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Shortest Path Planning for Energy-Constrained

Mobile Platforms Navigating on Uneven Terrains
Nuwan Ganganath, Chi-Tsun Cheng, Tyrone Fernando, Herbert H. C. Iu, and and Chi K. Tse

Abstract—Finding a shortest feasible path between two given
locations is a common problem in many real-world applications.
Previous studies have shown that mobile platforms would con-
sume excessive energy when moving along shortest paths on
uneven terrains which often consist of rapid elevation changes.
Mobile platforms powered by portable energy sources may
fail to follow such paths due to the limited energy available.
This paper proposes a new heuristic search algorithm called
Constraints Satisfying A* (CSA*) to find solutions to such resource
constrained shortest path problems. When CSA* is guided by
admissible heuristics, it guarantees to find a globally optimal
solution to a given constrained search problem if such a solution
exists. When CSA* is guided by consistent heuristics, it is
optimally efficient over a class of equally informed admissible
constrained search algorithms with respect to the set of paths
expanded. Test results obtained using real terrain data verify the
applicability of the proposed algorithm in shortest path planning
for energy-constrained mobile platforms on uneven terrains.

Index Terms—CSA*, multiple resource constraints, shortest
paths, heuristic search, outdoor navigation.

I. INTRODUCTION

PATH planning is a process of finding a desired path from

a set of possible paths between two given locations such

that some predefined requirements are satisfied. It has been

a topic of interest for many decades with an early focus on

finding least cost paths between nodes in weighted graphs [1]–

[3]. Recently, path panning in outdoor environments has drawn

a significant attention with the emergence of autonomous cars

[4]–[6], mobile sensor networks [7]–[9], and planetary rovers

[10], [11]. Outdoor environments often consist of uneven

terrains on which some paths are not physically feasible for

mobile platforms due to their instability on steep slops and

motion power limitations [12]–[14]. Many existing outdoor

path planning algorithms focus either on finding shortest paths

[15]–[17] or energy-optimal paths [18]–[23].
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A. Background

Anisotropic friction and gravity effects have to be addressed

when planning paths on uneven terrains. A physical model

which can be used to calculate energy-cost of mobile platforms

navigating under such external forces was proposed in [19].

The proposed model has also considered impermissible traver-

sal headings due to power limitations and overturn dangers. An

A* search algorithm [2] together with the energy-cost model

and polyhedral terrain models have been used to find energy-

efficient paths on uneven terrains. This energy-cost model has

later been used for finding near-optimal energy paths on the

surface of a vertical-axis ideal cone with anisotropic friction

and gravity effects [20]. It has been shown that cone surface

patches result in better terrain models and near-optimal paths

obtained on such models are not much more complex than

those on polyhedral terrain models. A terrain face weight

concept was introduced in [15] to find shortest anisotropic

paths on uneven terrains. Face weights capture some location

based parameters of the terrain such as friction and slope. A

polynomial time approximation algorithm was also proposed

in [15] for finding shortest anisotropic paths.

Increased use of battery-powered mobile platforms has

stimulated further research in energy-efficient path planning

problems. In [23], energy-efficient path planning on steep

terrains where mobile platforms can only move downhill

has been considered. Lower- and upper-bound results on the

combinatorial size of optimal paths and an approximation

algorithm for finding energy-efficient paths are proposed in

the same paper. Recently, a heuristic search algorithm called

Z* was proposed for finding energy-efficient paths on uneven

terrains [18]. It uses a heuristic function which can estimate

heuristic energy-cost on uneven terrains using zigzag-like path

patterns. It has been proven that Z* is capable of finding

energy-optimal paths on a given terrain if such paths exist.

Some other research focus on energy-efficient and shortest

path replanning in dynamic and unknown outdoor environ-

ments [12], [16], [17], [22].

On uneven terrains, shortest paths are not always energy-

efficient for mobile platforms as they have to often deal

with rapid elevation changes. On the other hand, energy-

optimal paths can be considerably longer than the shortest

paths as they tend to follow equipotential curves, thus, result

in extended journey times. Multiobjective search algorithms

have been adapted in recent research [24] to avoid this trade-

off between shortest and energy-optimal paths by finding a

set of all nondominated paths between two given locations

on uneven terrains. Finding such a set of paths, however,
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is computationally expensive. Therefore, it is essential to in-

troduce more computationally efficient algorithms for finding

shortest feasible paths for energy-constrained mobile platforms

operating in outdoor environments.

In this work, the problem of finding energy-constrained

shortest paths is considered as a resource constrained shortest

path problem. It is a combinatorial optimization problem

which can be defined on a digraph where a feasible optimal

path between two given nodes need to be identified subjected

to some given constraints. A graph search algorithm is admis-

sible if it guarantees to find an optimal solution for any given

problem if such a solution exists [3]. The focus of this paper

is on finding such an admissible search algorithm.

B. Contributions and Organization of the Paper

This paper proposes an A*-like heuristic search algorithm,

called Constraints Satisfying A* (CSA*), to find an optimal

solution to a given constrained search problem using a best-

first search strategy. The nature of heuristics and the number

of constraints govern the behavior of the search process of

CSA* as well as the properties of its search results. Theoretical

analyses are provided on the admissibility and efficiency of

the proposed CSA*. It has been shown that CSA* finds

an optimal solution subjected to multiple constraints when

its search is guided by admissible heuristics. The search

procedure of CSA* avoids unnecessary operations by per-

forming a goal directed search. The computational efficiency

of search algorithms that operate on graphs with multiple

edge costs (edge cost vectors) are justified based on the

number of path expansions triggered [25]. When guided by

consistent heuristics, CSA* is proven to be optimally efficient

over other equally informed admissible constrained search

algorithms which use path selection and expansion as their

basic operations. Test results obtained on sections of Matheny

ridge and Anderson canyon verify the applicability of CSA* in

shortest path planning for energy-constrained mobile platforms

on uneven terrains.

The rest of the paper is organized as follows. Some pre-

liminaries and the problem definition are respectively given

in Sections II and III. The proposed CSA* algorithm is

introduced and illustrated with a worked example in Section

IV. Test results obtained using real terrain data are discussed

in Section V. Basic properties of CSA*, including its strengths

and limitations, are discussed in Section VI. Conclusions are

given in Section VII. Finally, rigorous theoretical analyses on

both the admissibility and efficiency of CSA* are provided in

appendices.

II. PRELIMINARIES

A. Dominance

Dominance can be identified as a partial order preference

relation that is used in multiobjective problems [25]. For two

real vectors ~a = [a0, a1, . . . , am] and ~b = [b0, b1, . . . , bm], the

relationship ~a dominates ~b is denoted by ~a ≺ ~b and defined as

~a ≺ ~b ⇔ ∀i ∈ [0,m] | ai ≤ bi ∧ ~a 6= ~b.

A weaker version of the above relationship, ~a dominates or

equals ~b, can be denoted by ~a � ~b and defined as

~a � ~b ⇔ ∀i ∈ [0,m] | ai ≤ bi.

A violation of the later relationship can be denoted by ~a � ~b

and defined as

~a � ~b ⇔ ∃i ∈ [0,m] | ai > bi.

For example, let ~x = [1, 5], ~y = [2, 3], and ~z = [4, 5]. Then

following relationships hold: ~x ≺ ~z, ~x � ~z, ~y ≺ ~z, ~y � ~z,

~y � ~x, and ~x � ~y.

