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We study the problem of interdicting the arcs in a net-
work in order to maximize the shortest s–t path length.
“Interdiction” is an attack on an arc that destroys the arc
or increases its effective length; there is a limited inter-
diction budget. We formulate this bilevel, max–min prob-
lem as a mixed-integer program (MIP), which can be
solved directly, but we develop more efficient decompo-
sition algorithms. One algorithm enhances Benders de-
composition by adding generalized integer cutting
planes, called “supervalid inequalities” (SVIs), to the
master problem. A second algorithm exploits a unique
set-covering master problem. Computational results
demonstrate orders-of-magnitude improvements of the
decomposition algorithms over direct solution of the
MIP and show that SVIs also help solve the original MIP
faster. © 2002 Wiley Periodicals, Inc.*

Keywords: interdiction; shortest paths; bilevel program; Bend-
ers decomposition

1. INTRODUCTION

Network-interdiction problems involve two opposing
forces, a leader and a follower, who are engaged in a
warlike conflict. The follower operates a network in order to
optimize some objective function such as moving a supply
convoy through the network as quickly as possible or max-
imizing the amount of materiel transported through the
network. The leader attempts to limit the follower’s achiev-
able objective value by interdicting arcs, for example, by
attacking arcs to destroy them, to slow travel over them, or
to reduce their capacity. This paper develops a new model
and solution methods for the problem of interdicting a
transportation network in order to maximize the shortest
path length between two specified nodes.

The topic of network interdiction has received some
attention over the years, initially with military applications.
For instance, McMasters and Mustin [31] and Ghare et al.

[21] developed methods for interdicting a capacitated sup-
ply network to disrupt the movements of enemy troops and
materiel. Models of drug interdiction have triggered further
research [41, 45] as has the need to assess the vulnerability
of information networks to interdiction [23, 32].

The network-interdiction problem that we focus on is
Maximizing the Shortest Path (MXSP). (See the related
models of Fulkerson and Harding [18] and Golden [22].) In
this problem, a network user, that is, the follower, wishes to
traverse a path of minimum length (or minimum time,
minimum cost, etc.) between two specified nodes, s and t, in
a directed network. But, by first attacking the network using
limited resources, an interdictor, that is, the leader, can
destroy certain arcs, or increase their effective length, and
thereby increase the follower’s shortest s–t path length.
MXSP is the interdictor’s problem: subject to a limited
interdiction budget, interdict arcs in a network to maximize
the shortest path length between nodes s and t. We assume
that if interdicted arcs are destroyed the interdiction budget
is insufficient to disconnect s from t, since, otherwise, the
problem degenerates into a much simpler minimum-cut
problem.

In MXSP, arc interdiction involves a binary decision
with a deterministic outcome: Arc k is interdicted or it is
not, interdiction consumes a known quantity of interdiction
resource(s), and interdiction always increases the arc’s ef-
fective length by a prespecified, possibly infinite amount.
The k-most-vital-arcs problem [13, 30] is a special case of
MXSP in which the interdictor seeks to destroy exactly k
arcs to interdict the network most effectively. Since that
problem is NP-complete [5], it follows that MXSP is NP-
complete.

The k-most-vital-arcs problem has received limited at-
tention and we are not aware of effective algorithms for
solving it. Malik et al. [30] suggested a potentially useful
but theoretically flawed algorithm for the problem, which
we discuss in Section 4. Corely and Shaw [13] investigated
the single-most-vital-arc problem, but this problem is a
simple, special case of MXSP which is solvable in polyno-
mial time.

MXSP, and our mathematical-programming approach to
solving it, allows more generality than does the k-most-
vital-arcs problem. We can use general resource constraints
to model arcs that require various amounts of resource to
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interdict. Also, our methods can be extended to model
multiple types of interdiction resources, for example,
ground troops, aerial sorties, and cruise missiles, although
we focus on models with a single resource type. Our binary
interdiction variables may also be more realistic than are the
continuous variables of Fulkerson and Harding [18] and
Golden [22], where the length of an arc increases linearly
with the amount of interdiction resource applied. As evi-
dence, we note that Whiteman [43] incorporated binary
interdiction variables in a network-interdiction model for
planning aerial interdiction sorties for the United States
Strategic Command. His model extends the maximum-
flow-based integer-programming models of Wood [45],
which are similar in spirit to the current paper’s model for
MXSP.

Cormican et al. [15] and Israeli [27] studied network-
interdiction problems where the success of an attempted
interdiction is uncertain and/or some data are uncertain.
Uncertainty may be important in some instances, but is
beyond the scope of this paper.

MXSP may be viewed as a bilevel mixed-integer pro-
gram (BLMIP) (e.g., [9]), which is a special case of a static
Stackelberg game [37]. BLMIPs assume that a leader first
chooses his actions and, subsequently, a follower reacts
optimally knowing those actions. (Unlike BLMIPs, a more
general Stackelberg game may continue, alternating “plays”
between the leader and follower.) However, the usual
BLMIP does not assume a max–min conflict, as does
MXSP. For instance, the leader and follower might repre-
sent two levels of decision makers in a corporation and,
consequently, would have similar objectives.

Israeli [27] reviewed existing algorithms for BLMIPs
and observes that none is appropriate for solving MXSP.
Some algorithms [7, 42] use a “positive approach,” which
implies that they function best when there is a strong pos-
itive correlation between the leader’s and follower’s objec-
tives. Such algorithms are likely to be inefficient with dia-
metrically opposed objectives as in MXSP. Furthermore,
computational experience is discouraging: Bard and Moore
[7] solved problems with, at most, 35 binary variables for
the leader; Wen and Yang [42] solved problems with, at
most, 15 leader variables; we intend to solve problems with
over 1000 leader variables.

Two other techniques for solving BLMIPs [33, 40] may
not be inherently positive, but they rely on solving bilevel
linear programs (BLLPs), which are typically solved using
a positive approach. Moore and Bard’s [33] algorithm is
complicated and these authors could not solve problems
with more than 10 integer leader variables. Vicente et al.
[40] only demonstrated that a BLMIP can be converted to a
BLLP with an unknown penalty parameter; they reported no
computational results.

In fact, only three exact algorithms for BLLPs have been
tested on relatively large problems [7, 24, 28] and all used
a positive approach. A few exact algorithms [2, 35, 39] do
not use positive approaches, but none has been tested on
large problems, and all are complicated to implement. For

instance, Anandalingam and Apprey [2] called a subroutine
to solve a concave minimization problem over a polyhedron
[17]. But this minimization requires that the leader’s feasi-
ble region be embedded in a simplex, preferably a “tight”
one, which may not exist.

We conclude that no existing BLMIP algorithms are
likely candidates for solving MXSP effectively. Further-
more, the literature provides no algorithms in the bilevel
arena that take advantage of the special max–min and short-
est-path structure of MXSP. We must devise new tech-
niques.

In this paper, we first define MXSP as a max–min prob-
lem and show how to formulate it as a mixed-integer pro-
gram (MIP). We would prefer to solve MXSP directly
through that MIP using simple, off-the-shelf, mathematical-
programming software. However, it is intuitively clear, and
later demonstrated by computation, that direct solution of
the MIP through linear-programming-based branch and
bound can be extremely difficult even for modest-sized
problems. Therefore, we devised two decomposition-based
algorithms for MXSP, along with important enhancements,
and demonstrate their computational effectiveness. Decom-
position is a natural approach for MXSP because of the
easy-to-solve shortest-path subproblems embedded in the
model.

Our first algorithm applies Benders decomposition [10]
to solve MXSP, much as Cormican [14] solved a maximum-
flow network-interdiction problem. This basic algorithm
performs poorly, so we develop a generalization of integer
cutting planes called “supervalid inequalities” (SVIs) to
improve performance. The enhanced algorithm works well
when delays caused by interdiction are modest, but the
algorithm’s Benders cuts are ineffective when delays are
large. A second decomposition algorithm ameliorates this
difficulty (i) by simplifying the master problem to a set-
covering problem, (ii) by incorporating a greedy heuristic to
solve the new master problem, in addition to using an exact
algorithm, and (iii) by exploiting the special structure of
shortest-path problems and suboptimal solutions for the
follower. Computational results compare the efficiency of
the various solution techniques for MXSP, including the use
of SVIs coupled with a branch-and-bound solution of the
MIP. We end the paper with conclusions and directions for
further research.

