
Shortest Lattice Vectors in the Presence of Gaps ⋆

Mingjie Liu1, Xiaoyun Wang1,2, Guangwu Xu1,3 and Xuexin Zheng2

1 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
liu-mj07@mails.tsinghua.edu.cn,xiaoyunwang@mail.tsinghua.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
3 Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee,

Milwaukee, WI 53201, USA
gxu4uwm@uwm.edu,zhxuexin@mail.sdu.edu.cn

Abstract. Given a lattice L with the i-th successive minimum λi, its i-th gap λi
λ1

often provides useful
information for analyzing the security of cryptographic scheme related to L. This paper concerns short
vectors for lattices with gaps. In the first part, a λ2-gap estimation of LWE lattices with cryptographic
significance is given. For some γ′, a better reduction from BDDγ′ to uSV Pγ is obtained in the presence
of larger λ2-gap. The second part of the paper shows that gaps among the successive minima lead to a
more efficient SVP search algorithm. As far as we know, it is the first SVP algorithm exploiting lattices
with gaps.
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1 Introduction

The security of lattice-based cryptographic schemes relies on the hard problems in computational
lattice theory such as SVP (shortest vector problem) and CVP (closest vector problem). Crypt-
analysis of lattice-based schemes focuses on the reductions between different hard problems and
the fast algorithms for SVP, CVP, as well as their approximate variants.

Successive minima in a lattice is a sequence {λi} where λi is the radius of the smallest ball
centered in the origin containing i linearly independent lattice vectors. In this paper, we emphasize
that λi-gap (defined as λi/λ1) provides extra information in cryptanalysis. The first provable lattice
cryptosystem proposed by Ajtai [1] is based on the hardness of solving the worst-case uSVPγ

problem (SVP for lattice with λ2/λ1 > γ, where γ = nc, c is a positive constant). Lyubashevsky and
Micciancio [25] introduced a reduction from GapSV P

2γ
√

n/ logn
(a decision variant of approximate

SVP) to uSV Pγ , which confirms the hardness of uSVP. They also proved that the bounded distance
decoding problem (BDD, a special case of closest vector problem) can be reduced to uSVP problem
by the widely used embedding technique of Kannan [21]. It is obvious that the hardness of uSVPγ

depends on the size of γ.
Some cryptographic schemes face serious security problems because of the large gap between

λ2 and λ1 in their corresponding lattices(see [12]). For examples, general knapsack cryptosystems
[27,7] are vulnerable to low density attacks because of the large λ2-gap in the lattices on which
they based; the large λ2-gap in the embedding lattice of GGH [11,35] makes it easier to search the
shortest vector. Even for the high density knapsack lattice with gap close to 1, there is a broadcast
attack to enlarge the gap [40]. For the public-key cryptosystem NTRU, Coppersmith and Shamir [9]
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constructed a cryptographic lattice with dimension 2N to analyze its security. A heuristic analysis
reported in [17] indicates that NTRU lattice has λN+1-gap. Hence it is obvious that the estimation
of the λi-gap and fast searching algorithm for SVP of lattices with gaps are of great importance in
lattice-based cryptanalysis.

For approximate SVP, the LLL basis reduction algorithm [23] achieves an exponential approx-

imation factor in polynomial time, where the output vector b1 satisfies ∥b1∥
λ1

≤
(
(1 + ε)

√
4
3

)n−1
2

(ε

is an arbitrary positive constant). Schnorr [44] generalized LLL algorithm to blockwise reduction.
Assume that the block size is k, then there is a balance between the approximation factor O((6k2)

n
k )

and the running time that is determined by calling poly(n) times k-dimensional exact SVP algo-
rithm. In theory, the fastest known search for approximate SVP is the algorithm proposed by Gama

and Nguyen [13]. It outputs a basis with the first vector b1 satisfying ∥b1∥
λ1

≤ ((1 + ε)γk)
n−k
k−1 , at

the cost of invoking poly(n) times k-dimensional SVP-subroutine, where γn is Hermite’s constant
[10,30]. When k = αn, the approximation factor decreases to poly(n) with 2O(n) operations. Recent-
ly, in [19], Hanrot, Pujol and Stehlé proved that BKZ with early termination can achieve the same
time-quality trade-off as algorithm in [13]. Usually, basis reduction algorithms behave better than
their proved worst-case theoretical bounds. In [12], Gama and Nguyen gave a significant assess-
ment on the actual behavior of lattice reduction algorithms, based on extensive experiments. The
best algorithm known in practice is the improved version of Schnorr-Euchner’s BKZ [45] algorithm
proposed by Chen and Nguyen [8] in 2011.

For exact SVP, there are many deterministic enumeration algorithms [20,38,45], with computa-
tional time ranging from 2O(n2) to 2O(n logn) and with polynomial space. The random sieve for SVP
was first proposed by Ajtai et al. in [2]. This algorithm, known as AKS sieve, gives a significant im-
provement in reducing the time complexity to 2O(n) with 2O(n) space. Micciancio and Voulgaris [33]
introduced another random sieve algorithm named ListSieve, which solves SVP in time 23.199n+o(n)

and space 21.325n+o(n), and soon the time complexity was improved to 22.465n by Pujol and Stehlé
[39] using the birthday attack. Also, under some random assumptions, there are heuristic versions of
AKS sieve algorithm [36,47] and ListSieve [33], which are more efficient in practice. The best algo-
rithm for most lattice problems, including SVP, SMP (Successive Minima Problem) and CVP was
recently proposed by Micciancio and Voulgaris [34]. The algorithm is deterministic and based on
Voronoi cell computation, whose running time is Õ(22n+o(n)). 4 The survey [18] provides a detailed
description on existing SVP algorithms.

This paper concerns short vectors for lattices with gaps. Firstly we compute a lower bound of the
λ2-gap for an embedding lattice from LWE problem [43]. For a set of parameters suggested in [15],
the λ2-gap of this lattice is larger than 7.3 log22m, where m is the dimension of lattice. Furthermore,
combining with the evaluation on the performance of lattice reduction [12], we estimate the range
of the parameter related to the error vector that can be attacked by finding the shortest vector in
the embedding lattice. This result provides a useful security assessment of the LWE-based schemes.
Also, an improved reduction from BDDγ1 to uSV Pγ with larger λ2-gap for some γ1 is given.

Secondly, we show that gaps among successive minima lead to a more efficient SVP algorithm.
Our purpose is to reduce the n-dimensional SVP to the SVP of sublattices with reduced-dimension,
and then invoke the best deterministic SVP algorithm described in [34] to find the solution. The
complexity is determined by the location of the gap and its size. For example, when λ0.4n+1 >

4 One writes f = Õ(g) if f(n) ≤
(
logc g(n)

)
· g(n) for some constant c.
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c(n)λ1, and c(n) = log2 n, the time complexity bound of solving SVP decreases to 20.802n+o(n). This
means that not only does the presence of a gap between λ2 and λ1 affect its security, the gaps
between other successive minima also raise security problem. Although, it is believed there is no
gap in random lattices, cryptographic lattices tend to possess this special property. To the best of
our knowledge, the algorithm in this paper is the first SVP algorithm exploiting lattices with gaps.

This paper is organized as follows: Section 2 is the preliminaries where some notations and
useful facts are included. In Section 3, we exhibit the λ2-gaps of cryptographic lattices obtained
from LWE problems. Furthermore, for some parameters, an improved reduction from BDD to uSVP
is presented. The SVP algorithm for lattices with gaps among successive minima is described in
Section 4. Section 5 concludes this paper.

2 Notations and Background

Let B = {b1, . . . ,bn} ⊆ Rm consist of n linearly independent vectors. The lattice generated by the
basis B is defined as,

L(B) =

{
n∑

i=1

xibi : xi ∈ Z

}
.

The integer n and m are called its rank and dimension. If m = n, we say that the lattice is full-rank.
Without loss of generality, we only consider the shortest vector problem in the full-rank lattices,
since the other cases can be converted to a full-rank lattice with dimension n. The fundamental
parallelepiped P(B) is defined to be {Σixibi : 0 ≤ xi < 1} and P1/2(B) = {Σixibi : −1

2 ≤ xi <
1
2}.

The volume of P(B) is called determinant of the lattice. The dual of a lattice L in Rm, is defined
to be L∗ = {x ∈ Rm : ∀v ∈ L, ⟨x,v⟩ ∈ Z}.