B. Paths and Path Costs

Consider a finite digraph G = {N , E} that consists of |N |
number of nodes and |E| number of edges. A search algorithm

operating on G has to take only a finite number of decisions in

each step. Let ~c(n, n′) = [c0(n, n
′), c1(n, n

′), . . . , cm(n, n′)]
be a non-negative cost vector which associates with every

ordered pair of nodes (n, n′) ∈ E . A traversal between two

nodes results in (m+ 1) distinct costs.

Let node nk be accessible from node ni. A path going from

ni to nk is denoted by λnink
, which is a sequence of nodes

in N such that (nj , nj+1) ∈ E for all i ≤ j < k. A set

of all such paths from ni to nk is denoted by Λnink
, thus,

λnink
∈ Λnink

. The cost vector of λnink
can be calculated as

~c(λnink
) =

k−1∑

j=i

~c(nj , nj+1).

A scalar quantity kl(ni, nk) can be defined as

kl(ni, nk) = min
λnink

∈Λnink

cl(λnink
), 0 ≤ l ≤ m.

We have ~k(ni, nk) = [k0(ni, nk), k1(ni, nk), . . . , km(ni, nk)],
by convention.

In this work, we are mainly interested in paths that start

from a given source node s. Hence, a path that starts from the

node s and terminates at a node n is denoted by λn = 〈n0 ≡
s, n1, n2, . . . , ni, . . . , nk ≡ n〉 for notational convenience.

Any subpath of λn that starts from s and ends at ni is denoted

by λni/n = 〈s, n1, n2, . . . , ni〉.

III. PROBLEM DEFINITION

This paper considers the problem of finding energy-

constrained shortest paths as a resource constrained shortest

path problem. Let us first consider a general resource con-

strained shortest path problem as a constrained search problem

with m hard constraints. Given a locally finite digraph G
and a vector of hard constraints [ψ1, ψ2, . . . , ψm] ∈ Rm, a

constrained search problem is to find a minimum c0 cost path

λ∗t from s to t, i.e.

λ∗t = argmin
λt∈Λt

c0(λt), (1)

subjected to

cl(λ
∗

t ) ≤ ψl, 1 ≤ l ≤ m. (2)

The cost vector of λ∗t can be denoted as ~c(λ∗t ).
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Let a vector ~ψ = [∞, ψ1, . . . , ψm]. Then the constraints

in (2) can be rewritten as ~c(λ∗t ) � ~ψ and violation of at

least one of them can be denoted as ~c(λ∗t ) � ~ψ. Let a

scalar c∗0 = c0(λ
∗

t ). Then we can define another vector ~ψ∗ =
[c∗0, ψ1, . . . , ψm] such that ~a ∈ Rm+1, ~a � ~ψ∗ ⇒ ~a � ~ψ.

Now, we can redefine the above constrained search problem

as finding a minimum c0 cost path λ∗t subjected to ~c(λ∗t ) � ~ψ∗.

IV. CSA* SEARCH ALGORITHM

Some requirements should be taken into account when

designing a constrained search algorithm. Instead of scalar

edge costs, the algorithm should be able to deal with vector

edge costs. Moreover, the algorithm should be able to operate

under more than one constraints, and when under multiple

constraints, the algorithm should minimize the primary path

cost without violating other constraints. One possible approach

is to explore a digraph G uniformly using a uniform-cost

search and try to minimize the primary path cost g0. The

node expansion process can be similar to that in Dijkstra’s

algorithm, while path cost vectors ~g can be obtained on-the-

fly. Branches that have violated one or more constraints can be

eliminated. Note that a path between s and n associated with

the minimum g0 value could have violated several constraints,

thus it is regarded as infeasible. Meanwhile, there can be an

alternative path that can fulfill all the constraints but with

a higher g0. To locate these feasible paths, the search will

need to go back and explore options that were regarded as

less desirable before. Such action can be time consuming and

cause serious impacts to the performances of a path planning

algorithm. A desirable constrained path planning algorithm

should be able to look ahead for constraints violations and

prune unpromising branches early. Nevertheless, without being

guided by heuristics, the path planning algorithm cannot ne-

glect any available options until such branch has encountered

a violation and needed to be pruned.

A. Operations of CSA*

In the proposed CSA* algorithm, path selection and ex-

pansion operations are used to avoid going back and re-

expand optional branches which is a time-consuming pro-

cess. Furthermore, intermediate search results are stored in

a directed acyclic graph, namely a search graph [25] to

ease the comparisons among paths with different properties.

To reach a point t on the map, the expected cost for the

corresponding complete path via expanding an intermediate

path λn is denoted as

~f(λn) = [f0(λn), f1(λn), . . . , fm(λn)] = ~g(λn)+~h(n). (3)

The corresponding cost vector of the intermediate path λn is

expressed as ~g(λn) = [g0(λn), g1(λn), . . . , gm(λn)], where

gl(λn) = cl(λn), 0 ≤ l ≤ m.

Here, g0 is the primary cost and gl (1 ≤ l ≤ m)
are representing the m constrained costs. In (3), ~h(n) =
[h0(n), h1(n), . . . , hm(n)] is a vector of the heuristic costs,

where h0 and hl (1 ≤ l ≤ m) respectively denote the primary

and the constrained heuristic cost estimations from n to t.

Algorithm 1: CSA* search algorithm

Step 1: If ~h(s) � ~ψ, then exit with failure.

Step 2: Record ξ(λs) = {s,~0,~h(s),NULL} on OPEN.

Step 3: If OPEN is empty, then exit with failure.

Step 4: Remove ξ(λni
) = {ni, ~g(λni

), ~f(λni
), p(λni

)} from

OPEN whose f0 cost is minimum and record it on

CLOSED. If there exsit more than one such entries,

select an entry among them such that its ~f dominates

or equals others. Select a path arbitarary if they

are nondominated to each other, but favor any path

terminating at t.

Step 5: If ni is the target node, i.e. ni = t, then exit with the

path obtained by tracing back pointers from p(λt) to

NULL.

Step 6: Otherwise, for each successor ni+1 of ni that do not

produces cycles in the search graph:

a) Calculate ~g(λni+1
) and ~f(λni+1

).

b) If ~f(λni+1
) � ~ψ, then prune λni+1

and go to Step

6a.

c) If there exists a path λ′ni+1
on OPEN or CLOSED

such that ~f(λ′ni+1
) � ~f(λni+1

), then prune λni+1

and go to Step 6a.

d) If λni+1
dominates any paths from s to ni+1

which are already on OPEN, prune all such paths

and remove corresponding entries from OPEN.

e) Set p(λni+1
) = λni

and record ξ(λni+1
) =

{ni+1, ~g(λni+1
), ~f(λni+1

), p(λni+1
)} on OPEN.

Step 7: Go to Step 3.

The proposed algorithm makes better expanding decisions by

avoiding branches that is certainly not a part of the optimal

path and not giving up any subpaths that have potentials to

be included in the optimal path. While the ideas follow the

basic principles of A*, it is a nontrivial task to make the above

decisions as the process involves multiple cost estimations and

continuously checking for constraint violations.

Like ordinary A* and its successors, the proposed algorithm

records path information using CLOSED and OPEN lists.

However, their purposes are redefined. For paths that their

costs have been calculated but are not yet expanded, they are

stored in OPEN. In contrast, paths that have been expanded

and will not be expanded again are stored in CLOSED.

Therefore, for all the paths stored in OPEN, their subpaths

that originated from s should have been expanded and stored

in CLOSED. To store a path λni
= 〈s, n1, n2, . . . , ni−1, ni〉 in

these lists, its information is retained as a four element entry:

the ending node ni, two cost vectors ~g(λni
) and ~f(λni

), and a

pointer to its preceding path p(λni
). Such an entry is denoted

as

ξ(λni
) = {ni, ~g(λni

), ~f(λni
), p(λni

)},

where p(λni
) = λni−1

.