2. PROBLEM FORMULATION

MXSP is defined on a directed graph G � (N, A), where
N is the set of nodes, and A, the set of arcs. The nominal
length of arc k � A is ck � 0; interdiction increases the
arc’s length to ck � dk, where dk � 0. If interdiction
actually destroys arc k, making it impassable, the same
model applies by setting dk to a sufficiently large value. For
instance, if dk � d� � �N�maxk��A{ck�} for all k � A, a
solution in which the follower’s shortest-path length is d�

or greater must indicate that all paths for the follower have
been destroyed. We model only a single interdiction re-
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source constraint because some of our algorithmic special-
izations require this, but the basic approaches of Sections 3
and 5 could handle constraints that are more complicated.
The mathematical-programming formulation of MXSP is

Problem: MXSP: Maximize the shortest s–t path
length in a directed network by interdict-
ing arcs,

Indices: i � N, nodes in G (s is the source node, t
is the sink node),

k � (i, j) � A, arcs in G,

k � FS(i) (k � RS(i)), arcs directed out
of (into) node i,

Data: 0 � ck � �, nominal integer length of arc
k (vector form c),

0 � dk � �, added integer delay if arc k
is interdicted (vector form d),

rk � 0, resource required to interdict arc k
(vector form r),

r0, total amount of interdiction resource
available,

Variables: xk � 1 if arc k is interdicted by the leader;
else xk � 0,

yk � 1 if arc k is traversed by the follower;
else yk � 0,

Formulation:

�MXSP-P	 z* � max
x�X

min
y

�
k�A


ck � xkdk�yk

s.t. �
k�FS
i�

yk � �
k�RS
i�

yk � �1 for i � s
0 � i � N��s, t

�1 for i � t

(1)

yk � 0 � k � A,

where X � {x � {0, 1}�A��rTx � r0}.
Some additional notation and comments are as follows:

1. x* will denote an optimal interdiction plan.
2. Flow-balance constraints (1), in variables y, route one

unit of flow from s to t; the inner minimization is a
standard shortest-path model with arc lengths ck � xkdk.

3. ck is the nominal length of arc k and ck � dk is the arc’s
length if it is interdicted; dk is finite and comprises such
factors as repair time or the length of a local detour or, if
sufficiently large, represents complete destruction of arc
k.

4. rk is typically a small positive integer; it tells us, for
instance, how many weapons are required to interdict arc
k. Thus, r0 is the total number of such weapons avail-
able.

5. Optimal solutions in y are assumed to be integral since
the inner minimization of [MXSP-P] is a standard short-
est-path model, which has integral solutions.

We also note that it is straightforward to extend [MXSP-P]
to handle undirected networks and/or node interdiction and
to disallow interdiction of certain arcs.

If we (i) fix x, (ii) take the dual of the inner minimization
in [MXSP-P], (iii) make a few simple modifications, and
(iv) then release x, the following MIP results:

�MXSP-D	 z* � max
x,�

�t � �s

s.t. �j � �i � dkxk � ck � k � 
i, j� � A

�s � 0

x � X.

We may assume that �s � 0 because the inner minimiza-
tion of MXSP has at least one redundant flow-balance
constraint (as do all network flow models containing a
balance constraint for each node). Also, note that the dual
variables � are unconstrained in sign and, having reversed
their indicated signs compared to convention, we may in-
terpret �i as the postinterdiction shortest-path length from s
to i.

[MXSP-D] is essentially the model explored by Fulker-
son and Harding [18] and by Golden [22], except that those
authors required variables x to be continuous. Thus, their
model is a simple linear program (LP). Fulkerson and Har-
ding [18] suggested solving the dual of that LP as a para-
metric min-cost flow model. This approach does not appear
to be useful for solving the LP relaxation of [MXSP-D],
because bounds x � 1 needed by that relaxation cannot be
incorporated.

In theory, we can solve MXSP by solving [MXSP-D]
directly, that is, using a standard LP-based branch-and-
bound algorithm—and we will test this approach. However,
our decomposition approaches exploit the rapid solvability
of shortest-path problems, which branch and bound cannot,
and these approaches lead to a generalization of integer
cutting planes which achieves speedups in both the decom-
position and direct solutions. Unfortunately, both the direct
method and our “basic decomposition” suffer from weak LP
relaxations when the dk are large. Another decomposition
approach described in Section 5 helps mitigate this diffi-
culty. Interestingly, techniques derived from that approach
are also useful in the basic decomposition when solving
problems having dk of moderate magnitude.

3. A BASIC DECOMPOSITION ALGORITHM

Our first decomposition algorithm for MXSP applies
Benders decomposition directly to [MXSP-P]. (Equiva-
lently, we can decompose [MXSP-D] as follows: Fix x, take
the dual of the problem with respect to �, and release x so
that a max–min problem results; see Garfinkel and Nem-
hauser [19, pp. 135–143]). Let ŷ � {0, 1}�A� denote the

NETWORKS—2002 99



arc-path incidence vector corresponding to an s–t path P,
that is, ŷk � 1 implies that arc k is in P and, otherwise, ŷk

� 0. Let Ŷ denote a collection of arc-path incidence vectors
corresponding to a subset of all simple s–t paths in G. (A
path is “simple” if it contains no cycles.) For simplicity, we
refer to ŷ as “a path” and to Ŷ as “a set of paths.” Also, let
D � diag(d) and define

�Master
Ŷ�-1a	 zŶ � max
x�X

z

s.t. z � cTŷ � xTDŷ � ŷ � Ŷ (2)

�SP-Sub
x̂�	 zx̂ � min
y

�
k�A


ck � x̂kdk�yk

s.t. �
k�FS
i�

yk � �
k�RS
i�

yk � �1 i � s
0 i � N��s, t

�1 i � t

yk � 0 � k � A.

Let Y denote the set of all simple s–t paths. For fixed x
� x̂, a solution to the inner minimization of [MXSP-P], that
is, a solution to [SP-Sub(x̂)], always occurs at ŷ � Y.
Therefore, [Master(Ŷ)-1a] is an equivalent, path-based for-
mulation of [MXSP-P] when Ŷ � Y. (Actually, the formu-
lations are equivalent even for continuous x � 0.) How-
ever, we hope to solve [MXSP-P], at least approximately,
by sequentially generating only a small fraction of the paths
of Y within a decomposition algorithm.

It will be important later to keep track of the interdiction/
response pair (x̂, ŷ), which denotes a specific interdiction
plan x̂ and an optimal, but not necessarily unique, response
ŷ by the follower to x̂. With respect to a set of such pairs
X̂Ŷ, we let X̂ � {x̂�(x̂, ŷ) � X̂Ŷ} and Ŷ � {ŷ�(x̂, ŷ)
� X̂Ŷ}. A simple decomposition algorithm to solve MXSP
can now be stated:

Algorithm 1: Basic Benders decomposition algorithm for
MXSP.

Input: An instance of MXSP and allowable optimality
gap 	.

Output: An 	-optimal interdiction plan x	 for MXSP.

Step 0: X̂Ŷ 4 A; z 4 ��; z� 4 �; x̂ 4 0;

Step 1: Solve [SP-Sub(x̂)] for ŷ and objective value zx̂;

X̂Ŷ 4 X̂Ŷ � (x̂, ŷ);

If z � zx̂ then x� 4 x̂ and z 4 zx̂;

If z� � z � 	 then go to Step 3;

Step 2: Solve [Master(Ŷ)-1a] for x̂ and objective value
zŶ;

z� 4 zŶ; If z� � z � 	 then go to Step 1;

Step 3: x	 4 x�; Print x	; Stop.

The correctness of the algorithm, as in any Benders
decomposition algorithm, is based on the following obser-
vations:

1. The subproblem finds an optimal follower’s response for
any interdiction plan x̂. Hence, zx̂ gives a lower bound on
the leader’s optimal objective value.

2. [Master(Y)-1a] is equivalent to [MXSP-P], so, when Ŷ
� Y, [Master(Ŷ)-1a] is a relaxation of [MXSP-P] and zŶ

is an upper bound on the interdictor’s optimal objective
value. [The master-problem constraints (2) are called
“Benders cuts.”]