Some basic notations used in this paper include:

• ∥x∥ is the Euclidean norm of a vector x = (x1, x2, . . . , xn) ∈ Rn, i.e., ∥x∥ =
√
x21 + x22 + · · ·+ x2n.

• ∥x∥∞ is the l∞ norm of a vector x ∈ Rn, i.e., ∥x∥∞ = max |xi|.
•Bn(x, r) denotes the n-ball centered at x with radius r, x is omitted when it is the origin.
• N(n,x, R2) is the number of integer points in Bn(x, R), i.e.,

N(n,x, R2) =

∣∣∣∣∣
{
z ∈ Zn :

n∑
i=1

(zi − xi)
2 ≤ R2

}∣∣∣∣∣ .
It is known that when R >

√
n/2, N(n,x, R2) ≤ (2πe

1+2w

n )
n
2 Rn, where w is a positive constant

smaller than 1.024× 10−4 [31].
Most of the worst-case to average-case reductions operate on q-ary lattices L[1,43] which are

defined as qZm ⊆ L ⊆ Zm. Given a matrix A ∈ Zm×n
q , for some integers q,m, n, the following two

types of m-dimensional q-ary lattices will be used in our discussion.

Λq(A
T ) = {y ∈ Zm : y = As mod q for s ∈ Zn

q }

Λ⊥
q (A

T ) = {y ∈ Zm : ATy = 0 mod q}.

From the definition, these lattices are dual to each other up to a factor q. More precisely, Λq(A
T ) =

qΛ⊥
q (A

T )∗, Λ⊥
q (A

T ) = qΛq(A
T )∗. It follows that for any v ∈ Λq(A

T ),w ∈ Λ⊥
q (A

T ), ⟨v,w⟩ ≡ 0
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mod q. It is known that for random A, we have det(Λq(A
T )) = qm−n and det(Λ⊥

q (A
T )) = qn, with

high probability.
Next, we list some computational complexity problems and some results in lattice theory that

are of relevance to our discussion.

• Shortest Vector Problem (SVP): Given a basis of a lattice L, find a shortest nonzero
vector in L.
• γ-Approximate Shortest Vector Problem (SVPγ): Given a basis of a lattice L, find a
nonzero lattice vector v such that ∥v∥ ≤ γ∥u∥, for any non-zero u ∈ L.
• Successive Minima Problem(SMP): Given a basis of a lattice L, find n linear independent
lattice vector si so that λi(L) = ∥si∥, where λi(L) = inf{r| dim(span(L ∩ Bn(r))) ≥ i}, i =
1, . . . , n.
• γ-Unique Shortest Vector Problem(uSV Pγ): Given a basis of a lattice L such that
λ2(L) > γ · λ1(L), find the shortest nonzero lattice vector.
• Closest Vector Problem (CVP): Given a basis of a lattice L and a target vector t ∈ Rm,
find a lattice vector closest to t.
• γ-Bounded Distance Decoding (BDD): Given a basis of a lattice L and a target vector
t such that dist(t,L) < γλ1(L), find a lattice vector closest to t.

Given a basis of an n-dimensional lattice, the LLL algorithm [23] produces another basis of the
lattice which consists of shorter vectors and is referred to as a LLL-reduced basis. Moreover,

Lemma 1. [23] Let b1,b2, . . . ,bn be an LLL-reduced basis, then we have ∥bj∥ ≤
(
(1 + ε)

√
4
3

)n−1
2

λj.

According to the above properties of LLL-reduced bases, for a fixed i (1 ≤ i ≤ n), we can determine
a µi such that λi ≤ µi ≤ (1+ 1

n)λi by polynomial trials of µi. This approximation is essential in the
reduction from BDD to uSVP in section 3.2 and our approximate SVP algorithm in section 4.1.
When i = 1, we simply write µ for µ1.

Predicting lattice reduction algorithms: In practice, almost all basis reduction algorithms
perform better than their best known theoretical upper bounds. In [12], based on abundant exper-

iment, Gama and Nguyen pointed out the Hermite factor ∥b1∥/(det)
1
m is exponential δm in the

dimension m, where b1 is the output of the algorithm and δ is called the root Hermite factor(δ
varies in different algorithms, which is 1.0219 for LLL and 1.0128 for BKZ-20.) They also argued
that the algorithm could achieve the shortest vector in the case of λ2/λ1 > δ̃m, for some δ̃ slightly
smaller than δ. Recently, in [8], Chen and Nguyen give a more detailed analysis of Hermite factor
and running time of their basis reduction algorithm which is the best known algorithm in practice.
In [32] and [28], the authors applied Hermite factor to evaluate the efficiency of their attacks on
LWE. In Section 3.1, combining with the lower bound of the λ2-gap in LWE embedding lattice, we
will also use this Hermite factor to analyze the efficiency of solving LWE by embedding technique.

It is easy to compute a basis for the intersection of a lattice and a subspace, as indicated by the
next lemma.

Lemma 2. [29] There is a polynomial time algorithm, that inputs L with basis B ∈ Qm×n and a
linear subspace S ⊂ Qm, outputs a basis B̃ for the sublattice S ∩ L(B).

Finally in this subsection, we shall describe the conceptual modification τ which was first
presented by Regev [41]. Here, we introduce the version of Pujol and Stehlé [39]. Let s be a shortest
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vector and Is = {x ∈ Bn(ξµ) : x + s ∈ Bn(ξµ)}, where µ is an approximate value of λ1 and ξ
is a fixed positive parameter. Let τ : Bn(ξµ) −→ Bn(ξµ) be such that τ(x) = x + s, if x ∈ Is;
τ(x) = −x, if x /∈ Is. This transformation τ preserves the uniform distribution on Bn(ξµ). We will
use it to prove the success probabilities of our approximate SVP algorithm and reduced-dimension
algorithm in the next section.

Is Is+s

-s s0

Fig. 1. τ Transfor-
mation

3 λ2-Gap for Some Embedding Lattices

It is well known that some popular knapsack cryptosystems are broken by lattice reduction algo-
rithms, and some instances of lattice cryptosystems such as GGH challenges [35] and PJH [16] are
also successfully attacked. The main reason is that the λ2-gaps of the corresponding cryptographic
lattices are large enough to leak substantial information. In this section, we will discuss the λ2-gaps
of the lattices applied to analyze LWE-based cryptosystem. Furthermore, we present a reduction
from BDDγ1 to uSV Pγ with larger λ2-gap for some γ1.

3.1 λ2-Gap for LWE-based Lattice

The computational infeasibility of learning with errors (LWE) problem [43] guarantees the security
of several cryptographic schemes [15,28,37,43]. The input to this problem is a pair (A,v = As+e),
where A ∈ Zm×n

q and s ∈ Zn
q are chosen uniformly, e ∈ Zm

q is chosen according to some distribution
χ. The decision version of LWE is to distinguish v from a vector of uniform distribution in Zm

q ,
and the search version is to recover s. LWE problem can be regarded as a BDD instance in q-ary
lattice Λq(A

T ) = {y ∈ Zm : y = As mod q for s ∈ Zn
q }. v is a target vector which is obtained

by perturbing a randomly-chosen lattice vector As ∈ Λq(A
T ) with some small amount of noise e.

The perturbation is small enough that As is indeed the vector in Λq(A
T ) closest to the perturbed

point v.
In this paper, we consider the error vector e samples from the discrete Gaussian distribution

on DZm,s (because s is relatively small compared to q, this distribution can be seen as on Zm
q ),

where for a real s > 0, n-dimensional lattice L, the discrete Gaussian distribution DL,s is given by

DL,s(x) =
ρs(x)
ρs(L) with x ∈ L, ρs(x) = e−π∥x/s∥2 and ρs(L) =

∑
x∈L ρs(x). In fact, our estimation of

the λ2-gap in LWE lattice can be applied to other error distributions provided that the length of
the error has an appropriate bound.

The hardness of LWE was studied in [43] and it is proved that for the discrete Gaussian distri-
bution χ = DZm,αq with αq ≥ 2

√
n, the search-LWE is at least as hard as quantumly approximating

a worst-case (the decision variant of) SVP or (the computational variant of) SIVP of n-dimensional
lattice to within an approximation factor Õ(n/α). In [37], Peikert presented a classical reduction
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for (the decision variant of) SVP at the cost of increasing q. Recently, at STOC 2013, Brakerski et
al gave a real classical reduction [6]. Cryptanalysts proposed several new methods to solve the LWE
problem. Micciancio and Regev proposed to distinguish v from uniform distribution by finding a
short vector in its dual lattice [32]; Lindner and Peikert applied a variant of NearestPlane algorithm
on search-LWE [28]; Arora and Ge proposed a linearization technique [3] whose complexity depends
on the length of the error .

