

Shortest path queries in rectilinear worlds

Citation for published version (APA):
Berg, de, M. T., Kreveld, van, M. J., Nilsson, B. J., & Overmars, M. H. (1991). Shortest path queries in rectilinear
worlds. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9120). Utrecht University.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/aee0bcf5-aedc-4482-a362-9d200965f052

Mark de Berg

Shortest Path Queries in
Rectilinear Worlds

Marc van Kreveld Bengt J. Nilsson Mark Overmars

RUU-CS-91-20

June 1991

Utrecht University

Department of Computer Science

Padualun 14. P.O. Box 80.089.

3508 TB Utrecht. The Netherllnds.

Tel. : ... + 31 - 30 - 531454

Mark de Berg

Shortest Path Queries in
Rectilinear Worlds

Marc van Kreveld Bengt J. Nilsson

Technical Report RUU-CS-91-20

June 1991

Department of Computer Science

Utrecht University

P.O.Box 80.089

3508 TB Utrecht

The Netherlands

Mark Overmars

ISSlh0924-321S

Shortest Path Queries in

Rectilinear Worlds*

Mark de Bergt Marc van Kreveld t Bengt J. Nilssont Mark Overmars t

Abstract

In this paper, a data structure is given for two and higher dimensional shortest

path queries. For a set of n axis-parallel rectangles in the plane, or boxes in d-space,

and a fixed target, it is possible with this structure to find a shortest rectilinear path

avoiding all rectangles or boxes from any point to this target. Alternatively, it is

possible to find the length of the path. The metric considered is a generalization of

the Ll-metric and the link metric, where the length of a path is its L1-Iength plus

some (fixed) constant times the number of turns on the path. The data structure

has size 0« n log n)d-l), and a query takes O(logd-l n) time (plus the output size

if the path must be reported). As a byproduct, a relatively simple solution to the

single shot problem is obtained; the shortest path between two given points can be

computed in time O(ndlogn) for d ~ 3, and in time 0(n2) in the plane.

1 Introduction

The computation of shortest paths in some geometric space is a topic that has received

considerable attention. This is mainly due to the number of applications, such as in

robotics, VLSI-design, and Geographical Information Systems (GIS). Shortest path prob

lems have been studied in many different settings. In (almost) all settings, there is a finite

set of obstacles, which have to be avoided by any legal path. Instances of shortest path

problems include different restrictions on the obstacles, the use of different metrics, the
dimension of the space, preprocessing version or single query, and more.

Most work has been done in planar settings, although recently there are some 3-

dimensional results. We briefly review some of the more important results that relate to

• Work of the first and fourth author was supported by the Dutch Organisation for Scientific Research

(N.W.O.). Work of the first, second and fourth author was supported by the ESPRlT Basic Research

Action No. 3075 (project ALCOM). Work of the third author was supported by the Deutsche Forschungs

Gemeinschaft under Grant No. Ot 64/5-4.
tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the

Netherlands.
*Institut f'tir Informatik, Albert-Ludwigs-Universitat, Rheinstr. 10-12, D-7800 Freiburg i. Br., Fed.

Rep. of Germany, and Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.

1

the work of this paper. (The time taken to report paths is omitted from the query time

bounds; this is always linear in the number of segments of the path.)

Shamos[25] considers the problem of finding the shortest Euclidean path between

two points inside a simple polygon with n vertices. This problem is also studied by

Chazelle[3] and by Lee and Preparata[17]. They solve it in O(n log n) time. With the

linear time triangulation algorithm of Chazelle[4], this improves to O(n) time. For n

parallel line segments, Lee and Preparata[17] obtain an O(n log n) time algorithm. Lee[16]

and Sharir and Schorr[26] consider an environment of arbitrary polygonal obstacles, and

they present O(n2 10g n) time solutions. For k disjoint polygons with n vertices in total,

Reif and Storer[24] give an improved O(nk+nlog n) time algorithm. De Rezende, Lee and

Wu[10] start out with an environment of non-intersecting rectangles and a fixed target.

They preprocess in O(n log n) time to a linear space data structure, such that rectilinear

(Le., axis-parallel) shortest paths can be retrieved in O(log n) time. Clarkson, Kapoor

and Vaidya[7] study rectilinear paths among non-intersecting polygonal obstacles. Their

result is improved by Mitchell[20], who gives an O(n log n) time algorithm. Furthermore,

he presents a data structure of linear size, in which shortest path queries to a fixed target

take O(log n) time.

In the link metric, the cost of a path is the number of turns the path makes, or

alternatively, the number of segments on the path. The shortest link path is thus the

path with the least number of turns. For this metric there are also a number of results.

Lenhart et al.[18], Suri[27] and Ke[13] study several shortest link path problems inside

simple polygons. Shortest link paths with respect to non-intersecting polygonal obstacles

are considered by Mitchell, Rote and Woginger[22]. They give an O(n2a(n)log2 n) time

algorithm. De Berg[8] studies rectilinear shortest link paths inside rectilinear polygons.

He devises a data structure of size O(n log n), such that a rectilinear shortest link path

between any two points can be found in O(log n) time.

In 3-dimensional space, shortest path problems are considerably harder. The general

problem - shortest paths in the Euclidean metric among polyhedral obstacles - is known

to be NP-hard[2]. The NP-hardness result holds for any Lp-metric[1], where p is a positive

integer. Clarkson, Kapoor and Vaidya[7] give an algorithm for shortest rectilinear paths

amidst non-intersecting rectilinear obstacles which runs in O(n2 log3 n) time. The study
of shortest paths on the surface of a polyhedron (convex or not) has received considerable

attention[6, 21, 23, 26]. Best results so far are of Chen and Han[6], who compute the

shortest path between two points in O(n2
) time.

In this paper we solve the following shortest path problem in arbitrary dimensional

space. Given a set of n possibly intersecting axis-parallel boxes (hyperrectangles) in d

space (d > 2), a fixed target (point), and a non-negative real C, build a data structure

such that for any point in d-space, a shortest path to the target can be found efficiently.

The path must avoid all the boxes, and should be shortest in the combined metric. In

this metric, the length of a path is the sum of its L1-Iength, and C times the number of

turns in the path. Notice that if C = 0, then the data structure answers shortest path

2

queries in the L1-metric, and for C large enough, the data structure answers shortest path

queries in the link metric (i.e., paths with a minimum number of links are found). See

Figure 1 for examples of shortest rectilinear paths in the L1-metric, the link metric, and

the combined metric (for some value of C). We obtain an O«nlogn)d-l) size structure,

in which queries take O(logd-l n) time (in d-space). Additionally, it takes O(k) time to

report a shortest path with k segments. Preprocessing takes O(nd log n) time.

An immediate consequence of our work is a relatively simple algorithm for shortest

rectilinear paths (in the combined metric) between two given points in a scene with n

boxes in d-space. It runs in O(nd log n) time. In the plane, this improves to O(n 2) time.

This result is interesting in its own right. It implies that the shortest path problem

in 'rectilinear worlds' of higher dimension is solvable in polynomial time, whereas the

shortest path problem in 'Euclidean worlds' is NP-hard. As remarked before, this is also

true for the L1-metric. What saves us is having rectilinear obstacles and paths.

