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1 Introduction  

It is generally accepted that machine vision is one of the most important sensory modalities 
for navigation purposes. Visual control, also called visual servoing, is a very extensive and 
mature field of research where many important contributions have been presented in the 
last decade [Malis et al.,1999, Corke and Hutchinson, 2001, Conticelli and Allotta, 2001, 
Tsakiris et al., 1998, Ma et al., 1999]. Two interesting surveys on this topic are [De Souza and 
Kak, 2002] and [Hutchinson et al., 1996]. In this work we present a new visual servoing 
approach for mobile robots with a fixed monocular system on board. The idea of visual 
servoing is used here in the sense of homing, where the desired robot position is defined by 
a target image taken at that position. Using the images taken during the navigation the robot 
is led to the target. 
A traditional approach is to perform the motion by using the epipolar geometry [Basri et al., 
1999, Rives, 2000, Lopez-Nicolas et al., 2006]. These approaches have as drawback that the 
estimation of the epipolar geometry becomes ill conditioned with short baseline or planar 
scenes, which are usual in human environments. A natural way to overcome this problem is 
using the homography model. In [Malis and Chaumette, 2000] it is proposed a method 
based on the estimation of the homography matrix related to a virtual plane attached to an 
object. This method provides a more stable estimation when the epipolar geometry 
degenerates. In [Benhimane et al., 2005] it is presented a visual tracking system for car 
platooning by estimating the homography between a selected reference template attached to 
the leading vehicle. A significant issue with monocular camera-based vision systems is the 
lack of depth information. In [Fang et al., 2005] it is proposed the asymptotic regulation of 
the position and orientation of a mobile robot by exploiting homography-based visual servo 
control strategies, where the unknown time-varying depth information is related to a 
constant depth-related parameter. 
These homography-based methods usually require the homography decomposition, which 
is not a trivial issue. Two examples of approaches which do not use the decomposition of 
the homography are [Sagues and Guerrero, 2005] which is based on a 2D homography and 
[Benhimane and Malis, 2006] which presents an uncalibrated approach for manipulators. 
We present a novel homography-based approach by performing the control directly on the 
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elements of the homography matrix. This approach, denoted as ”Shortest Path Control”, is 
based on the design of a specific robot trajectory which consists in following a straight line 
towards the target. This motion planning allows to define a control law decoupling rotation 
and translation by using the homography elements. This approach needs neither the 
homography decomposition nor depth estimation. In this work we have developed three 
similar methods based on the particular selection of the homography elements. Each 

method is suitable for di erent situations. 
The chapter is divided as follows, Section 2 presents the homography model developing its 
elements as a function of the system parameters to be used in the design of the controllers. 

Section 3 presents the Shortest Path Control with three di erent methods based on the 
elements of the homography. Sections 4 and 5 present the stability analysis of the controllers 
and the experimental results respectively. Section 6 gives the conclusions. 

2. Homography Based Model  

The general pinhole camera model considers a calibration matrix defined as  

, (1)

where x and y are the focal length of the camera in pixel units in the x and y directions 
respectively; s is the skew parameter and (x0,y0) are the coordinates of the principal point. 
We have that x=f mx and y=f my, where f is the focal length and mx, my are the number of 
pixels per distance unit. In practice, we assume that the principal point is in the centre of the 
image (x0=0, y0=0) and that there is no skew (s=0).
A 3D point in the world can be represented in the projective plane with homogeneous 
coordinates as p=(x,y,1)T. A projective transformation H exists from matched points 
belonging to a plane in such a way that p2=H p1. The homography between the current and 
target image can be computed from the matched points, and a robust method like RANSAC 
should be used to consider the existence of outliers [Hartley and Zisserman, 2004]. Taking 
advantage of the planar motion constraint, the homography can be computed from three 
correspondences instead of four, reducing the processing time. 
Let us suppose two images obtained with the same camera whose projection matrixes in a 
common reference system are P1=K[I 0] and P2=K[R –Rc], being R the camera rotation 
and c the translation between the optical centres of the two cameras. A homography H can 
be related to camera motion (Figure 1a) in such a way that 