3. If the subproblem produces the same solution (a simple
s–t path) twice, the upper and lower bounds match and
the algorithm terminates. The algorithm converges in a
finite number of iterations because the number of simple
s–t paths is finite.

Run times in our test problems are reduced up to 40% by
generating all optimal responses for a given x̂ and by adding
all the corresponding cuts to the master problem, rather than
generating a single response and cut. Specifically, for fixed
x̂, we use the algorithm of Byers and Waterman [11] to find
all shortest paths ŷl, l � 1, . . . , h, and add the cuts z
� cTŷl � xTDŷl, l � 1, . . . , h. The resulting master
problems are harder to solve, but this is usually offset by a
reduced number of iterations (repetitions of Steps 1 and 2)
for the overall algorithm.

4. SUPER-VALID INEQUALITIES FOR BENDERS
DECOMPOSITION

This section develops a generalization of integer cutting
planes to improve the efficiency of Algorithm 1 and dem-
onstrates the improved algorithm with an example.

4.1. Basic Theory

To strengthen the LP relaxation of [Master(Ŷ)-1a], we
introduce the concept of a supervalid inequality (SVI),
which may be viewed as a generalization of the standard
“valid inequality” (which is essentially the same as an
“integer cutting plane” or “cut,” e.g., Nemhauser and Wol-
sey [34, pp. 205–295], and Wolsey [44, pp. 113–124]).
Standard valid inequalities applied to the master problem
would not eliminate any feasible x, but would, normally,
reduce the size of the feasible region of that problem’s LP
relaxation. On the other hand, our SVIs typically make the
most recent solution x̂ infeasible and may make other inte-
ger solutions infeasible, thereby reducing the size of the
feasible region of the LP relaxation under consideration. But
these inequalities are guaranteed not to eliminate any opti-
mal solutions unless the incumbent is itself optimal.

Definition 1. Let v and x denote, respectively, the vectors
of continuous and integer variables in an MIP, let w1 and
w2 be two conforming vectors of constants, respectively,
and let w0 be a scalar constant. The inequality w1

Tv � w2
Tx
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� w0 is supervalid for this MIP, that is, it is a supervalid
inequality for the MIP, if (i) adding that inequality to the
MIP does not eliminate all optimal solutions or (ii) an
incumbent solution to the MIP, (v�, x�), is (already) optimal.

�

Hooker [25] and Atamtürk et al. [3] also used inequali-
ties that are invalid in the standard sense; Hooker calls them
“nonvalid cuts.” In particular, feasible solutions may be
eliminated through their inequalities, although, unlike SVIs,
no optimal solutions are. In theory, SVIs can be used, when
solving an MIP like [MXSP-D] by branch and bound, to
help fathom nodes in the enumeration tree. In fact, we do
just that in Section 7.3. However, we develop and demon-
strate SVIs in the context of [Master(Ŷ)-1a].

Theorem 1. For any Benders cut z � cTŷ � xTDŷ in
[Master(Ŷ)-1a], the Type-I inequality ŷTx � 1 is supervalid
for [Master(Y)-1a].

Proof. The statement presupposes that X is nonempty
and that some feasible interdiction/response pair (x̂, ŷ) has
generated the Benders cut z � cTŷ � xTDŷ. Let ẑ � cTŷ
� x̂TDŷ. If the incumbent solution is optimal, then any
inequality in x is supervalid, so suppose not, that is, suppose
that the incumbent has led to z � z*. Let ( z*, x*) denote
an optimal solution to [Master(Y)-1a] and note that ŷTx* �
0 or ŷTx* � 1. When ŷTx* � 0,

z* � cTŷ � (x*)TDŷ is true for any ŷ � Ŷ � X,

� ẑ � (x*)TDŷ � x̂TDŷ because ẑ � cTŷ � x̂TDŷ,

� ẑ because ŷTx* � 0 implies that (x*)TDŷ � 0,
and because d � 0, ŷ � 0, and x* � 0 imply that
x̂TDŷ � 0,

� z because x̂ need not be the incumbent solution, and

� z* by assumption; but this is a contradiction.

Therefore, if the incumbent solution is not optimal, ŷTx* �
1 must be true for every optimal solution ( z*, x*). Thus, by
definition, the inequality ŷTx � 1 is supervalid. �

Note that if ŷTx̂ � 0 for a pair (x̂, ŷ) the inequality ŷTx
� 1 makes x̂ infeasible. Thus, ŷTx � 1 need not be a valid
inequality in the standard sense.

Theorem 1 has a simple interpretation: If an objective
value better than z is ever to be obtained, we must “raise the
ceiling” imposed by cTŷ � xTDŷ in the Benders cut z � cTŷ
� xTDŷ to at least ẑ (which is no greater than z) by forcing
xTDŷ to be sufficiently large.

Sometimes, interdiction of a single arc does not raise the
ceiling high enough and the following corollary applies:

Corollary 1. Given the Benders cut z � cTŷ � xTDŷ,
order the dkŷk � 0 so that dk1

ŷk1
� dk2

ŷk2

. . . � dkL
ŷkL

. Then,
if z � cTŷ � ¥l�1

p dkl
ŷkl

for p � L, the Type-I SVI of Theorem
1 can be tightened to ŷTx � p � 1.

Proof. Analogous to Theorem 1, if the current solution
is not optimal, then constraints z � cTŷ � xTDŷ and ŷTx �
p and the condition z � cTŷ � ¥l�1

p dkl
ŷkl

imply that z* �
cTŷ � ¥l�1

p dkl
ŷkl

� z for any optimal solution ( z*, x*).
This is a contradiction, so ŷTx � p � 1 must be supervalid.

�

We next develop “Type-II SVIs” which may be viewed
as “lifted” versions of Type-I SVIs (although they will
sometimes be identical).

Theorem 2. Let X̂Ŷ be a set of interdiction/response pairs
generated up to some point in Algorithm 1, and suppose that
(x̂, ŷ) � X̂Ŷ. Define ỹ � (diag(1 � x̂))ŷ. Then, the Type-II
inequality ỹTx � 1 is supervalid for [Master(Y)-1a].

Proof. If the interdictor is ever to see a response from
the follower that is different and longer than ŷ, then he must
interdict some arc that was traversed in ŷ but not interdicted.
This is precisely the set of arcs in the uninterdicted subpath
defined by ỹ. �

Given (x̂, ŷ) � X̂Ŷ, the Type-I SVI ŷTx � 1 and
corresponding Type-II SVI ỹTx � 1 will be identical if the
follower traverses no interdicted arcs in ŷ, that is, if ŷTx̂ �
0, so that ỹ � ŷ. But if ŷTx̂ � 0, then ỹ � ŷ and 0 � ỹk

� ŷk � 1 for at least one arc k, and, therefore, the Type-II
SVI is stronger than its Type-I counterpart. This strength-
ening is analogous to “lifting” for valid inequalities (e.g.,
Nemhauser and Wolsey [34, pp. 261–267]), so we borrow
that term here. Type-II SVIs can be lifted through other
considerations described next.

Theorem 3. Suppose that the pair (x̂1, ŷ1) � X̂Ŷ in Algo-
rithm 1 generates the Type-II SVI ỹ1

Tx � 1. Let K̃1 � {k�ỹ1k

� 1} and let K̃2 be any subset of K̃1 such that ¥k�K̃2
dk

� (cTŷ1 � x̂1
TDŷ1) � z. Then, the following inequality is

supervalid: ỹ2
Tx � 1, where ỹ2k � ỹ1k for all k � K̃1�K̃2 and

ỹ2k � 0, otherwise.

Proof. To achieve any solution of value greater than z,
we must find x such that cTŷ1 � xTDŷ1 � z, which requires
that some arc from ỹ1, other than or in addition to those with
indices K̃2, be interdicted. �

The inequality ỹ2
Tx � 1 is a lifted Type-II SVI and should

replace its progenitor ỹ1
Tx � 1.

