-q

from which fiducial limits for 6, can be found as before.
The extension of Theorem 1 to the case in which the distribution function of

the population II involves several parameters 6,, 6, --- 6, having values in
some region R of the space of §’s, is immediate. I, in this case would be specified
by the values 6y, 620, - - - 010 . In fact, we can state the situation as
TueoreM 1': Let F(z, 61, 62, - - -, 0) denote the c.d.f. of x and (allowing %, j, k
to take on values 1,2, ... | h) let
1 (oL 3 . -
Yoo = '\/—5(5?9—1)0 where L = ;log dF(x;, 610, O, - -+ , Oh),
i}
g = — [log dF(I, 01) ] oh)])
a0;
A.‘j = Eo[g.‘og,'o] where Gio = Gi with 0; = 0.

If, in R,
(a) a% dF(z, 6y, - - -, 6,) exists for all 2’s except possibly for a set of probability 0;
(b) Eo(ging jogro) are all finite;
(c) a_aa;/dF(x,al,az’ -..’01;) = /-gao—idF(x7 01’02, "'yah) = 0

(d) || Ai]| s non-singular;
then the asymptotic distribution of the yi in large samples from Iy is a normal
multivariate distribution with matriz || A;; || of variances and covariances, and zero
means.

A similar theorem holds for the case in which II is a multivariate population in
addition to having several parameters.

The question now arises: In what sense is the confidence interval between § and
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§ as determined from yo ‘“‘best’’? It will be shown that the average rate of
change of ¥, with respect to 6 at 6 = 6, is greater than that for a rather broad
class of functions of the y type, that is functions of the observations and 6 which
are asymptotically normally distributed. Since we are dealing with large
samples, we are only interested in values of 6 in the neighborhood of 6,, for
which ¢ as a function of 9 is approximately linear, and demonstrating the prop-
erty just stated regarding the average rate of change of ¥ with respect to 8 at
6 = 6 is equivalent to showing that the two ‘“‘values” of 6, for which o = %y,
will, on the average be closer together than those computed from any other y
function than ¥, of the class of functions to be considered. This class of funec-
tions will be designated as belonging to class C, and will now be more accurately
defined.

3. Functions of class C and their asymptotic distributions. Following an
argument similar to that used in proving Theorem 1, we can readily prove
TureorEM 2: Let h(z, 6) be a function in which x has the c.d.f. F(z, 6), and
which satisfies the following conditions for a < 6, < b:
(15) (a) Eolh(z, 6)] = 0;
(b) Eo[{h(z, 60)}°] is finite, for n > nq.

Let
(16) As = Eo [{R(z, 6)}’]
and for a sample of values x, , 3, - - - , Tn let
h(z;
(17) ¢o — Z (x ) 00) )
\/n Ao

Then the asymptotic c.d.f. of Vo for large samples from X, is given by
F(ys) = 75 e ¥ dg.

We shall designate as belonging to class C any function ¥; made up according
to the rule expressed by (17), of functions h(z, 6) satisfying (a) and (b) in (15)
and such that y¢ is asymptotically normally distributed with zero mean and
unit number. Clearly, ¥, as defined by (7) belongs to class C.

4. Comparison of average confidence intervals computed from y, and Ve .
We shall now show that for each fixed value 6, of 6 the average rate of change of
¥ with respect to 6 is greater than that of y* for any k(z, 6) which is not a con-

stant multiple of g(z, ). Consider %‘g and - ¢ fora givenn. We have,
oy 1 ag(z:, ) 1 , aA
(18) 30 = “\7;’;4 {Z 30 Z g(w., 0) vy
a* _ ah(x., 0 1
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Now
dg(z:, 6) _ {a[dF(x,, N / ar(a, 0)} aoz " 4Pz, 0) — Lo, O)F
o0 o / dF(z;, 6) ’
Assuming that
(20) /wwmm 2/%@@—0
and remembering that Eolg(z;, 6)] = 0, we have
(21) Eo[(%%)o] = —Vndo = &y
and
W Vg [(9hGz, 0)) ] _
@ a[()]-ER[5)]-
Now, since
(23) / h(z, 6) dF(z,0) = 0

and assuming that (23) can be differentiated under the integral sign, we have

(24) E [("”‘(;’ "))0] =[ f Wz, 0) 2 dF(x, e)] "

For the difference A] — A} in samples from populations with § = 6, , we have

) 2
—dF(z, 6)
n 3 )] dF(z,0) 2
THE {/ <m> J e orarao

4 dF(x, 9)
- /(h(x, 0) \/dF(z, 6)) W )

Making use of Schwartz’ inequality which states that

[¢@ir. [ K a > [ [ote) hteyaz |,

where the equality sign holds only if g(x) = K h(z), K being a constant, it is
evident that 1ndependently of n, Al > A}, and furthermore, the only condition
under which A? = Al is that

(25)

%w@m

k(z, 6) \/dF(z, 6) = KWT‘(—Z‘:_G),
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that is,
(26) h(z, ) = K g(z, 6).

