
SHORTEST-PATH AND MINIMUM-DELAY ALGORITHMS

in

NETWORKS WITH TIME-DEPENDENT EDGE-LENGTH

Ariel Orda

Raphael Rom

Department of Electrical Engineering

Technion - Israel Institute of Technology

Haifa, Israel 32000

August 1989

ABSTRACT

We consider in this paper the shortest-path problem in networks in which the delay (or weight) of the edges

changes with time according to arbitrary functions. We present algorithms for finding the shortest-path and

minimum-delay under various waiting constraints and investigate the properties of the derived path. We

show that if departure time from the source node is unrestricted then a shortest path can be found that is

simple and achieves a delay as short as the most unrestricted path. In the case of restricted transit, it is

shown that there exist cases where the minimum delay is finite but the path that achieves it is infinite.

This research was supported by the Foundation for Research in Electronics, Computers and Communications, Administered by
the Israel Academy of Science and Humanities

I. INTRODUCTION

Shortest paths algorithms have been the subject of extensive research for many years resulting in a

large number of algorithms for various conditions and constraints[1]. The vast majority of these deal with

fixed graphs i.e., fixed topology and fixed link weights.

The advancement of computer networks and distributed processing has brought renewed interest in

the subject with a new twist: time dependency. Several works have been published dealing with topologi-

cal changes in which links may occasionally become unavailable (i.e., infinite weight) and others deal with

quasi static models, that is, link weights that change from time to time but remain constant in between these

(infrequent) changes[2,3].

Time dependent shortest path problems have been studied for the case of discrete delay functions

whose domain and range are the positive integers. Such problems were addressed both directly [4,5] and

indirectly in the context of maximal flow[6,7].

In this paper we address the shortest path problem without these restrictions, i.e., we allow arbitrary

functions for link delays. In this respect this is the broadest generalization. Such a problem was briefly

treated by Dreyfus[8] and Ling et.al.[9] which address only limited cases. The most direct treatment to date

was done by Halpern[10] where arbitrary waiting times are also considered. In this latter work an algo-

rithm is proposed for various waiting constraints, but this algorithm cannot be bounded by network topol-

ogy (i.e., the number of operations cannot be bounded by a function of the number of nodes or edges) nor

are the properties of the resulting path investigated (e.g., whether it is a simple path). All the above works

avoid the treatment of functions by addressing the problem for a single instance of time and not for time

ranges. In this paper we present algorithms for finding the shortest-path and minimum-delay for all

instances of time and under various waiting constraints and investigate properties of the derived path. We

show that if messages can be arbitrarily delayed at the source node then a shortest path can be found that is

simple and achieves a delay as short as the most unrestricted path, without having to wait enroute.

Our interpretation of time dependency of links is that of message traversal. For example, one

interpretation might be the delay incurred by a message traversing the links. We note that time dependency

may not be a continuous function. Consider a dial-up link between two nodes which is established and

disestablished periodically. A message arriving while the link is established will suffer a relatively short

delay while a message arriving immediately after the link is disestablished will suffer a much greater delay.

We also do not restrict ourselves to FIFO links only, since in some potential cases the FIFO assump-

tion is invalid. For example, consider a link composed of two physical communication channels one being

faster than the other. If the policy of link management is to send a message over the first available channel,

then a message sent over the slower one may arrive later than another message, sent later on the faster chan-

nel, meaning that messages arrive in a non-FIFO order.

Our interest in the problem stems from related problems in computer communication networks;

hence our reference to "messages." Nonetheless, the results reported here hold for a general graph. In par-

ticular, some transportation networks may serve as good examples. One such example (following [9]) is a

traveler standing on a platform in a railway station wondering whether to take the local train stopping in

front of him or to wait for the express train to his destination. Here again, we have time dependency of

delays, with possible non-FIFO behavior.

This paper is structured as follows. After presenting a formal model in section II, we present

shortest-path algorithms for various types of node behavior and several classes of delay functions. Section

IV concludes these results and points at some further research problems to extend this work.

- 2 -

II. MODEL

We consider a bi-directed network G(V ,E ,D), with V = {1 , 2 , . . . , n } being the set of nodes,

E⊆V×V the set of links (with (i ,k) ∈E implying (k ,i) ∈E), and D = { d ik (t)(i ,k) ∈E } a set of time-

dependent link delays i.e., d ik (t) is a strictly positive function of time defined for [0 ,∞) which describes

the delay of a message over link (i ,k) at time t. (Several results presented in this paper are valid only for a

smaller class of functions, e.g., continuous or piecewise continuous; we shall indicate these restrictions

when the need arises).

Several interpretations of the link delay functions are possible resulting in somewhat different

models. In one model, referred to as the f rozen link model, the delay of a message is fixed at the time a

message starts traversing it. In another, referred to as the elastic link model d ik (t) is the instantaneous link

length at time t. According to this latter model messages that start traversing the link from i to k at time t 0

will arrive at k at the first instance of time t 1 > t 0 for which t 1 − t 0 ≥d ik (t 1).

As a matter of fact the elastic link model is a submodel of the frozen link one. Consider the follow-

ing transformation from a function dik
(e) (t) to d ik (t):

d ik (t) =
τ ≥0
min {ττ ≥dik

(e) (t + τ) }

then, dik
(e) (t) interpreted as the delay function according to the elastic link and d ik (t) interpreted as the delay

function according to the frozen link model will result in exactly the same network behavior. Note that in

the elastic link we always have FIFO behavior, while in the frozen link model non-FIFO behavior is possi-

ble. In the rest of the paper we therefore focus our attention on the more general frozen link model.

Because of the possible non-FIFO characteristics of the d ik (t) it may sometimes be preferable to wait

a certain amount of time at the sending node before embarking on the link traversal. Such waiting con-

sumes buffer space and may not be permitted by all nodes. We therefore consider three different network

traversal policies:

• Unrestricted waiting (UW) in which unlimited waiting is allowed everywhere along the message

path through the network.

• Forbidden waiting (FW) in which waiting is disallowed everywhere along the message path

through the network.

• Source waiting (SW) in which waiting is disallowed everywhere along the message path through

the network except at the source node which permits unlimited waiting.

Note that waiting time is a means of flow control[11]. The UW model implies a hop-by-hop flow

control, the SW an end-to-end flow control mechanism, and the FW rules out flow control.

