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We consider the point-to-point (approximate) shortest-path query problem, which is the following
generalization of the classical single-source (SSSP) and all-pairs shortest paths (APSP) problems:

We are first presented with a network (graph). A so-called preprocessing algorithm may compute

certain information (a data structure or index) to prepare for the next phase. After this prepro-
cessing step, applications may ask shortest-path or distance queries, which should be answered as

fast as possible.

Due to its many applications in areas such as transportation, networking, and social science, this
problem has been considered by researchers from various communities (sometimes under different

names): algorithm engineers construct fast route planning methods, database and information

systems researchers investigate materialization tradeoffs, query processing on spatial networks,
and reachability queries, and theoretical computer scientists analyze distance oracles and sparse

spanners. Related problems are considered for compact routing and distance labeling schemes in

networking and distributed computing and for metric embeddings in geometry as well.
In this survey, we review selected approaches, algorithms, and results on shortest-path queries

from these fields, with the main focus lying on the tradeoff between the index size and the query
time. We survey methods for general graphs as well as specialized methods for restricted graph

classes, in particular for those classes with arguable practical significance such as planar graphs

and complex networks.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory; F.2.2

[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Prob-

lems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: shortest path, shortest-path query, distance oracle

1. INTRODUCTION

We review research on algorithms for the point-to-point (approximate) shortest-path
query problem, restricted to discrete, static graphs with non-negative edge lengths
(also called weights or costs). The only criterion on the optimality of a path shall
be its length, which is defined as the sum over all the edges on the path of their
lengths. Edge and path lengths can be used to represent various quantities such as
travel times, ticket prices, or fuel costs.

The shortest-path problem in general has countless applications; the shortest-
path query problem in particular occurs in applications such as route planning and
navigation [Zaroliagis 2008; Goldberg et al. 2009; Delling et al. 2009a], Geographic
Information Systems (GIS) and intelligent transportation systems [Jing et al. 1996],
logistics, traffic simulations [Ziliaskopoulos et al. 1997; Barrett et al. 2002; Raney
and Nagel 2004; Baker and Gokhale 2007], computer games [Stout 1999; Bulitko
et al. 2010], server selection [Ng and Zhang 2002; Dabek et al. 2004; Costa et al.
2004; Shavitt and Tankel 2008; Eriksson et al. 2009], XML indexing [Schenkel et al.
2004; 2005], proximity search in databases [Goldman et al. 1998], reachability in
object databases [Butterworth et al. 1991], packet routing [Schwartz and Stern
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2 · Shortest-Path Queries in Static Networks

1980], metabolic networks [Rahman et al. 2005], causal regulatory networks [Chin-
delevitch et al. 2011], web search ranking [Vieira et al. 2007], and path finding in
social networks [Karinthy 1929; Milgram 1967; Kleinberg 2000; Newman 2001]. See
also [Santos 2009].

The shortest-path query problem is different from the classical single-source
(SSSP) and all-pairs shortest paths (APSP) problems in that there are two stages:
preprocessing and answering queries. We are first presented with a network (also
termed graph). A so-called preprocessing algorithm may compute certain informa-
tion (a data structure or index, in the theory community referred to as a distance
oracle [Thorup and Zwick 2005]) to prepare for the second phase. After this prepro-
cessing step, applications may ask queries, which should be answered efficiently. In
computational geometry, this and similar problems are sometimes called repetitive-
mode (as opposed to single-shot) problems [Preparata and Shamos 1985, p. 37].

A lazy solution to the shortest-path query problem is not to precompute any data
structure at all but to use an SSSP algorithm [Dijkstra 1959; Fredman and Tarjan
1987] to answer queries. Answering a query then requires time roughly linear in the
network size. An eager solution is to precompute the results for all possible queries
using an APSP algorithm [Floyd 1962; Warshall 1962; Johnson 1977]. We assume
no knowledge about the query distribution. In practice, an application designer may
potentially take advantage of different frequencies for user queries, in particular if
certain pairs are queried significantly more often than others, or if some pairs are
expected to never be queried at all. For example, in a route planning system, one
might assume that for most user queries origin and destination are within a few
hundred miles (while the maximum distance might be a few thousand miles).
Both solutions have their advantages and disadvantages: for the SSSP strategy, no
preprocessing is necessary but the query processing is rather slow; for the APSP
strategy, the query execution is extremely fast: one table lookup suffices to obtain
the shortest-path distance; but the preprocessing step is expensive and the space
consumption is prohibitively large for many real-world networks, spanning millions
or even billions of nodes.
In the shortest-path query scenario, we mediate between these two extremes, that
is, we analyze the tradeoff between space, preprocessing time, and query time. If the
query algorithm is allowed to return an approximate shortest path, the worst-case
accuracy (often called stretch) is also an important factor of the tradeoff.