Therefore we have

TureoreM 3. If g(z, 0) and h(z, 0) satisfy the conditions of Theorems 1 and 2
respectively and furthermore, if (20) is satisfied and if the expression on the left in
(23) can be differentiated under the integral sign with respect to 0, then the average
rate of change of ¥ with respect to 6 for each fixed value 6 of 0 is greater than that of
¥* (for which h(z, 0) % Kg(z, 6) with respect to 0, when 6 = 6, in samples from I, .

This Theorem simply means that when computed from y, the fiducial limits
for the true but unknown value 6, of the parameter 6, whatever value 8 may
have on the interval a < 6, < b of possible values, are (for large samples) closer
together on the average than those computed from any other vs of class C.
There is no function ¥, which is more efficient, as it were, for determining con-
fidence intervals for 6, than the particular ¥, given by (7) which is yg with

h(z, 8) replaced by g(z, 6), that is, a% log dF(x, 6). The actual manner in which

the fiducial limits for 6, are found for a given confidence coefficient 1 — «, is
to set

oL
(27) 00 /o _
Vnd, = e
2 Ly
and solve formally, for 6, where ¢, is the value for which :/-2-— Jo e dr = a,
7r ¢d

which can be found from normal probability tables. The two values of 6, thus
found are the fiducial limits 8 and 6 for the true value 6, and we can state that
the probability is 1 — « that 8 and 8 will include the true value 6, between them.
This statement is valid whatever may be the value of 6, between a and b. This
rule consistently followed for large samples, will produce fiducial limits 6 and 8
which are closest together on the average, for each fized value of the probability
level « between 0 and 1. It should be observed that no assumptions have been
made regarding the existence of sufficient statistics.

5. Examples. ExampLE 1. Suppose a large sample of n individuals to be
drawn from a population known to have the Poisson distribution law

f(z, m) = m:! .

We have
L= —log (H x¢!> + (Z ;) logm — nm
1

(aL) _Zxi
am /o mo

- af(m0]) oG5 9] -4
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The fiducial limits m and 7 for « = .05, that is, the 95 per cent fiducial limits,
are found by formally solving the equations

(o), G = m)vem

= ! = +1.96
Vndo Vn
for my. The fiducial limits are found to be
sy 192, /382 30
n n n

ExampLE 2. Consider a large sample of # individuals known to be from a
binomial population having the two classes A and B. Let p denote the proba-
bility of an individual’s belonging to 4, and ¢ = I — p that of belonging to B.
Let x denote the number of individuals belonging to A in one drawing from the
population; z will take on only two possible values, 1 and 0, with probabilities
p and ¢ respectively. The population distribution is thus

fz, p) = p°(1 — p)'™".
We have
L=_Cz)logp+ ZQ0 —z)log (1 — p)
(aL) _m _n—m _ m—np

/fe P 1 —1p  po(l — po)
where m is the number of individuals belonging to A in the sample. Further-

more
Al =E, [(f— . x>2:| = [po(1 — Z’o)]_l
Po 1 — po '

95 per cent fiducial limits for p, are got by solving the following equation for p,

m — MPo
= = +1.96.
\/n \/Po(l )]

It will be seen that situations, such as frequently occur in genetics, where p
may be a function of some other parameter 6, say p = u(6), can be handled by
simply replacing po by %(6) and solving for 6, .

ExampLE 3. Let the form of the distribution function be 0¢~**, where
0 < r < «». For asample of individuals,

L =nlog 6 — 02z,

oL n
Z) =2 -z,
(60)0 8 T

2 _ 1 j_;
4= 5[5 -2)] -5
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The 95 per cent fiducial limits  and 8 are given by solving the equations

g - Ex.-
= = +1.96
vn (1/6o)

for 6. We get

o l— 1.96/4/n 51+ 1.96/4/n
= P ’ i

where Z is the mean of the sample.
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