Let us motivate the combined metric from a practical point of view. If we plan the

motion of a mobile robot, we do not want it to make many turns, because making a turn

involves slowing down, turning, and gaining speed again. Therefore the L1-metric may

be insufficient to plan good paths for robots. However, one also doesn't want the path

with the least number of turns, because this path could make a large detour. Thus it is

natural to assign each turn a fixed cost (the parameter C in the combined metric) and to

use a combination of the L1-metric and link metric.

For several reasons, it is difficult to compare our work with previous work. First of

all, the combined metric has not been used before. Secondly, we study the preprocessing

version, whereas most authors study single shot shortest path problems (generally, the

preprocessing versions are at least as difficult as the corresponding single shot problems).

Thirdly, this paper gives the first results for shortest paths in dimensions greater than

three (and on link distance in dimensions greater than two).

In Section 2, a number of definitions are given, and lemmas proved, upon which our

work is based. A set of points, called induced points, is defined (as in Clarkson et al.[7]).

They playa crucial role, as it is proved that any shortest path to the target will repeatedly

visit induced points. Therefore, it is natural to split a shortest path query in two phases.

In the first, we compute to which induced point the shortest path from the query point

should go first. The second phase consists of going from one induced point to the next,

eventually reaching the target.

Section 3 studies the second phase; it solves the problem of finding the shortest path

from any induced point to the target. The data structure obtained is basically a shortest

path tree on the induced points, such that any node has an outgoing edge to that node that

will lead to a shortest path to the target. (This approach is called 'continuous Dijkstra'

in [21].) This will also lead to a solution to the single shot problem.

In Section 4, we consider how to find an induced point to which the query point should

go first. This is needed for the query problem, contrary to the single shot problem. In

higher dimensions, this results in a rather complicated recursive tree structure, in which

3

the query proceeds by repeatedly searching in grids, ray shooting, and continuing in

recursively defined structures. This leads to the main result of this paper.

The conclusions and directions for further research are given in Section 5.

2 Geometric preliminaries

Let S be a set of n d-boxes in Rd, which are the obstacles of the problem. An i-face is

defined to be an i-dimensional face of a d-box. Let t be the target point, and let C be a

non-negative real which represents the cost of making one turn.

Definition 1 A directed polygonal chain S1S2 ... s~ from a point p to a point q is called

a rectilinear path from p to q if and only if each link si of the path is axis-parallel. A

rectilinear path from p to q is called legal if and only if it does not intersect the interior

of any d-box in S. A legal rectilinear path from p to q is called a simple step from p to q

if and only if it consists of at most d links, no two of which are parallel. p is said to see

q if and only if there is a simple step from p to q.

In the following we only consider legal rectilinear paths; so we omit the words 'legal'

and 'rectilinear'.

Definition 2 The length of a path II = S1 ... s;' from a point p to q in the combined

metric is defined as C· (m - 1) + E~l Isil, where Isil denotes the length of Si. The

distance from p to q is the minimum length over all paths from p to q.

Observe that the shortest path from one point to another is not necessarily unique.

To see this, consider an obstacle-free environment in the plane. A shortest path is traced

along either boundary segment pair of the rectangle defined by the two points. In fact,

for any value of C and in any dimension d :2:: 2, there can be an exponential number

of 'different' shortest paths (exponential in n). Also notice that for C large enough, a

shortest path in the combined metric will be a shortest path in the link metric, and if

C = 0, then it is a shortest path in the L1-metric. See Figure 1 for an illustration of

shortest paths in the combined metric.

Definition 3 The grid Gs for a set S of d-boxes is the arrangement of all axis-parallel

hyperplanes that contain a (d - l)-face of a d-box in S, together with the axis-parallel

hyperplanes that contain the target t. The skeleton of the grid Gs is the union of the

closure of all 1-faces of Gs . The set Vs of induced points of S is that subset of the

vertices of Gs that lie on the closure of a (d - 2)-face of some d-box in S (including the

target t).

The grid Gs defines a subdivision of Rd into cells (d-faces). Note that any cell either

lies completely inside a d-box, or completely outside of it.

4

--------1 --I I
I I

source + ---i
I I
I I
I I
I I
I I
I I
: combined
I
I
I
I
I
I
I
I
I
I
I
I
I

:
I .
~ •...•••.....•••....••..•••••...

.. ---.
I · · •

it------------------------------· · target

· • · · · link l . ..•.....•••....••.....••.....•........ ,

Figure 1: Shortest paths in the combined metric.

In 2-space, the set of induced points is the set of vertices of the rectangles, and in

3-space, all induced points lie on the edges of the boxes (at most 2n + 1 induced points

per edge). It is easily seen that the grid Gs contains O(nd
) vertices, whereas the set Vs

of induced points has size O(nd
-

1
).

It is possible to alter a path by a transformation called sliding. Let II = sl ... s~ be a

path, and let Si and sj (i < j) be two parallel links of II. Then, by changing the lengths

of s"i and sj with equal amounts, the subpath S;'+'I ..• Sj:l can be moved into direction

+s"i or -si while remaining axis-parallel. Notice that sliding the path into direction -,Si

cannot make the path II longer.

With this transformation of a path, it immediately follows that for any path II that

has its endpoints on the grid Gs, there exists a new path between these endpoints which is

no longer than II, and only uses the skeleton of the grid G s. But we can prove something

stronger, which justifies the use of induced points, and which is crucial for the solution

and its efficiency.

Lemma 1 For any two induced points p and q, there exists a shortest path II from p to

q, such that any subpath of d -1 consecutive links of II contains at least one induced point

of Vs (d is the dimension).

Proof: Let II' be a shortest path from p to q with a minimum number of links. We will

transform II' into II without increasing the length.

First, transform II' by sliding such that all the links are contained in the skeleton of

the grid. This is always possible without increasing the length of the path, or intersecting

any (interiors of) d-boxes. Let II" = sl ... s~ be the resulting path. If m :s; d, then II"

5

satisfies the property of the lemma (because P and q are induced points) and we are done.

Otherwise, let si and sj be two parallel links in II, such that i < j and j is minimum. Such

parallel links must exist when m > d. We slide the subpath S;+1 .•• Sj:l into direction

-si, until some link of this subpath hits a d-box. This must happen before Si or sj has

length zero, since that would contradict the choice of II'. Furthermore, when the subpath

hits ad-box, all links will again be contained in the skeleton of the grid.

Let s1 be the first link (i.e., the one with minimal k) of the subpath that hits ad-box.

Then it not only hits a (d - l)-face of the d-box, but also the boundary of the (d - 1)
face, being a (d - 2)-face f. This is true because the links S; ... Sk:l do not intersect the

(d - l)-face that s1 hits. As Sk lies in the skeleton of the grid, there must be a point

on the face f that is intersected by this line (and by 81). By definition, this point is an

induced point in Vs.
Now 81 and 81 both contain an induced point, and by the choice of i,j and k, we have

1 < k < j :5 d + 1. If necessary, we repeat the above construction with the path 8k ... 8;.
o

The above lemma will be used in the following way. For every induced point, we

compute and store - as a part of the preprocessing - the next induced point on a

shortest path to the target. This gives a tree rooted at the target on the O(nd
-

1
) induced

points, where every node (excluding the target) has one outgoing edge to its parent in

the tree. Every path will (eventually) lead to the target. So from any induced point,

we can follow a shortest path from the corresponding node in the graph to the target.

Furthermore, at every node we store the distance to the target.

It is natural to split a query with an arbitrary point in two parts. In the first, we

compute the best induced point to which we can go with a simple step. (With best point

we mean the one that results in a shortest path.) The second part consists of following

the path from the induced point that we just found, to the target (root) in the shortest

path tree.