(2)

where n=(nx , ny , nz)T is the normal to the plane that generates the homography and d is the 
distance between the plane and the origin of the global reference.  
We consider a mobile robot in planar motion (Figure  1b). In this case the robot position is 
defined by the state vector (x,z, ) and the planar motion constraint gives:  
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. (3)

Taking this into account, the homography corresponding to a planar motion scheme can be 
written as

. (4)

The second row of the matrix will be ignored in the design of the control law as it does not 
give useful information. Developing expression (2) we obtain the homography elements as a 
function of the parameters involved: 

(5)

The analysis of these homography elements will lead to the control law design. After 
computing the homography from the image point matches it has to be normalized. We 
normalize by dividing H/h22, given that h22 is never zero due to the planar motion constraint. 

 (a) (b) 
Figure 1. (a) Homography from a plane between two views. (b) Coordinate system 
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3. Visual Servoing with Shortest Path Control

In this Section the Shortest Path Control is presented. The control law design is directly based 
on the homography elements. Given that our system has two variables to be controlled (the 
velocities v and ), we need at least two parameters of the homography to define the control 
law. Several possibilities appear depending on which homography elements are selected. In 

our approach we have developed three similar methods which are suitable for di erent
situations. In the experimental results we show the performance of these methods as the 
calibration or the scene change. 

Let us suppose the nonholonomic di erential kinematics to be expressed in a general way as  

 (6) 

where x=(x,z, )T denotes the state vector and u=(v, )T the input vector. The particular 

nonholonomic di erential kinematics of the robot expressed in state space form as a 
function of the translation and rotation robot velocities (v, ) is: 

. (7)

In the Shortest Path Control approach, we propose decoupling the motion, rotation and 
translation, by following a specific trajectory. Then, we design a navigation scheme in such a 
way that the robot can correct rotation and translation in a decoupled way. The resulting 
path of this motion is shown in Figure  2. 

Figure  2.  Motion trajectory of the robot consisting in three steps 

The motion can be divided in three sequential steps. In the first step the robot rotates until 
the camera points to the target position. Then, the robot performs a straight translation in 
the second step until the target position is reached up to a rotation. Finally, the orientation is 
corrected in the third step. The key point is to establish what conditions have to be held 



Shortest Path Homography-Based Visual Control for Differential Drive Robots 587

during each phase of the navigation. When the motion starts, the initial homography is the 
general case (5). It can be seen in Figure 2 that during the second step the robot moves in a 
straight line with a constant angle respect the global reference ( = t). From our reference 

system we can obtain the geometrical expression x = – z tan t. Using this expression in (5) 

we obtain the particular form of the homography that is held during the straight motion of 
the second step. 

. (8)

At the end of the second step the robot has an orientation error and no translation error 
(x=0, z=0, = t). Taking this into account, the homography matrix that results at the end of 

the second step (i.e. in the target position up to orientation error) is  

. (9)

This previous expression also implies that det(H) = 1. Finally, at the end of the navigation, 
when the robot reaches the target pose with the desired orientation the homography will be 
the identity matrix, 

(10)

The particular expressions of the homography just deduced are related graphically with its 
corresponding positions in Figure  3. It can be seen that the goal of each step is to move the 
robot having as reference the next desired expression of the homography. 

Figure  3. The number below each figure denotes the equation of the homography that holds 
in that position. In each step, the numbers give the homography equations at the start and at 
the end of the step 

Now we briefly introduce the expressions used to define the controllers of the three di erent 
methods of the Shortest Path Control. These are detailed in the following subsections. From 
the previous particular expressions of the homography, we can define the conditions that 
will be used in each step of the navigation to drive the robot. In the first step we want to 
reach the orientation = t, where the robot points to the target. The forward velocity is set 
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to zero (v=0) and from (8) we could use h11, h12 or h13 to set the angular velocity of the robot 
in a proportional control: 

(11)

(12)

(13)

In this step we have rejected elements h31, h32 and h33 because they require knowledge about 
the plane and the robot position, which are unknown. Each one of these expressions (11), 
(12) or (13) can be used to correct rotation in the first step. The selection of the expressions 
for each of the three methods depending on the calibration hypothesis is explained below. In 
method I camera calibration is supposed to be known, while in Method II and III no specific
calibration is required. 
Once the orientation t is gained, the second step aims to get translation to the target equal 

to zero (x=z=0), keeping the orientation constant during the motion ( = t). In this case we 

could use the parameters h31, h32 or h33 from (9) to set the robot velocity as 

(14)