Algorithm 1 provides a summary of the proposed algorithm.

CSA* initializes with the calculation of the heuristic cost

vector ~h(s). Since all paths originate from s, ~g(λs) = 0 and
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therefore, according to (3), ~f(λs) = ~h(s). At this point, any

path starting from s is expected to violate at least one of the

constraints if ~h(s) � ~ψ. On the other hand, if no violations

are expected, i.e. ~h(s) � ~ψ in Step 2, ξ(λs) is then stored

in OPEN. Note that as λs has no preceding path segment, its

pointer p(λs) = NULL. This completes the initialization of the

proposed CSA*. Steps 3-7 of the proposed algorithm are then

executed iteratively until an optimal solution is found (Step

5). If a feasible solution does not exist, it terminates without

a solution (Step 3).

The path selection mechanism in CSA* is very different

from that of NAMOA* as it selects an entry ξ(λni
) on OPEN

list that has the minimum f0 cost among all other entries on

OPEN (Step 4). This path selection procedure is comparable

to the node selection procedure in A*.

Path expansion procedure of CSA* is summarized in Step

6. For each successor ni+1 of ni, CSA* calculates costs of

extending path λni
to ni+1 as

~g(λni+1
) = ~g(λni

) + ~c(n, ni+1),

~f(λni+1
) = ~g(λni+1

) + ~h(ni+1),

in Step 6a. If ~f(λni+1
) � ~ψ, i.e. any constraints are expected

to be violated by the extended path λni+1
, it is pruned and

returns to ni in Step 6b to evaluate its next successor. The

early termination of CSA* given in Step 1 is a special

case of path pruning given in Step 6b. The computational

efficiency of CSA* can be considerably improved without

compromising its admissibility by path pruning with accurate

heuristic estimations. Like other heuristic search algorithms,

the performances of the proposed CSA* depend on the accu-

racy of its heuristic cost estimations. The path λni+1
can be

considered as a subpath of a potential optimal path leading

to t if ~f(λni+1
) � ~ψ. CSA* sets p(λni+1

) = λni
and stores

ξ(λni+1
) in OPEN to be expanded later (Step 6e) if λni+1

is

the only path discovered to ni+1 so far. Nevertheless, storing

ξ(λni+1
) in OPEN might be skipped if CSA* has already

discovered another path leading to ni+1. CSA* checks whether

λni+1
is dominated by λ′ni+1

if it finds a path λ′ni+1
on either

OPEN or CLOSED.

Definition 1: A path λn is said to be dominated if

∃λ′n ∈ Λn | ~f(λ′n) ≺ ~f(λn). (4)

On the contrary, λn is said to be nondominated if

∄λ′n ∈ Λn | ~f(λ′n) ≺ ~f(λn). (5)

CSA* prunes λni+1
and returns to ni to evaluate its next

successor if it finds any path λ′ni+1
that dominates or equals

λni+1
, i.e. ~f(λ′ni+1

) � ~f(λni+1
) (Step 6c). On the other hand,

CSA* prunes all such dominated paths if CSA* finds any path

that is already on OPEN and dominated by λni+1
(Step 6d).

Moreover, CSA* sets p(λni+1
) = λni

and stores ξ(λni+1
) in

OPEN (Step 6e).

B. An Illustrative Case Study

An illustrative case study is provided in this subsection

to ease the elaboration of the proposed CSA* algorithm. It

n
1

s n
2

n
3 n

5

n
4

t

n ~h(n)

s [6, 5, 7]

n1 [5, 4, 7]

n2 [3, 2, 6]

n3 [4, 2, 7]

n4 [2, 2, 4]

n5 [1, 0, 2]

t [0, 0, 0]

(ni, nj) ~c(ni, nj)

(s, n1) [1, 2, 1]

(s, n2) [3, 3, 2]

(s, n3) [2, 3, 1]

(n1, n4) [3, 2, 3]

(n2, n1) [4, 2, 3]

(n2, n3) [3, 2, 4]

(n2, n4) [4, 0, 3]

(n2, n5) [3, 5, 3]

(n3, n2) [0, 2, 3]

(n3, n5) [4, 4, 4]

(n4, n5) [2, 1, 1]

(n4, t) [3, 5, 5]

(n5, t) [2, 2, 4]

(t, n4) [3, 2, 1]

Fig. 1. A diagraph (at top left) with its edge cost vectors (at right) and
heuristic cost vectors (at bottom left).

is based on an arbitrary digraph G shown in Fig. 1, which

G comprises 7 nodes and 14 edges connecting them. The

corresponding edge cost vectors (~c) and heuristic cost vectors

(~h) are shown in the same figure. The cost associated with a

path λt between a source node s and a target node t is having a

cost vector ~g(λt) = [g0(λt), g1(λt), g2(λt)]. If the constrained

optimization problem is relaxed into its unconstrained version

(i.e. minimizing g0 solely), it renders λt = 〈s, n1, n4, t〉 to be a

feasible solution with its ~g(λt) = [7, 9, 9]. If constraints g1 ≤ 8
and g2 ≤ 9 are imposed, i.e. ψ = [∞, 8, 9], the previous

solution is not feasible as the first constraint is violated.

The following procedural execution of the proposed CSA*

illustrates how an optimal solution is obtained under some

given constraints. The step-wise evolution of a search graph

and the changes in OPEN and CLOSED lists are given in

TABLE I. In Step 1, the proposed algorithm begins with

the evaluation of ~h(s). As ~h(s) � ψ, in Step 2, ξ(λs) =
{s, [0, 0, 0], [6, 5, 7],NULL} is stored as the first entry in OPEN

where λs = 〈s〉. Starting from Step 3, the proposed CSA*

proceeds to find the optimal solution iteratively.

In the first iteration, CSA* removes ξ(λs) from OPEN and

stored it in CLOSED (Step 4). As s 6= t in this case study,

successors of s, i.e. n1,n2, and n3, are generated in Step 6.

Here, we denote paths λn1
= 〈s, n1〉, λ

′′

n3
= 〈s, n3〉, and

λ′n2
= 〈s, n2〉 accordingly. Their corresponding cost vectors

are therefore obtained in Step 6a as follows.

~f(λni+1
) = (~g(λni

) + ~c(ni, ni+1)) + ~h(ni+1),

~f(λn1
) = ([0, 0, 0] + [1, 2, 1]) + [5, 4, 7] = [6, 6, 8],

~f(λ′′n3
) = ([0, 0, 0] + [2, 3, 1]) + [4, 2, 7] = [6, 5, 8],

~f(λ′n2
) = ([0, 0, 0] + [3, 3, 2]) + [3, 2, 6] = [6, 5, 8].

At the moment, OPEN is empty and none of the cost vectors

violates any of the constraints, thus all three paths do not need

to undergo any pruning. Consequently, in Step 6e, OPEN is

appended with predecessors ξ(λn1
), ξ(λ′n2

), and ξ(λ′′n3
). As
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TABLE I
ILLUSTRATIONS OF THE SEARCH GRAPH AND OPEN AND CLOSED LISTS

AFTER EACH ITERATION.