To decide upon which induced point to go to in the first simple step, it is comfortable to

treat all possibilities of simple steps separately. The possibilities concern the directions of

the links and their order. We make this more precise. A direction vector is a permutation

of a non-empty subset of the base vectors of Rd, which are prefixed by either + or -. Thus

every simple step corresponds to a unique direction vector. For example, we can speak

of a (+X2, -X4, -xt}-simple step. When we only consider simple steps with one specific

direction vector, we say that the direction vector is fixed. When we fix the direction

vector, the term 'see' only refers to simple steps with the fixed direction vector. If the

direction vector is fixed, then a simple step from one point to another is either unique or

impossible. See Figure 2 for an illustration of this notion.

Lemma 2 Let the direction vector be fixed, and let PI and P2 be two induced points. If

a point q in Rd can take a simple step to both PI and P2 (q sees both PI and P2), and the

path via PI has shorter total length, then for all points that can see both Pl and P2, the

path via Pl i8 shorter.

6

(+X
2

)- simple step from
s to t impossible

(+X
1

,-X
2

)- simple step from
s __ ---------, s to t impossible

'------..... ·t
(-x

2
,+x

1
)- simple step from

s to t possible

Figure 2: Twelve different simple steps and direction vectors in the plane.

Proof: Because the direction vector is fixed, all points q that can see PI and go via PI,

have the same number of links to the target. Let ell be the cost of the turns on such a

path. Let IqP11 be the LI-distance of q to PI, and IPltl the LI-distance of PI to the target.

Let el2 , IqP21 and lP2tl be defined analogously for P2. From the assumption in the lemma,

IqP11 + Ipltl + ell < IqP21 + Ip2t l + el2. For any point q' that can see PI and P2, the dis

tance to the target via P1 (resp. P2) is Iq'PII + Ipltl + ell (resp. Iq'P21 + lP2tl + el2). Because

IqPll-lq'PII = IqP2I-Iq'P2I, it follows that the path for q' to the target via PI is shorter. 0

An induced point that can be seen, and which lies on a shortest path to the target

(such as P1 in the lemma), is called the best induced point (among some set of points that

can be seen).

We conclude this section by discussing shortest paths and their length in the combined

metric. A problem we have to face in the link metric and, hence, in the combined metric

is that the distance function is not additive in the following sense. The distance from P

to r via q is not necessarily equal to the sum of the distances from P to q and from q to r.

The problem is that in the latter case, the cost of a possible turn at point q is not counted.

This is shown in Figure 3. However, if the rectangle R in Figure 3 was not present, then

the shortest path from P to r makes no turn at q. Even worse, it may be the case that a

shortest path that arrives at some point q horizontally, continues in a different way than

a shortest path that arrives at the point q vertically (see Figure 3), and the induced point

to visit after q is not unique.

We overcome these problems in the following way. We d-plicate every induced point

q in Vs, to get d versions ql, ..• , qd. Everyone of the d possible ways of arriving at q

corresponds to one version. When a path enters q with a link parallel to the ith coordinate

axis, then it arrives at the version qi. There are two ways to leave qi. Either use a link

parallel to the ith coordinate axis (simply continue in the same direction) and go to the

7

p.

R
r,
· · · · · · ••• .1

· ·

••••••••••• q: :
: : · :
L ~_: .. r ." · . •••• • · . r 1 : . . ·

Figure 3: Difficulties in the combined metric.

version c/; of some q' =f; q, or go to another version qj of q (which corresponds to making a

turn at q). The distance from one version of q to another version of q is defined to be C,

the cost of making a turn. With this extension the distance function becomes additive. It

is easy to see that the number of induced points remains O(nd
-

1
), and that any shortest

path visits at most two versions of one point. Since we never want to make a turn at the

target, only one version of t is needed.

3 The shortest path graph

In this section we concentrate on the structure that allows us to trace the shortest path to

the target from any induced point. This structure is a single target shortest path graph,

which we call sp-tree for short.

Let the set S of n d-boxes be given, and also the target t and the non-negative real C.

The d-boxes and the target together define a grid Gs with O(nd
) vertices, and a set Vs of

O(nd
- 1) induced points. Recall that we actually use d versions of each induced point. The

sp-tree we aim to construct has one node for every version of each induced point. With

this node the distance to the target is stored. Furthermore, a node corresponding to (a

version of) some point p has one outgoing edge to a node corresponding to (a version of) a

point q, where q is the next induced point on a shortest path from p to the target. There

is a simple step from p to q, and the links of this simple step are stored explicitly with the

edge in the graph. See Figure 4 for a planar scene with the corresponding sp-tree. We

begin with the construction of the sp-tree in the planar case; then we address the higher

dimensional case.

For a set S of n rectangles (or line segments) in the plane, the O(n) vertices of S are

the induced points. We perform two plane sweeps - one vertically and one horizontally

- to compute the full simple step visibility graph on the versions of the induced points.

The graph can be constructed in O(nlog n + lEI) time, where lEI is the number of edges,

which is O(n2
). Every edge is assigned a weight, which is the Ll-distance between the

8

t.

Figure 4: A planar scene with a box, a segment, and a target. Right, a possible sp-tree

for the 13 versions of the 7 induced points of the scene.

corresponding points, with the constant C added if the simple step makes a turn. We

identify the target in this graph, and perform Dijkstra's algorithm [11] to obtain the sp

tree. The construction takes O(n2
) time. An alternative implementation of Dijkstra's

algorithm gives time «n + IEl)logn), which is better when lEI is small.

In the higher dimensional case, we do not want to compute the full simple step visibility

graph on the induced points and then compute the sp-tree, since there can be 8(n2d
-

2
)

edges in the full graph. Instead, we take the grid Gs , and show how to transform it into

the sp-tree in O(ndlogn) time. Consider the grid Gs to be a weighted graph on the O(nd
)

vertices of the grid, where we d-plicate the grid vertices in the same way as we did with

the induced points. For every version of a vertex of the grid, there is a node in the graph

(from now on, we will no longer make a distinction between a node in the graph and the

version of the point it represents). Two nodes Pi and qj in the graph are neighbours if

and only if either P = q and i =f:. j, or i = j, P and q are neighbours in the grid Gs and

connected by an edge parallel to the ith coordinate axis. The graph is weighted in the

usual way: every edge is weighted with the distance between the versions of the points.

Notice that every node in the graph has degree at most d + 1. The algorithm to change

this graph into the sp-tree has three phases.

The first phase serves to delete all nodes that lie inside a d-box. Consider the O(nd
-

1
)

vertical lines of the skeleton of Gs, that is, the grid lines parallel to the xd-axis. For

each line we determine all relevant d-boxes (the ones that properly intersect the line).

When we have for each line a sorted list of the xd-coordinates of the relevant boxes,

it is straightforward to remove the vertices lying inside a box in linear time per line.

Deletion of one node from the graph can be done in constant time, because every node

9

has constant degree. The sorted lists of xacoordinates of the relevant boxes can be

obtained in O(n log n + nd) time in total, by first presorting the xd-coordinates and then

testing each box with each line. Hence, the first phase takes O(nd
) time.

The second phase consists of the computation of the directed sp-tree on the (remaining)

grid vertices. Note that the removal of the part of the grid lying inside d-boxes may

have caused the graph to become disconnected. Trivially, we only have to consider the

connected component that contains the target. Computing the directed sp-tree can be

done using Dijkstra's algorithm in O(IEI log n) = O(ndlogn) time.