Let us briefly describe the embedding technique used in [21] for reducing CVP to SVP. Given a
lattice L with basis B = [b1,b2, · · · ,bm], and a target vector t ∈ span(B), the embedding method
is to construct a new lattice L′ with basis B′ = [b′

1,b
′
2, · · · ,b′

m+1]:

b′
1 = (b11, b12, . . . , b1m, 0)

...

b′
m = (bm1, bm2, . . . , bmm, 0)

b′
m+1 = (t1, t2, . . . , tm, β),

(1)

where β is a parameter to be determined. If the distance between the target vector and the lattice
is small enough, finding the shortest vector in this embedding lattice implies the solution to the
CVP instance.

Because the LWE problem is an instance of BDD problem with target vector v, we can utilize the
embedding lattice (which we refer to as the LWE-based lattice) to solve this problem. Estimating
the λ2-gap provides indication of the hardness of finding the shortest vector in this lattice.

We need the following Lemma 3 and Lemma 4 to estimate the λ2-gap for this lattice.

Lemma 3. Let n,m be integers, and q be a prime such that m > n and q1−
n+c
m >

√
πe1+2w

for some positive constants c and w with w < 1.024 × 10−4. Let A be chosen uniformly from
Zm×n
q . Then for any x ∈ Zm we have, with probability bigger than 1− q−c, min

a∈Λq(AT )\{x}
∥a− x∥ ≥

min{
√

m
2πe1+2w q

1−n+c
m , q}. In particular, λ1(Λq(A

T )) ≥ min{
√

m
2πe1+2w q

1−n+c
m , q}.

Proof. The assumption q1−
n+c
m >

√
πe1+2w implies

√
m

2πe1+2w q
1−n+c

m >
√

m
2 . LetR = min{

√
m

2πe1+2w q
1−n+c

m , q},
then N(m,x, R2) ≤ N(m,x, (

√
m

2πe1+2w q
1−n+c

m )2) ≤ qm−n−c. For any x ∈ Zm, denote V = {a ∈
Zm| ∥a+x∥ ≤ R}. We have |V | = N(m,x, R2). For uniformly random choice of A and any non-zero
s, since q is a prime, Pr{As = a mod q} = q−m.

The probability that there exists a vector in Λq(A
T ) ∩ V is

p ≤ Σs∈Zn
q \0Σa∈V Pr{As = a mod q} ≤ (N(m,x, R2)/qm)qn ≤ q−c.

Remark 1. References [15] and [46] give probabilistic lower bounds for the minimum length in
this lattice in l∞ norm and Euclidean norm respectively. In [46], only the case m ≥ 5n log2 q is
considered, and the bound is 0.07

√
mq with probability 1−q−n. For the same parameters and proba-

bility, taking c = n in our conclusion, we obtain a better bound
√

m
2πe1+2w q

1−n+c
m = 2−0.4

√
2πe1+2w

√
mq ≈

0.18
√
mq.

The tail bound for discrete Gaussian distribution in the next lemma will be useful in estimating
the norm of the error vector.
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Lemma 4. [5] Let d > 1, s > 0 and n be a positive integer. Let x ∈ Zn be randomly chosen

according to DZn,s. Then Pr[∥x∥ ≥ d s
√
n√

2π
] ≤

(
d · exp(1−d2

2 )
)n

.

It can be seen that d · exp(1−d2

2 ) < 1 as d > 1. In fact, the function f(t) = t · exp(−t2

2 ) is strictly
decreasing on [1,∞).

Now we are ready to measure the lower bound of λ2-gap in LWE-based lattice.

Theorem 1. Let n,m be integers, and q be a prime such that m > n and q1−
n+c
m >

√
πe1+2w,

where c > 1 and w is a positive constant less than 1.024 × 10−4. Let e be distributed according to
DZm,αq. Then for all but a fraction less than q−c+1 of the LWE-based lattice and any positive number

ε, the gap between λ1 and λ2 satisfies: λ2
λ1

> R
(1+ε)αq

√
m
2π

, where R = min{
√

m
2πe1+2w q

1−n+c
m , q}.

Proof. Let L = Λq(A
T ). Using Lemma 4 by setting d = 1+ ε

2 , we know that ∥e∥ ≤ (1 + ε
2)αq

√
m
2π

holds with overwhelming probability.
Let v = AT s+e. We form L′ by specifying t = (t1, t2, . . . , tm) to be v, i.e.,b′

m+1 = (v, β). Denote

u = AT s. Then the lattice vector (v − u, β) ∈ L′ has norm
√

∥e∥2 + β2. Choose β = ε
2αq

√
m
2π ,

then we see that with overwhelming probability,

∥(v − u, β)∥ =
√

∥e∥2 + β2 ≤ ∥e∥+ β ≤ (1 + ε)αq

√
m

2π
.

We will prove that this vector is a unique shortest vector and the λ2-gap is larger than
R

(1+ε)αq
√

m
2π

.

Write y ∈ L′ as y =
∑m+1

i=1 xib
′
i. Since we are working on q-ary lattices, we can partition the

lattice L′ into q setsD0, D1, . . . , Dq−1 whereDj = {y ∈ L′|xm+1 = j}. Set Vj = {a ∈ Zm| ∥a+jt∥ ≤
R}, then from Lemma 3, Pr(L ∩ Vj ̸= ∅) ≤ q−c.

Now for any y =
∑m+1

i=1 xib
′
i ∈ L′, y can be written as (a+ jt, jβ) with xm+1 = j, a ∈ Λq(A

T ).

Let Wj = {y ∈ L′|y = (a + jt, jβ),a ∈ Λq(A
T ), ∥y∥ ≤ R} and W = ∪q−1

j=0Wj . Then from the

previous discussion, we see that, Pr(Wj ̸= ∅) ≤ q−c. This implies that Pr(W ̸= ∅) ≤ qq−c = q−c+1.
Therefore, with probability less than q−c+1, there exists a vector y ∈ L′ with norm less than R.

This shows that in L′, the gap between λ1 and λ2 is larger than R
(1+ε)αq

√
m
2π

.

Next,we apply the lower bound in Theorem 1 to the LWE embedding lattice on which a LWE-
based scheme proposed in [15] is based, and achieve a concrete lower bound. Then, combining the
Hermite factor of basis reduction algorithm, we give the error range of LWE that is vulnerable to
embedding method.

In [15], a cryptosystem based on the LWE problem was proposed. In their setting, the set of

parameters are selected as m = 6n log2 q where q is a prime with q ∈ [n
2

2 , n2], the error distribution
is DZm,αq for α = 1√

m·log22 m
. Using our Theorem 1, we are able to show that this specific LWE

problem can be converted to the problem of finding the shortest vector in a lattice with large
λ2-gap. Similar to the discussion of SIS problem in [32], we should point out that the hardness of
the LWE problem cannot be increased by enlarging the dimension m, because we can transfer the
original LWE instance to the one with smaller m. More precisely, instead of considering Λq(A

T )

we work on Λq(A
′T ) where A′ is obtained from A by removing some of its rows. We shall prove

that the embedding lattice of Λq(A
′T ) has larger λ2-gap.
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Corollary 1. The above LWE problem can be solved by using a lower-dimensional lattice whose
embedding lattice has λ2-gap bigger than 7.3 log22m with overwhelming probability.

Proof. Taking the first m′ rows of A, we get an m′ × n matrix A′. Denote by L′
m′ the embedding

lattice of Λ(A′T ) and let Gm′ be the λ2-gap of L′
m′ . We will choose a suitable m′ ≤ m to maximize

Gm′ .

Let c = n, then from Theorem 1 we know that if
√

m′

2πe1+2w q
1− 2n

m′ < q, we have Gm′ >

1

(1+ε)e
1
2+wαq

2n
m′

, which increases with m′; if
√

m′

2πe1+2w q
1− 2n

m′ > q, the lower bound of Gm′ is
√
2π

(1+ε)α
√
m′

that decreases with m′. As a result, the optimal m′ can be obtained by taking
√

m′

2πe1+2w = q
2n
m′ .

For m = 6n log2 q, q ∈ [n
2

2 , n2], let m′ = 0.7n log2 q = 0.7m
6 , then we have

√
m′

2πe1+2w q
1− 2n

m′ > q as

n > 104. With probability close to 1, we have Gm′ >
√
2π

(1+ε)α
√
m′ ≈ 7.3 log22m.