Itera. Search graph OPEN CLOSED

s0 ξ(λs)

n
1

s n
2

n
3

1 ξ(λ′′n3
) ξ(λs)

ξ(λ′n2
)

ξ(λn1
)

n
1

s n
2

n
3 n

5

2 ξ(λ′n2
) ξ(λs)

ξ(λn1
) ξ(λ′′n3

)

ξ(λ′′n5
)

n
1

s n
2

n
3 n

5

n
4

3 ξ(λn1
) ξ(λs)

ξ(λ′′n5
) ξ(λ′′n3

)

ξ(λ′n4
) ξ(λ′n2

)

n
1

s n
2

n
3 n

5

n
4

4 ξ(λn4
) ξ(λs)

ξ(λ′′n5
) ξ(λ′′n3

)

ξ(λ′n4
) ξ(λ′n2

)

ξ(λn1
)

n
1

s n
2

n
3 n

5

n
4

5 ξ(λn5
) ξ(λs)

ξ(λ′n4
) ξ(λ′′n3

)

ξ(λ′n2
)

ξ(λn1
)

ξ(λn4
)

n
1

s n
2

n
3 n

5

n
4

t

6 ξ(λt) ξ(λs)

ξ(λ′n4
) ξ(λ′n3

)

ξ(λn1
)

ξ(λn4
)

ξ(λn5)

shown in TABLE I, the search graph is expended with 3 extra

nodes by the end of the first iteration. The predecessor of a

node is indicated by the arrowhead.

At the beginning of the next iteration, all entries on OPEN

are having their f0 costs equal 6. As a result, in Step 4,

the proposed algorithm will prefer entries with non-dominated

cost vector ~f over their counterparts. Certainly, both ξ(λ′n2
)

and ξ(λ′′n3
) are desirable candidates due to the fact that

~f(λ′n2
) = ~f(λ′′n3

) ≺ ~f(λn1
). Arbitrarily, suppose ξ(λ′′n3

) is

chosen to be expended over ξ(λ′n2
). Then ξ(λ′′n3

) is removed

from OPEN and stored in CLOSED in Step 4. All successors

of n3 are then generated while their cost vectors are obtained

in Step 6a as follows.

~f(λ′′n5
) = ([2, 3, 1] + [4, 4, 4]) + [1, 0, 2] = [7, 7, 7],

~f(λ′′n2
) = ([2, 3, 1] + [0, 2, 3]) + [3, 2, 6] = [5, 7, 10].

In Step 6b, λ′′n2
= 〈s, n3, n2〉 is pruned because ~f(λ′′n2

) � ψ.

So far, λ′′n5
= 〈s, n3, n5〉 is the only path that can satisfy all

constraints and reach n5. Therefore, ξ(λ′′n5
) is stored in OPEN

with p(λ′′n5
) = λ′′n3

.

OPEN holds three entries by the beginning of the third iter-

ation. They are ξ(λ′n2
), ξ(λn1

), and ξ(λ′′n5
), where f0(λ

′

n2
) =

f0(λn1
) < f0(λ

′′

n5
) and ~f(λ′n2

) ≺ ~f(λn1
). Therefore, the

entry ξ(λ′n2
) is removed from OPEN and stored in CLOSED

(Step 4). The cost vectors of n2’s successors are calculated as

~f(λ′n3
) = [6, 5, 6] + [4, 2, 7] = [10, 7, 13],

~f(λ′n4
) = [7, 3, 5] + [2, 2, 4] = [9, 5, 9],

~f(λ′n1
) = [7, 5, 5] + [5, 4, 7] = [12, 9, 12],

~f(λ′n5
) = [6, 8, 5] + [1, 0, 2] = [7, 8, 7].

Since both ~f(λ′n1
) and ~f(λ′n3

) violate the constraints, their

corresponding paths λ′n1
= 〈s, n2, n1〉 and λ′n3

= 〈s, n2, n3〉

are pruned in Step 6b. Since ~f(λ′′n5
) ≺ ~f(λ′n5

), CSA* prunes

λ′n5
= 〈s, n2, n5〉 in Step 6c. Lastly, ξ(λ′n4

) is stored in OPEN

in Step 6e as λ′n4
= 〈s, n2, n4〉 is the only remaining path of

which p(λ′n4
) = λ′n2

.

In the following iteration, node n1 is chosen to be expended

in Step 4 due to its smallest f0 among all entries on OPEN.

Afterward, ξ(λn1
) is removed from OPEN and stored in

CLOSED. The cost vector of n2’s only successor is obtained

as follow.

~f(λn4
) = [4, 4, 4] + [2, 2, 4] = [6, 6, 8].

Note that as λn4
and λ′n4

are non-dominated by each other,

thus ξ(λn4
) of which p(λn4

) = λn1
, is stored in OPEN. As

shown in Fig. 1, at the moment, n4 can be reached by either

λ′n4
= 〈s, n2, n4〉 or λn4

= 〈s, n1, n4〉. Their cost vectors are

[9, 5, 9] and [6, 6, 8], respectively.

In the fifth iteration, due to the criteria in Step 4, ξ(λn4
) is

removed from OPEN and stored in CLOSED. Cost vectors of

n4’s successors are obtained as follows.

~f(λn5
) = [6, 5, 5] + [1, 0, 2] = [7, 5, 7],

~f(λ′′′t ) = [7, 9, 9] + [0, 0, 0] = [7, 9, 9].

Path λ′′′t = 〈s, n1, n4, t〉 is pruned in Step 6b due a constraint

violation. Back in the second iteration, n5 can already be

accessed via λ′′n5
with ~f = [7, 7, 7]. In the current iteration, n5

is also reachable via λn5
= 〈s, n1, n4, n5〉 with ~f = [7, 5, 7].
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As λn5
≺ λ′′n5

, λ′′n5
is pruned in Step 6d. Subsequently, in

Step 6e, ξ(λ′′n5
) is discarded from OPEN and ξ(λn5

) is stored

in OPEN with p(λn5
) = λn4

.

The sixth iteration begins with having ξ(λ′n4
) and ξ(λn5

)
on OPEN, with their cost vectors equal [9, 5, 9] and [7, 5, 7],
respectively. By comparing their f0 values, ξ(λn5

) is removed

from OPEN and stored in CLOSED in Step 4. The cost vector

of the path λt = 〈s, n1, n4, n5, t〉 is obtained as follow.

~f(λt) = [8, 7, 9] + [0, 0, 0] = [8, 7, 9].

Under any criteria in Step 6, λt cannot be pruned. Therefore,

ξ(λt) is stored in OPEN with p(λt) = λn5
.

At the moment, ξ(λ′n4
) and ξ(λt) are the only entries

remaining in OPEN. In the seventh iteration, ξ(λt) is re-

moved from OPEN and stored in CLOSED because f0(λt) <
f0(λ

′

n4
). Note that ξ(λt) satisfies the criterion in Step 5,

thus the search process terminates by CAS* reassembling the

optimal path by tracing the pointers from p(λt) to NULL. The

optimal path that satisfies all given constraints is obtained as

λ∗t = 〈s, n1, n4, n5, t〉 of which ~g(λ∗t ) =
~f(λ∗t ) = [8, 7, 9].

V. ENERGY-CONSTRAINED SHORTEST PATH PLANNING

The proposed CSA* is adopted for energy-constrained

shortest path planning on uneven terrains and, in this section,

its performances are compared with state-of-the-art uneven

terrain path planning algorithms.