In the third phase all grid vertices that are not induced points are removed. This is

done in the following straightforward way. Take an induced point p, trace its shortest

path until the next induced point q is reached. Delete the outgoing edge of p, and insert

an edge from p to q. After doing this for every induced point, all grid vertices that are

not induced points are removed from the graph. The resulting graph is the sp-tree on

the induced points. The third phase takes O(nd
) time, because the path traced from any

induced point to the next, contains at most a linear number of grid vertices.

We conclude with the main result of this section.

Theorem 1 Given a set S of n d-boxes, a target and a non-negative real C, the shortest

path tree for the combined metric can be constructed in O(nd log n) time and O(nd
) space.

The graph has size O(nd
-

1), and allows for retrieval of the distance to the target in constant

time for any induced point. A path to the target can be reported in O(k) time, where k

is the number of links on the path. For d = 2, O(n2
) time and space suffices to construct

the tree.

The method to compute the sp-tree can also be used to solve the single shot problem.

To this end, we add the axis-parallel hyperplanes containing the source point to the grid.

After the first phase of the computation of the sp-tree, we have to compute a shortest

path between two nodes in a graph with O(nd) edges, which takes O(nd log n) time.

Corollary 1 Given a set of n d-boxes and two points, a shortest rectilinear path between

them that does not cross any d-box can be computed in O(nd log n) time. This result holds

in the L1-metric, the link metric and the combined metric.

4 Finding the first simple step

In the previous section we solved the problem of finding the shortest path to the target

from any induced point. However, a query point can be any point in d-space. In this

section we consider how to find the first induced point on a shortest path to the target

from any point q. We will first consider the case in which q is a vertex of the grid. At

the end of this section we will generalize the solution to arbitrary query points. It follows

from the proof of Lemma 1 that from any grid vertex, there is a shortest path to the

target, which starts with a simple step to an induced point.

10

We take the following approach. Fix the direction vector of the simple step and solve

the problem using a recursive tree structure called a d-dimensional slab tree. This is done

for every direction vector, thus a constant number of answers is found. An answer consists

of some induced point p that is the best if the path must start with a simple step with

the specified direction vector. We can also compute the length of this path in constant

time, by adding the cost of the first simple step from the query point q to the point p, to

the distance from p to the target (which we have precomputed and stored in the sp-tree).

Of all the direction vectors, the one resulting in a shortest path to the target is the actual

shortest path.

Observe that if the locus approach is used (Le., d-space is divided in regions, in which

the best induced point to go to is constant), every cell of the grid Gs belongs completely

to one region. Thus the subdivision has complexity O(nd
). Unfortunately, this bound is

tight, even if we fix the direction vector. In other words, there exist scenes for which this

subdivision has size n(nd
). In this section we show how to reduce the space requirements

by storing the subdivision implicitly. To facilitate the description, we assign to every

induced point a unique colour (label). We wish to colour d-space with these O(nd
-

1
)

colours. The colour white is used as a special colour, indicating that no induced point

can be reached at all (with this direction vector). An explicit colouring may have size

n(nd) as already noted; below we show that an implicit colouring with a recursive data

structure uses O((n log n)d-l) space. This structure is called a d-dimensional slab tree.

Before we start the description of the slab tree, we first study the problem of axis

parallel ray shooting in the set S of boxes. This will prove to be necessary for the query

algorithm in the slab tree. Next, because the slab tree is quite complicated in higher

dimensions, we continue with the description of the planar slab tree, and then extend to

three and higher dimensions.

4.1 Ray shooting in boxes

We study the following problem: Given a set S of n boxes in d-space, preprocess it such

that for any axis-parallel query ray, the first intersection point with a box can be found

efficiently. In the query algorithms for the slab tree, to be given later, we will repeatedly

need a quick answer to such a query, to determine how far we can go with the next link
of the simple step without crossing any box.

Assume without loss of generality that the query ray has direction -Xl; for the other

possibilities we define separate structures of the same type. First, consider the planar case.

Here we have a set of rectangles and a query ray, directed to the left. Such a query ray

can only hit a vertical edge of a rectangle. Therefore, we solve the problem of horizontal

ray shooting in a set of vertical segments. We use the locus approach, that is, the plane is

partitioned in maximal regions in which the answer is fixed. This partitioning has linear

size. It is preprocessed for efficient point location [12, 14], resulting in a structure of linear

size, which answers queries in O(log n) time.

We wish to solve the higher dimensional version of this problem with O(log n) query

11

time as well. Therefore, we extend the solution in the following way. If d > 2, then

we construct a balanced binary tree on the different xd-coordinates of the faces of the

boxes. With each leaf, we have a (d - 1)-dimensional problem of the same type, on the

set of faces whose xd-interval contains the xacoordinate corresponding to the leave. This

(d - 1)-dimensional problem is solved with a recursively defined structure. H d = 2, we

use the solution for the planar case. To query with a point q = (qI,"" qd), we search

in the first d - 2 layers of trees with the values qd,"" q3. At the leaf where the search

ends, we have a 2-dimensional ray shooting structure on the set of faces whose X3- up to

xd-intervals contain the X3- up to xd-coordinates of the query point. In this structure we

perform a point location query with the point (qt,q2)' (This solution is not very efficient

in terms storage requirements, but it is good enough for our purposes, and it achieves the

fast query time that we need.)

Lemma 3 A set S of n boxes in d-space can be preprocessed into a structure of size

O(nd
-

l
), such that for any axis-parallel query ray, the first box hit by the ray can be found

in O(log n) time. Preprocessing takes O(n d
-

l log n) time.

4.2 The planar slab tree

The query object for the slab tree is an interval, which is obtained as follows. Let us

assume that the direction vector is fixed to be (-X2' -Xl)' (We use similar structures for

the other possible direction vectors.) A query with a point q begins by ray shooting in

-x"2-direction. This gives us the rectangle that is hit first, and thus a vertical interval Iq

which is the maximal length of the first link. We will use the interval Iq to query in the

slab tree. All induced points that can be reached with the specified simple step will have

their x2-coordinate in the interval.

As we remarked before, the slab tree is an implicit colouring of the plane. The idea

of the implicit colouring is as follows. Consider the intersection of a horizontal line with

the (coloured) subdivision. The colouring of this line tells us were to go when the query

point lies on that line. But by Lemma 2, the colouring of this line gives us even more

information: it tells us what the best induced point below the line is for the points that lie

above it (provided that they can see it). In other words, if the interval Iq of a query point

intersects this line in a red region, then the best induced point that lies below the line

is the red induced point. This red induced point is visible from the query point, because

the interval Iq intersects the horizontal line. Of course, the best induced point need not

lie below this line. Therefore we do the following. We divide the plane in horizontal slabs

and we colour the top boundaries of these slabs with the colours of the induced points in

that slab. (The fact that we only use colours of induced points in the slab is crucial for

the reduction in storage.) Then, for a query interval, we select a number of slabs that

together cover the interval. The top boundaries of these slabs are all intersected by the

interval and thus give us a number of colours. Of the corresponding induced points, we

select the best one. We next give a more precise description of the slab tree.