Now based on the result above, we compare the embedding method and the distinguishing
attack on the LWE problem (the decision version) proposed by Micciancio and Regev [32]. Given
v = As + e with A ∈ Zm×n

q , s ∈ Zn
q and e ∈ Zm

q obeys DZm,αq, the idea is to distinguish v with
ones from the uniform distribution. According to [32] and the Hermite factor obtained in [12], for

the security parameter α <

√
ln(1/η)

π δ−m′
q−

n
m′ , their attack can solve the decision version of LWE

with probability higher than η ∈ (0, 1). Here m′ is an integer between n and m which maximizes
the range for the attack, in other words, optimizes the attack. If we take η = 0.9, the distinguished
range of α in [32] is

α < 0.18δ−m′
q−

n
m′ .

Actually [32] provided some more precise discussions on this by pointing out when
√

n ln q/ ln δ < m

(resp.
√

n ln q/ ln δ ≥ m), m′ =
√

n ln q/ ln δ (resp. m′ = m) is the number to minimize δm
′
q

n
m′ , and

hence one gets the optimal attack. We also remark that for the concrete parameters in [28,32,42],√
n ln q/ ln δ > n holds.
Now we argue that using the result from Theorem 1, in high success probability cases, it is

possible to relax the range of α by the embedding attack. As in the discussion of Corollary 1, we
take the firstm′ rows of A as A′ to use the embedding attack in Λq(A

′T ). Letm′ =
√

n ln q/ ln δ ≤ m,

then
√

m′

2πe1+2w q
1−n+c

m′ < q, as long as n ln q > 400 (According to the discussion in [12], the root

Hermite factor δ < 1.005 seems totally out of reach). Since
√

m′

2πe1+2w q
1−n+c

m′ is an increasing function

of m′, when
√

n ln q/ ln δ > m, taking m′ = m, we still have
√

m′

2πe1+2w q
1−n+c

m′ < q. Then R =√
m′

2πe1+2w q
1−n+c

m′ (in Theorem 1). Together with the conclusion in [12] (discussed earlier), Theorem

1 indicates that using the embedding lattice, we can solve the LWE problem when

√
m′

2πe1+2w q
1−n+c

m′

(1+ε)αq
√

m′
2π

>

δ̃m
′
(more concisely α < 1

e
1
2+w(1+ε)

δ̃−m′
q−

n+c
m′ ). For example, taking c = 2 and ε = 0.1, with the

success probability 1− 1
q (> 0.9) we can have

α < 0.55δ̃−m′
q−

n+2
m′ .

That is, our approach can be used to attack instances with larger range of α.
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Remark 2. In practice, the other algorithms for LWE are the NearestPlanes algorithm proposed
by Lindner and Peikert [28] and the enumeration with pruning algorithm proposed by Liu and
Nguyen [26]. The former one combines the NearestPlane algorithm and the enumeration algorithm
to balance time/success tradeoff. The later one randomizes the Lindner and Peikert’s algorithm
and consider the natural adaptation of Gama-Nguyen-Regev’s pruned enumeration [14] to BDD.
In fact, this method can balance the time of enumeration and basis reduction flexibly. However it
is hard to give the upper bounds of the attacking ranges of these two algorithms. In the previous
discussion, what we have done is evaluating the λ2-gap to analyze the efficiency of the attack using
embedding lattice. In practice, our attack may not be better than some of the existing attacks,
however we have established a theoretical upper bound in our setting.

3.2 Reduction from BDD to uSVP Revisited

Since LWE is a BDD instance, we estimate the hardness of solving LWE by computing the gap
of its embedding lattice. More generally, using the embedding technique, BDDγ1 instance can be
reduced to uSV Pγ problem. Note that uSV Pγ refers to finding shortest vector when λ2-gap is
larger than γ. Thus, the larger the λ2-gap is, the more easily the BDD instance can be solved.
From the cryptanalysis point of view, given a fixed γ1, the problem is easier if γ is larger. In other
words, fixing γ, larger γ1 means better reduction.

The following elegant reduction is presented in [25]:

Lemma 1 [25] For any constant γ > 1, there is a polynomial-time Cook reduction from BDD 1
2γ

to uSV Pγ.

In this section, we discuss an improvement to this reduction. We assume that the distance
between t and L is u.

Given a basis of an n-dimensional lattice, the famous LLL algorithm [23] of Lenstra, Lenstra
and Lováz computes an δLLL-reduced basis with δ ∈ (14 , 1), then ∥ b1 ∥≤ (2/

√
4δ − 1)n−1λ1.

NearestPlane algorithm [4] with δLLL-reduced basis approximately solves CVP within a factor
2(2/

√
3)n, for δ = 1/4 + (3/4)n/(n−1). So we get d satisfying d

2(2/
√
3)n

< u ≤ d. By dividing

the interval ( d
2(2/

√
3)n

, d] into polynomially many parts ( d
2(2/

√
3)n(1− 1

n
)i
, d
2(2/

√
3)n(1− 1

n
)i+1 ], guessing

u ∈ ( d
2(2/

√
3)n(1− 1

n
)i0

, d
2(2/

√
3)n(1− 1

n
)i0+1 ], and taking u0 =

d
2(2/

√
3)n(1− 1

n
)i0+1 , we have u ≤ u0 <

u
1− 1

n

.

We construct the embedding lattice L′ by specifying b′
n+1 = (t, ku0) with k to be determined.

The case of k = 1 corresponds to the reduction of BDD 1
2γ

to uSV Pγ in [25]. By varying k, we can

improve this reduction as long as γ < 1.5321.

Taking u0 to be an approximation of u will not affect the reduction, more formally:

Lemma 5. [25] For any constant c, there is a polynomial-time Cook reduction from BDDα to
BDDα(1−1/n)c.

Our main result of this subsection is as follows:

Theorem 2. For any 1 < γ < 1.5321, there is a polynomial time Cook-reduction from BDDγ1 to

uSV Pγ with γ1 = 1/(
√

3γ2

4−γ2 + 1).
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The proof is an adaptation of that of Theorem 1 in [25] (i.e.,Lemma 1) and it is given in the
appendix.

It can be seen that the proof of Theorem 2 is valid for 1 < γ < 1.9318. If γ < 1.5321, we have
γ1 >

1
2γ . This improves the reduction of [25].

From the proof of Theorem 2, we can get the following corollary whose proof is provided in the
appendix.

Corollary 2. There is a polynomial time Cook-reduction from BDD√
3

2

to SV P .

It is noted that the reduction of BDD 1
2γ

to uSVPγ in [25] only implies the reduction of BDD 1
2

to SV P . Our result improves the parameter from 1
2 to

√
3
2 .

4 Reduced-Dimension Algorithm for SVP of Lattices with λεn+1-Gap

In this section, our purpose is to obtain a shortest vector of lattice with λεn+1-gap by exploiting a
modified sieve for approximate SVP and invoking the best known SVP algorithm [34] to find the
shortest vector in reduced-dimensional sublattices. The presence of λεn+1-gap makes it possible to
sieve enough c-approximate shortest vectors which fall into a reduced-dimensional lattice.

4.1 The ListSieve-Birthday Algorithm

In this subsection we first recall the ListSieve-Birthday algorithm. We will present a modified
version (the approximate SVP algorithm) in the next section. We also need some technical lemmas
from [39] for proving the correctness of our approximate SVP algorithm.

We start with two routines, the Sample Algorithm and the Reduction Algorithm, as they are
needed by the ListSieve-Birthday algorithm and our Algorithm 1.

Sample Algorithm

Input: An LLL-reduced basis of a lattice L, perturbation radius ξµ,where ξ > 1
2

Output: A lattice vector u and a perturbed vector u′

1: Choose x uniformly in Bn(ξµ)
2: u′ ←− (−x) mod P(B)
3: u←− u′ + x
4: Return (u,u′)

Reduction Algorithm

Input: A pair (u,u′), a List T ⊆ L and reduced factor δ < 1
Output: A reduced pair (u,u′)
1: While (∃w ∈ T ) : ∥u′ −w∥ ≤ δ∥u′∥
2: (u,u′)←− (u−w,u′ −w)
3: end while
4: Return (u,u′)

We remark that, in the reduction algorithm, the operations are determined by the perturbed
vector u′ instead of the lattice vector u. If the norm of the perturbation x is large enough, a given
perturbed vector can sometimes be obtained from several lattice vectors. This observation is crucial
to our proof of correctness in the next section.