Naturally, K̃2 should be a maximal set with the property
that ¥k�K̃2

dk � (cTŷ1 � x̂1
TDŷ1) � z. In practice, we order

the indices of K̃1 � {k1, k2, . . . , kp} so that dk1
� dk2

� . . . � dkp
and define K̃2 � {k1, k2, . . . , kp�} such that

¥k�K̃2
dk � (cTŷ1 � x̂1

TDŷ1) � z, but ¥k�K̃2�{kp��1} dk

� (cTŷ1 � x̂1
TDŷ1) � z. The ordering may not be unique,

and there may be other ways to define maximal subsets K̃2,
so it may be possible to lift ỹ1

Tx � 1 in different ways to
produce different lifted SVIs. This nonunique lifting is akin
to the sequence-dependent lifting of valid inequalities, for
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example, Padberg [36] and Balas and Zemel [4]. In practice,
we only attempt to lift an SVI with respect to a single
ordering.

The enhanced version of Algorithm 1 generates at least
one Type-I SVI and one Type-II SVI in each iteration.
These SVIs may be identical, but typically diverge through
tightening and/or lifting. Lifting and/or tightening is at-
tempted as soon as an SVI is generated and whenever z
changes during the course of the algorithm.

4.2. Algorithm 1 with SVIs: An Example

Here, we demonstrate the application of SVIs to Algo-
rithm 1 through an example. In every iteration, we add to
the master problem one Benders cut, one Type-I SVI, and
one Type-II SVI and then attempt to tighten or lift those
SVIs along with previously generated SVIs. The final ver-
sion of Algorithm 1 depends on techniques developed in the
context of a decomposition discussed later, so we revisit
Algorithm 1 in Section 6.

Example 1. Consider a network containing s–t paths P1

and P2, among others: P1 consists of arcs 1, 2, and 3 and P2

consists of arcs 1, 4, and 5. Those arcs have the following
parameters: c1 � 3, c2 � 1, c3 � 8, c4 � 4, c5 � 6, d1 � 3,
d2 � 4, d3 � 5, d4 � 1, and d5 � 3. Suppose that P1 is the
shortest s–t path in the network and, hence, is returned by
the subproblem in the first iteration of the algorithm when x̂
� 0. Therefore, z � 12, and the first Benders cut of the
master problem is

Benders1: z � 12 � 3x1 � 4x2 � 5x3.

The associated Type-I and Type II SVIs complete this
iteration’s master problem:

I-SVI1: x1 � x2 � x3 � 1,
II-SVI1: x1 � x2 � x3 � 1.

Suppose that the interdictor has enough resource(s) to
interdict arcs 1, 2, and 3 together and that this is the
solution, with z� � 24, of the first master problem, which
consists of Benders1, I-SVI1, and II-SVI1. Further, assume
that the shortest s–t path given these interdictions is P2, so
that z � c1 � d1 � c4 � c5 � 16. We can therefore lift
II-SVI1 because interdiction of arc 1 alone cannot raise the
ceiling on z over the lower bound z � 16. (We could also
lift this constraint by noting that interdiction of arc 2 alone
is insufficient to raise the ceiling above 16, but we follow
the discussion after Theorem 3 and lift only with respect to
the first indication.) The constraints from the first iteration
are now

Benders1:
I-SVI1:
II-SVI1:

z �
x1 � x2 � x3 �

x2 � x3 �

12 � 3x1 � 4x2 � 5x3,
1,
1,

and the constraints from the second iteration are

Benders2:
I-SVI2:
II-SVI2:

z �
x1 � x4 � x5 �

x4 � x5 �

13 � 3x1 � 1x4 � 3x5,
2,
1,

where we have already tightened I-SVI2 by Corollary 1. The
new master problem incorporates the six constraints above.
Suppose that its solution is x̂1 � x̂3 � x̂4 � x̂5 � 1 and x̂2

� 0, so that z� � 20 and the algorithm continues.
Then suppose that z increases to 17 at some later itera-

tion. We can then tighten the right-hand side of I-SVI1 to 2,
because to raise z over z we must interdict at least two of the
three arcs in P1. We can also lift II-SVI2, because interdic-
tion of arc 4 (along with arc 3) cannot raise z over z � 17.
The master problem derived from the first two iterations is
now (constraints from any subsequent iterations are omit-
ted)

Benders1:
I-SVI1:
II-SVI1:
Benders2:
I-SVI2:
II-SVI2:

z �
x1 � x2 � x3 �

x2 � x3 �
z �

x1 � x4 � x5 �
x5 �

12 � 3x1 � 4x2 � 5x3,
2,
1,
13 � 3x1 � 1x4 � 3x5,
2,
1.

The algorithm may or may not halt now depending on the
other cuts that have been generated and the value of z�
obtained after solving the current master problem.

5. A COVERING DECOMPOSITION

The special decomposition algorithm described here is
particularly useful for problems in which interdictions de-
stroy arcs, thereby making them impassable.

5.1. Arc Destruction: A Caveat

Problems in which arcs are actually destroyed by inter-
diction can be modeled by setting each dk � d�, where d�

is a sufficiently large “artificial delay.” Unfortunately, Al-
gorithm 1’s master problem becomes weaker and harder to
solve as d� increases in value with respect to ck; this is
clear in theory and is demonstrated empirically in Section
7.2. Thus, it is tempting to guess at a modest value for d�

and hope that the guess is large enough. But the following
example shows that being too conservative with d� can lead
to difficulties.

Example 2. Consider the network of Figure 1 and sup-
pose that an interdictor can destroy any two arcs in that
network. One optimal solution to MXSP interdicts (s, a) and
(s, b), yielding a shortest s–t path length of 20. Let d� be the
artificial delay to be added to each interdicted arc, and let
us use Algorithm 1 without SVIs to solve this problem.

Initially, the algorithm finds the uninterdicted shortest
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path s–a–t with length 2. Given that solution for the fol-
lower, the leader interdicts (s, a) and (a, t), and solves the
master problem containing the single Benders cut z � 2
� d�xsa � d�xat. The solution yields the “quasi-upper
bound” of 2 � 2d�: This is a “quasi-bound” because it is
valid only if d� � 9. The follower then finds the shortest
path after (s, a) and (a, t) are removed from the network.
The solution is s–b–t, with length 12, and the master prob-
lem’s cuts are

z � 2 � d�xsa � d�xat from the first iteration, and

z � 12 � d�xsb � d�xbt from the second iteration.

There are four cases to consider now:

(a) If d� � 5, the shortest path from the second iteration
has length greater than the quasi-upper bound from the
first iteration. We conclude that d� is too small, in-
crease it, and return to the master problem.

(b) If 5 � d� � 10, the optimal master problem objective,
that is, the quasi-upper bound, is 12. Since the lower
bound and quasi-upper bound match, the algorithm
terminates, but with an incorrect solution. In this case,
we see no way to recognize that we have chosen d� too
small without solving this NP-complete problem: Does
there exist a solution to MXSP with an objective value
greater than zŶ?

(c) If 10 � d� � 18, the master problem interdicts both
paths and has the optimal objective value 2 � d�. The
third iteration of the subproblem finds the path s–c–t
with length 20, which is larger than is the current
quasi-upper bound. Again, we conclude that d� is too
small, increase it, and return to the master problem.

(d) If d� � 18, the quasi-upper bound is a true upper
bound and the algorithm terminates with the optimal
solution. �

5.2. The Basic Covering Algorithm

Case (b) above is disturbing. To address this and related
issues, we offer an alternative decomposition algorithm that
eliminates the delay terms from the master problem. The
master problem is simply a “feasibility-seeking set-covering
problem”:

�Master
X̂Ŷ� � 2a	 Find x � X

s.t. ỹTx � 1 � 
x̂, ŷ� � X̂Ŷ where ỹ � 
diag
1 � x̂��ŷ.

In this context, we call the constraints ỹTx � 1 covering
constraints and each such constraint simply implies that “if
the interdictor wishes to force the follower to traverse a path
other than ŷ then a new interdiction plan x̂� must interdict
some arc that is not interdicted by x̂ but is used by the
follower in response to x̂.”

The algorithm associated with [Master(X̂Ŷ)-2a] gener-
ates new interdiction plans until the master problem be-
comes infeasible, at which point we can prove that the best
plan found is optimal. We refer to this algorithm as a
covering decomposition.

Algorithm 2: A covering decomposition algorithm for
MXSP.