12

Draw horizontal lines through all induced points. This results in a number of ele

mentary slabs. Associate the elementary slabs from bottom to top with the leaves of a

balanced binary tree. Every internal node ii corresponds to a slab which is the union of

the elementary slabs that are associated with the leaves of the subtree rooted at Ii. We

will colour the top bounding line of the slab of ii with the colours of induced points that lie

in the slab. (Points lying on the boundary between two slabs belong to the bottommost

of these two slabs.) This results in a list ordered on xl-coordinate, such that for any

query interval that crosses the slab completely, the best induced point in this slab can be

found by searching in this list with the xl-coordinate of the vertical interval. This list is

called the associated list of Ii. Although one colour can appear more than once, the size

of an associated list is linear in the number of induced points in the corresponding slab.

This can be seen as follows. From Lemma 2 it follows that the colouring of the line can

only change at a point corresponding to the xl-coordinate of an induced point inside the

slab or at a point where a vertical obstacle that crosses the slab completely intersects the

line. In the latter case, there is no induced point in the slab that can be reached, to the

right of the vertical obstacle. So the colour will be white. Because adjacent white regions

are merged into one region, there can only be a linear number of xl-coordinates at which

there is a change in colour. Thus the size of the associated list at some node ii is linear in

the number of induced points in the slab. Hence, the slab tree uses O(n) space at every

level of the tree which sums up to O(n log n) space in total. In Figure 5, an example of a

slab tree is given.

A query in the slab tree is performed in the following way. The query object is a

vertical interval that defines the region in which the induced point via which we have to

go to the target must be contained.

Move with the interval down the slab tree to the node ii where the paths to its lower

endpoint and upper endpoint split. From the left son of ii follow the path to the upper

endpoint of the interval; for every node where we go left, search in the associated structure

of its right son to find a colour. Similarly, from the right son of ii, follow the path to the

lower endpoint, and search in the left son of each node were we turn right. Finally, search

for a colour in the two leaves where the paths end. Searching in the associated structures

is done with the xl-coordinate of the interval. In this way we search in the associated

structures of O(1og n) nodes whose slabs together cover the vertical query interval. Thus

the query time is O(log2 n), which can be reduced to O(log n) by applying fractional

cascading ([5]) to the slab tree. (It is straightforward to apply this technique, because

all associated lists are ordered on xl-coordinate, and when we search, we always search

with the same xl-coordinate in the associated structures.) Of the O(log n) colours found,

choose the one that gives a shortest path to the target. This colour represents the induced

point which yields a shortest path to the target if the path must start with a (-X2' -xd
step. It can easily be decided which induced point results in the shortest path, because for

each induced point we have the distance to the target, and we can calculate the distance

from the source to any induced point by adding C to the Ll-distance. (C has to be added

because a (-X2' -Xl)-simple step makes one turn.)

13

_ ::'r:.:.:-<~:.::::::~::-:~:~·::;;:'

• /
t

/

Figure 5: An example of a slab tree for the (-X2' -xI)-simple step. The colour white

corresponds to areas where no induced point can be reached (with a (-X2' -xI)-simple

step).

Lemma 4 The 2-dimensional slab tree has size O(n log n), and queries take time O(1og n).

4.3 The higher dimensional slab tree

We next address the description of higher dimensional slab trees. The d-dimensional slab

tree is basically a balanced binary tree on the d-th coordinate, where every node in the

main tree stores a (d - 1)-dimensional grid of appropriate size, and a number of (d - 1)

dimensional slab trees. We first give a description of the 3-dimensional slab tree, and then

we generalize to higher dimensions.

Assume without loss of generality that the direction vector is (-X3' -X2, -Xl), and

assume that we have the axis-parallel ray shooting structures of Lemma 3.

Consider the O(n) horizontal planes (perpendicular to the x3-axis) of the grid Gs.

These planes partition space into a number of elementary slices, which we associate with

the leaves of a balanced binary tree T. Every internal node 6 of T corresponds to a slice

which is the union of all elementary slices that are associated with the leaves of the subtree

rooted at 6. Any box b either does not intersect the slice of 6, or it has vertices in the

slice (a so-called x3-short box at 6), or it completely cuts through the slice (a so-called

x3-long box at 6). Clearly, if n6 denotes the number of leaves in the subtree rooted at 6,

there are O(n6) x3-short boxes at 6.

With 6, we store a 2-dimensional grid G6. G6 is a grid on the front plane of the slice

14

n'
3

n

x 3-coordinate n

n

x 2-coordinate

x fcoordinate

Figure 6: A 3-dimensional slab tree.

corresponding to 6. However, G6 is not the intersection of the front plane with the full

grid: we do not take a horizontal line for every different x2-coordinate, but we only use

x2-coordinates that correspond to vertices of boxes that are x3-short at 6. This reduces

the size of G6 from n x n to n X n~, where n~ ~ 2n6' In the projection of all x3-short and

x3-long boxes onto the grid G6 , the first ones have all edges projected onto the set of edges

of G6, and the edges of x3-long boxes that are parallel to the xraxis may intersect edges

of G6 that are parallel to the x2-axis. See Figure 6, where the x3-short boxes are shaded,

and the x3-long boxes are black. G6 can been seen as to consist of n~ I-dimensional

subgrids of size n called rows. Every row ~ is stored in two ways. First, we colour

each row ~ implicitly using a 2-dimensional slab tree T6,i, in which only the colours of

induced points in the row R itself are used. Secondly, we colour ~ explicitly (Le., we

give each point of ~ the colour of the best induced point in the slice), but only colours

are used of induced points that lie in a different row Rj. Note that since we consider the

(-X3, -X2, -xl)-simple step, Rj must lie below Rs. The 3-dimensional slab tree is shown

schematically in Figure 6.

Before we continue to describe the structure in more detail, we show how a query is

done thusfar, to improve intuition for the structure. When querying, we shoot from the

15

query point q in -xl-direction to see how far we can go with the first linle This gives an

x3-interval 13, with which we search in the 3-dimensional slab tree. The query interval 13

selects O(log n) nodes that together span 13 (as in the planar case). The query continues

at each one of these nodes. Suppose that 0 is such a node. The query point q projects

somewhere on the grid G6, and we know that it cannot be in the projection of an x3-long or

x3-short box. (Otherwise, this node would not be selected by querying with the obstacle

free x3-interval). With q, we query in both the grid, and in the 2-dimensional slab tree

corresponding to the row in which q lies. So we get two colours at 0, one corresponding to

the best point that can be reached in a different row, and the other corresponding to the

best point that can be reached in the row itself. The best one is selected as the answer to

the query at o. The best induced point among all the ones found at the O(log n) selected

nodes, is the answer to the query in the slab tree.

We continue to describe the grid G6 more carefully. Let m6 be the number of induced

points in the subtree rooted at o. Let p be any such induced point. Define for pits

histogram Hp (or visibility region) to be the set of points in 3-space for which p is visible

with respect to the simple step (-X2' -Xl). Intuitively, consider the set of boxes and

p in 3-space, and shoot from p in +xl-direction. This gives an Xl-interval. With this

interval, shoot in +xi-direction, giving a possibly unbounded histogram. By definition,

the query point q can see p if and only if the x3-interval 13 of q intersects Hp. Note that the

histogram Hp of p is obstructed by all of the x3-long boxes, and by those x3-short boxes

for which the x3-coordinate of p lies in the x3-interval of the x3-short box. Hp is split

into two parts: H; is the part of Hp that lies in the same row as p, and H; = Hp - H;.
The part H; is used to colour the grid G6 explicitly, and H; is used in the 2-dimensional

slab tree corresponding to the row in which p lies. The following lemma shows that the

explicit colouring of G6 using the parts H; has small size.