Shortest Lattice Vectors in the Presence of Gaps 11

The ListSieve-Birthday Algorithm

Input: An LLL reduced basis B, N1,N2,γ > 1, reduced factor δ < 1, γ
2
> ξ > 1

2
, µ ≃ λ1

Output: A shortest non-zero lattice vector
1: T ←− ∅,U ←− ∅
2: for i = 1 to N1 do
3: (ti, t

′
i)←− Reduction(Sample(B,ξµ),T,δ)

4: If ∥ti∥ > γµ then
5: T ←− T ∪ {ti}
6: end if
7: end for
8: for i = 1 to N2 do
9: (ui,u

′
i)←− Reduction(Sample(B,ξµ),T,δ)

10: U ←− U ∪ {ui}
11: end for
12: find closest distinct points (ui,uj) in U
13: Return ui − uj

It can be seen that the ListSieve-Birthday algorithm has two loops. The first loop constructs
a list T by reducing each randomly generated vector with vectors previously added to the list.
The second loop produces another list U whose elements are reduced in terms of the list T . This
implies that the vectors in U are both short (with high probability) and independent and identically
distributed.

In [39], it is proved that with suitable choices of the parameters N1,N2,γ, δ, ξ and µ, the
ListSieve-Birthday algorithm can be used to solve SVP with probability 1 − 2−Ω(n)5 in time
22.465n+o(n). We will use the same set of parameters in our discussion in the next section. The
precise choices of these parameters are given in the following lemmas.

Lemma 6. [39] Let cl(γ, ξ) = −1
2 log2(1 − 2ξ

γ ) + 0.401. The List T in the algorithm contains at

most NL(n) = 2cln+o(n) vectors.

Lemma 7. [36] Let cg(ξ) = −1
2 log2(1−

1
4ξ2

), and s be a shortest non-zero vector of L(B). Denote

Is = {x ∈ Bn(ξµ) : x + s ∈ Bn(ξµ)}. If x is chosen uniformly in Bn(ξµ), then Pr(x ∈ Is) ≥ 1
NG

,

where NG = 2cgn+o(n).

The parameter N1 is related to the number Nmax
1 = 4⌈NLNG⌉. The following lemma is essen-

tially the Lemma 6 and its remark of [39].

Lemma 8. Let us consider the ListSieve-Birthday algorithm with N1 chosen uniformly in the set
{0, 1, 2, . . . , Nmax

1 − 1}. Let Ei be the event ∥ui∥ ≤ γµ, i ≤ N2, p = Pr(Ei|xi ∈ Is). Then with
probability higher than 1

2 , p > 1
2 .

4.2 The Approximate SVP Algorithm

Our Algorithm 1, which is used to obtain sufficiently many γ-approximate shortest vectors, is
an SVP approximation algorithm modified from the ListSieve-Birthday algorithm [39]. Compared
with the ListSieve-Birthday algorithm, Algorithm 1 terminates sieve process earlier and relaxes
the birthday search. The number N2 of sieved vectors is much smaller than that of the ListSieve-
Birthday algorithm, which decreases the time complexity significantly.

5 One writes f(n) = Ω(g(n)), if there exist two positive constants c and n0, for all n ≥ n0, 0 ≤ cg(n) ≤ f(n)
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Algorithm 1: The Approximate SVP Algorithm

Input: An LLL reduced basis B, N1,N2,γ > 1, d ≥ 1, dimension n, reduced factor δ < 1, γ
1+1/δ

> ξ > 1
2
, µ ≃ λ1

Output: A shortest non-zero lattice vector or a pair of sets (U,U) with U the set of sieved lattice vectors and

U = {u ∈ U : ∥u∥ ≤ γµ}
1: T ←− ∅,U ←− ∅,U ←− ∅
2: for i = 1 to N1 do
3: (ti, t

′
i)←− Reduction(Sample(B,ξµ),T,δ)

4: If ∥ti∥ > γµ then
5: T ←− T ∪ {ti}
6: end if
7: end for
8: for i = 1 to N2 do
9: (ui,u

′
i)←− Reduction(Sample(B,ξµ),T,δ)

10: U ←− U ∪ {ui}
11: if ∥ui∥ ≤ γµ then

12: U ←− U ∪ {ui}
13: end if
14: end for
15: find closest distinct points (ui,uj) in U
16: if ∥ui − uj∥ ≤ µ
17: Return ui − uj

18:else

19: Return (U ,U)

The sieve steps in our approximate SVP algorithm and the ListSieve-Birthday algorithm are
the same except that we store an additional set U which is a subset of U satisfying U = {u ∈ U :
∥u∥ ≤ γµ}. So, the early analysis from Lemma 6, Lemma 7 and Lemma 8 applies to our Algorithm
1 as well.

In the description of our algorithm, we use the same notations as in Lemma 6, Lemma 7 and
Lemma 8. The algorithm succeeds if a shortest non-zero lattice vector is returned or U contains
at least d distinct lattice vectors whose perturbation x is in Is. Some parameters are given as
follows: N1 is chosen uniformly from the set {0, 1, 2, . . . , Nmax

1 − 1}, N2 = 8dNG, δ = 1− 1
n . Other

parameters will be determined later.

The following lemma, which proves the correctness of the Approximate SVP Algorithm, is also
needed by the main technical lemma (Lemma 11). Its proof is similar to that of Lemma 7 in [39].

Lemma 9. Let N2 = 8dNG, and assume that n is sufficiently large. Then with probability higher
than 1

8 , the algorithm succeeds.

Proof. Let s be a shortest vector of the lattice whose norm is approximately µ, and define Is =
{x ∈ Bn(ξu),x+ s ∈ Bn(ξu)}. According to Lemma 8, with probability higher than 1

2 , Pr(∥ui∥ ≤
γµ|xi ∈ Is) ≥ 1

2 holds. Since the vectors in the list U are independent and identically distributed
and the relation ui − u′

i = xi is preserved during the sieve process, we see that

Pr((∥ui∥ ≤ γµ) ∩ (xi ∈ Is)) = Pr(∥ui∥ ≤ γµ|xi ∈ Is)Pr(xi ∈ Is) ≥
1

2NG
.

Let X = {i ≤ N2 : ∥ui∥ ≤ γµ,xi ∈ Is}. Based on the analysis above, the random variable
|X| obeys a binomial distribution of parameter p ≥ 1

2NG
. Since the expectation and variance are
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E(|X|) = pN2 and D(|X|) = p(1− p)N2 respectively, by Chebyshev’s inequality we have

Pr(|X| ≤ d) ≤ Pr(||X| − E(|X|)| ≥ E(|X|)− d) ≤ D(|X|)
(E(|X|)− d)2

≤ 4

9d
≤ 1

2

when d ≥ 1.

That means we have |X| > d with probability higher than 1
2 . The following discussion will be

divided into two cases.

Case 1. If there are distinct i, j ∈ X such that ui = uj , we claim that a shortest vector can be
found by pairwise subtracting the elements in U with high probability.

We modify the Sample Algorithm in the second loop by applying τ with probability 1/2 on every
perturbation x. τ maintains the uniform distribution on Bn(ξµ), and the output distribution of the
modified algorithm should be exactly the same as that of the original algorithm. Furthermore, we
have

u′
x = −x mod P(B) = τ(−x) mod P(B) = u′

τ(−x).

This means that for x ∈ Is, if the original Sample Algorithm returns (u,u′), then its modification
(i.e., after τ transformation) outputs (u+ s,u′). Since in the Reduction Algorithm, the sieve makes
its decision based on u′ instead of u, the τ transformation has no effect on the Reduction Algorithm.

Since ui = uj , with probability 1/2, ui is changed to ui + s, or uj is changed to uj + s, but
not both, after using τ to the second loop. This means that the shortest vector s is in {w1 −w2 :
w1,w2 ∈ U}. Since the modified algorithm does not change the the distribution in U , Algorithm 1
returns the shortest vector in this step as well.

Case 2. If for all distinct i, j ∈ X, ui ̸= uj , then at least d distinct vectors whose perturbation
x is in Is are in U .

Multiplying the three probabilities together, the success probability of Algorithm 1 is higher
than 1

8 . �

Now, we are able to estimate the complexity of Algorithm 1.

Theorem 3. Let ctime = max{2cl(γ, ξ) + cg(ξ), 2cg(ξ)} and cspace = max{cl(γ, ξ), cg(ξ)}. Let d =
2o(cgn). Then with probability 1 − 2−Ω(n), Algorithm 1 succeeds with time 2ctimen+o(n) and space
2cspacen+o(n).