Input: An instance of MXSP.

Output: An optimal interdiction plan x*.

Step 0: X̂Ŷ 4 A; z 4 ��; x̂ 4 0;

Step 1: Solve [SP-Sub(x̂)] for ŷ with objective value zx̂;

X̂Ŷ 4 X̂Ŷ � (x̂, ŷ);

If z � zx̂ then x� 4 x̂ and z 4 zx̂;

Step 2: Attempt to solve [Master(X̂Ŷ)-2a] for feasible
solution x̂;

If [Master(X̂Ŷ)-2a] is feasible then go to Step 1;

Step 3: x* 4 x�; Print x*; Stop.

Theorem 4. Algorithm 2 correctly solves MXSP.

Proof. Define z(x̂, ŷ) � cTŷ � x̂TDŷ for all (x̂, ŷ)
� X̂Ŷ. Now, we may view Algorithm 2 as follows: Each
time the algorithm reaches Step 1, the follower responds as
best possible to the current interdiction plan x̂ with one new
s–t path ŷ and, implicitly, with an uninterdicted subpath ỹ.
Then, in Step 2, the leader tries to find a plan that interdicts
at least one arc in each of the uninterdicted subpaths gen-
erated so far. (If such a plan is found, it may or may not
force the follower to traverse a path longer than the path
forced by the incumbent x�.) The algorithm terminates
when the leader fails to interdict all the subpaths represented
by X̂Ŷ. At this point, he cannot force a worse response for
the follower than any of responses seen so far, that is, z* �
max(x̂,ŷ)�X̂Ŷ z(x̂, ŷ). But z � max(x̂,ŷ)�X̂Ŷ z(x̂, ŷ), so the
incumbent solution x� is optimal. �

The correctness of Algorithm 2 can also be proved via a
variant of Benders decomposition in which the master prob-
lem is not solved to optimality; see Israeli [27].

If arcs are actually destroyed by interdiction, Algorithm
2 can be applied directly with sufficiently large artificial
delays representing arc destruction in the subproblem or by
simply making interdicted arcs impassable. (In either case,

FIG. 1. Network to illustrate difficulties with artificial delays. Numbers
next to arcs denote arc lengths.
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ỹ � ŷ for all follower responses ŷ, unless it is possible for
the interdictor to disconnect s from t, in which case the
algorithm can be modified to terminate early.) In fact, when
applied to such a problem, Algorithm 2 is similar to the
algorithm for the “k-most-vital-arcs-problem” suggested by
Malik et al. [30]. There, paths with nondecreasing lengths in
the uninterdicted network are enumerated and interdiction is
attempted in the network G� consisting of the union of the
first l paths, for l � 1, 2, . . . , until this is impossible.
Essentially, an algorithm that produces the lth-shortest path
in the original network (e.g., [29]) replaces Step 1 in Algo-
rithm 2. However, Malik et al. assumed that an optimal
interdiction plan x* for the l shortest paths must correspond
to a cutset in G�, and, thus, x* corresponds to an easily
identified, minimum-cardinality cutset in G�. Figure 2’s
counterexample shows that this assumption is incorrect, so
the procedure of Malik et al. must be viewed as a heuristic.

We next describe some enhancements to Algorithm 2 to
improve efficiency.

5.3. Heuristic Solution of the Master Problem

Since we assume that X includes only a single resource
constraint rTx � r0, we can solve the following master
problem to find a solution to [Master(X̂Ŷ)-2a]:

�Master
X̂Ŷ�-2b	 min
x

rTx

s.t. ỹTx � 1 � 
x̂, ŷ� � X̂Ŷ
where ỹ � 
diag
1 � x̂��ŷ

x � �0, 1
�A�.

[Master(X̂Ŷ)-2b] is a standard set-covering problem (SCP),
which has an optimal objective value not exceeding r0 if
and only if [Master(X̂Ŷ)-2a] is feasible. However, we need
only solve [Master(X̂Ŷ)-2b] for a feasible solution x̂ satis-
fying rTx̂ � r0, and this suggests the use of fast heuristics.
We use a version of the greedy heuristic for SCPs discussed
by, among others, Nemhauser and Wolsey [34]. (Other SCP
heuristics exist, e.g., Beasley [8] and Caprara et al. [12], but
our choice is easy to implement and provides adequate
performance for our test problems.) Thus, whenever we

need to solve a master problem in Algorithm 2, we run the
greedy heuristic on [Master(X̂Ŷ)-2b]. If a feasible solution,
x̂ � X, is found, we proceed to Step 1 of the algorithm. If
not, only then do we resort to a slower, exact, branch-and-
bound algorithm.

5.4. Local Search

Algorithm 2 typically iterates faster than does Algorithm
1 because the master problems are easier to solve. This is
true even when delays dk are small. On the other hand,
Algorithm 2 usually requires more iterations than does
Algorithm 1 when the dk are not too large. Another diffi-
culty with Algorithm 2 is the lack of an upper bound, which
could enable early termination with a near-optimal solution.
To help overcome these two difficulties, we exploit multiple
pairs (x̂, ŷ�) generated by a local-search procedure for a
given x̂, where ŷ� denotes an optimal or suboptimal re-
sponse to x̂. The key result is

Theorem 5. Let (x̂, ŷ�) denote an interdiction plan x̂ and
possibly suboptimal response ŷ�, that is, ŷ� is a valid path
given x̂, but may not be a shortest path. Then, (x̂, ŷ�) may be
added to X̂Ŷ without compromising the validity of Algorithm
2 provided that z(x̂, ŷ�) � z.

Proof. This follows from the definition of z. �

Before describing the related upper-bounding procedure,
we describe a local-search process that generates the “extra
pairs” (x̂, ŷ�).

Assume that G has arc length vector c � Dx̂. It is well
known that finding the shortest paths from s to all other
nodes in G is not much more difficult than finding a single,
shortest s–t path. So, we first compute and encode the
former paths using a standard “shortest-path tree” T and
“predecessor function” (e.g., Ahuja et al. [1, pp. 106–107]).
Now, let P(t) � (s, i1, i2, . . . , in, t) denote the shortest
s–t path in T and let P( j) be the shortest s–j path. For every
node im � {i1, i2, . . . , in} and for every arc ( j, im) � A,
j � P(t), the procedure Local_Search(x̂, T) then builds the
path (P( j), im, im�1, . . . , in, t), represented by its inci-
dence vector ŷ� and returns the corresponding pair (x̂, ŷ�).

FIG. 2. Network for counterexample. If all arcs lengths are 1 and exactly two arcs can be interdicted, the
optimal solution to MXSP interdicts arcs (s, c) and (c, t) which are not part of any cutset.
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We omit pseudocode for this procedure and other ancillary
procedures whose implementations are straightforward.

Every pair (x̂, ŷ�) returned from Local_Search(x̂, T)
with z(x̂, ŷ�) � z is introduced into X̂Ŷ to yield one more
subpath to be covered in the master problem. If z(x̂, ŷ�)
� z, (x̂, ŷ�) is stored in a special set X̂Ŷ�. Later, after
updating z in succeeding iterations, any (x̂, ŷ�) � X̂Ŷ�

satisfying z(x̂, ŷ�) � z is moved into X̂Ŷ. Based on The-
orem 6 below, the paths contained in X̂Ŷ� can also be used
to verify a hypothesized upper bound, for example, z � 	
for some 	 � 0, which then allows us to solve for 	-optimal
solutions.

Theorem 6. Let X̂Ŷz� be defined such that z(x̂, ŷ�) � z� for
all (x̂, ŷ�) � X̂Ŷz�, where z� is a hypothesized upper bound on
z*. Then, if [Master(X̂Ŷz�)-2b] is infeasible, z* � z�, that is,
the upper bound is valid.