- 3 -

We now define the terminology used in analyzing the above models. Consider a message that arrives

at node i at time t, waits for a period of τ and then departs on link (i ,k) at time t + τ. This message arrives

at node k at time t + [τ + d ik (t + τ)]. We define D ik (t ,τ) =
∆ τ + d ik (t + τ) which is the combined waiting

time and link delay for traversing link (i ,k). To minimize traversal time we are interested in finding , for

link (i ,k) and time t, an optimal waiting time, i.e., a waiting time τ* ≥0 such that for any other waiting time

τ ≥0, D ik (t ,τ*) ≤D ik (t ,τ). Note that in some cases such a value may not exist. Consider, for example, a

link (i ,k) for which

d ik (t) =

1

100

t > 10

t≤10

Then, for t = 0,
τ ≥0
inf D ik (0 ,τ) = 11 but this value cannot be achieved for any τ ≥0. This point was overlooked

in previous works[8,9,10]. In the following we shall implicitly assume that delay functions are such that

for all (i ,k) and every time instant t a proper optimal waiting time τ* does exist. This property clearly

holds for continuous functions while for piecewise continuous functions a sufficient condition for this pro-

perty to hold is that for all i ,k ,t: d ik (t) ≤min {d ik (t +) ,d ik (t −) }.

Denote by N k the set of node k’s neighbors; then, a topological path through the network is a

sequence of nodes (v 0 , . . . , vm) such that a link exists between every pair (v i ,v i + 1) i.e., v i + 1 ∈N v i
. These

definitions of N k and of a topological path are only topology dependent and not time dependent. A simple

topological path is one in which no node appears more than once.

A waiting schedule is an m-tuplet of waiting times τ τ = (τ 0 ,τ 1 , . . . , τ m − 1) with τ i ∈[0 ,∞) signifying

the duration of waiting at node v i . A traversal path is an ordered pair (π π ,τ τ) of a topological path π π and a

waiting schedule τ τ, τ τ having one less component than π π. A traversal path (π π ,τ τ) is called simple if π π is a

simple topological path. When no ambiguity exists, we shall use the term "path" to refer to both topologi-

cal and traversal paths.

Let t S be the earliest time in which a given message can start traversing the network (this is usually

the message creation time). t S is referred to as the starting time. Suppose that a given message travels

from a source node s to its destination node w along some traversal path (π π ,τ τ), with π π = (v 0 ,v 1 , . . . , vm),

v 0 = s, vm = w, τ τ = (τ 0 ,τ 1 , . . . , τ m − 1). Define:

t A (0) =
∆

t S

t A (i) =
∆

t A (i − 1) + D v i − 1 ,v i
(t A (i − 1) ,τ i − 1) 0 < i≤m

t D (i) =
∆

t A (i) + τ i 0≤i < m

For starting time t S , t A (i) is the arrival time at node v i and t D (i) the departure time from that node when

traversing the network according to (π π ,τ τ). The path delay PD((π π ,τ τ) ,t S) of a path (π π ,τ τ) for starting

- 4 -

time t S is given by

PD((π π ,τ τ) ,t S) = t A (m) − t A (0)

The shortest path problem for a graph G(V ,E ,D) can now be formulated. Given nodes s and w in V

and a time t S ∈[0 ,∞), find a traversal path (π π ,τ τ), π π = (s ,v 1 , . . . , vm − 1 ,w), τ τ = (τ 0 ,τ 1 , . . . , τ m − 1) such

that for any other traversal path (π π ′ ,τ τ ′) with π π ′ = (s ,u 1 , . . . , u l − 1 ,w)

PD((π π ,τ τ) ,t S) ≤PD((π π ′ ,τ τ ′) ,t S) .

Such a traversal path is a minimum delay path to which we shall also refer as a "shortest path." The

topological-path component of a minimum delay traversal path is referred to as a shortest topological path.

A shortest path as defined above is denoted SP(s ,w ,t S) and since there may be several shortest traversal

paths for given s ,w ,t S , we denote by SP SP(s ,w ,t S) the set of them all.

A shortest topological path may have the property that each of its subpaths is also a shortest topologi-

cal path between the source and the intermediate nodes for the same starting time. Such a topological path

is said to be concatenated. Formally, a shortest topological path π π = (v 0 ,v 1 , . . . , vm) between nodes v 0

and vm for starting time t S is said to be concatenated if for each i, 0≤i≤m − 1 there is a schedule τ τ(i) such

that ((v 0 ,v 1 , . . . , v i) ,τ τ(i)) is a shortest traversal path between v 0 and v i for starting time t S . Note that

the schedule for each of the subpaths may be different. Consider now a shortest traversal path whose

corresponding topological path is concatenated. If the optimal schedule of each subpath is the correspond-

ing sub-schedule of the entire traversal schedule we say that the shortest traversal path is also con-

catenated. Formally, a shortest traversal path (π π ,τ τ), π π = (v 0 ,v 1 , . . . , vm), τ τ = (τ 0 ,τ 1 , . . . , τ m − 1), for v 0 ,

vm, and starting time t S is said to be concatenated if for each i, 0≤i≤m − 1, the traversal path

((v 0 ,v 1 , . . . , v i) , (τ 0 ,τ 1 , . . . , τ i − 1)) is a shortest traversal path for v 0 , v i , and t S .

Finally, while all the shortest paths in SP SP(s ,w ,t) have the same delay they may differ by the number

of hops (i.e., edges). Considering the subset of paths of SP SP(s ,w ,t) which are simple and concatenated, and

assuming this subset is nonempty we define the hop-index H(s ,w ,t) as the minimal number of hops among

these simple and concatenated shortest paths.

- 5 -

III. SHORTEST PATH ALGORITHMS

A. The Unrestricted Waiting Model

1. A Shortest-Path Algorithm for a Given Starting Time

Given a source node s and a starting time t S we look for shortest paths and minimum delays between

s and all other nodes for that starting time. As noted in Dreyfus[8] this is a straightforward extension to

such algorithms as Dijkstra’s[12] or Ford’s[6]. We present the algorithm here to become familiar with

some notions and differences from the standard version that will be helpful later.

We start by making some observations regarding optimal waiting times. Define

D ik (t) =
∆

τ ≥0
min {D ik (t ,τ) } and consider Figure 1. In Figure 1.a we observe a message departing node i at

time t 1 when the link delay is d ik (t 1), meaning that the message arrives at node k at t 1 ′ = t 1 + d ik (t 1).

Figure 1: Message departure and arrival times
(a) Immediate departures

(b) Arrival times for several departure times
(c) Optimal departure time

- 6 -

Figure 1.b depicts arrival times at node k for several departing times from node i. Noteworthy is the fact

that a delayed departure at t 3 results in an earlier arrival.

The reader will easily convince himself that to minimize the delay, a message arriving at t 1 should

depart at t 4 (see Figure 1.c). The point t 4 can be characterized as the rightmost intersection point in

[t 1 ,t 1 + d ik (t 1)] between d ik (t) and the 45° cord closest to the origin. (If d ik (t) is differentiable then its

derivative at t 4 equals − 1). Note that all messages arriving in [t 0 ,t 4] should depart at t 4 to achieve

minimum delay. D ik (t) is a well defined function of t. Figure 2 shows the function D ik (t) resulting from

d ik (t) of Figure 1.