Proof. The time complexity of the first loop in steps 2-7 isN1NL, and that of the second loop of steps
8-14 is N2NL. The complexity of steps 15-19 is N2

2 . So the total time complexity is 2ctimen+o(n) as
ctime = max{2cl(γ, ξ)+cg(ξ), 2cg(ξ)}. It is obvious that space complexity is |T |+|U | = 2cspacen+o(n),
as cspace = max{cl(γ, ξ), cg(ξ)}.

Calling the algorithm n times ensures that it succeeds with probability exponentially close to
1. �

In the Table below, the column labeled ”Algorithm 1” lists some optimal complexity bounds given
in Theorem 4.5 for several choices of c and the corresponding ξ. We see that the complexity bound
decreases obviously with the increase of c. In particular, if c(n) = Ω(log2 n)

6, we can find the
approximate shortest vector in time Õ(20.802n+o(n)) and space Õ(20.401n+o(n)).

6 One writes f(n) = Ω(g(n)) if there exist two positive constants c and n0, for all n ≥ n0, 0 ≤ cg(n) ≤ f(n)
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If we are only interested in solving approximate SVP, then it is sufficient to find one non-zero
vector that is shorter than cµ. We modify Algorithm 1 by adding lattice vectors reduction before
appending a point to the List which guarantees the distances between the points in the List are
larger than cµ. This property decreases the upper bound of the List size and reduces the time
complexity accordingly. More precisely, Algorithm 1 can be modified as follows:

In step 4, after the reduction steps, if ∥ti∥ > cµ, we check all the tj ∈ T . If there exists a tj ,
s.t. ∥ti − tj∥ < cµ, the algorithm terminates. Otherwise, we add ti to the List. We now argue that
this ti − tj is a non-zero vector. In fact, (ti, t

′
i) is obtained by the Reduction Algorithm, hence

∥t′i − tj∥ > (1− 1
n)∥t

′
i∥ holds (taking δ = 1− 1

n). Suppose ti − tj = 0, when n is large, we have

∥ti∥ ≤ ∥xi∥+ ∥t′i∥ < ξµ+
∥t′i − tj∥
1− 1

n

= ξµ+
∥t′i − ti∥
1− 1

n

= ξµ+
∥xi∥
1− 1

n

< cµ.

This is a contradiction. This implies that when the algorithm terminates at this step, a short non-
zero vector whose length is less than cµ is obtained. When the first loop ends, if the algorithm does
not terminate, then for all the points in T , we must have ∥ti − tj∥ > cµ. Using an analysis that
is similar to that in [33], the following lemma (the proof is given in the appendix) tells us that we
can use a smaller cl to bound the size of List T .

Lemma 10. Let cl = log2

√
ξ2+c2+ξ

c + 0.401 in our modified c-SVP algorithm. During the process

of the algorithm, the List T contains at most NL(n) = 2cln+o(n) vectors.

Adding these checks will at most double the upper bound of time complexity. Other parts of
the estimation of complexity bound are the same as Lemmas 7, 8, 9 and Theorem 3. For an approx-
imation factor c, we list some optimal time complexity bounds in the column marked ”Modified
Algorithm” in the Table below. This algorithm also has time complexity bound Õ(20.802n+o(n)) and
space complexity bound Õ(20.401n+o(n)), when c(n) = Ω(log2 n).

Algorithm 1 Modified Algorithm

c ξ time space ξ time space

2.71 0.6971 2.3655 0.9222 0.8201 1.9976 0.8316

3.61 0.7670 1.9993 0.8001 0.8810 1.7798 0.7497

8 1 1.4246 0.6085 1.0810 1.3643 0.5954

15 1.2331 1.1907 0.5306 1.3010 1.1672 0.5260

In our main algorithm in the next subsection, the improvement above helps to deal with the
case when there is a gap between λ2 and λ1. Because in that case, only one short vector is sufficient
to find the shortest one.

Note that in [13], the best known approximation algorithm achieves ∥b1∥
λ1

≈ k
n−k
k−1 , with time

complexity Õ(22k). So, when c < nγ with γ ≈ 1.5, our algorithm performs better.

4.3 Reduced-Dimension Algorithm of SVP for Lattices with λεn+1-Gap

Assume ε < 1, and the λεn+1-gap is bigger than γ, i.e., λεn+1 > γλ1. In this subsection, we
shall use Algorithm 1 from the previous subsection to sieve enough lattice points that are in
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Bn(γλ1). The assumption on the gap indicates that these points are actually in the sublattice
span{s1, s2, . . . , sεn} ∩ L(B) of dimension εn, where s1, s2, . . . , sn are linearly independent lattice
vectors and ∥si∥ = λi. As a result, solving the SVP of the original L can be reduced to SVP of the
reduced-dimensional sublattices.

Algorithm 2 is our reduced-dimension algorithm for searching shortest lattice vector in the
presence of λεn+1-gap. This algorithm consists of three parts. The first part sieves enough short
vectors which fall into a subspace. The core of the second part is to apply Lemma 2 (we call the
corresponding algorithm for generating a basis for the sublattice the SubLattice Algorithm). Given
the inputs of the lattice basis B, a set of lattice vectors (U or Ũ), the SubLattice Algorithm outputs
a basis of a sublattice that may contain a shortest vector of the original lattice. The final part finds
the shortest lattice vector in the reduced-dimensional sublattice by using the Deterministic SVP
Algorithm of [34].

Algorithm 2: Reduced-Dimension Algorithm for lattice with λεn+1-Gap

Input: A basis of n-dimensional lattice B, N1,N2,γ > 1, ε < 1, reduced factor δ < 1, γ
1+1/δ

> ξ > 1
2
, µ ≃ λ1

Output: A shortest non-zero lattice vector

1: U ←− ∅, U ←− ∅
2: If Approximate SVP Algorithm(B, N1, N2, γ, εn

3, n, δ, ξ, µ) returns a shortest non-zero
lattice vector s

3. return s
4. else

5. (U,U)←− Approximate SVP Algorithm(B, N1, N2, γ, εn
3, n, δ, ξ, µ)

6: B̃←− SubLattice Algorithm(B, span(U))

7: if dim(B̃) = εn

8: s←− Deterministic SVP Algorithm(B̃, εn)
9: else

10: randomly choose v ∈ U
11: s←− v

12: for every v ∈ U \ U
13: Ũ ←− U ∪ {v}
14: B̃←− SubLattice Algorithm(B, span(Ũ))

15: s̃←− Deterministic SVP Algorithm(B̃, εn)
16: if ∥ s̃ ∥<∥ s ∥
17: s = s̃
18: end if
19: end for
20: end if
21:end if
22:return s

If the Approximate SVP Algorithm returns a shortest lattice vector in step 3, the algorithm
succeeds. In the following discussion in this subsetion, without loss of generality, we assume this
case does not happen.

In the algorithm, we only need to construct at most N2 sublattices with dimensions no more
than εn. The next lemma shows that if d is taken to be εn3, the shortest lattice vector must be in
one of these sublattices.
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Lemma 11. There is a subset {u1,u2, · · · ,uεn3} ⊂ U \{0}, with probability close to 1, the shortest
vector s belongs to at least one of the sublattices of the following form: span(u1,u2, . . . ,uεn3 ,v) ∩
L(B), where v ∈ (U \ U) ∪ {0}.

Proof. From the proof of Lemma 9, we know that, in U , there are at least d = εn3 different lattice
vectors ui satisfying u′

i − ui ∈ Is. We will let R be such set, i.e.,

R = {u : u ∈ U,u′ − u ∈ Is}.

By taking the first d elements if necessary, we may assume that |R| = d. i.e., we can write

R = {u1,u2, · · · ,ud}.

Now let
S = {v1,v2, · · · ,vM}

be the set of all lattice vectors whose length is smaller than or equal to γµ. The set R produced by
Algorithm 1 is thus a subset of S with d elements.

Due to the random nature of Algorithm 1, the set R obtained is also random. We assume the
distribution for the i-th element ui is D (we omit the subindex as it is observed that u1,u2, · · · ,ud

are independent and identically distributed).
Let H be the linear subspace generated by R, i.e., H = span(u1,u2, . . . ,uεn3). Since λεn+1 >

γλ1 and ∥ui∥ ≤ γλ1, we have H ⊆ span{s1, s2, . . . , sεn}, where si (i = 1, . . . , εn) are linearly
independent and ∥si∥ = λi. This yields dim(H) ≤ εn. We shall prove the lemma by considering an
ascending chain of εn subspaces Hi = span(u1,u2, . . . ,uin2), i = 1, 2, . . . , εn and H0 = span(0),
similar to that in the proof of Corollary 3.16 of [43].