Designing a shortest-path query processing method raises questions such as: How
can these data structures be computed efficiently? What amount of storage space
is necessary? How much improvement of the query time is possible? How good
is the approximation quality of the query result? What are the tradeoffs between
pre-computation time, space, query time, and approximation quality?

In this survey, we focus on the tradeoff between space and query time. In the
first part, we survey theoretical results on distance oracles for general graphs (Sec-
tion 2). In the second part, we consider two application scenarios and the corre-
sponding graph classes, namely (i) distance oracles for planar graphs, motivated by
route planning problems for road networks (Section 3), and (ii) distance oracles for
complex networks, motivated by practical problems in online social networks, web
search, computer networking, computational biology, and social science (Section 4).
Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.
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Recent related surveys include the following. Sen [2009] surveys distance oracles
for general graphs with a special focus on fast preprocessing. Zwick [2001] surveys
exact and approximate shortest-path algorithms. Gavoille [2003] surveys similar
tradeoffs for routing problems. Delling, Sanders, Schultes, and Wagner [2009a],
Goldberg [2007] (see also [Goldberg et al. 2009]), and Wagner and Willhalm [2007]
survey route-planning methods (see also Fu, Sun, and Rilett [2006] for heuristics).
Bast [2009, Section 3] surveys the “tricks of the trade” for fast routing on trans-
portation networks. The related topic of materialization tradeoffs is considered
by [Agrawal and Jagadish 1989; Shekhar et al. 1997]. This survey is largely based
on the author’s Ph.D. thesis [Sommer 2010, Chapter 3].1

1.1 Problem Specification

Thorup and Zwick [2005] coined the term distance oracle, which is a data structure
that, after preprocessing a graph G = (V,E), allows for efficient (approximate)
distance and shortest-path queries. Let ` denote the edge length function ` : E →
R+, which we assume to be non-negative, i.e., ∀e ∈ E : `(e) > 0.

Definition 1.1. An ((α, β)–approximate) distance oracle for a class of graphs G
consists of a data structure and a query algorithm.

—The preprocessing time is the worst-case time required to construct the data
structure S(G) for any G ∈ G. For randomized preprocessing algorithms, the
preprocessing time is, as usual, defined as the maximum over all G ∈ G of the
expected preprocessing time for G.

—The space complexity refers to the worst-case size of the data structure for any
G ∈ G.

After preprocessing G = (V,E), the data structure S (which depends on G) sup-
ports (approximate) distance queries for all pairs of nodes u, v ∈ V , returning a
value d̃S(u, v). The query algorithm and its result are characterized as follows.

—The query time is the worst-case time required to compute d̃S(u, v) among all
G ∈ G and u, v ∈ V .

—A distance oracle S is said to have stretch (α, β) with α > 1 and β > 0 if for all
G ∈ G and u, v ∈ V its query algorithm satisfies

dG(u, v) 6 d̃S(u, v) 6 α · dG(u, v) + β,

where dG(u, v) denotes the shortest-path distance from u to v in G. The stretch
is also called distortion.

In addition to the worst-case measures, the average or expected query time and
stretch may also be of interest. If not explicitly stated otherwise, in this survey,
stretch means the worst-case stretch. Note that additive stretch β > 0 is most
meaningful for unit-length graphs (∀e ∈ E : `(e) = 1); for more general length
functions, we usually have β = 0 and stretch means multiplicative stretch (α > 1).

1This survey has been modified from its original version. It has been formatted to fit this journal’s
page limit and edited for content. Several references had to be removed for brevity, they can be

found in [Sommer 2010].
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Let us emphasize that the query time corresponds to the time to compute the
shortest-path distance (or an estimate thereof), as opposed to an actual path. For
many efficient data structures, the time to actually report a shortest path is dom-
inated by the time required to explicitly output each edge. Obviously, this time
must at least be proportional to the number of edges on the path, making com-
parisons somewhat more difficult. For most methods, after having computed the
distance, there is an implicit representation of the path such that each edge can be
output efficiently (often in constant time). In the following, query times correspond
to the times required to compute (approximate) distances.

An (approximate) distance labeling scheme [Peleg 2000; Gavoille et al. 2004] (in-
spired by adjacency labels [Kannan et al. 1992]) can be thought of as the distributed
version of a distance oracle. The data structure is distributed among the nodes
such that each node u is assigned a label L(u). The space complexity is defined as
the maximum label length (the average label length is also of interest). At query
time, the algorithm is given only the two labels L(s),L(t) of the query nodes s, t,
respectively, using which it must compute (an estimate of) dG(s, t).

1.2 General Techniques

On a high level, many methods use some concept of landmarks, portals, hubs, bea-
cons, seeds, or transit nodes, each corresponding to a set of carefully selected points
(often a subset L ⊆ V of the node set), which represent (potentially approximate)
shortest paths. In the following, we refer to such nodes as landmarks. We distin-
guish three typical degrees of freedom:

(1) Global Landmark Selection: different methods use different selection strategies
to choose a global set of landmarks L ⊆ V . Popular strategies include (i) ran-
dom sampling, (ii) high-degree nodes, and (iii) nodes on separators. Depend-
ing on the shortest-path metric (defined by the length/weight/cost function `),
there is also a strategy to (iv) choose those nodes that lie on shortest paths
of certain lengths (particularly effective for road networks with edge lengths
corresponding to estimates of driving times).