We proceed now to present the algorithm, which is a version of a labeling algorithm where each node

is labeled by the earliest possible arrival time at that node with the given starting time at the source node.

Following the terminology of labeling algorithms, X k is the permanent label of the node (NULL indicating

the node is not permanently labeled), and Y k is its temporary label. The algorithm also builds the shortest

topological-paths spanning tree which can be constructed by the values of f k computed by the algorithm. f k

is the identity of node k’s father in that tree. The functions D ik (t), as defined above, are part of the

algorithm’s input.

Algorithm UW1

1. Initialization:

X s ← t S; f s ← NIL; ∀k≠s Y k ← ∞ , X k ← NULL , f k ← NIL;

j ← s;

2. For all neighbors k of j for which X k = NULL do:

Figure 2: Optimal delay function (including optimal waiting)
for the delay function of Figure 1

- 7 -

a. Y k ←min {Y k ,X j + D j k (X j) }

b. If Y k changed in step 2.a then set f k ← j.

3. If all nodes have nonnull X-value, then stop.

Otherwise, let l be a node for which X l = NULL and such that Y l ≤Y k ∀k for which X k = NULL.

Set X l ← Y l , j←l, and proceed with step 2.

The main difference between this and conventional shortest path algorithms is the calculation of

D j k (X j) in step 2.a. However, this is a simple operation (see next section) and thus all operations per-

formed by the algorithms are simple.

Theorem 1: Algorithm UW1 terminates after O(V2) operations. After execution the relation j→ f j

forms a spanning tree of G rooted at s on which each path from s to any node j is a shortest topological path

for starting time t S whose delay is given by X j − t S .

Proof: The proof follows closely that of Dijkstra’s algorithm (see, for example, Even[13]).

Corollary 1: In the UW model, for any source-destination pair and any starting time, there exists a

simple and concatenated shortest path.

Note that optimal waiting times are implicitly given via the functions D ik (t) and d ik (t): a message

arriving at node i at time t and having to depart on link (i ,k) waits at node i for a period of τ, where τ is

such that τ + d ik (t + τ) = D ik (t). Thus the algorithm enables construction of shortest traversal paths.

2. A Shortest-Path Algorithm for All Starting Times

The algorithm we present is a generalization of UW1. The main difficulty stems from the fact that

the values X k are now functions of time. In addition, constructing the spanning tree is now more compli-

cated since the tree changes with time in a manner that is harder to capture.

To overcome this latter problem we define, instead of a single value, a set of functions Y kl (t) that is

defined for every node k and for each of its neighbors l∈N k . X k (t) is, as before, the earliest arrival time at

node k for starting time t (as known at a certain step of execution). Y kl (t) is, similarly, the earliest arrival

time at node l through its neighboring node k of a message started at time t. The double index on Y is used

to determine the spanning tree. This tree is defined by choosing a father k for node l and time t 0 such that

X l (t 0) = Y kl (t 0); if more than a single such node exists we choose (arbitrarily) the one with the smallest

index (this is done throughout the paper whenever a selection is not unique).

- 8 -

Algorithm UW2

1. ∀k: (a) X k (t) ← ∞ ; (b) ∀l∈N k Y kl (t) ← ∞.

2. X s (t) ← t.

3. For each (k ,l) ∈E set Y kl (t) ← X k (t) + D kl (X k (t)).

4. For each l∈V set X l (t) ←
k∈N l

min {Y kl (t) }.

5. If no X l (t) just changed1 (for any l) stop; otherwise, proceed with step 3.

Before we proceed to the next theorem some explanations are in order. All the assignments are to

functions. Thus, for example, in step 3 the function Y kl (t) is set to the sum of two functions X k (t) and

D kl (X k (t)). In order to analyze and compare algorithms that work with functions, we first introduce termi-

nology of operations performed on functions. We refer to one dimensional functions with domain [0 ,∞)

and range (0 ,∞). A simple operation on functions is one of the following:

- Function assignment: f (t) ←g(t).

- A linear combination of two functions: c 1 g 1 (t) + c 2 g 2 (t).

- Minimum of two functions: min {g 1 (t) ,g 2 (t) }.

- Compounding two functions: f (g(t)).

- Computing the maximal right neighborhood of a function in which it is constant, i.e.:

f (t) = max {τ∀ θ , t≤ θ ≤ τ , g(θ) = g(t) }2

We say that an algorithm operating on functions has a functional complexity of order α(n), denoted

O f (α(n)), if there is a constant k > 0 such that for an input of length n (that is, n functions to be operated

on) the number of simple function operations performed by the algorithm is bounded by kα(n). Clearly,

the execution of a function operation may sometimes be quite involved. Nonetheless, the definition is use-

ful for several reasons: (1) assuming that such operations can be performed in finite time, an algorithm of

finite functional complexity is finite; (2) algorithms that operate on functions can be compared; (3) algo-

rithms that operate on functions can be compared with those that do not (e.g., UW1 with UW2). This

definition of functional complexity leads to the following theorem.

Theorem 2:

i. Algorithm UW2 terminates after at most O f (V E) function operations.

1"Just changed" means that there exists at least one instance t for which the function changed its value during the most recently

executed step.
2 Such operations are not used by algorithm UW2, and are introduced for future reference.

- 9 -

ii. After termination, X k (t) − t is the minimum delay from node s to node k for starting time t.

iii. For a given time t and for every node l let k be the father of l (i.e., k is the lowest index for

which Y kl (t) = X l (t)), a relation denoted by l→k. Then, after termination, the relation l→k

defines a spanning tree of G rooted at s for which the topological path from s to every node

along the tree is a simple and concatenated shortest (topological) path for starting time t.

Proof: See Appendix A.

Note that the functional complexity of UW2 is O f (V E) whereas the complexity of UW1 is

O(V2). The difference is that when all starting times are considered at once, we can no longer identify at

each iteration a single node that serves as the center of operation for that (and only that) iteration and be

disregarded in subsequent iterations (this is done in UW1 by labeling a node permanently). Rather, in each

iteration of UW2 all edges must be considered in an attempt to improve the earliest arrival times. In other

words, we cannot use a Dijkstra-type algorithm, and must resort to a Ford-type one (see [13]).

B. The Forbidden Waiting Model

It is possible that in the FW model none of the shortest paths is simple or concatenated. A simple

four node example is shown in Figure 3 where d 12 (t) = d 13 (t) = 1, d 23 (t) = d 32 (t) = 2, and

d 34 (t) = 1 + (t − 5)2 . Here SP(1 , 4 ,t = 0) = (1 , 3 , 2 , 3 , 4) is the only shortest path and contains a loop (since

in the FW model the waiting schedule is all zeroes a traversal path is fully described by the topological

path; we thus make no distinction between these two concepts when dealing with this model). The shortest

path from node 1 to node 2 is SP(1 , 2 ,t) = (1 , 2). Thus SP(1 , 4 , 0) is neither simple nor concatenated.