Lemma 5 Any cell c in G6 has only one non-white colour. Thus, the colouring of G6
has size O(n . n6).

Proof: A simple step from a point in a cell c to another row must leave c with the first

link. The only boxes that intersect c properly are x3-long boxes, because they do not

project onto the edges of the grid. Therefore, c is divided into at most two regions by

some x2-coordinate. One region lies in -xi-direction of the x3-long box that intersects c

and has minimal x2-coordinate, and the rest of c is the second region. From the second

region, it is not possible to leave cell c to another row, and it is coloured white. Since no

box intersects the first region, it can either be reached completely, or not at all. Conse

quently, there is only one colour in the first region by Lemma 2, which is the colour of

the best induced point of another row. It follows that the colouring of cell c has constant

size. 0

Next we describe more carefully what is done with the parts H; of histograms, which

are restricted to the same row as the corresponding induced points p. Let m6 be the

16

Ii 7: .F-9-. -~ ••

: r·····. , .. ~ :: :: i :
: ,": #.': •• ': •• ': :: :: : :, . .,.
~""."'.'''''''-'+---f'''.'''''' ~

••••••••••••••• :). .. .J ., .,':: ::
•• ' .. • •• ' •• ' :.': •• ' ." •• ' : ;. ••••• ;.J

•• ' •• ' ~.:_.~. ..' •• ' :c •....... -=-. ..,. .. ,.

Figure 7: The subgrid G-y with intersecting boxes that are (from left to right) x2-short

and x3-long, X2- and x3-short, Xr and x3-long, and x2-long and x3-short.

number of induced points in the subtree rooted at ~. Let Ri be anyone of the n~ rows.

Let nS,i be the number of different x2-coordinates of boxes that intersect Ri, and let mS,i

be the number of induced points that project into Ri. Note that we have

n~ n~

I: nS,i S 2n, and I: mS,i = ms·
i=l i=l

For row R;, a balanced binary tree TS,i is built on the nS,i different x2-coordinates. This

tree is similar to the 2-dimensional slab tree. For a node "(in TS,i, let m-y be the number of

induced points in the subtree rooted at ,. Node, corresponds to some subgrid G-y of Gs
that projects inside Ri. This subgrid corresponds to the x3-interval of ~, the x2-interval

of, itself, and the full xrinterval (the same as Gs , see Figure 7). The number of induced

points in G-y is m-y. The colouring of this grid is stored implicitly in a I-dimensional tree

on xl-coordinate. In fact, we colour the line that bounds the grid G-y and has smallest

X2- and x3-coordinate (the bottommost front line in Figure 7). One search in such a 1-

dimensional tree suffices to find the best induced point of the subtree T-y, or equivalently,

of the subgrid G-y.

Lemma 6 The tree T-y has size O(m-y).

Proof: Consider the Xl-axis to be left-right, and sweep a plane rightward from Xl = -00.

We consider at what moments the colouring of T-y changes, and we will charge each change

to some induced point in G-y. Any change is either caused by the appearance of an induced

point, or of a box, because by Lemma 2 a change in colour can only happen when visibility

regions start or stop. When a new induced point is encountered at some moment, it may

change the colour of T-y (not necessarily to its own colour). This is charged to the induced

point that is encountered. Secondly, the plane can reach a box that is both x3-long and

x2-long. Now the visibility region changes, without having a new induced point in G-y at

that xrcoordinate. Such a box necessarily stops all visibility regions, in particular, of the

induced point of current colour. We charge this change to this induced point, and that

will be the last time it is charged, because its colour cannot reappear in T-y. If the colour

17

was white already, there isn't any change in T'Y' and nothing has to be charged. Clearly,

every induced point is charged at most twice. 0

We return to the query again. Recall that we selected O(log n) nodes in the primary

tree, and for each such node 6, we searched in the grid Gs, and still had to query in some

secondary tree of 6. H the projection q' of q is in a row ~, then the secondary tree to

search in is TS,i. Therefore, we need an x2-interval 12 with which we should search in TS,i.

Thus we perform a ray shooting query in -xi-direction, starting at any point on the first

link that lies within the slice of 6. Within the row ~ we can only hit an x3-long box, thus

we find either an x3-10ng box, or no obstruction at all in Ri. In both cases, an x2-interval

12 is found with which we search in TS,i. Again, this results in a subset of O(log n) nodes,

which form a partition of the x2-interval 12. For each of these nodes, we search in the

associated 1-dimensional tree.

Lemma 7 During a search with a query point q, O(log2 n) colours of induced points are

found, and all these induced points are seen by q. The best point that can be seen from q

is among these.

Proof: For the first part, observe that in the 3-dimensional slab tree, O(log n) nodes

are selected in which to proceed. For each one, one colour is found in the grid, and one

2-dimensional slab tree is searched. In the 2-dimensional slab tree, again O(log n) nodes

are selected in which to proceed. For each one, we find one colour in the 1-dimensional

tree. This adds up to O(log2 n) colours.

To prove that these induced points are visible from q, consider the two possible cases.

H a colour is found in the grid Gs, then no box can obstruct the first link from q in

-x-;-direction by the choice of the x3-interval 13. By the definition of the histograms, the

second and third links of the simple step are obstacle-free. H a colour is found in a tree

T'Y' then the first link can be made for the same reason as above. The second link can be

made by the choice of nodes in the tree n,i after ray shooting in -xi-direction, and the

third link is legal by the way T'Y is coloured.

For the third claim in the lemma, observe that the search always proceeds by using

the longest X3- and x2-intervals that are obstacle-free. Furthermore, by definition, the

histograms also give the largest possible region in which an introduced point is visible.

Therefore, if some induced point is visible and the best, its colour will be found as one of

the O(log2 n) colours. 0

Lemma 8 The 3-dimensional slab tree has size O((n log n)2).

Proof: It is easy to see that all grids together have size O(n210g n), by Lemma 5 and the

fact that EseTnS = O(nlogn). The ray shooting structure has size O(n2), by Lemma 3.

The size of a tree n,i is not of larger order than the summed sizes of the associated trees

T'Y. Therefore, it is sufficient to prove a bound on the total size of all1-dimensional trees.

18

To this end, we count for each induced point the number of 1-dimensional trees in which

it occurs. This is easily seen to be O(log2 n). Since the size of a 1-dimensional tree is

linear in the number of induced points that occur in it, the bound follows. 0

This concludes the description of the 3-dimensional slab tree. The structure is ex

tended to d dimensions in the following way. A d-dimensional slab tree is a balanced

binary tree on the different xd-coordinates. Every node 6 has an associated structure,

consisting of a (d - 1)-dimensional grid G6 of size n x ... x n x n6' and for everyone of

the n6 rows, there is a (d - 1)-dimensional slab tree. The following results are extensions

of the lemmas above.

Lemma 9 Any cell c in G6 has only one non-white colour. Thus, the colouring of G6

has size O(nd
- 2 • n6). A l-dimensional tree T.." corresponding to a subgrid G.., with m..,

induced points, has complexity O(m..,). During a search with q, O(logd-l n) colours of

induced points are found, all these induced points are seen by q, and the best induced point

seen by q is among these. A d-dimensional slab tree has size O((n log n)d-l).