A. Test Setup

Two tests, namely Test I and Test II, were conducted using

elevation maps of Matheny ridge and Anderson canyon in

USA. In order to facilitate the path planning process, a selected

elevation map is first transformed into a finite digraph as

proposed in [18]. Distance- and energy-costs associated with

the traversal between two nodes n and n′ are given by

cd(n, n
′) =

{
∞, if φ(n, n′) > φm,

s(n, n′), otherwise,
(6)

and

ce(n, n
′)=





∞, if φ(n, n′) > φm,

mgs(n, n′)(µ cosφ (n, n′)+sinφ(n, n′)),

if φm ≥ φ(n, n′) > φb,

0, otherwise,

(7)

respectively [24]. All tests were conducted using a simulated

model platform whose mass m = 300 kg. It can operate

at a maximum motion power of 1280 W. In (6) and (7),

s(n, n′) is the Euclidean distance between n and n′, φ(n, n′)
is the elevation angle between n and n′, φm is the critical

impermissible angle, and φb is the breaking angle. Interested

readers may refer to the computations of φm and φb given in

[24]. The rest of the parameter values are adopted from [24],

including the friction coefficient µ = 0.01 and the gravitational

field strength g = 9.81 ms−2.

Using (6) and (7), the cost vector associated with nn′ is

defined as

~c(n, n′) = [cd(n, n
′), ce(n, n

′)].

The heuristic cost vector for cost estimation from n to the

target is defined as

~h(n) = [hd(n), he(n)],

where

hd(n) = s(n, t),

and

he(n)=





mg∆(n,t)
sinφm

(µ cosφm+sinφm),

if φ(n, t) > φm,

mgs(n, t)(µ cosφ (n, t) + sinφ(n, t)),

if φm ≥ φ(n, t) > φb,

0, otherwise.

The consistency of hd(n) and he(n) has been proven in [24].

Finally, a vector of hard constraints is defined as

~ψ = [∞, ψe],

where ψe is the maximum available energy of a mobile

platform. The values of ψe is given in TABLES III and V.

B. Test Results

In Test I, the path planning task was to plan a feasible

shortest path from (210, 310, 310.6) m to (720, 880, 373.5)
m on a section of Matheny ridge. The mobile platform is

set to travel at 0.7 m/s with an additional payload of 75 kg.

According to the results given in TABLE II, the length of the

shortest path planned using Dijkstra’s algorithm is 837.715 m

and the mobile platform consumes 538.053 kJ to traverse it. If

the available energy is less than that, say 450 kJ, such a path

cannot be traversed. On the other hand, the energy-optimal

path obtained using Z* requires only 274.629 kJ. However, it

is nearly 12% longer than the shortest path. NAMOA* based

multiobjective path planner proposed in [24] is capable of

finding all nondominated paths between two given points. All

nondominated paths generated in this test and their cost values

are illustrated in Figs. 2 and 3, respectively. As expected,

two of these nondominated paths coincide with the shortest

and energy-optimal paths. Now it is possible to select the

shortest path that satisfy a given energy constraint out of

these nondominated paths. However, finding all nondominated

paths is computationally expensive, thus, not feasible in time-

critical applications. Here, NAMOA* has expanded 14712

subpaths for finding all nondominated paths. While given a

constraint, the proposed CSA* algorithm can find the shortest

path by expanding a minimum number of subpaths. As an

example given in TABLE III, when the maximum available

energy is 450kJ, CSA* has found a constraint satisfying

shortest path by expanding only 2833 subpaths. Computational

efficiency of search algorithms are measured in terms of

number of expanded subpaths. Thus, finding a constraint

satisfying path using CSA* in this particular case is over 5

times more efficient than using NAMOA*. Notably, when the

energy constraint is relaxed, i.e. ψe = ∞, CSA* finds the

globally shortest path. Under tight energy constraints such as
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Fig. 2. All nondominated paths obtained using NAMOA* in Test I.
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Fig. 3. A Pareto frontier that represents path lengths and energy consumptions
of the nondominated paths given in Fig. 2.

TABLE II
RESULTS OF TEST I USING DIJKSTRA’S AND Z*.

Algorithm Dijkstra’s Z*

Path length (m) 837.715 937.927

Energy consumption (kJ) 538.053 274.629

TABLE III
RESULTS OF TEST I USING CSA*.

Maximum energy (kJ) 274.630 350.000 450.000 Unlimited

Path length (m) 937.927 885.820 846.326 837.715

Energy consumption (kJ) 274.629 348.661 437.040 538.053

# of sub-paths explored 2446 4745 2833 2507

ψe = 274.630 kJ, CSA* finds the same energy-optimal path

as Z* does.

In Test II, the objective was to plan a feasible shortest path

from (260, 540, 5892) m to (820, 380, 5858) m on a section

of Anderson canyon. The mobile platform is set to travel at

0.6 m/s without any payloads. According to the results given

in TABLE IV, the length of the shortest path is 640.668 m

and the mobile platform consumes 106.069 kJ to traverse it.

On the other hand, the energy-optimal path obtained using Z*
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Fig. 4. All nondominated paths obtained using NAMOA* in Test II.
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Fig. 5. A Pareto frontier that represents path lengths and energy consumptions
of the nondominated paths given in Fig. 4.

TABLE IV
RESULTS OF TEST I USING DIJKSTRA’S AND Z*.

Algorithm Dijkstra’s Z*

Path length (m) 640.668 649.643

Energy consumption (kJ) 106.070 100.550

TABLE V
RESULTS OF TEST II USING CSA*.

Maximum energy (kJ) 100.600 103.000 104.500 Unlimited

Path length (m) 649.643 642.227 641.729 640.668

Energy consumption (kJ) 100.550 102.955 104.081 106.070

# of sub-paths explored 1523 1257 1304 1984

consumes only 100.549 kJ, but it is longer than the shortest

path. All nondominated paths generated in this test and their

cost values are illustrated in Figs. 4 and 5, respectively. In

this test, NAMOA* has expanded 57252 subpaths to find all

nondominated paths. According to the results given in TABLE

V, CSA* finds constraints satisfying paths more efficiently

compared to NAMOA*. For example, CSA* is over 45 times

more efficient than NAMOA* for finding a shortest path with

a maximum of 103 kJ of energy.
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VI. DISCUSSION

Properties of CSA*, including its strengths, limitations, and

possible improvements, are discussed in details in this section.

Rigorous theoretical analyses on both the admissibility and

efficiency of CSA* are provided in appendices. When CSA*

is guided by admissible heuristics, it is proven to find an

optimal solution under constraints if such a solution exists.

CSA* guided by consistent heuristics, is proven to be optimal

over a class of equally informed admissible constrained search

algorithms with respect to both the number of paths and

the set of paths expanded. The search efficiency of CSA*

can be improved by using more informed heuristics. As

shown in appendices, heuristics govern both the optimality

and admissibility of CSA*.

Rather than considering CSA* as a single algorithm, it can

be considered as a family of algorithms. Its search behavior

can vary from one application to another based on the nature

of heuristics and the number of constraints. Heuristics can be

somehow interpreted as the knowledge of the problem domain.

In the absence of it, i.e. ~h = ~0, CSA* becomes a uniform-cost

search. Albeit ~h = ~0 being the least informed heuristic vector,

it is consistent. Therefore, it preserves both the optimality

and admissibility of CSA*. In many practical applications,

however, more informed heuristics can be found easily. If such

estimations cannot be found for some constrained heuristics,

those particular heuristics in a heuristic vector can be set to

zero while the rest of the vector remain non-zero. Such a

heuristic vector can still guarantee both the optimality and

admissibility of CSA* since the complete heuristic vector is

consistent.