The above fact rules out the use of Ford- or Dijkstra-type algorithms and suggests that no polynomial

algorithm exists, i.e., the number of operations cannot be bounded by a polynomial in V. Indeed, if shor-

test paths are not concatenated, "partial results" cannot be used and the calculation of the shortest path

between two nodes must consider all possible paths between them. (The authors suspect that the problem is

Figure 3: Nonsimple and nonconcatenated shortest-path for the Forbidden
Waiting (FW) model

- 10 -

NP-Hard and are currently working on a proof).

Under some circumstances it is even possible to have an infinite shortest path (i.e., containing an

infinite number of hops) although the minimum delay is finite. Figure 4 depicts such a case for the shortest

path between nodes 1 and 3. Here

d 12 (t) = d 21 (t) =

1

(1 − t)/2

elsewhere

0 < t < 1
d 13 (t) =

1

3 − 2t

elsewhere

0≤t < 1

Starting in node 1 at some time 0 < t S < 1 node 1 can be revisited at a sequence of times t k = 1 − (1 − t S)/4k

meaning that possible arrival times at node 3 are T k = t k + d 13 (t k) = 2 + (1 − t S)/4k > 2. However, for

k→ ∞ one can arrive at node 3 at time T = 2.

In Halpern[10] an algorithm is presented that attempts to find a (finite) shortest path in a time-

dependent network. Waiting at every node is limited to a predetermined (possibly empty) set of intervals

and delay functions are nonnegative and piecewise continuous. The FW model is a special case of that

model. From the above example of an infinite shortest path we conclude that Halpern’s algorithm cannot

perform its task in all cases for which it was supposed to. A close examination of Halpern’s proof reveals

that slightly tighter constraints must be imposed on the delay functions for the algorithm to be correct (such

as the constraints discussed below).

There are only a few facts that can be stated generally regarding this model. One obvious charac-

teristic is that if optimal waiting time is always zero (in which case D ik (t) ≡d ik (t)) the behavior of the

algorithm in the FW and UW will be identical. This is a characteristic of a network with only FIFO links

which, for differentiable delay functions means that the slope of d ik (t) never decreases below -1. Another

general fact that can be stated is that if for every i ,k and every finite T there exists a δ > 0 (depending on i, k,

and T) such that for every t≤T holds d ik (t) > δ, then the shortest path between any two nodes is finite.

Figure 4: Example of infinite shortest-path with finite minimum delay

- 11 -

C. The Source Waiting Model

We observe an immense gap between the UW and FW models in finding shortest paths: the UW

model behaves just like the time-independent case (i.e., when delays are constant) whereas in the FW

model it seems that such efficient algorithms do not exist. However, by just alleviating slightly the con-

straint on waiting, namely by permitting source waiting, efficient algorithms can be found. In particular if

all the delay functions are of the class described below the following theorem proves equivalence (from the

shortest path standpoint) between the UW and SW models.

Theorem 3: If ∀(k , j) ∈E d k j (t) is continuous or piecewise continuous with only negative discon-

tinuities (i.e., ∀t d k j (t −) ≥d k j (t +)) and such that for all t either d k j (t) = d k j (t −) or d k j (t) = d k j (t +), then

every shortest topological path in the UW model is also a shortest topological path in the SW model, hav-

ing the same delay. In other words

if (π π ,τ) = ((v 0 ,v 1 , . . . , vm) , (τ 0 ,τ 1 , . . . , τ m − 1)) ∈SP SPUW (s ,w ,t)

then for some τ 0 ′:
(π π ,τ τ′) = (v 0 ,v 1 , . . . , vm) , (τ 0 ′ , 0 , . . . , 0)) ∈SP SPSW (s ,w ,t) and PD((π π ,τ) ,t) = PD((π π ,τ′) ,t).

Proof: Assume first that all delay functions are continuous.

Let (π π UW ,τ UW) = ((v 0 , . . . , vm) , (τ 0 ,τ 1 , . . . , τ m − 1)) ∈SP SPUW (s ,w ,t S), s = v 0 , w = vm, and let t A (i) and

t D (i) be, respectively, the arrival and departure times at node v i ∈ π π UW when traveling along (π π UW ,τ UW).

To prove the theorem we show that for any given v i ∈ π π UW and for any given time T≥t A (i) there is a source

departure time T D ≥t S such that if we leave s at T D and travel along π π UW according to the SW model we

arrive at v i at time T. In other words, we can adjust the departure times from s so that we arrive at the node

v i at any desired preset time T as long as it is not earlier than t A (i).

We prove this claim by induction on the nodes in π π UW. For i = 0 the claim is trivially true. Assum-

ing truth for the ith node we prove for the i + 1st.

Choose T≥t A (i + 1). To arrive at node v i + 1 at time T we have to depart node v i at time θ such that

θ + d v i ,v i + 1
(θ) = T. The question is whether such θ exists and whether we can arrive at node v i at that time.

Consider therefore the function f (x) = x + d v i ,v i + 1
(x). f (x) is continuous, f (x) → ∞ as x→ ∞ and

f (t D (i)) = t A (i + 1) ≤T. Therefore, according to the Intermediate Value Theorem of infinitesimal calculus,

there exists a θ such that f (θ) = T and θ ≥t D (i) ≥t A (i). By the inductive assumption there exists a departure

time T D that will cause arrival in node v i at time θ and therefore at node v i + 1 at time T.

Suppose now that delay functions have a countable number of negative discontinuities. Up to the

point where the continuity of f (x) is assumed the proof remains the same. Next, for this case, f (x) is piece-

wise continuous with negative discontinuities, f (x) → ∞ as x→ ∞ and f (t D (i)) = t A (i + 1) ≤T. It can be

verified that the Intermediate Value Theorem holds for this case as well, so that there exists a θ such that

f (θ) = T and θ ≥t D (i) ≥t A (i); the proof follows.

- 12 -

It should be noted that while the same path is being traversed, the departure times for each intermedi-

ate node may be different. Indeed, as we shall see in Algorithm SW1 that follows, a separate calculation is

needed for each source-destination pair.

From Theorem 3 and Corollary 1 we get immediately:

Corollary 2: If all d ik (t) are as in Theorem 3 then, for a given source and destination pair and a starting

time there exists a shortest traversal path in the SW model that is simple and whose corresponding topolog-

ical path is concatenated.

1. A Shortest-Path Algorithm for Continuous Functions and a Given Starting Time

As in the UW model, we first present an algorithm to find the shortest path between some node s and

all other nodes for a given starting time t S . The addition here is the computation of the departure times for

every destination node (we assume the delay functions are those for which Theorem 3 holds). In the algo-

rithm we make use of the results of Theorem 3 and Corollary 2.