If for some j0 < εn, we have dim(Hj0) = εn, then dim(Hεn) = εn. This forces that the shortest
lattice vector s1 ∈ H, as desired. Otherwise for all j < εn, dim(Hj) < εn. We need to deal with
two cases.
Case 1: The probability of u ∈ Hεn−1, where u obeys D, is at most 1 − 1

n . In this case, we shall
prove that with high probability, dim(Hεn) = εn.

In fact, in this case we have that the probability of u ∈ Hj , where u obeys D, is at most 1− 1
n ,

for every j < εn. This implies that the probability that all ujn2+1,ujn2+2, · · · ,ujn2+n2 ∈ Hj(j =

0, 1, ..., εn − 1) is less than (1 − 1
n)

n2
. So there is an i0 with jn2 + 1 ≤ i0 ≤ jn2 + n2 such that

ui0 /∈ Hj , with probability higher than 1− (1− 1
n)

n2
. In particular, we have dim(Hj+1) > dim(Hj).

Since dim(H1) > dim(H0) = 0, this means that dim(Hεn) = εn with probability higher than(
1− (1− 1

n)
n2
)εn

≥ 1− εn
en .

Case 2: The probability of u ∈ Hεn−1, where u obeys D, is bigger than 1 − 1
n . In this case, we

shall prove that with high probability, the shortest lattice vector s ∈ span(H ∪ {v}) for some
v ∈ (U \ U) ∪ {0}.

First, it is easy to see that the probability of u ∈ H, where u obeys D, is larger than 1 − 1
n .

We will proceed our proof by showing that with overwhelming probability, there exist a v ∈ U and
a subspace H0 ⊂ H such that v ∈ H0 + s. Similar to the proof of Lemma 9, we will use the τ
transformation to achieve this conclusion.

Once again, the Sample Algorithm is modified as follows: after choosing x uniformly from
Bn(ξµ), apply τ with probability 1/2 on every perturbation x. Note that

u′
x = −x mod P(B) = τ(−x) mod P(B) = u′

τ(−x).
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This means that for x ∈ Is, if the original Sample Algorithm returns (w,w′), the output of the
its modified version is (w+ s,w′) after this transformation. We then modify Algorithm 1 by using
this modified Sample Algorithm in the second loop. Because τ maintains the uniform distribution
on Bn(ξµ), the output distribution of the modified Algorithm 1 should be exactly the same as that
of the original algorithm. We note that τ transformation does not affect the Reduction Algorithm,
as we have argued in the proof of Lemma 9.

Running the modified Algorithm 1, we obtain the output (U ′, U
′
) with U

′
containing sufficiently

many vectors that are shorter than γµ. In a similar manner, we get a set R′ that contains d = εn3

vectors, say

R′ = {ũ1, ũ2, . . . , ũεn3}.

Let H ′ = span(R′) and consider H0 = H ∩H ′. Now let us prove that the probability of u ∈ H0,
where u obeys D, is bigger than 1− 2

n . In fact, for u being chosen from D, similar to the situation for
H, the probability of u ∈ H ′ is bigger than 1− 1

n . This means that the probability of u ∈ Hc ∪H ′c

is smaller than 2
n . The result follows immediately. Observe that the probability that at least one

vector from R is in H0 is 1−
(
2
n

)εn3

. So with probability higher than 1
2

(
1−

(
2
n

)εn3
)
, there exists

at least one vector ui0 ∈ H0 ∩ U which is changed to v = ui0 + s after the τ transformation. This

implies that the set U ′ contains the vector v ∈ H0 + s. If v ∈ U
′
, the shortest vector s belongs to

span(ũ1, ũ2, . . . , ũεn3) ∩ L(B). Otherwise, s ∈ span(ũ1, ũ2, . . . , ũεn3 ,v) ∩ L(B) and v ∈ (U \ U).

The proof is completed. �

To state the complexities of Algorithm 2, let us first fix some parameters used in the following
theorem: let ctime(γ, ξ, ε) = max{2cl(c, ξ)+cg(ξ), 2cg(ξ), 2εn+cgn}, cspace(γ, ξ, ε) = max{cl(γ, ξ), cg(ξ), εn}.
Now we are ready to prove:

Theorem 4. When λεn+1 > γλ1, the time complexity of Algorithm 2 is 2ctimen+o(n), and the space
complexity is 2cspacen+o(n).

Proof. We have proved in Theorem 3 that the time complexity bound of steps 2 to 5 of Reduced-
Dimension Algorithm is 2ctime1

n+o(n), where ctime1(γ, ξ) = max{2cl(γ, ξ) + cg(ξ), 2cg(ξ)}. With
N2 = 8d2cgn, the time spent on step 6 is 2cgn+o(n). For steps 7 to 22, according to Lemma 11, the
algorithm invokes at most N2 times εn-dimensional exact SVP, which need 22εn+cgn+o(n) operations.
Summing them up, we get the time complexity.

For space complexity, for steps 2 to 5, 2cspace1n+o(n) is needed, where cspace1(γ, ξ) = max{cl(γ, ξ), cg(ξ)}.
Steps 6 to 22 cost space max{2cgn+o(n), 2εn+o(n)}. �

Remark 3. If we solve the approximate SVP by the AKS sieve (the approximate version of AKS
is provided by [36]) instead of the ListSieve, U = U always holds. So in this case, we only need
to consider one reduced-dimensional sublattice. But the time complexity bound of the AKS for
approximate SVP is higher than that of the ListSieve. This difference becomes smaller with the
increase of the approximation factor γ. On the other hand, cg will decrease with the increase of γ,
since the optimal ξ is also increasing with γ. Moreover, in most cases, getting these approximate
short vectors costs more than finding the shortest vector in reduced-dimensional lattice. That is
why we choose the ListSieve. The overall complexity bound of the algorithm is determined by the
location as well as the size, of the gap.
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4.4 Reduced-Dimension Algorithm for SVP of Lattices with Multi-Gap

If a lattice has multi-gap among successive minima, more precisely, there exist ε1n, ε2n,...,εtn
such that λε1n+1 > c1λ1, λε2n+1 > c2λ1, · · · , λεtn+1 > ctλ1, where εi−1 < εi, ci−1 < ci, we
explore a recursive algorithm based on Algorithm 2. We take εi to be the smallest value that makes
λεin+1 > ciλ1. We have discussed the case of t = 1 in Section 4.3. To make the description of the
recursive algorithm more clear, we regard the Approximate SVP Algorithm here as the approximate
version of AKS which implies that we only need to consider one sublattice. To treat the general
case, we can set εt+1 = 1 and B̃0 = B in Algorithm 3.

Algorithm 3: Multi-Gap lattice Algorithm

Input: A basis of n-dimensional lattice B, (ε1, ε2, . . . , εt) and (c1, c2, . . . , ct), reduced factor δ < 1, µ ≃ λ1

Output: A shortest lattice vector
1:U ←− ∅
2: for i = 0 to i = t− 1

3: Ui ←− Approximate SVP Algorithm(B̃i, N
i
1, N

i
2, ct−i, εt−in

3, εt−i+1n, δ, ξ
(i), µ)

4: B̃i+1 ←−SubLattice Algorithm(B̃i, Ui, εt−in)
5: end for

6: s←− Deterministic SVP Algorithm(B̃t, ε1n)

Denote the time complexity of Approximate SVP algorithm for n-dimensional lattice as Õ(2c
′
time1(c,ξ)n+o(n))

and the space as Õ(2c
′
space1(c,ξ)n+o(n)). The total time and space complexity are Õ(2ctime+o(n)) and

Õ(2cspace+o(n)) respectively, where

ctime = max{c′time1(ct, ξ
(0))n, c′time1(ct−1, ξ

(1))εtn, . . . , c
′
time1(c1, ξ

(t−1))ε2n, 2ε1n},

cspace = max{c′space1(ct, ξ(0))n, c′space1(ct−1, ξ
(1))εtn, . . . , c

′
space1(c1, ξ

(t−1))ε2n, ε1n}.