(15)

(16)

In this second step we have rejected elements h11, h12 and h13 for the correction of v because
the value of these elements is constant during this step. Any of the expressions (14), (15) or 
(16) can be used to compute v during this step. Odometry drift or image noise appear in real 
situations, so the orientation is corrected to avoid possible errors. Thus, in the three methods 
the rotation during second step is corrected respectively with the same control of the first 
step.
In the last step the robot has zero translation error and only needs to perform a rotation in 
order to reach the target orientation, 

(17)

(18)

Then, the velocity is set to zero in this step (v=0) and the rotation can be corrected with 
expressions of (17) or (18). We have selected =–k  h13 for the three methods because of the 
robustness to noise of h13 with respect to the rest of the homography elements. Experimental 
results presented support this decision. 
The control loop of the scheme presented is shown in the diagram of Figure  4. An image in 
the current position is taken at each loop of the control. The homography that links it with 
the target image is computed from the feature matching. Using the homography, the control 
performs the three steps. When the homography-based control loop finishes, the robot is in 
the target position, the current and the target images are the same, and the homography is 
the identity matrix. Next, the details of the three methods of the Shortest Path Control for
visual servoing based on homographies for mobile robots are presented in detail. 
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Figure  4. Diagram of the control loop 

3.1 Method I: Calibrated Method  

In this method we suppose that the calibration matrix of the camera is known, and 
therefore, the value of the focal length x is given. In the first step v is set to zero while the 
angular velocity could be corrected with (11) or (13), needing the value t. This approach is 

based on the key value t, but this value is initially unknown. From (8) we have that 

h11=cos t and h13= xsin t. Taking this into account, we can obtain the next equation, which 

is true when = t,

. (19)

Using this expression we do not need to know the value of t to correct the orientation in 

the first step, and this is corrected until (19) is satisfied. In step two, the orientation is 
corrected with the same expression to take into account odometry drift or noise. The 
velocity v in the second step is corrected using (16) which is combined with h11 from (9) to 
remove the unknown parameter t from the expression of the control. Third step is based 

on (17). Then, we define the Method I as  

(20)

where k  and kv are the control gains.  
We avoid the use of the parameter t in the velocity v of the second step by using the value 

of h11 from (9) as previously explained. In any case t could be computed easily when the 

first step is finished from (11) or (13). This method needs to know the calibration of the 
camera (parameter x) and this is its main drawback. The next two methods proposed work 
without knowing this parameter and they have shown to be independent of the focal length. 
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3.2 Method II: Uncalibrated Method  

The previous method is calibrated. In a system, the need of calibration means disadvantages 
in terms of maintenance cost, robustness and adaptability. In Method II the calibration 
camera is considered to be unknown, which has many advantages in practice. We can define
the control scheme of the Method II selecting expressions where the calibration parameters 
do not appear explicitly. These expressions are (12), (15) and (17). Then, the control is 
defined as 

(21)

where k and kv are the control gains. With this method the robot is controlled by using a 
camera without specific calibration; although we assume that the principal point is in the 
centre of the image, this is a good supposition in practise. Method II requires the plane 
inducing the homography not to be vertical respect our reference because it is needed ny 0. 
This is due to the direct dependence of the parameters used from the homography to ny.
This could be a problem since human environments are usually full of vertical planes 
(walls). In any case the method works if we guarantee that vertical planes are not used, for 
example constraining to the floor [Liang and Pears, 2002] or the ceiling plane [Blanc et al., 
2005].