For a given destination we first determine the minimum delay and shortest topological path for the

UW model. By Theorem 3 we know that the same topological path can be used for the SW model with the

same arrival time at the destination. We thus start at the destination node for the known arrival time and

compute the departure time from its predecessor on the shortest topological path. This process is then

repeated for all nodes in the path. When this backtracking is complete, i.e., when the source node is

reached in the computation process, we have computed the departure time from the source node which

trivially yields the source waiting time.

Algorithm SW1

1. Compute a shortest topological path using Algorithm UW1 for node s and starting time t S (after

execution both the spanning tree relation j→ f j and the minimum delay X j − t S are known for

every node j).

2. For each i∈V do

a. Set t A ← X i , j ← i.

b. Until j = s do

i. Find t D such that t D ≥X f j
and t D + d f j , j (t D) = t A .

ii. t A ← t D, j ← f j .

c. t W (s ,i ,t S) ← t A − t S .

Theorem 4: The following is true for Algorithm SW1:

- 13 -

i. It stops after O(V2) operations.

ii. After termination the relation j→ f j forms a spanning tree of G rooted at s on which each path

from s to any node j is a shortest topological path for time t S whose delay is given by X j − t S .

iii. After termination for each i∈V t W (s ,i ,t S) is a (nonnegative) waiting time such that departing

node s at time t S + t W (s ,i ,t S) and moving without waiting along the tree will result in arrival at

node i with minimum delay.

Proof: By Theorem 1, the relation j→ f j defines a spanning tree meaning that step 2.b terminates (in

fact is executed O(V) times) provided the value of t D, as appears in step 2.b.i of the Algorithm, can

always be computed. We now demonstrate this fact.

For continuous or piecewise continuous functions with only negative discontinuities the equation

t D + d k j (t D) = t A has at least one solution t D ∈(− ∞ ,∞) for any given t A . The solutions are the intersection

points between d k j (t) and the − 45° line t A − t. Moreover, Theorem 3 guarantees that one of these solutions

fulfills t D > X f j
, proving claim (iii).

The two other claims follow immediately. Step 2.b involves O(V) operations and is executed

O(V) times resulting in a total of O(V2) operations for step 2. By Theorem 1 claim (ii) holds. Claim

(i) follows directly from the above and Theorems 1 and 3.

As an example of the above computation consider a network all of whose links have the same delay

functions, that is, d ik (t) = d(t). Starting at a given time t S we seek minimum delay from the source node to

a node 4 hops away traversing nodes 1,2,3 on its way. Figure 5 shows the function d(t) and the respective

arrival and departure times in the UW model (the dashed lines). Having determined t a4
we compute back-

wards the visiting times according to the SW model (marked t′ i). These are computed as follows. We

determine t′ 3 as the departure time for arrival at t′ 4 . We then compute t′ 2 , the departure time for arrival at

t′ 3 , and so on (the dot-dashed lines in Figure 5). Finally t′ S determines the departure time from the source

according to the SW model, and t W (s ,w ,t S) = t′ S − t S is the waiting time.

2. A Shortest-Path Algorithm for All Starting Times

We assume in this section that the delay functions are those for which Theorem 3 holds. The follow-

ing observations show how Algorithm UW2 is used for solving the same problem in the SW model. As

was proved, when UW2 terminates X k (t) is the earliest arrival time at node k from node s for starting time t

in the UW model. Since waiting is allowed in the UW model, t 2 > t 1 implies X k (t 2) ≥X k (t 1). With each

time instant t 0 and destination node k we may thus associate the latest starting time, L k (t 0), that results in

the same arrival time at the destination. Formally, for each t 0 and node k: (a) L k (t 0) ≥t 0; (b)

X k (L k (t 0)) = X k (t 0); (c) ∀t > L k (t 0) : X k (t) > X k (t 0). In fact, L k (t 0) is the latest departure time from

node s in the UW model that enables arrival at node k at the earliest possible arrival time for starting time

- 14 -

Figure 5: Computation of waiting times

t 0 . It is fairly easy to determine L k (t 0) for given k and t 0 , since from the above follows that

∀t∈[t 0 , L k (t 0)] we have X k (t) = X k (t 0). The following lemma establishes a useful property of the

values of L k (t).

Lemma 1: For source node s, destination node w, starting time t S , and L w (t S) as defined above, let

P = (π π ,τ) be a shortest traversal path for s ,w ,L w (t S). Then τ = (0 , 0 , . . . , 0) i.e, traversing is without wait-

ing (neither at the source nor enroute).

Proof: Assume the contrary, i.e., there is a shortest path

P = (π π ,τ) = ((s ,v 1 , . . . , vm − 1 ,w) , (τ 0 , . . . , τ m − 1))

for s ,w ,L w (t S) such that for some 0≤i≤m − 1, τ i ≠0. We distinguish two cases depending on the value of

τ 0 . Assume first that τ 0 ≠0. Since X w (t) is the earliest arrival time at node w for starting time t and since P

is a shortest path we have

X w (L w (t S)) = PD(P ,L w (t S)) + L w (t S) .

Consider now the traversal path P ′ = (π π ,τ′) where τ′ = (0 ,τ 1 , . . . , τ m − 1) and consider the starting time

L w (t S) + τ 0 . It is straightforward to notice that the arrival time at node w for these two paths is the same,

namely

PD(P ′ , L w (t S) + τ 0) + L w (t S) + τ 0 = PD(P , L w (t S)) + L w (t S)

hence

X w (L w (t S)) = PD(P ′ , L w (t S) + τ 0) + L w (t S) + τ 0 .

On the other hand, again because X w (.) is the earliest arrival time, we have

- 15 -

PD(P ′ , L w (t S) + τ 0) + L w (t S) + τ 0 ≥ X w (L w (t S) + τ 0)

and we conclude that X w (L w (t S)) ≥X w (L w (t S) + τ 0). But L w (t S) + τ 0 > L w (t S) ≥t S , thus property (c) in

the definition of L w (t S) implies that X w (L w (t S)) < X w (L w (t S) + τ 0), contradicting the above conclusion.

Assume now that τ j ≠0 for some j > 0 and let i be the smallest such j (i.e., τ 0 = τ 1 = . . . = τ i − 1 = 0).

Denote by t D (i) the departure time from node v i on path P for starting time L w (t S). Theorem 3 guarantees

that there is some τ > 0 such that if we leave node s at time L w (t S) + τ traversing the topological path π π, we

arrive at node v i at time t D (i) without waiting enroute. Thus for P ′ = (π π ,τ′),

τ′ = (τ , 0 , . . . , 0 ,τ i + 1 , . . . , τ m − 1), we have PD(P ′ , L w (t S)) = PD(P , L w (t S)), and thus P ′ is also a

shortest path for s ,w ,L w (t S) but with τ 0 = τ > 0, and we have already seen that a contradiction follows.