Proof: The proofs of the first four parts are straightforward generalizations of the 3-

dimensional versions. For the last part, we prove that all grids together use O(nd
-

1 log n)

space, and all 1-dimensional trees T.., together use O((n log n)d-l) space.

Let SC(d, n) be the space used by all grids in a d-dimensional slab tree with n leaves

(or for a group of d-dimensional slab trees with n leaves together). Then we have

SC(d, n) ~ L O(n6· nd
-

2
) + n· SC(d -1, n)

6

for d > 4, where we sum over the O(n) nodes 6 of the main tree. Furthermore, SC(3, n) =
O(n2Iogn), by Lemma 8. With induction on d, SC(d,n) = O(nd-1logn) easily follows.

N ext we prove a bound on the total size of all 1-dimensional trees in ad-dimensional

slab tree. To this end, we observe that each induced point occurs in O(logd-l n) 1-

dimensional trees. The complexity of a 1-dimensional tree is linear in the number of

induced points that occur in it, and the space bound follows. 0

Lemma 10 A query in a d-dimensional slab tree with a vertex of Gs and for a fixed

simple step can be answered in O(logd-l n) time.

Proof: Ray shooting is performed O(logd-2 n) times, taking O(logd-l n) time in total,

by Lemma 3. Searching in grids is done O(logd-2 n) times, taking O(log n) time each, thus

O(logd-l n) time in total. Searching in the 1-dimensional trees is performed O(logd-l n)

times for one query. Applying fractional cascading (see [5]) to the 1-dimensional trees

that are associated with one 2-dimensional slab tree, results in a total query time in 1-

dimensional slab trees of O(logd-l n). 0

19

We have presented the d-dimensional slab trees and the query algorithms for them.

But at the beginning of this section, we assumed that queries are done with grid vertices,

because for grid vertices we can prove that there is a shortest path that takes a simple

step to an induced point. For an arbitrary point in d-space (d > 3), however, it can be

the case that it takes many links before the shortest path to the target reaches an induced

point. The following trick is used to overcome this problem. Instead of preprocessing the

grid Gs , we preprocess a refinement Gs of Gs, obtained by adding a hyperplane between

any two consecutive parallel hyperplanes of Gs. This increases the complexity of the grid

and the number of induced points with only a constant factor. So we get a shortest path

tree and a slab tree with respect to the refined grid Gs and the new set of induced points

V;. Observe that in any cell (more generally: any i-face for i > 0) of the grid Gs, there

is exactly one vertex in the refinement Gs. For an arbitrary query point q in d-space,

we compute this one vertex Vq that lies in the same cell of Gs as q. There is no need to

store these O(nd
) vertices; to compute Vq it suffices to store a I-dimensional tree for each

coordinate. A search in each of them gives the coordinates of vq • Then the query in the

slab tree is performed with point Vq • As q and Vq lie in the same cell in Gs, the shortest

path from Vq to the target is equal to the shortest path from q to the target, up to some

'elementary' slidings of the path (slidings that do not cross new boundaries of cells). For

each different simple step, we compute the distance from Vq to the target. From these

distances, we get the distances from q to the target, and among these, the smallest one

is selected. The corresponding path from Vq to the target is retrieved in additional O(k)
time (where k is the number of links of the path). This path can easily be transformed

by slidings to a shortest path from q to the target in O(k) time.

The d-dimensional slab trees for all simple steps, the ray shooting structures, and the

sp-tree together form the data structure that solves shortest path queries. In the following

section we discuss how to build slab trees. Anticipating this, we give the main result of

this paper.

Theorem 2 Given a set of n d-boxes in d-space, a target t and a non-negative real C

(the cost of a turn), a data structure exists for shortest path queries to the target t in the

combined metric. The structure has size O«nlog n)d-l), and the distance from any point

in d-space to the target can be found in O(logd-l n) time. A shortest path can be reported

in additional O(k) time, where k is the number of links of the path. Preprocessing takes

O(nd log n) time.

4.4 Construction of the slab tree

Next we show how the slab tree can be built efficiently. In the plane, this will take

O(n log n) time, and in higher dimensions O((n log n)d-l) time. Consequently, the pre

processing of the complete shortest path structure is dominated by the time to construct

the the sp-tree of Section 3, which is O(nd log n) time. The preprocessing of the slab

tree is done bottom-up. We first build a skeleton of the structure, and then fill in the

20

colourofp

I•.......•••...........•• topmost line of the slab,
which is coloured

Figure 8: The incorrectness of the 2-dimensional slab tree at places where a query will

not be performed. If p is the best induced point, then the colouring is as above. However,

p is not always reachable, e.g. below the brace. But a query will not be performed there,

because in that case the query interval intersects a box.

colours, starting at the leaves and at the lowest-dimensional trees. We repeatedly use the

following observation. Assume that we are constructing a d-dimensional slab tree for the

simple step (-Xd, ... , -Xl)' A grid G6 at a node S in a k-dimensional slab tree is only

queried when, to reach this tree, the first d - k links of the simple step are obstacle free.

Therefore, the colouring need not be correct at places where a query is not performed

anyway. This also holds for a I-dimensional tree. In Figure 7, for example, a query is

only performed at xl-coordinates where there is no box. See also Figure 8.

We start with the planar slab tree. First, we build the skeleton. Then the associated

lists of the nodes are computed in a bottom-up fashion. First we shoot in +xj -direction

with each induced point p, using the structure of Lemma 3, to obtain an xl-interval [p.

For all leaves, determine the induced points that lie in the corresponding elementary slabs.

At one elementary slab, we just overlay all intervals and choose the best colour. It is easy

to do this in O(n log n) time for all leaves. Observe that the colouring of the list may

not be correct, because at an xl-coordinate a colour of an induced point that cannot be

reached may appear. But in that case, no query at that xl-coordinate will be performed,

because then the query interval would intersect a box in this elementary slab.

Now consider two nodes Sleft and Sright that have the same parent S. Because we are

working bottom up, we can assume that we have the associated lists of Sleft and Sright.

From this information we have to compute the associated list of S. This colouring is a

straightforward merge of the lists of Sleft and Sright. We simply choose the best of the

two colours. Again, this colouring is correct at all Xl-values at which a query may be

performed (see Figure 8).

This building algorithm takes time linear in the total size of all associated lists. We

21

already noted that the size of an associated list of a node is linear in the number of induced

points in the corresponding slab. Hence, the algorithm takes O(n) time at every level of

the tree and O(n log n) time in total. The application of fractional cascading does not

influence the bound on the preprocessing.

The construction of the higher-dimensional slab tree is a generalization of the above

procedure, but it is somewhat more involved. Again, we begin by constructing a skeleton

of the whole tree. The construction of the leaves of 1-dimensional trees proceeds as

before: we shoot with each induced point p to obtain an Xl-interval I p , and we determine

in which 1-dimensional tree p may appear. Then we colour a I-dimensional tree; as in the

2-dimensional case, we just overlay the intervals and choose the best colour. Again, the

colouring is correct at all xl-coordinates that can be query values. For alII-dimensional

trees of a 2-dimensional tree with m induced points, this takes O(m log m) time.

Next we compute the colouring of the grid G6 at a node 8 in a k-dimensional slab tree.