Since the complexity of Deterministic SVP Algorithm based on Voronoi cell computation is
22n+o(n), the key parameter to compare our algorithm and the previous algorithm is γ0 which is
the minimal γ satisfying ctime1(γ, ξ) < 2. From Table 1 in Section 3.1, we see that γ0 is 3.61 (for
approximate AKS sieve, γ0 has to be 3.97). For a lattice with λi < γ0λ1, for all i ≤ n − o(n), the
Deterministic SVP Algorithm performs better. For this kind of lattices, the gaps are too small to
be used to simplify the general algorithm for SVP.

5 Conclusion

In this paper, we first estimate the size of the λ2-gap in the embedding lattice obtained from LWE
problem. Solving SVP in this lattice would find the solution of corresponding LWE problem. Our
analysis reveals that the error range of LWE attacked by embedding method is larger than that of
the existing distinguishing attack in high success probability case .For general BDD problem, for
some value of γ1, we present an improved reduction from BDDγ1 to uSV Pγ by constructing an
embedding lattice with larger λ2-gap.

We also give a more efficient algorithm to solve SVP of lattices with gaps among successive
minima. The key of the algorithm is reducing the SVP of a lattice to the SVP of corresponding
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reduced-dimensional sublattices. For the lattices with multi-gap, our algorithm can be invoked
recursively.

Although our algorithm decreases the upper bound of time complexity for SVP of lattice pos-
sessing gaps, as other random sieves, perturbation technique is used to prove the success probability
which is the bottleneck of the algorithm and makes this algorithm impractical. But we believe this
algorithm will motivate further research on finding practical algorithms for specific lattices with
gaps.
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19. G.Hanrot,X.Pujol,D.Stehlé, Analyzing Blockwise Lattice Algorithms Using Dynamical Systems. In CRYPTO
2011. LNCS, vol.6841 ,pp.447-464, Santa Barbara, USA, 2011.



20 Mingjie Liu, Xiaoyun Wang, Guangwu Xu and Xuexin Zheng

20. R.Kannan, Improved algorithms for integer programming and related lattice problems. In STOC 1983. pp.193-
206. Boston, Massachusetts, USA, 1983.

21. R.Kannan, Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research,
12(3)(1987), pp.415-440.

22. G. Kabatiansky and V. Levenshtein. Bounds for packings on a sphere and in space. Problemy Peredachi Infor-
matsii, 14(1)(1978), pp.3-25.

23. A. K.Lenstra, H. W.Jr.Lenstra, L.Lovász, Factoring polynomials with rational coefficients. Mathematische An-
nalen 261(1982), pp.513-534.
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7 Appendix

Proof of Theorem 2

Proof. By lemma 5, we only need to prove that there is a reduction from BDDγ1(1− 1
n
) to uSV Pγ .

Suppose u = dist(t,L) < γ1(1− 1
n)λ1(L), and v ∈ L is a vector such that dist(t,L) = ∥v − t∥.

We shall show that the vector v′ = (v − t,−ku0) is the γ-unique shortest vector in L′ and hence
can be found by solving uSV Pγ . Then, we get v from v′ immediately.

Note that u ≤ u0 <
u

1− 1
n

, so we have u0 < γ1λ1.

To show that v′ is the γ−unique shortest vector in L′, it suffices to show that any vector
y ∈ L′ \ Zv′ has length bigger than γλ1 = γ∥v′∥ = γ

√
u2 + (ku0)2.

Now let us set k = γ√
4−γ2

. Notice that γ1 =

√
4−γ2

√
3γ+

√
4−γ2

, we see that

γγ1
√

1 + k2 =
2γ

√
3γ +

√
4− γ2

. (2)

Write y = Σn
i=1xib

′
i +mb′

n+1. Then y = (a+mt,mku0) for some a ∈ L. We divide the rest of our
proof into three cases.

Case 1: m = 0. In this case we must have a ̸= 0 and ∥y∥ = ∥a∥. From equation (2),
γγ1

√
1 + k2 < 1, we have ∥y∥ = ∥a∥ ≥ λ1 > γ

√
1 + k2γ1λ1 > γ

√
1 + k2u0 ≥ γ

√
u2 + k2u20.

Case 2: |m| = 1. We only treat the case of m = 1, as the case of m = −1 is similar. Since
y /∈ Zv′, we know that a ̸= −v. We also have ∥a + v∥ ≥ λ1 > u0, because γ1 < 1. Since
1
γ1

− 1 =
√
3γ√

4−γ2
=

√
γ2(1 + k2)− k2, we have

∥y∥ =
√

∥a+ t∥2 + k2u20 ≥
√
(∥a+ v∥ − ∥v − t∥)2 + k2u20 =

√
(∥a+ v∥ − u)2 + k2u20

≥
√

(λ1 − u0)2 + k2u20 >

√
(
u0
γ1

− u0)2 + k2u20 =

√
(
1

γ1
− 1)2u20 + k2u20

=
√

(γ2(1 + k2)− k2)u20 + k2u20 = γ
√

(1 + k2)u20 ≥ γ
√
u2 + k2u20

Case 3 |m| ≥ 2. Without loss of generality, we assume 2t /∈ L. Since γ
√
1 + k2 = 2k, we have

∥y∥ =
√

∥a+mt∥2 +m2k2u20 > 2ku0 = γ
√

(1 + k2)u20 ≥ γ
√

u2 + k2u20. The proof is complete.

Proof of Lemma 2

Proof. In this case, we have an exact SVP oracle, i.e.γ = 1. As in the proof of Theorem 2, let

k = γ√
4−γ2

=
√
3
3 and discuss three cases. But, here we take γ1 =

√
3
2 . For case 1 of Theorem 2, it

is obvious that

∥y∥ = ∥a∥ ≥ λ1 >
2√
3
u0 =

√
1 + k2u0 ≥

√
u2 + k2u20.

The case 2 of Theorem 2 can be adapted to ∥(a − t,−ku0)∥ >
√

u2 + k2u20. If a is not a closest
lattice vector to t, this inequality is trivial. The analysis of case 3 is the same as in Theorem 2.

This proves that BDD√
3

2

reduces to SVP.

Next we move to the proof of Lemma 10. We need the following lemma in our proof.
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Lemma 12. [22] Let E ⊆ Rn\{0}. If there exists ϕ0 > 0 such that for any u,v ∈ E, we have
ϕu,v > ϕ0, then |E| ≤ 2cn+o(n) with c = −1

2 log2[1− cos(min(ϕ0, 62.99
o))]− 0.099.

Proof of Lemma 10

Proof. To estimate the number of points in List T, we first bound the norm of points. After the
Sample Algorithm, we have ∥t′ − t∥ ≤ ξµ, and the LLL reduced basis guarantee ∥t′∥ ≤ 2O(n)µ.
After the first loop of the algorithm, we have cµ ≤ ∥ti∥ ≤ (2O(n) + ξ)µ. We divide this space into
a polynomial number of spherical shells Td = {ti ∈ T |dµ < ∥ti∥ ≤ (1 + 1

n)dµ}. So we just need to
consider the quantity of points in every spherical shell.

Since ∥ti− tj∥ > cµ, ⟨ti, tj⟩ < ∥ti∥2+∥tj∥2−c2µ2

2 holds. For a fixed spherical shell, denote R = dµ,
so R < ∥ti∥, ∥tj∥ ≤ (1 + o(1))R.

cos(ϕti,tj ) ≤
∥ti∥2 + ∥tj∥2 − c2µ2

2∥ti∥∥tj∥
≤ 1− c2µ2

2R2
+ o(1).

On the other hand, the reduction condition gives ⟨t′i, tj⟩ <
(1−δ2)∥t′i∥2+∥tj∥2

2 . Therefore ⟨ti, tj⟩ <
(1−δ2)∥t′i∥2+∥tj∥2

2 + ∥tj∥ξµ. So taking δ = 1− 1
n , we have

cos(ϕti,tj ) ≤
(1− δ2)∥t′i∥2 + ∥tj∥2 + 2∥tj∥ξµ

2∥ti∥∥tj∥
≤ 1

2
+

ξµ

R
+ o(1).

Combining the two bounds on cos(ϕti,tj ), for all the spherical shells we get

cos(ϕti,tj ) ≤ max
R

min{1− c2µ2

2R2
,
1

2
+

ξµ

R
}+ o(1).

The first term gets larger and the second term gets smaller as R increases. So the maximal value

is obtained when 1− c2µ2

2R2 = 1
2 + ξµ

R , µ
R =

√
ξ2+c2−ξ

c2
. Using Lemma 12 we get the conclusion.
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