Corollary 3: For source node s, destination node w, and starting time t S , L w (t S) − t S is an optimal

source waiting time for the SW model and any shortest topological path for s ,w ,L w (t S) in the UW model

is also a shortest topological path for s ,w ,t S in the SW model.

Proof: Let λ w (t S) (where λ w (t S) ≥t S) be the latest departure time for starting time t S that assures

earliest arrival time at node w in the SW model. From Theorem 3 it follows that λ w (t S) = L w (t S), estab-

lishing the first part of the corollary. The second part follows directly from Lemma 1.

The above corollary makes our approach clear. We first run Algorithm UW2 and obtain for each

w∈V the function X w (t) which is the minimal delay from node s to w for all times t in both the UW and

SW models. To construct a shortest traversal path for starting time t we calculate the source waiting time

WAIT(s ,w ,t) according to

WAIT(s ,w ,t) = max {τ X w (t + τ) = X w (t) }

i.e., we want to leave at L w (t) and therefore wait for L w (t) − t. We then traverse the topological path

defined by the values of X k (t + WAIT(s ,w ,t)) and Y kl (t + WAIT(s ,w ,t)).

The above discussion is summarized by the following formal specification of the algorithm, along

with the corresponding theorem.

Algorithm SW2

1. Execute Algorithm UW2.

2. For each w∈V do WAIT(s ,w ,t) ← max {τ X w (t + τ) = X w (t) }.

Theorem 5: The following is true for Algorithm SW2 and for the SW model:

i. It stops after O f (V E) function operations.

ii. After termination, X w (t) − t is the minimum delay from node s to node w for starting time t, and

WAIT(s ,w ,t) is an optimal source waiting time.

- 16 -

iii. For a time t and for every node w, the topological path between s and w on the spanning tree

defined (in the way described in Theorem 2) by X l (t + WAIT(s ,w ,t)) , Y kl (t + WAIT(s ,w ,t)) is

a shortest topological path for s ,w ,t.

Proof: According to Theorem 2, claim (i) is true for the first part of the algorithm. The second part

of the algorithm involves O f (V) function operations. Thus, we conclude that the algorithm terminates

after executing O f (V E) function operations, proving claim (i). Claim (ii) follows from Theorems 2 and

3, together with Corollary 3. Claim (iii) follows from Corollary 3.

Note that the only functions that should be stored are X k (t) and Y kl (t). WAIT(s ,w ,t) need not be

computed as a function for all t. Rather, the calculation of WAIT(s ,w ,t 0) can be done only when the need

arises for a message generated at s at time t 0 and whose destination is w. A shortest topological path to

node w for the SW model can then be constructed from the spanning tree defined by

X l (t 0 + WAIT(s ,w ,t 0)), Y kl (t 0 + WAIT(s ,w ,t 0)) as described in the theorem. In this way we avoid using

the last type of simple function operations, and restrict the definition of functional complexity to much

simpler types of operations.

3. Extension to General Piecewise-Continuous Functions

To gain some insight regarding the problematic aspect of positive discontinuities consider the four-

node network in Figure 6 where

d 12 (t) = d 23 (t) = 400 d 13 (t) =

1000

1

t > 1

t≤1
d 34 (t) =

1

1000

t≥10

t < 10

In the UW model for t S = 0 we get SP(1 , 4 ,t = 0) = ((1 , 3 , 4) , (0 , 9)) with 11 units delay. In the SW model

SP(1 , 4 , 0) = ((1 , 2 , 3 , 4) , (0 , 0 , 0)) with 801 units delay, demonstrating that the shortest path and minimum

delay in the SW model are different from those in the UW model.

Figure 6: Example network for computing
the shortest-path for noncontinuous functions

- 17 -

Let us make a slight change in the problematic delay function as follows:

d 13 (t) =

1000

999t − 998

1

t > 2

1 < t≤2

t≤1

This function is "almost" the same as the one before except for being continuous. With this change, one

could, in the SW model, leave node 1 at t S = 1. 008, go through node 3 arriving in node 4 at t = 11 as we

would have in the UW model.

While the above demonstrates that corollary 2 does not always hold for general noncontinuous func-

tions, the following demonstrates the reason. Consider, again, a network all of whose link delay functions

are the same, noncontinuous function d(t) (see Figure 7). For starting time t S the UW arrival time t a4
is

computed. However, going backwards from t′ 4 = t a4
we notice that there exists no time t′ 2 that will cause

arrival at t′ 3 . Graphically, the − 45° line at t′ 3 does not intersect d(t).

Although corollary 2 does not hold for general noncontinuous functions we can expand the previous

results to cover a wider class of functions by slightly relaxing the waiting constraints. Clearly, if we allow

unrestricted waiting at nodes whose incoming links have noncontinuous functions we can do as well as in

the UW model since each such node can be considered a source for traversal of a subnetwork all of whose

delay functions are continuous. However, for piecewise continuous functions, we shall demonstrate in the

following that to achieve minimum delay equal to that of the UW model, the amount of waiting in such

intermediate nodes may be bounded in terms of when and for how long waiting must be allowed.

Figure 7: Computation of waiting times
for discontinuous functions

- 18 -

Consider a network whose delay functions are piecewise continuous, and we require also that for all

i ,k ,t either d ik (t) = d ik (t −) or d ik (t) = d ik (t +). Our SW policy is relaxed to allow limited waiting in nodes

whose incoming links have noncontinuous delay functions (in addition to the unrestricted waiting at the

source). Since negative discontinuities are treated in Theorem 3 we focus here on positive discontinuities.

Let d ik (t) have a positive discontinuity at t 0 , i.e., d ik (t0
+) > d ik (t0

−). To such a discontinuity we assign a

relaxation instant τ 0 around the time t 0 + d ik (t0
−) when waiting restrictions are relaxed in the following

manner. Messages arriving at node k from node i at the relaxation instant τ 0 may wait at node k for an

amount of time not exceeding d ik (t0
+) − d ik (t0

−) + ε for any predetermined ε > 0 (ε can be arbitrarily small).

Moreover, if d ik (t 0) = d ik (t0
−) then we may even choose ε = 0. We refer to this policy as the relaxed SW

policy.

Figure 8 illustrates a simple example of the above method. In the figure d ik (t) has a positive discon-

tinuity at t = t 0 of the kind d ik (t0
−) = d ik (t 0). We choose τ 0 = t 1 = t 0 + d ik (t0

−) and allow messages depart-

ing on link (i ,k) at time t 0 to wait at node k an amount of time limited to d ik (t0
+) − d ik (t0

−). Doing so we

guarantee that messages arriving at node k on link (i ,k) at time τ 0 = t 1 may depart from k at any time dur-

ing the interval [t 1 ,t 2].

Lemma 2: In the relaxed SW model the results of Theorem 3 hold for piecewise continuous delay

functions.

Proof: See Appendix B.