If any component of a heuristic vector overestimates the

cost of an optimal path, i.e. ∃n ∈ N | ~h(n) � ~h∗(n), then

CSA* guided by such heuristics is no longer admissible. Nev-

ertheless, CSA* guided by such non-admissible heuristics can

sometimes find a solution faster than one guided by admissible

heuristics, by expanding a smaller number of paths. However,

because of path pruning in Steps 1 and 6b in Algorithm 1 due

to mispredicted constraint violations, CSA* guided by such

non-admissible heuristics might fail to find a solution even if

a solution exists. Therefore, the utilization of non-admissible

constrained heuristics to accelerate CSA* must be carried out

with cautions. Nevertheless, non-admissible primary heuristics

can possibly accelerate CSA* without generating such false

alarms but may return sub-optimal solutions.

VII. CONCLUSION

This paper proposed CSA* for solving constrained search

problems. CSA* is capable of accommodating multiple con-

straints. CSA* can be implemented easily and analyzed rig-

orously as ordinary A*. If there exists a solution for a

given constrained search problem, CSA* guided by admissible

heuristics guarantees to find an optimal solution that satisfy

the given constraints. If the heuristics are consistent, CSA* is

proven to be optimal with respect to the set of paths expanded

over a class of equally informed admissible constrained search

algorithms. More informed heuristics can improve the search

efficiency of CSA*. Test results provided in this paper suggest

that CSA* is suitable for shortest path planning for energy-

constrained mobile platforms on uneven terrains.

In many real-world applications, mobile agents have to re-

plan their paths due to unforeseen disruptions. Path replanning

from scratch can be computationally very expensive, thus may

interrupt the seamless operation of mobile agents if it has to be

executed regularly. Therefore, future work should investigate

on admissible and efficient algorithms for path replanning

under multiple constraints.
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APPENDIX A

ADMISSIBILITY OF CSA*

In this section, we prove the admissibility of CSA*

under some common assumptions. Like all other heuris-

tically guided search algorithms, admissibility of the pro-

posed CSA* algorithm depends on the properties of its

heuristics. Here we introduce a special heuristic cost vector
~h∗(n) = [h∗0(n), h

∗

1(n), . . . , h
∗

m(n)], where a heuristic func-

tion h∗l (n) = kl(n, t) for 0 ≤ l ≤ m, i.e.

~h∗(n) = ~k(n, t).

This implies that h∗0(n) ≤ c∗0 for any node n on λ∗t .

Definition 2: A heuristic cost vector ~h(n) is said to be

admissible if

~h(n) � ~h∗(n), ∀n ∈ N . (8)

Here, we assume that CSA* is always guided by admissible

heuristic cost vectors. Similar assumptions are commonly used

to prove the admissibility of other heuristic search algorithms

[2], [3], [25].

CSA* is forced for an early termination in Step 1 if ~h(s) �
~ψ. Therefore, it is essential to guarantee that such an exit

occurs only when there is no solution available for a given

problem.

Theorem 1: If there exists a solution, then ~h(n) � ~ψ∗ for

any subpath of an optimal path λ∗n/t.

Proof: Let there exists a solution. Then, for any subpath

of an optimal path λ∗n/t and for 1 ≤ l ≤ m, the heuristic

function should satisfy h∗l (n) ≤ ψl and h∗0(n) ≤ c∗0. Hence,

we have ~h∗(n) � ~ψ∗. Since all heuristic cost vectors are

admissible, ~h(n) � ~h∗(n), and therefore, ~h(n) � ~ψ∗.

Since all paths considered here origin from s, we have
~h(s) � ~ψ∗ for any λ∗s/t, and obviously, ~ψ∗ � ~ψ. Hence,

if there exists a solution for a constrained search problem, we

have ~h(s) � ~ψ which avoids any early termination in Step 1.

Furthermore, CSA* terminates in Step 3 if OPEN is empty.

Such a termination has to be avoided prior to CSA* finds an

optimal solution for a given problem.

Lemma 1: If there exists a solution, then there exists

ξ(λ∗ni/t
) on OPEN such that ~f(λ∗ni/t

) � ~ψ∗ before CSA*

terminates.

Proof: Let a solution exists, then according to Theorem

1, we have ~h(s) � ~ψ∗. Therefore, CSA* will not terminate

in Step 1. Assume that ξ(λ∗s/t) = {s,~0,~h(s),NULL} is on

OPEN. Then CSA* has not yet completed its first iteration

and ~f(λ∗s) =
~f(λ∗s/t) =

~h(s). Hence, we have

~f(λ∗s/t) �
~ψ∗,

where s ≡ ni.

Now assume that ξ(λ∗s/t) is on CLOSED. Let λ∗t =
〈s, n1, n2, . . . , ni−1, ni, . . . , t〉 and λ∗ni−1/t

be the longest

subpath of λ∗t on CLOSED. Since ni is the successor of

ni−1 on λ∗t , whenever ξ(λ∗ni−1/t
) is moved from OPEN to

CLOSED, CSA* must have recorded ξ(λ∗ni/t
) on OPEN and

computed ~g(λ∗ni/t
) = ~g(λ∗ni−1/t

)+~c(ni−1, ni) and ~f(λ∗ni/t
) =

~g(λ∗ni/t
) + ~h(ni). Using the admissibility of ~h, we have

~f(λ∗ni/t
) � ~g(λ∗ni/t

) + ~h∗(ni),

f0(λ
∗

ni/t
) ≤ g0(λ

∗

ni/t
) + h∗0(ni). (9)

We know that c∗0 = g0(λ
∗

t ) = g0(λ
∗

ni/t
) + c0(λ

∗

nit) and

c0(λ
∗

nit) ≥ h∗0(ni). Hence, we have

g0(λ
∗

ni/t
) + h∗0(ni) ≤ c∗0. (10)

Combining (9) and (10) yields

f0(λ
∗

ni/t
) ≤ c∗0. (11)

Since λ∗ni/t
is a subpath of the optimal path, all constraints

must satisfy ~f(λ∗ni/t
) � ψ and therefore,

~f(λ∗ni/t
) � ~ψ∗.

This confirms that the path λni
cannot be pruned in Step 6b in

Algorithm 1. Since λ∗ni/t
is a subpath of the optimal path, it

cannot be dominated by any other path leading to ni. However,

there can be another path leading to ni with same f -cost. If so,

that can also be considered as a subpath of the optimal path.

Therefore, one of the subpaths λ∗ni/t
will not be pruned in Step

6c. Consequently, when ξ(λ∗ni−1/t
) is recorded on CLOSED,

there will be ξ(λ∗ni/t
) on OPEN such that ~f(λ∗ni/t

) � ~ψ∗.

We also prove a corollary to Lemma 1 for later use.

Corollary 1: Any entry ξ(λn) that is selected from OPEN

for expansion, should satisfy ~f(λn) � ψ∗.

Proof: Since ξ(λn) is already on OPEN, the path λn
has not been pruned in Step 6b. Thus, ~f(λn) � ψ. Since

λn selected for expansion, its f0 cost should be the lowest

among the entries on OPEN and by the virtue of Lemma 1,

f0(λn) ≤ c∗0. Therefore, ~f(λn) � ψ∗.

Theorem 2: CSA* is admissible.

Proof: Here we use a sequence of contradictions to prove

this theorem. Given a constrained search problem which has a

solution, first assume that CSA* does not terminate. However,

any best-first search algorithm that prunes cyclic paths should

terminate on finite graphs [3]. Hence, CSA* should terminate

as well. Now assume that CSA* terminates without a solution.
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Since it is given that there exists a solution, according to

Theorem 1, CSA* cannot terminate in Step 1. Then it can

terminate without a solution only when OPEN is empty (Step

3), which contradicts with Lemma 1. Even if CSA* terminates

with a solution, assume that CSA* terminates with a non-

optimal path λt. Thus,

f0(λt) > c∗0. (12)

CSA* check whether the target is reached in Step 5 after it has

selected a subpath for expansion. Hence, when CSA* selects

ξ(λt) for expansion, f0(λt) should be the lowest f0 value

among the entries in OPEN. However, according to Lemma

1, there should exist at least one path on OPEN before CSA*

terminates such that ~f(λ∗ni/t
) � ~ψ∗. Thus,

f0(λni/t) ≤ c∗0. (13)

Combining (12) and (13) yields

f0(λni/t) < f0(λt),

which contradicts with selection of ξ(λt). Therefore, CSA*

always terminates with an optimal solution. The theorem is

proved.