3.3 Method III: Method with Parallax 

The previous method works without specific calibration, but it requires the scene 
homography plane not to be vertical and this could be a problem in man-made 
environments, usually full of vertical planes. Method III uses the concept of parallax relative 
to a plane and overcomes the problem of vertical planes. Using the parallax [Hartley and 
Zisserman, 2004] the epipole in the current image can be easily obtained from a 
homography H and two points not belonging to its plane. In the first step of Method III the 
objective is to get orientation = t. In this position the robot points to the target, so the 

camera centre of the target is projected to (x0,y0) in the current image and then ec=(0,0).
Given that the robot moves in a planar surface we only need the x-coordinate of the epipole 
(ecx). Then we define the correction of the orientation in step 1 and step 2 with a proportional 
control to ecx. Once ecx=0 the robot is pointing to the target position. The other expressions of 
the control are obtained in a similar way to the previous methods using (16) and (17). Then, 
we define the scheme of Method III as  

(22)

When the robot is close to the target position and the translation is nearly zero, all the points 
in the scene can be related by the homography. In this situation the parallax is not useful to 
correct the orientation. Before this happen we change the orientation control at the end of 
step 2 to the expression (11). This expression needs the value of t, which can be computed 

previously with the same equation while the rotation is corrected with the parallax 
procedure. Here, we use neither expression (15) because vertical planes can be easily found 
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in human environments nor expression (19) because it needs specific calibration. We can 
detect easily when the parallax is not useful to work with by measuring the parallax of the 
points not belonging to the plane of the homography. If the result is under a threshold, the 
parallax procedure is not used any more. In the simulations presented with this approach 
the threshold is set to 5 pixels. 
In the three methods presented the homography is not decomposed, and neither the robot 
coordinates nor the normal of the plane are computed. This approach requires the selection 
of the signs of some of the control gains depending on where is the initial robot position and 
what is the orientation of the plane detected. This can be easily done by taking advantage of 
the parallax relative to the plane by computing it once at the start. Thus, the sign of the gains 
is easily determined. 

4. Stability Analysis  

We define the common Lyapunov function expressing the robot position in polar 
coordinates (r(t), (t), (t)), with the reference origin in the target and positive from z-axis
anticlockwise, as 

(23)

This is a positive definite function, where rGi , Gi and Gi denote the desired value of the 
parameter in the subgoal position for each step (i=1,2,3). Due to the designed path, the value 
of is constant during the navigation. Although in the case of noisy data the value of 

could vary, it does not a ect the control, because the path is defined towards the target 

independently of the value of , thusV = 0. After di erentiating we obtain: 

(24)

We analyze the derivative Lyapunov candidate function in each step to show it is strictly 
negative. This analysis is valid whether if the goal is behind or in front of the initial position. 
Step 1. Here the robot performs a rotation with v=0. Thus, we only need to consider 

. The desired orientation is G1 = t . < 0 is guaranteed if (  G1 ) > 0 and then 

<0; or else, if (  G1)<0 and then >0. In Method I and II, the sign of is guaranteed to 
be  correct,  given  that  the sign of k  is selected as previously explained. In  Method  III, 

=–k ecx and, when ( G1)>0 then ecx>0 and <0, or ecx<0 and >0 when ( G1) < 0. 

Therefore <0.
Step 2. In this step the robot moves towards the target in a straight line path and we have 

. The sign of (r r G2) is always positive. Then, with cos(  – ) < 0 we have v>0
and with cos( )>0 we have v < 0. In Method II, the sign of v is guaranteed to be correct, 
given that the sign of kv is properly selected. In Method I and III, the velocity given by the 

control and with (8) is v = kv z nz / (dcos t), which gives the expected signs. Therefore r < 0. 

With  we have the same reasoning of step 1.  
Step 3. Similar to the reasoning of step 1, in this case, the sign of can be easily checked 

taking into account that  G3 =0 and h13= x sin t. Therefore < 0. 

So, we have shown that <0 for the controllers of the three methods. We have also 

asymptotic stability given that  is negative definite in all the steps.  
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5. Experimental Results  

Several experiments have been carried out with the controllers of the three methods 
presented by using virtual data. The simulated data is obtained by generating a virtual 
planar scene consisting of a distribution of random 3D points. The scene is projected to the 
image plane using a virtual camera, the size of the images is 640×480 pixels. In each loop of 
the control, the homography between the current and target image is computed from the 
matched points and the control law send the velocities (v, ) to the robot. In the 
experiments, we assume that the camera is centred on the robot pointing forwards. Figure 5 

shows the resulting path from di erent initial positions. The target is placed in 

(x(m),z(m), (deg))=(0,0,0°). The di erent initial positions behind the target are: 
( 3, 10, 30°), (0, 8, 40°) and (6, 6,0°). The results also show that the method works 
properly when the target is behind the initial robot position, moving the robot backwards in 

that case. The di erent initial positions used in this case are: ( 6, 4, 20°), (6, 8, 10°) and 
(5,2, 50°).