Figure 8: Example for treating delay-function discontinuity

- 19 -

IV. CONCLUSION

In this paper we have investigated the shortest path problem for networks in which link delays are

functions of time. It is shown that the problem can be solved efficiently when no constraints are imposed

on waiting times at the nodes. On the other hand, the examples presented for the FW model indicate that

general waiting constraints render the problem very complex. For a wide class of delay functions, it is

shown that an efficient solution exists if we allow waiting just at the source node. It should be pointed out

that delaying the departure at the source node is commonplace in practical cases. Moreover, it is proved

that performance in this case, from the minimum delay standpoint, is equivalent to that of the most unres-

tricted case.

The relaxation needed in order to cover all piecewise continuous delay functions is slight, since it

changes the waiting constraints in only a countable number of points in a continuum. Since in most practi-

cal cases delay functions are continuous or piecewise continuous, we conclude that waiting restrictions at

intermediate nodes do not really impose limitations on minimal delay nor do they increase the complexity

of computing these delays.

In this paper we restricted ourselves to delay functions for which an optimal waiting time can be

defined for all times. One can avoid this restriction by considering paths that are ε-optimal, i.e., their delay

is within a predetermined and arbitrary small range of the infimum delay of all paths. For a wide family of

delay functions (including the piecewise continuous ones) the algorithms presented in this paper can be

applied to the ε-optimal paths problem after making some modifications e.g., instead of an optimal waiting

time we consider an ε-optimal one, defined for time t by D ik (t ,τε) ≤D ik (t ,τ) + ε for all τ ≥0; the function

D ik (t) is then defined accordingly.

We have presented algorithms (UW2 and SW2) that handle all starting times at once. These are use-

ful in a scenario where messages may be created at the source node at any time and an optimal path should

be found for each of them. An efficient way is to run an algorithm for all starting times prior to the time

range being considered; then, for a message created at time t S , an optimal path is immediately found from

the values of X k (t S) and Y kl (t S) that are computed by the algorithm (along with the value L k (t S) com-

puted in the SW model). Those algorithms were also presented to make a conceptual point: they demon-

strate the difference between the cases having a single, given, starting time, and those that consider all start-

ing times at once. Their study offers more insight into the nature of the time-dependent environment (e.g.,

the functions L w (t)) and they serve as building blocks for extending these algorithms to a distributed

environment.

- 20 -

There are several possible extensions to these results, two of which we describe here. The drive for

this paper came from the field of computer communication networks for which it is interesting to consider

distributed versions of network control algorithms. Indeed, for the static or quasi-static environment,

several distributed shortest path algorithms were developed based on centralized versions. (See for exam-

ple Segall[14]). Such distributed versions were developed and investigated also for the algorithms

presented in this paper[15].

This paper considers minimum-delay paths. In a general case, the "length" of a link may be charac-

terized by factors other than delay such as reliability, traversal cost, etc. Since these factors may also be

time-dependent it is of interest to investigate the shortest path problem for general time-dependent link

weights. This problem is far more complicated than the minimum-delay one to the extent that the least res-

tricted UW model does not guarantee the existence of simple, concatenated, or even finite optimal paths.

The interested reader is referred to [16] for discussion and analysis of this problem.

- 21 -

APPENDIX A

Proof of Theorem 2

We start with some notations. Denote each execution of step 3 of algorithm UW2 as an "iteration".

Let VAR n be the value of VAR after the nth iteration. Let f k (t) n be the neighbor l of node k with the smal-

lest index for which X k (t) n = Y lk (t) n (clearly such a neighbor exists). Finally, for given i ,t ,n let

PATH(s ,i ,t) n = (vm ,vm − 1 , . . . , v 1 ,v 0), where s = vm and i = v 0 , be defined by v l = f v l − 1
(t) n . The theorem

is proven through the following two lemmas.

Lemma A1: For all i ,t ,n if X i (t) n is defined (not ∞) then PATH(s ,i ,t) n is a simple topological path

and X i (t) n − t is its delay for starting time t (when choosing an optimal waiting time at each node).

Proof: From the way X i (t) and the Y’s are calculated in all nodes it is clear that PATH(s ,i ,t) n is a

well defined and finite topological path, and that X j (t) n + 1 ≤X j (t) n . Denote f =
∆

f j (t) n; thus

X j (t) n = Y f , j (t) n = D f , j (X f (t) n) + X f (t) n > X f (t) n

meaning that the X value is strictly increasing along the path, and since it is impossible to move around a

loop with monotonically decreasing X’s it follows that PATH(s ,i ,t) n is simple for all i ,t ,n.

By the way X k is constructed along the topological path, it is clear that X k (t) n − t is the delay of

PATH(s ,i ,t) n .

In Section II we defined the hop-index H(s ,w ,t) as the minimal number of hops (edges) among all

the simple and concatenated shortest paths for s ,w ,t. We use this definition to prove the following lemma.

Lemma A2: Let h = H(s ,i ,t). Then ∀m≥h PATH(s ,i ,t) m is a simple and concatenated shortest topo-

logical path for s ,i ,t whose delay (choosing an optimal waiting time at each node) is X i (t) m − t.

Proof: By induction on h. For h = 0 the assumption is trivially correct since then s = i. Assuming it is

correct for all times t and for all nodes k for which H(s ,k ,t) = h we prove it for all times t and for all nodes

for which the hop index (corresponding to that time) is h + 1. Let t 0 and i be such that H(s ,i ,t 0) = h + 1.

Node i has at least one neighbor k whose hop index for t 0 equals h. By the inductive assumption, after the

m = h iteration PATH(s ,k ,t 0) m is a simple and concatenated shortest topological path whose delay is

X k (t 0) m − t 0 . Thus, at its (h + 1)st iteration (at most) the algorithm sets Y ki at step 3 and subsequently sets

X i (at step 4) to the earliest arrival times. This operation appends node i to PATH(s ,k ,t 0) to yield

PATH(s ,i ,t 0) which is therefore a simple and concatenated shortest topological path.

- 22 -

Henceforth, once again by the inductive assumption, X i will remain unchanged. Since t 0 is arbitrary

the assumption holds for all t, completing the proof.

Lemma A2 shows that after at most O(V) iterations the algorithm terminates. Since step 3

involves O f (E) functional operations the algorithm requires a total of O f (V E) functional operations.

The rest of the claims of the Theorem follow directly from the two lemmas.

APPENDIX B

Proof of Lemma 2

Let SP UW (π π UW ,τ τ UW) = ((v 0 ,v 1 , . . . , vm) , (τ 0 ,τ 1 , . . . , τ m − 1)) ∈SP SPUW (s ,w ,t S), v 0 = s, vm = w,

and let t A (i) and t D (i) be respectively the arrival and departure times for node v i ∈ π π UW when traveling

along SP UW. Without loss of generality, we assume that τ τ UW is such that t A (i + 1) is the earliest possible

arrival time at v i + 1 when departing from v i at t≥t A (i) (this rule applies recursively to i = 0 , 1 , . . . , m − 1).