By the virtue of Theorem 2, we can conclude that the

admissibility of CSA* is comparable to that of A*.

APPENDIX B

PRUNING POWER OF HEURISTICS IN CSA*

In each iteration, CSA* removes an path entry from OPEN

(Step 4) and its unpruned successors are recorded on OPEN

(Step 6). CSA* becomes more efficient when it prunes more

paths since a smaller number of paths are recorded in OPEN

for expansion. Heuristics lead to two types of path pruning

in CSA*. One of them is solely driven by the constrained

heuristics and executed in Steps 1 and 6b in Algorithm 1. This

type of path pruning occurs as a result of constraint violations.

Earlier such violations are predicted, a smaller number of paths

are recorded on OPEN. Second type of path pruning is driven

by both major and constrained heuristics. This type of path

pruning occurs as a result of dominance checks in Steps 6c

and 6d in Algorithm 1. The most efficient execution of CSA*

would be to record only the subpaths of the optimal path on

OPEN. Such an execution would only be possible if CSA* is

guided by heuristics which can always estimate the remaining

cost precisely. However, such heuristic estimations are far from

reality in many applications.

First we investigate the sufficient and necessary conditions

for CSA* to select a path entry from OPEN for expansion.

Then the path selection efficiency of CSA* is compared with

different heuristics.

Definition 3: A path λn is said to be ψ∗-bounded if every

subpath λni/n satisfies

~g(λni/n) +
~h(ni) � ψ∗.

Definition 4: A path λn is said to be strictly ψ∗-bounded if

λn is ψ∗-bounded and every subpath λni/n satisfies

g0(λni/n) + h0(ni) < c∗0.

Theorem 3: A sufficient condition for CSA* to select an

entry ξ(λn) for expansion is that λn is a nondominated and

strictly ψ∗-bounded path.

Proof: We proceed by contradiction. Assume that there

exists a nondominated and strictly ψ∗-bounded path λn and

the entry ξ(λn) is not yet been selected for expansion at

the termination of CSA*. Since λn is strictly ψ∗-bounded,
~f(λs/n) � ψ∗ and therefore, CSA* cannot terminate in Step

1 in Algorithm 1. Now it can terminate only when a target

is reached (Step 5) or OPEN is empty (Step 3). Since λn
is strictly ψ∗-bounded, its subpaths λni/n are not pruned in

Step 6b. Since λn is nondominated, its subpaths λni/n are

not pruned in Steps 6c and 6d. Hence, at anytime before

the termination of CSA*, there is always an entry ξ(λni/n)
on OPEN. Therefore, OPEN cannot be empty and CSA*

can terminate only when the target is reached. CSA* checks

whether the target is reached only after it has selected an

entry on OPEN for expansion (Step 5). When CSA* selects

{t, ~g(λ′t), ~f(λ
′

t), p(λ
′

t)} for expansion, f0(λ
′

t) = c∗0 should be

the lowest f0 value among all entries on OPEN. Since λn is

strictly ψ∗-bounded,

g0(λni/n) + h0(ni) < c∗0,

f0(λni/n) < c∗0.

However, ξ(λni/n) is still on OPEN, which is a contradiction.

Therefore, ξ(λn) must be selected for expansion before CSA*

terminates.

Theorem 4: A necessary condition for CSA* to select an

entry ξ(λn) for expansion is that λn is a ψ∗-bounded path.

Proof: If CSA* selects ξ(λn) from OPEN for expansion,

from Corollary 1, we have ~f(λn) � ψ∗. Before the time λn is

on OPEN, all of its subpaths λni/n must have been on OPEN

and now they must have already been expanded. At the time

λni/n is expanded, it should have satisfied

~f(λni/n) = ~g(λni/n) +
~h(ni) � ψ∗.

Hence, the path λn is ψ∗-bounded.

Definition 5: A heuristic vector ~h is said to be more

informed than another heuristic vector ~h′ if both are admissible

and satisfy

~h′(n) � ~h(n) ∧ h′0(n) < h0(n), ∀n ∈ N \ t.

Likewise, an algorithm using ~h is said to be more informed

than that using ~h′.

According to the above definition, the major heuristic cost

of ~h must be greater than that of ~h′ for all the nodes, except for

the non-target node, for ~h to be considered as more informed

than ~h′. However, the rest of the heuristics are rather loosely

compared.

Lemma 2: Let a heuristic vector ~h be more informed than

another heuristic vector ~h′. If a path λn is ψ∗-bounded when

evaluated by CSA* with ~h, then λn is strictly ψ∗-bounded

when evaluated by CSA* with ~h′.

Proof: Since λn is ψ∗-bounded when evaluated by CSA*

with ~h, by the virtue of Definition 3, every subpath λni/n

satisfies

~g(λni/n) +
~h(ni) � ψ∗.
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Since ~h is more informed than ~h′, from Definition 5, we have
~h′(ni) � ~h(ni) for every non-target node ni. Hence, we have

~g(λni/n) +
~h′(ni) � ψ∗, (14)

which implies that λn is ψ∗-bounded when evaluated by CSA*

with ~h′. Incidentally,

g0(λni/n) + h0(ni) ≤ c∗0,

and we also know that h′0(ni) < h0(ni) for every non-target

node ni given that ~h is more informed than ~h′. Hence, we

have,

g0(λni/n) + h′0(ni) < c∗0. (15)

Now, (14) and (15) imply that λn is strictly ψ∗-bounded when

evaluated by CSA* with ~h′.

Theorem 5: Let algorithms CSA1* and CSA2* be two

variations of CSA* which only differ in use of heuristics. If

CSA1* is more informed than CSA2*, then all nondominated

paths expanded by CSA1* are also expanded by CSA2*.

Proof: Let both algorithms CSA1* and CSA2* be guided

by admissible heuristics ~h and ~h′, respectively. Since CSA1*

is more informed than CSA2*, from Definition 5, we have that
~h′(n) � ~h(n) and h′0(n) < h0(n) for every non-target node

n. If CSA1* expands a nondominated path λn, according to

Theorem 4, the path λn should be ψ∗-bounded. However, if

λn is ψ∗-bounded when it is evaluated by CSA1*, according

to Lemma 2, λn is strictly ψ∗-bounded when it is evaluated

by CSA2*. Therefore, according to Theorem 3, λn should be

expanded by CSA2* as well.

Theorem 5 unleashes the pruning power of heuristics used

in CSA* up to a certain extent. CSA* with more informed

heuristics prunes more paths and as a result, it expands a

smaller number of them. This is quite understandable as

more informed heuristics can help in predicting violations

of constraints earlier. Unfortunately, it cannot verify that

every path selected by CSA* for expansion are nondominated

under the assumption of admissible heuristics. Therefore, the

above theorem is unable to demonstrate the pruning power of

heuristics over all paths selected by CSA* for expansion.