Figure  5. Simulations with target position at (0,0,0°) and di erent initial positions 

The performance of the three methods is exactly the same when using perfect data and quite 
similar when there is image noise. In Figure  6 two simulations are compared, one without 
noise, and the other, adding white noise to the image points with a standard deviation of 

=1 pixel using Method III. The evolution along time of the robot position and the 
homography elements is drawn. 

We have tested the controllers with odometry drift and with di erent values of image noise. 
The first row of Figure 7 shows the resulting evolution of the robot position when there is 
odometry drift in rotation of 1 deg/m. As it can be seen the controllers can cope properly 

with the drift error. Simulations with each method have been carried out using di erent 
levels of image noise. The results are shown in the second row of Figure  7 and it can be seen 
that the methods converge properly in spite of image noise. 
The control law of Method I needs the calibration parameter x of the camera whereas 
Method II and III do not use it. In Figure  8 we show the performance of the control to 
calibration errors. The value of the focal length of the controllers is fixed to f=6 mm while its 
real value is modified to see the final position error obtained for each Method, (first row of 
Figure  8). Besides, we have assumed that the principal point is in the centre of the image. In 
the second row of Figure  8, the value of x0 used in the controllers is supposed to be zero 
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while its real value is changed. Performance of Method I is sensitive to calibration errors as 
expected, this is because this control law is related directly with x and depends highly on 
its accuracy. The simulations show that Method II works properly in spite of calibration 
errors. Finally, results using Method III show that a rough calibration is enough for the 

convergence, because it is robust to focal length in accuracy and it is only a ected by 
calibration errors in the principal point. 

(a) Lateral motion (b) Forward motion (c) Robot rotation 

(d) h11 (e) h12 (f) h13

(g) h31 (h) h32 (i) h33

Figure  6. Simulation without noise (thick line) and with image white noise of =1 pixel (thin 
line). The initial position is (x,z, )=( 3, 10, 30°) and the target (0,0,0°)

The performance of the methods can be spoiled in some cases by the particular plane that 

generates the homography. Simulations using di erent planes are presented in Table 1. The 
planes are defined by the normal vector n=(nx,ny,nz)T , and a list of unitary normal vectors is 
selected to carried out the simulations with n =1. The final error obtained with each 
method is shown. The initial position is ( 3, 10, 30°) and the target is (0, 0, 0°). The results 
show that Method I and III need nz  0 to work properly. On the other hand, Method II 
needs ny  0.This is because the Methods are directly related with these parameters of n.
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Vertical planes are usually common in human environments; besides, in our monocular 
system, planes in front of the robot with dominant nz will be detected more easily. Methods 
I and III work properly in this case. If we constraint the homography plane detected to be 
the floor or the ceiling (any plane with ny  0 is enough) the Method II will also work 
properly.

Figure 7. (First row) Simulations with odometry drif of 1 deg/m. The evolution of one 
simulation in x, z and  is shown for each method. (Second row) Final error of different 
simulations varying the image noise 

Figure  8. Final error for each method in x,z and varying the focal length (first row) and 
varying the principal point coordinates (second row) 
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Table 1. Final error for each method in x(m), z(m) and (deg) varying the normal of the 
plane that generates the homography: n=(nx, ny, nz)T

6. Conclusions  

We have presented a new homography-based approach for visual control of mobile robots. 
The control design is directly based on the homography elements and deals with the motion 

constraints of the di erential drive vehicle. In our approach, called Shortest Path Control, the 
motion is designed to follow a straight line path. Taking advantage of this specific trajectory 

we have proposed a control law decoupling rotation and translation. Three di erent 

methods have been designed by choosing di erent homography elements. Their 
performance depends on the conditions of the plane or the calibration. The methods use 
neither the homography decomposition nor any measure of the 3D scene. Simulations 
shows the performance of the methods with odometry drift, image noise and calibration 
errors. Also, the influence of the plane that generates the homography is studied. 
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