We have already computed the grids Gleft(6) and Gright(6) of the left child and right child

of 8. Furthermore, we have computed all associated structures (the (k - 1)-dimensional

slab trees) at all nodes in the subtree rooted at 8. With this information, we colour each

cell of the grid G6. Consider such a cell c. Because every box that is short at a child of 8 is

also short at 8 itself, the grid G6 is a refinement of the grids of its children. Consequently,

c ~ Cleft for some cell Cleft E Gleft(6), and c ~ Cright for some cell Cright E Gright(6)'
Clearly, the best colour for cell C can be found either in the left subtree or in the right

subtree of 8. Let X be the minimal xk_l-coordinate of cell c, and define Xleft and Xright

similarly for Cleft and Cright· Then we have X ~ Xleft and X > Xright, because G6 is a

refinement of Gleft(6) and Gright(6)' For the colour of c, we need the best colollr of an

induced point p in G6 with (k - I)-coordinate less than x (because p should lie in another

row). Consequently, the colours of Cleft and of Cright are candidates for the colour of c.

Furthermore, a candidate colour may lie in the xk_rinterval [Xleft : x] of the left subtree,

and in [X right : xl of the right subtree. We find these by searching with the given intervals

in the associated (k - 1)-dimensional slab trees corresponding to the rows containing Cleft

and Cright, respectively. In fact, we either have x = Xleft or x = Xright, so we do not have

to search in both subtrees. Of the three candidates we find (the colour of Cleft, the colour

of Cright, and a colour from the associated search), we choose the best one for the colour of

c. With this procedure, it takes O{logk-2 n) time to determine this colour. By Lemma 8,

all grids together contain O(nd
-

l log n) cells, which leads to a total construction time of

O«n log n)d-l), since k ~ d.
This leads to

Lemma 11 The d-dimensional slab tree can be constructed in 0« n log n)d-l) time.

5 Conclusions and directions for further research

A shortest path problem has been studied, which introduced two new aspects. First, a

metric has been used that generalizes both the L I - and link metric. The cost of a path was

22

defined to be its Ll-length, plus some constant times the number of turns the path makes.

The second important feature is that a shortest path problem is studied in arbitrary (fixed)

dimension. As far as we know, there are no other results on shortest paths in dimensions

greater than three, and for link distance there are no results in dimensions greater than

two.

This paper also shows that the general rectilinear shortest path problem can be solved

in polynomial time in arbitrary dimension (in fact, in O(ndlogn) time), whereas the

general Euclidean problem is already NP-hard in 3-dimensional space[2].

Many areas for future research lie open. First of all, it may be possible to improve our

results. Furthermore, it is interesting to find other restricted cases of higher dimensional

shortest path problems that are solvable in polynomial time. Finally, we think that the

generalization of our metric to non-rectilinear paths is worth studying.

References

[1] Canny, J. F., The Complexity of Robot Motion Planning. ACM Doctoral Dissertation

Award, MIT Press, 1987.

[2] Canny, J., and J. Reif, New Lower Bound Techniques for Robot Motion Planning Problems.

Proc. 29th IEEE Symp. on Foundations of Computer Science (1987), pp. 49-60.

[3] Chazelle, B., A Theorem on Polygon Cutting with Applications. Proc. 23rd IEEE Symp.

on Foundations of Computer Science (1982), pp. 339-349.

[4] Chazelle, B., Triangulating a Simple Polygon in Linear Time. Proc. 31st IEEE Symp. on

Foundations of Computer Science (1990), pp. 220-230.

[5] Chazelle, B., and L. J. Guibas, Fractional Cascading: I. A Data Structuring Technique.
Algorithmica 1 (1986), pp. 133-162.

[6] Chen, J., and Y. Han, Shortest Paths on a Polyhedron. Proc. 6th ACM Symp. on Compo

Geom. (1990), pp. 360-369.

[7] Clarkson, K., S. Kapoor, and P. Vaidya, Rectilinear Shortest Paths through Polygonal
Obstacles in O(nlog2 n) Time. Proc. 3rd ACM Symp. on Compo Geom. (1987), pp. 251-

257.

[8] de Berg, M., On Rectilinear Link Distance. To appear in: Compo Geom.: Theory and
Applications.

[9J de Berg, M., M. van Kreveld, B. J. Nilsson, and M. Overmars, Finding Shortest Paths in

the Presence of Orthogonal Obstacles using a Combined Ll and Link Metric. Proc. SWAT

1990, Lect. Notes in Compo Science 447 (1990), pp. 213-224.

[10J de Rezende, P. J., D. T. Lee, and Y. F. Wu, Rectilinear Shortest Paths with Rectangular
Barriers. Discr. & Compo Geom. 4 (1989), pp. 41-53.

23

[11] Dijkstra, E. W., A Note on Two Problems in Connection with Graphs. Numer. Math. 1

(1959), pp. 269-271.

[12] Edelsbrunner, H., L. J. <;;uibas, and J. Stolfi, Optimal Point Location in a Monotone

Subdivision. SIAM J. Comput. 15 (1986), pp. 317-340.

[13] Ke, Y., An Efficient Algorithm for Link Distance Problems. Proc. 5th ACM Symp. on

Compo Geom. (1989), pp. 69-78.

[14] Kirkpatrick, D. G., Optimal Search in Planar Subdivisions. SIAM J. Comput. 12 (1983),

pp.28-35.

[15] Larson, R. C., and V. O. Li, Finding Minimum Rectilinear Distance Paths in the Presence

of Barriers. Networks 11 (1981), pp. 285-304.

[16] Lee, D. T., Proximity and Reachability in the Plane. Ph.D. Thesis, University of lllinois,

1978.

[17] Lee, D. T., and F. P. Preparata, Euclidean Shortest Paths in the Presence of Rectilinear

Barriers. Networks 14 (1984), pp. 393-410.

[18] Lenhart, W., R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides,

and C. Yap, Computing the Link Center of a Simple Polygon. Proc. 9rd ACM Symp. on

Compo Geom. (1987), pp. 1-10.

[19] Mehlhorn, K., Data Structures and Algorithms 9: Multi-Dimensional Searching and Com

putational Geometry. Springer-Verlag, Berlin, 1984.

[20] Mitchell, J. S. B., An Optimal Algorithm for Shortest Rectilinear Paths Among Obstacles

in the Plane. Abstracts of the 1st Canad. Conf. on Compo Geom. (1989), p. 22.

[21] Mitchell, J. S. B., D. M. Mount, and C. H. Papadimitriou, The Discrete Geodesic Problem.

SIAM J. Comput. 16 (1987), pp. 647-668.

[22] Mitchell, J. S. B., G. Rote and G. Woginger, Computing the Minimum Link Path Among

a Set of Obstacles in the Plane. Proc. 6th ACM Symp. on Compo Geom. (1990), pp. 63-72.

[23] O'Rourke, J., and C. Schevon, Computing the Geodesic Diameter of a 3-Polytope. Proc.

5th ACM Symp. on Compo Geom. (1989), pp. 370-379.

[24] Reif, J., and J. A. Storer, Shortest Paths in Euclidian Space with Polyhedral Obstacles.

Techn. Rep. CS-85-121, Compo Science Dept., Brandeis University, Waltham, MA, 1985.

[25] Shamos, M. 1., Computational Geometry. Ph.D. Thesis, Yale University, New Haven, CN,

1978.

[26] Sharir, M., and A. Schorr, On Shortest Paths in Polyhedral Spaces. SIAM J. Comput. 15

(1986), pp. 193-215.

[27] Suri, S., Minimum Link Paths in Polygons and Related Problems. Ph.D. Thesis, Johns

Hopkins University, 1986.

24