APPENDIX C

OPTIMALITY OF CSA* WITH CONSISTENT HEURISTICS

In this section, we further analyze the efficiency of proposed

CSA* algorithm with respect to the set of paths expanded. The

number of path expansions of CSA* can be minimized by

selecting only nondominated paths in Step 4, but admissible

heuristics are unable to guarantee that. Hence, we introduce

the concept of consistent heuristic vectors as an extension to

its scalar counterpart given in [3].

Definition 6: A heuristic vector ~h is said to be consistent if

it satisfies

~h(n) � ~k(n, n′) + ~h(n′), ∀n, n′ ∈ N . (16)

Theorem 6: All consistent heuristic vectors are admissible.

Proof: Any consistent heuristic vector ~h satisfies (16). By

replacing n′ with t, we have

~h(n) � ~k(n, t) + ~h(t), ∀n ∈ N .

We already know that ~h∗(n) = ~k(n, t) and ~h(t) = ~0.

Incidentally,

~h(n) � ~h∗(n), ∀n ∈ N .

Therefore, ~h(n) is admissible.

Now with consistent heuristics, we revisit Theorem 4 which

established a neccessary condition for CSA* to select a path

entry for expansion.

Theorem 7: If the heuristics are consistent, a necessary

condition for CSA* to select an entry ξ(λn) for expansion

is that λn is nondominated.

Proof: We proceed by contradiction. Assume that CSA*

is guided by consistent heuristics and it expands a dominated

path λn which is on OPEN. However, if ξ(λn) is on OPEN,

λn cannot be dominated by the already expanded paths to node

n. Hence, there must be another path λ′n which is yet to be

discovered such that

~f(λ′n) ≺ ~f(λn),

~g(λ′n) +
~h(n) ≺ ~g(λn) + ~h(n),

~g(λ′n) ≺ ~g(λn). (17)

Since λ′n is nondominated, its subpaths cannot be pruned

by CSA*. Therefore, by the time that CSA* expands λn, a

subpath λ′ni/n
must be on OPEN. We can decompose the cost

of the nondominated path λ′n as

~g(λ′n) = ~g(λ′ni/n
) + ~c(λ′nin). (18)

Obviously, ~k(ni, n) � ~c(λ′nin). Therefore, using (16), we can

obtain

~h(ni) � ~c(λ′nin) +
~h(n),

in which ~c(λ′nin) can be replaced using (18) such that

~g(λ′ni/n
) + ~h(ni) � ~g(λ′n) +

~h(n). (19)

Combining (17) and (19) yields that

~g(λ′ni/n
) + ~h(ni) ≺ ~g(λn) + ~h(n),

~f(λ′ni/n
) ≺ ~f(λn), (20)

f0(λ
′

ni/n
) ≤ f0(λn). (21)

In accordance with Step 4 in Algorithm 1, (20) and (21) verify

that λ′ni/n
must be expanded before expanding λn. This is

valid for all the subpaths of λ′n. By the time ξ(λ′n) is recorded

on OPEN, ξ(λn) has to be removed from OPEN as λn is

dominated by λ′n. Hence, λn cannot be expanded before CSA*

terminates. This contradicts with our initial assumption, thus,

the proof is completed.

The above theorem draws an important inference that all

path entries selected by CSA* for expansion are nondominated

when it is guided by consistent heuristics. Hence, once a path

is recorded on CLOSED (Step 4), it cannot be dominated by

any other path leading to the same node.

Definition 7: An algorithm CSA1 is said to dominate an

algorithm CSA2 if every path expanded by CSA1 is also

expanded by CSA2. CSA1 is said to strictly dominate CSA2 if

CSA1 dominates CSA2 and CSA2 does not dominate CSA1.
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Theorem 8: Let algorithms CSA1* and CSA2* be two vari-

ations of CSA* guided by a consistent heuristic vector ~h and

an admissible heuristic vector ~h′ (not necessarily consistent),

respectively. If CSA1* is more informed than CSA2*, then

CSA1* dominates CSA2*.

Proof: Since CSA1* is more informed than CSA2*,

according to Theorem 5, all nondominated paths expanded by

CSA1* are also expanded by CSA2*. Since CSA1* is guided

by a consistent heuristic function, according to Theorem 7, all

paths expanded by CSA1* are nondominated. Hence, all the

paths expanded by CSA1* should also be expanded by CSA2*

and according to definition 7, CSA1* dominates CSA2*.

Corollary 2: Let algorithms CSA1* and CSA2* be two

variations of CSA* guided by consistent heuristics ~h and ~h′,

respectively. If CSA1* is more informed than CSA2*, then

CSA1* dominates CSA2*.

Proof: According to Theorem 6, all consistent heuristic

vectors are admissible. The proof of Theorem 8 does not

require ~h′ to be consistent, but admissible. Therefore, this

corollary trivially follows from Theorem 8.

Definition 8: An algorithm is said to be optimal over a class

of algorithms if it dominates all algorithms in that class [3].

Theorem 9: Let CSA* be guided by consistent heuristics

and Ca be a class of admissible constrained search algorithms

which are no more informed than CSA*. Then CSA* is

optimal over Ca.

Proof: If CSA* is optimal over Ca, it should dominate any

algorithm, say CSA, in Ca. Assume the contrary. Then CSA

finds an optimal path from a source node s to a target node t on

a given digraph G without exploring all paths that are explored

by CSA* to find an optimal solution. Let λn be one such path

of which ~f(λn) = [f0(λn), f1(λn), . . . , fi(λn), . . . , fm(λn)].
Since λn is explored by CSA*, by Theorem 4, ~f(λn) � ~ψ∗.

Hence, we have

f0(λn) ≤ c∗0.

Since CSA is no more informed than CSA*, it cannot identify

possible violations of constraints prior to CSA* does. Hence,

the only possible scenario for CSA not to explore λn is that

there should be another path λ′n to n such that

g0(λ
′

n) < g0(λn), (22)

which satisfies all the constraints. Now let ~f(λ′n) =
[f0(λ

′

n), f1(λ
′

n), . . . , fi(λ
′

n), . . . , fm(λ′n)]. CSA* is guided by

consistent heuristics, thus by the virtue of Theorem 7, λn must

be a nondominated path to a node n. From (22), we have

f0(λ
′

n) < f0(λn). Therefore, for λn to be nondominated, there

exists an i ∈ [1,m] such that

fi(λn) < fi(λ
′

n).

Since CSA is admissible, it must be able to find an

optimal solution for any given problem from a class of

constrained search problems that have solutions. Now assume

that there is another constrained search problem which is

identical to the previously considered one, but with different

constraints. The new constraint vector is given by
~̃
ψ
∗

=

[c̃0
∗
, ψ̃1, . . . , ψ̃i, . . . , ψ̃m] such that c̃0

∗
> c∗0, ~f(λn) �

~̃
ψ
∗

,

and fi(λn) < ψ̃i < fi(λ
′

n). Now assume that the only optimal

path form s to t goes through n. Since s and t remain un-

changed on G, path costs and heuristic costs remain unchanged

as well. This lets CSA* and CSA to behave similar to as they

did in the previous search problem. Hence, CSA* should be

able to find the new optimal path by expanding λn which

satisfies the constraints. Since CSA skips expanding λn, it

cannot find the optimal path for this particular problem which

actually has a solution. Thus CSA violates its admissibility,

which is contrary to our assumption. Therefore, the theorem

is proven.

According to Theorem 9, any constrained search algorithm,

which is no more informed than CSA*, cannot skip any path

selected by CSA* with consistent heuristics in a search of

an optimal solution without compromising its admissibility.

Hence, CSA*, when guided by consistent heuristics, is optimal

with respect to the set of paths expanded over a class of no

more informed admissible constrained search algorithms.