Proof. Let X̂Y�z� denote the set of all interdiction plans
and possible optimal and nonoptimal responses (x̂, ŷ�) such
that z(x̂, ŷ�) � z� . If z* � z� , we can feasibly interdict all
uninterdicted subpaths ỹ� derived from (x̂, ŷ�) � X̂Y�z� �
X̂Ŷz�. But, under the assumption that [Master(X̂Ŷz�)-2b] is
infeasible, this is impossible. Therefore, z* � z� . �

So, given valid lower bound z derived from some x̂, we
can check for 	-optimality of x̂ by (i) hypothesizing an
upper bound z� � z � 	 for some 	 � 0, (ii) defining X̂Ŷz�

� X̂Ŷ � {(x̂, ŷ�) � X̂Ŷ��z(x̂, ŷ�) � z � 	}, and, (iii)
checking feasibility of [Master(X̂Ŷz�)-2b]. If it is infeasible,
we know that z* � z � 	 and x̂ is 	-optimal. When 	 � 0
is defined, we generate and solve [Master(X̂Ŷz�)-2b] period-
ically within Algorithm 2 and find that the extra computa-
tional overhead is more than offset by a reduced number of
iterations.

5.5 Other Improvements

Algorithm 2 adds two procedures that often improve
efficiency. One procedure. Lift(X̂Ŷ, z), uses the current
lower-bound z and information on arcs with modest delays
to lift the covering constraints based on X̂Ŷ, just as Type-II
SVIs are lifted via Theorem 3: Covering constraints are
essentially Type-II SVIs. [The procedure returns the “lifted
interdiction/response pairs” derived from (x̂, ŷ) � X̂Ŷ
rather than the lifted constraints themselves.] Additionally,
we generalize the procedure and call Lift(X̂Ŷ, z � 	), for
	 � 0 to create 	-supervalid inequalities (	-SVIs). These
inequalities will not eliminate all 	-optimal solutions unless
the incumbent solution is already 	-optimal.

Another procedure, not shown, removes redundant rows
from the master problem just as such rows are removed in
set-covering problems (e.g., Garfinkel and Nemhauser [19,
pp. 302–304] and Taha [38, pp. 316–332]). We find it more
efficient to do this before sending the master problem to the
solver, although the solver can detect and remove some or
all of these rows by itself.

5.6. The Enhanced Covering Decomposition

Algorithm 2, with enhancements, is outlined below. The
actual implementation reorders certain computations for
efficiency’s sake.

Algorithm 2E: Enhanced covering decomposition for
MXSP.

Input: An instance of MXSP and optimality tolerance 	
� 0.

Output: An 	-optimal interdiction plan x	 for MXSP.

Step 0: X̂Ŷ 4 A; X̂Ŷ� 4 A; z 4 ��; x̂ 4 0;

Step 1: Solve [SP-Sub(x̂)] for shortest-path tree T and
objective zx̂;

If z � zx̂ then x� 4 x̂ and z 4 zx̂;

X̂Ŷ� 4 X̂Ŷ� � Local_Search(x̂, T);

X̂Ŷ� 4 {(x̂, ŷ�) � X̂Ŷ��z(x̂, ŷ�) � z � 	};

X̂Ŷ� 4 X̂Ŷ� � X̂Ŷ�;

X̂Ŷ� 4 Lift(X̂Ŷ�, z � 	);

Step 2: Attempt to solve [Master(X̂Ŷ�)-2b] for feasible
solution x̂.

If [Master(X̂Ŷ�)-2b] is feasible, then go to Step
1.

Step 3: x	 4 x�; Print x	; Stop.

6. ALGORITHM 1 REVISITED

Algorithm 2’s enhancements can also improve Algo-
rithm 1, as can a few other techniques described here.
Algorithm 1E is the result.

6.1. SVIs and the Master Problem

Algorithm 1 works best when all optimal responses ŷ for
a given x̂ are generated and the corresponding cuts added to
the master problem, but suboptimal responses ŷ can also be
used. They create “slack Benders cuts” that lie strictly above
the function zx at the points x � x̂ � X that generate these
cuts. Slack cuts often tighten the master problem away from
x̂ and thereby reduce enumeration, so we use Local_Search
just as in Algorithm 2E to generate the necessary paths. (We
could also use the Byers and Waterman algorithm, but find
it overly sensitive to parameter settings in our tests.)

The master problem for Algorithm 1E includes both
Type-I and Type-II SVIs. To use both types, we maintain
the set X̂Ŷ as defined in Algorithm 1 and second set X̂Ŷ� of
interdiction/response pairs that are augmented and lifted by
Local_Search and Lift, respectively. The right-hand sides
b for Type-I SVIs are defined as functions by combining
Theorem 3 and Corollary 1 as follows: For each (x̂, ŷ)
� X̂Ŷ, order the dkŷk � 0 such that dk1

ŷk1
� dk2

ŷk2

. . . �
dkL

ŷkL
and define dk0

ŷk0
� �, dkP�1

ŷkP�1
� 0 and
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b
cTŷ, d, z� � p � 1 if

cTŷ � �
l�1

p

dkl
ŷkl

� z 
 cTŷ � �
l�1

p�1

dkl
ŷkl

.

Just as Type-II SVIs are generalized to 	-SVIs, the Type II
SVIs are also, simply by using b(cTŷ, d, z � 	). The master
problem for Algorithm 1E is then

�Master
X̂Ŷ, X̂Ŷ�, z, 	�-1b	

zX̂Ŷ � max
x�X

z

s.t. z � cTŷ � xTDŷ � ŷ � Ŷ

ŷTx � b
cTŷ, d, z � 	� � 
x̂, ŷ� � X̂Ŷ

ỹTx � 1 � 
x̂, ŷ� � X̂Ŷ� where ỹ � 
diag
1 � x̂��ŷ.

6.2. Algorithm 1E

We outline Algorithm 1E as follows:

Algorithm 1E: The Benders decomposition Algorithm
1, enhanced.

Input: An instance of MXSP and optimality tolerance 	
� 0.

Output: An 	-optimal interdiction plan x	 for MXSP.

Step 0: X̂Ŷ 4 A; X̂Ŷ� 4 A; z 4 ��; z� 4 �; x̂ 4
0;

Step 1: Solve [SP-Sub(x̂)] for shortest-path tree T and
objective zx̂.

If z � zx̂ then x� 4 x̂ and z 4 zx̂;

X̂Ŷ� 4 X̂Ŷ� � Local_Search(x̂, T);

X̂Ŷ� 4 {(x̂, ŷ�) � X̂Ŷ��z(x̂, ŷ�) � z � 	};

X̂Ŷ� 4 X̂Ŷ� � X̂Ŷ�;

X̂Ŷ� 4 Lift(X̂Ŷ�, z � 	);

Step 2: Attempt to solve [Master(X̂Ŷ, X̂Ŷ�, z, 	)-1b] for
optimal solution x̂ and objective zX̂Ŷ;

If [Master(X̂Ŷ, X̂Ŷ�, z, 	)-1b] is infeasible, then
go to Step 3;

z� 4 zX̂Ŷ; If z� � z � 	 then go to Step 1;

Step 3: x	 4 x�; Print x	; Stop.

In addition to using SVIs, solution times for Algorithm
1E are often reduced by not solving the master problem to
optimality. This variant of Benders decomposition (e.g.,
[20]) will converge provided that (i) a suboptimal integer
master-problem solution x̂ is accepted only if the corre-
sponding objective value z� satisfies z� � z and (ii) we
update z� only when the master problem is solved to opti-
mality or through the master problem’s global upper bound.

Another useful technique for Algorithm 1E is: Do not
use Benders cuts in early iterations. Instead, we heuristically
solve Algorithm 2’s set-covering master problem to find
new solutions x̂ until the heuristic fails. Then, we switch to
the full master problem [Master(X̂Ŷ, X̂Ŷ�, z, 	)-1b]. If this
problem is infeasible, or if z� � z � zX̂Ŷ � z � 	, the
algorithm halts. Otherwise, it proceeds using the full master
problem.

7. COMPUTATIONAL EXPERIENCE

7.1. Test Problems and Environment

We test our algorithms on a set of directed grid networks
of different size and with randomly generated arc attributes
(Fig. 3):

1. There is one source node s and one sink node t.
2. There are m � n “transshipment nodes” arranged in a

grid of m rows and n columns.

FIG. 3. Example topology of a 3 � 4 test network.
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3. There is a 0-length arc from s to each transshipment
node in the first column, and there is a 0-length arc from
each transshipment node in the last column to t. None of
these 2m arcs may be interdicted.