We show that for any v i ∈ π π UW and any time T≥t A (i), there is a departure time T D ≥t S such that if we leave

s at T D and travel along π π UW according to the relaxed SW policy we may depart from node v i at time T.

We prove this claim by induction on the nodes of π π UW. For i = 0 the claim is trivially true; assuming truth

for the ith node we prove for the i + 1st.

Choose T≥t A (i + 1). Since t + d v i ,v i + 1
(t)

t→ ∞
→ ∞, the set S T =

∆
{tt + d v i ,v i + 1

(t) > T ,t A (i) ≤t} is

nonempty, and let t 1 =
∆

inf S T . If t 1 + d v i ,v i + 1
(t 1) = T, then we are done, since by the inductive assumption

we may depart from node v i at time t 1 , arrive at v i + 1 at time T, and depart immediately. Otherwise, since

t 1 = inf S T , it follows that T 1 =
∆

t 1 + d v i ,v i + 1
(t1

−) ≤T and T 2 =
∆

t 1 + d v i ,v i + 1
(t1

+) ≥T; moreover, if T 1 = T then

T 2 > T (otherwise we have t 1 + d v i ,v i + 1
(t 1) = T). Thus, there is a positive jump of d v i ,v i + 1

(t) at t 1 .

Assume first that d v i ,v i + 1
(t 1) = d v i ,v i + 1

(t1
−). Since t 1 ≥t A (i), it follows that T 1 ≥t A (i + 1) otherwise

t A (i + 1) would not be the earliest arrival time at v i + 1 for departure time t≥t A (i) from v i contrary to the

assumption made on τ τ UW. We choose T 1 as the relaxation point for t 1 . Since t 1 ≥t A (i) it follows from the

inductive assumption that in the relaxed SW model one may depart from node v i at time t 1 and therefore

arrive at node v i + 1 at time T 1 . Since

T − T 1 = T − [t 1 + d v i ,v i + 1
(t 1)] = T − [t 1 + d v i ,v i + 1

(t1
−)] ≤T 2 − [t 1 + d v i ,v i + 1

(t1
−)] =

= [t 1 + d v i ,v i + 1
(t1

+)] − [t 1 + d v i ,v i + 1
(t1

−)] = d v i ,v i + 1
(t1

+) − d v i ,v i + 1
(t1

−)

one may wait at v i + 1 for a period of T − T 1 and then depart at time T.

- 23 -

Assume now that d v i ,v i + 1
(t 1) ≠d v i ,v i + 1

(t1
−). Since d v i ,v i + 1

(t) is piecewise continuous, for any ε > 0

there is a value t̂ 1 < t 1 close enough to t 1 such that

a. t̂ 1 ≥t A (i).

b. d v i ,v i + 1
(t1

−) − d v i ,v i + 1
(t̂ 1)< ε/2.

c. t 1 − t̂ 1 < ε/2.

Denote T̂ 1 =
∆

t̂ 1 + d v i ,v i + 1
(t̂ 1). We choose T̂ 1 as the relaxation point for t 1 . Since t̂ 1 ≥t A (i) one

may depart from node v i at time t̂ 1 and arrive at node v i + 1 at time T̂ 1 . We have

T − T̂ 1 = T − [t̂ 1 + d v i ,v i + 1
(t̂ 1)] < T − [t̂ 1 + d v i ,v i + 1

(t1
−) − ε/2] < T − [t 1 + d v i ,v i + 1

(t1
−) − ε] ≤T 2 − [t 1 + d v i ,v i + 1

(t1
−) − ε] =

= [t 1 + d v i ,v i + 1
(t1

+)] − [t 1 + d v i ,v i + 1
(t1

−) − ε] = d v i ,v i + 1
(t1

+) − d v i ,v i + 1
(t1

−) + ε .

Thus, one may wait at v i + 1 for a period of T − T̂ 1 and then depart at time T.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for an extraordinary reviewing effort that considerably

improved the presentation of the work.

- 24 -

REFERENCES

1. N. Deo and C.Y. Pang, ‘‘Shortest Path Algorithms: Taxonomy and Annotation,’’ Networks 14 pp.

275-323 (1984).

2. J.M. McQuillan, I. Richer, and E.C. Rosen, ‘‘The New Routing Algorithm for the ARPANET,’’

IEEE Trans. on Communications COM-28(5) pp. 711-719 (May 1980).

3. S. Even and H. Gazit, ‘‘Updating Distances in Dynamic Graphs,’’ Methods of Operations Research

49 pp. 371-387 (May 1985).

4. E. Klafszky, ‘‘Determination of Shortest Path in a Network with Time-Dependent Edge-Lengths,’’

Mathematische Operationsforschung u. Statistik 3 pp. 255-257 (1972).

5. K.L. Cooke and E. Halsey, ‘‘The Shortest Route Through a Network with Time Dependent Interno-

dal Transit Times,’’ Journal Math. Analysis Applications 14 pp. 493-498 (1966).

6. L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, New

Jersey (1962).

7. L.R. Ford Jr. and D.R. Fulkerson, ‘‘Constructing Maximal Dynamic Flows from Static Flows,’’

Operations Research 6 pp. 419-433 (1958).

8. S.E. Dreyfus, ‘‘An Appraisal of some Shortest Path Algorithms,’’ Operations Research 17 pp. 395-

412 (1969).

9. S.T. Ling, K. Furuno, and Y. Tezuka, ‘‘Optimal Path in Networks with Time-Varying Traverse Time

and Expenses Branches,’’ Technological Reports of Osaka University, Japan (1972).

10. J. Halpern, ‘‘The Shortest Route with Time Dependent Length of Edges and Limited Delay Possibili-

ties in Nodes,’’ Zeitschrift fuer Operations Research 21 pp. 117-124 (1977).

11. M. Gerla and L. Kleinrock, ‘‘Flow Control: A Comparative Survey,’’ IEEE Trans. on Communica-

tions COM-28(4) pp. 553-574 (April 1980).

12. E.W. Dijkstra, ‘‘A Note on Two Problems in Connection with Graphs,’’ Numerical Analysis 1 pp.

269-271 (October 1959).

13. S. Even, Graph Algorithms, Computer Science Press, New York (1979).

- 25 -

14. A. Segall, ‘‘Distributed Network Protocols,’’ IEEE Trans. on Information Theory, pp. 23-34 (Janu-

ary 1983).

15. A. Orda and R. Rom, ‘‘Distributed Shortest-Path Protocols for Time-Dependent Networks,’’ pp.

439-445 in Proceedings of ICCC 88, Tel Aviv, Israel (November 1988).

16. A. Orda and R. Rom, ‘‘Minimum Weight Paths in Time-Dependent Networks,’’ Networks 21(3) pp.

295-319 (May 1991).

- 26 -