4. An arc exists from each node in row r and column c, that
is, in grid position (r, c), to the nodes in positions (r
� 1, c), (r � 1, c), (r, c � 1), (r � 1, c � 1), and
(r � 1, c � 1) provided that (i) a node exists in the
particular position, and (ii) these are not vertical arcs in
the first or last columns, which would be superfluous.
All these arcs are interdictable.

5. The basic data for each network are

(a) m and n [so that there are a � (n � 2)(5m � 4)

� 3m � 2 interdictable arcs, and 2m noninter-
dictable arcs];

(b) Maximum arc length c, maximum arc delay d, and
maximum resource r required to interdict an arc;
all these values are positive integers;

(c) r0, the total, positive integer, interdiction resource
available.

6. The randomly generated, integer data for each interdict-
able arc k are ck, dk, and rk, uniformly distributed on [1,
c], [1, d], and [1, r], respectively.

Table 1 provides summary statistics for the test prob-
lems.

We program our algorithms in C using the CPLEX
version 6.5 callable library [26] for exact solution of master
problems, when needed, and for direct solutions of the MIP
[MXSP-D]. Extensive testing indicates that default solver
options are best except that “variable selection strategy” is
set to “branch based on pseudoreduced cost” in all cases.
Computation is performed on an IBM RS-6000 Model 595
workstation with 512 megabytes of RAM. Run times shown
are averages across 10 networks of identical topology, but
with different random arc attributes.

7.2. Basic Results

Results for problems 1–4 (Table 2) compare solution
methods as total interdiction resource changes. All prob-
lems are solved to optimality here, that is, 	 � 0.

Overall, Algorithms 1E and 2E are competitive with each
other and are the fastest of the four procedures by a wide
margin. We would also like to point out that

1. Varying arc attributes, while holding the network topol-
ogy and algorithm fixed, can lead to widely varying
solution times for all algorithms: The fastest run among
the 10 instances of a problem may be 20 times faster than
the slowest. We are still investigating ways to reduce run
times for the longer-running problems.

2. All algorithms are sensitive to total interdiction resource
r0. Run times typically increase rapidly as r0 increases
from a small value but then start decreasing for suffi-
ciently large values, beyond those displayed here. This

TABLE 1. Test problem statistics.

Problem m � n a c d r r0

1 10 � 10 396 10 10 5 20
2 30
3 40
4 50

5 12 � 8 370 25
6 8 � 12 382
7 14 � 7 370
8 7 � 14 391
9 15 � 10 611

10 10 � 15 626
11 20 � 12 1,018
12 12 � 20 1,042

13 7 � 7 188 10 d� � 5 or 10 1 5
14 7 � 7 10
15 8 � 8 238 5
16 8 � 8 10
17 9 � 9 312 5
18 9 � 9 10
19 12 � 12 594 5
20 12 � 12 10

Blank table cells repeat values from cells above. Problems 13–20 are
k-most-vital-arcs problems for k � 5 or k � 10 and with artificial delays
of d� � 5 or d� � 10. (d� � 10 is “sufficiently large;” d� � 5 may
not be.) m � n, Grid of nodes has m rows and n columns; a, no.
interdictable arcs; c, arc costs ck are integers in the range [1, c]; d, arc
delays dk are integers in the range [1, d], except for problems 13–20; r, arc
interdiction resources rk are integers in the range [1, r]; r0, total inter-
diction resource available.

TABLE 2. Computational results for a network with 100 � 10 � 10 transshipment nodes (a � 396), c � 10, d � 10, and r � 5; 	 � 0.

Problem r0

[MXSP-D] Algorithm 1 Algorithm 1E Algorithm 2E

T S T S N P T S N P T S N P

1 20 60 36 219 139 53 306 3 3 21 334 4 4 22 341
2 30 651 757 (5) — — — 26 31 34 671 39 51 37 693
3 40 (4) — (0) — — — 135 162 52 1101 191 277 54 1167
4 50 (2) — (0) — — — (9) — — — 1349 1781 77 1656

“[MXSP-D]” gives results for the direct, branch-and-bound solution of [MXSP-D]. Nos. in parentheses are the no. problems, out of 10, solved to
optimality in under 3600 CPU s. “—” indicates “not applicable” because at least one of the 10 instances could not be solved in the allotted time. T, Average
run time, in CPU seconds, for 10 problems; S, standard deviation of T in CPU seconds; N, average number of iterations for the algorithm; P, average
number of constraints in master problem when algorithm terminates.
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makes sense since increasing interdiction resource al-
lows more combinations of arcs to be interdicted, up to
a point. Then, for sufficiently large r0, all or nearly all
arcs can be interdicted and the problem becomes easy.

3. We find that branch and bound does not solve any of the
problems much faster even if it identifies an optimal
solution immediately and simply needs to prove optimal-
ity. For instance, results for problems 3 and 4 do not
materially change if an optimal solution is known as the
branch-and-bound procedure begins, and solution times
improve less than 10% for problems 1 and 2. Evidently,
the LP-based bounds improve only slowly as the enu-
meration tree expands.

Table 3 displays results from runs that explore the sen-
sitivity of the algorithms to a network’s row-to-column
ratio. Results for Algorithm 1 are omitted because, as in
Table 1, they are much worse than for Algorithm 1E and
even [MXSP-D]. The decomposition algorithms appear to
prefer “tall networks” like the 12 � 8 network over “long
networks” like the 7 � 14 network. This tendency may
result from the greater number of paths in a long network
and the potentially greater number of constraints in the
corresponding master problems and because there is a pos-
itive correlation between the number of potential constraints
and the actual number needed to generate a tight master
problem.

We next explore how allowing 	 � 0 may shorten run
times for Algorithms 1E and 2E and, for the sake of com-
parison, for direct solutions of [MXSP-D]. Improved run
times result because (i) branch-and-bound enumeration
trees can be trimmed for the [MXSP-D] MIP and for Algo-
rithm 1E’s master problem, (ii) termination tests in the
decomposition algorithms are more easily satisfied, and (iii)
the SVIs in the decomposition algorithms may be more
aggressively lifted or tightened as 	-SVIs.

We repeat the computational tests on five of the most
difficult problems from Tables 2 and 3 while allowing a 5%
optimality gap. (Optimality gaps were described previously
in absolute terms. Here, an allowable gap of g % indicates
that 100( z� � z)/z � g). Results are displayed in Table 4.
Indeed, all times are reduced with the relaxed optimality

criterion, and even branch and bound becomes more com-
petitive.

Table 5 compares several algorithms for the variant of
MXSP in which interdiction destroys arcs, making them
impassable. The cost of interdiction is fixed to one unit of
resource per arc, so we are actually solving the k-most-vital-
arcs problem, for k � 5 and k � 10, in four different
network topologies. [MXSP-D] and Algorithm 1 use artifi-
cial delays of d� � 5 and d� � 10. However, d� � 5 is
often too small and yields invalid solutions, while d� � 10
is sufficiently large but results in long run times.

Both branch and bound and Algorithm 1 perform poorly;
Algorithm 2 is the fastest by a substantial margin. Results
for Algorithm 1E are omitted because that algorithm is
uniformly slower than is Algorithm 2 here. (We can view
Algorithm 1E as Algorithm 2 with Benders cuts added in
the master problem. But, these cuts are weak and uninfor-
mative when all delays are identical and/or large, and thus
the cuts only serve to hinder solution of Algorithm 2’s
master problem.) Results for Algorithm 2E are omitted
because, when d� is large, lifting and local search are
ineffective for that algorithm’s master problem.

As a side note, it is interesting to see that “plain” Benders
decomposition, Algorithm 1, is faster than is branch and

TABLE 3. Computational results for networks with different row-to-column ratios, with r0 � 25, c � 10, d � 10, and r � 5; 	 � 0.

Problem m � n a

[MXSP-D] Algorithm 1E Algorithm 2E

T S T S N P T S N P

5 12 � 8 370 296 369 1 1 15 186 1 1 16 186
6 8 � 12 382 286 326 72 95 40 949 71 86 40 935
7 14 � 7 370 131 139 1 1 13 126 1 1 14 127
8 7 � 14 391 298 387 222 301 54 1668 409 515 58 1768
9 15 � 10 611 (8) — 3 3 18 305 3 3 20 311

10 10 � 15 626 (8) — 407 475 54 1886 722 965 58 2044
11 20 � 12 1018 (3) — 11 12 21 438 7 7 22 438
12 12 � 20 1042 (0) — (3) — — — (1) — — —

The total no. interdictable arcs is a. See Table 2 for other definitions.

TABLE 4. Computational tests on the hardest problems from Tables 2
and 3, with a 5% optimality gap allowed.

Problem

[MXSP-D] Algorithm 1E Algorithm 2E

T
(5%)

T
(opt)

T
(5%)

T
(opt)

T
(5%)

T
(opt)

3 (9) (4) 104 135 74 191
4 1378 (2) 604 (9) 799 1349
8 27 298 77 222 201 409

10 301 (8) 113 407 256 2044
12 (8) (0) (8) (3) (3) (1)

Times “T (5%)” are the results in CPU seconds averaged over the 10
test problems. For comparison, “T (opt)” gives the average solution times
in seconds, taken from Tables 2 and 3, when the same problems are solved
to optimality. As before, run times are limited to 3600 seconds, and the nos.
in parentheses indicate the no. problems that can be solved under that limit.
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bound on many of these problems. The Benders master
problem is no stronger than is [MXSP-D], so this fact must
result from quick solutions of the shortest-path subprob-
lems.

7.3. SVIs to Speed Direct Solutions

This section explores the use of SVIs to speed the direct
solution of the MIP [MXSP-D] via branch and bound: We
heuristically generate a set of SVIs, add them to the MIP,
and then launch the branch-and-bound code. Integer cutting
planes have been used in this fashion to help solve general
MIPs by branch and bound, starting with Dantzig et al. [16],
and continuing to today’s commercial solvers. This use is
not as sophisticated as “branch and cut” where cutting
planes are integrated into the branch-and-bound procedure
(e.g., Wolsey [44] pp. 157–160), but success with the sim-

pler technique should bode well for more sophisticated
applications. Indeed, the topic of SVIs warrants a full re-
search paper on its own; we only intend to illustrate its
potential.

To generate the SVIs, we run Algorithm 2 and heuristi-
cally solve the set-covering master problem until the
heuristic fails. Each set-covering solution, together with
Local_Search, yields multiple Type-I SVIs. These are
tightened, as appropriate, using information about the in-
cumbent solution’s value and corresponding Benders cut
coefficients (which are generated and saved, but used only
for this purpose).

Table 6 displays results for [MXSP-D] with and without
SVIs and, for comparison, results for Algorithm 2E. Dra-
matic improvements are obtained using SVIs in conjunction
with the MIP. In fact, branch and bound plus SVIs performs
better than does Algorithm 2E in two instances. Improve-

TABLE 5. Results for the k-most-vital-arcs problems.

Problem k m � n a OK

[MXSP-D] Algorithm 1

Algorithm 2d� � 5 d� � 10 d� � 5 d� � 10

T T T T T

13 5 7 � 7 188 8 6 23 1 5 0.3
14 10 7 � 7 188 2 71 1551 66 (7) 7.1
15 5 8 � 8 238 10 15 84 2 11 0.4
16 10 8 � 8 238 7 161 (2) 222 (0) 10.0
17 5 9 � 9 312 4 24 162 5 26 0.6
18 10 9 � 9 312 10 644 (0) 977 (0) 44.7
19 5 12 � 12 594 6 93 811 8 68 2.1
20 10 12 � 12 594 9* (6) (0) (5) (0) 446.9

Neither branch and bound nor Algorithm 1 solve all problems correctly when d� is too small, that is, when d� � 5. All problems can, theoretically,
be solved correctly by those techniques when d� � 10, but not necessarily within the 3600-second time limit; nos. in parentheses show the no. solved
under that limit. Algorithm 2 does not depend on the artificial delay d� and is the fastest of the three techniques tested. The value marked by “*” was
determined by increasing the time limit for [MXSP-D] to 10,000 seconds. k, Total no. arcs the interdictor may interdict; d�, artificial delay; T, average
CPU time to solve 10 problem instances; OK, no. problems that solve correctly when d� � 5.

TABLE 6. Computational results for [MXSP-D] with SVIs added.

Problem

[MXSP-D] [MXSP-D] � SVIs Algorithm 2E

cons vars T S enum SVIs T S enum T S

1 418 518 60 36 3992 367 12 12 66 4 4
2 651 757 47,417 683 83 100 768 39 51
3 (4) — �159K 1158 584 890 3470 191 277
4 (2) — �212K 1788 (8) — �5221 1349 1781
5 396 492 296 369 22,622 254 8 5 24 1 1
6 400 496 286 326 19,599 1304 87 40 318 57 69
7 396 498 131 139 9822 156 2 2 2 1 1
8 407 505 298 387 19,911 1504 314 234 2110 409 515
9 643 793 (8) — �87K 340 24 12 65 3 3

10 648 798 (8) — �66K 1815 922 799 6957 722 965
11 991 1191 (3) — �86K 438 92 93 569 7 7
12 1022 1238 (0) — �97K 3456 (2) — �4755 (1) —

The same 10 instances of each problem that generate the results in Tables 2 and 3 are used here. Results for [MXSP-D] and Algorithm 2E are provided
for comparison. T, average CPU time to solve 10 problem instances; S, standard deviation of T; cons, no. constraints in [MXSP-D]; var, no. variables in
[MXSP-D]; enum, nodes in the branch-and-bound enumeration tree; SVIs, no. SVIs (new constraints) added to [MXSP-D].
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ments are less dramatic when the number of SVIs becomes
large, which occurs in the longer networks.

There is a clear trade-off between the reduced enumer-
ation achieved with SVIs and increased solution times for
the LP relaxations of the resulting, larger MIPs: Compare
the huge reduction in the size of branch-and-bound trees to
the lesser improvement in run times, especially with the
longer networks. Further research is warranted.

8. CONCLUSIONS

This paper has defined a shortest-path network-interdic-
tion problem, MXSP, on a directed network. The objective
of an “interdictor” is to interdict (attack) network arcs, using
limited resources, in order to maximize the length of a
shortest path between two specified nodes, s and t. Inter-
diction of an arc increases its effective length or destroys the
arc, making it impassable. The ultimate purpose of the
interdiction is to delay a “network user” from traveling
between s and t.

We have formulated MXSP as a standard MIP, but
develop special decomposition algorithms that solve test
problems much more quickly than does LP-based branch
and bound applied to the MIP. Straightforward Benders
decomposition performs poorly, but special techniques, in-
cluding “supervalid inequalities” (SVIs) for the master
problem, improve efficiency significantly. A “covering de-
composition,” which uses a special set-covering master
problem, is particularly useful for problems in which inter-
diction completely destroys arcs or adds large delays.

An SVI generalizes the concepts of valid inequality and
the integer cutting plane by allowing feasible and even
optimal solutions to be eliminated. We have also added
SVIs to the MXSP MIP, just as valid inequalities might be
added, and have demonstrated substantial speed-ups in
branch-and-bound solutions. It will be interesting to inves-
tigate the use of SVIs for solving other MIPs.

Our decomposition techniques, especially Algorithm 2
and its variants, can be generalized to other network-inter-
diction problems and to “system interdiction problems.” For
instance, we may wish to disrupt a segment of an adver-
sary’s economy by attacking key components of that econ-
omy, for example, power generators and weapons produc-
tion facilities. We simply require that (i) the interdictor’s
choices be discrete and resource-constrained, (ii) interdic-
tions disrupt system activities in a well-defined manner, and
(iii) given a specific set of interdictions, it is possible to
determine an optimal response by the system user.

We are already applying these generalizations to a tri-
level “system-defense problem,” in particular, the problem
of hardening a road network against attack. In this problem,
the network user has limited resources to harden (make
invulnerable) arcs in his/her network against potential in-
terdiction. The interdictor observes which components of
his/her adversary’s network have been hardened and solves
a shortest-path interdiction problem to determine the best
interdiction plan. The network user responds with a new

hardening plan, and the decomposition proceeds as de-
scribed in this paper. In essence, the network user interdicts
the interdictor. Our solution approach uses a nested decom-
position scheme. We are also pursuing issues of uncertainty
in interdiction.
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