(2) Local Landmark Selection: each node u ∈ V is connected to certain landmarks
(potentially to all), which usually means that u stores the shortest-path distance
to its landmark set L(u) ⊆ L. For some methods there is one distinguished
landmark lu ∈ L associated with each node u. Usually, lu is chosen as a nearest
landmark.

(3) Distances Among/From/To Landmarks: methods may differ in how they rep-
resent distances among landmarks (sometimes only a subset of all the L × L
distances is represented) and from nodes to landmarks (and vice versa). In
general, methods store stars (representing SSSP distances from one node to a
subset of nodes) and cliques (representing APSP distances among a subset of
nodes), which are of course unions of stars. When we say that oracle construc-
tions mediate between SSSP and APSP, it is not only a “global” analogy, but
often also corresponds to “local” decisions on where to use SSSP and where to
use APSP.

A potential fourth degree of freedom is to use multiple levels or recursion. For
example, many methods use landmarks at various scales.
Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.
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Furthermore, almost always when a partial execution of an SSSP algorithm is
involved, the designers may choose between (a) computing the shortest-path tree
at preprocessing time and storing it (as a star), or (b) computing the tree at query
time, thereby mediating between space and query time in a rather straightforward
way.

2. THEORETICAL RESULTS ON DISTANCE ORACLES FOR GENERAL GRAPHS

For distance oracles applicable to general graphs, the quantitative tradeoff between
the space requirements and the approximation quality (stretch) is known up to
constant factors. For distance oracles that take advantage of the properties of
certain classes of graphs, however, the tradeoff is less well understood: for some
classes of sparse graphs such as planar graphs, there are data structures that enable
query algorithms to efficiently compute distance estimates of much higher precision
than what the tradeoff for general graphs would predict.

In the following, we summarize the known theoretical results for general graphs,
with space complexity lower bounds in Section 2.1 and algorithmic upper bounds
in Section 2.2.

2.1 Lower Bounds on the Space of Distance Oracles

Known lower bounds on the space requirements of distance oracles are listed in
Table I. In the following we consider lower bounds for undirected graphs, which
extend to directed graphs. However, for directed graphs, even stronger lower bounds
are known: note that any distance oracle for directed graphs with arbitrary finite
stretch can also answer reachability queries, for which no worst-case efficient data
structure is known [Ajtai and Fagin 1990; Patrascu 2011]. The results for undirected
graphs can be summarized as follows.

—The lower bound of Thorup and Zwick [2005, Proposition 5.1] (see also [Matousek
1996] for a similar construction) establishes that, for general graphs, the tradeoffs
between space, stretch, and query time of existing distance oracles (Section 2.2)
are essentially best possible. More precisely, they prove that any distance oracle
with multiplicative stretch α < 2k+1 must use space Ω(n1+1/k), assuming Erdős’
Girth Conjecture [1964], which is widely believed and partially proven. The girth
of a graph is defined as the length of its shortest cycle; the conjecture says that
dense graphs with large girth exist (see [Thorup and Zwick 2005, Table II] for an
overview of results on the Girth Conjecture).

—For sparse graphs, the situation is less clear. Distance oracles with constant
stretch and query time require superlinear space [Sommer et al. 2009]. Higher
space lower bounds have been given based on the assumption that constant-time
set intersection queries require quadratic space: for multiplicative stretch α < 2,
quadratic space is required [Cohen and Porat 2010; Patrascu and Roditty 2010];
for multiplicative stretch α < 3, in particular for stretch α = 3 − 2/`, space
Ω̃(n1+1/(2−1/`)) is required [Patrascu et al. 2012].2

—For special classes of graphs such as planar, bounded-genus, minor-free, and
bounded-doubling-dimension graphs I do not know of non-trivial lower bounds.

2Asymptotic notation as in Õ(·) or Ω̃(·) hides polylogarithmic factors in the number of nodes n.
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Lower Bound Condition(s) Assumption / Proof Reference
Space Stretch Query

Ω(min{m,n1+1/k}) α<2k+1 girth conjecture [Erdős 1964] [Thorup and Zwick 2005]

n1+Ω(1/(αt)) α t cell-probe model [Yao 1981] [Sommer et al. 2009]

Ω(n2) α<2 t=O(1) set intersection, conjecture [Cohen and Porat 2010]

Ω̃(n1+1/(2−1/̀ )) α=3−2/̀ t=O(1) set intersection, conjecture [Patrascu et al. 2012]

Ω(n3/2) α=1 distributed labels [Gavoille et al. 2004]

Table I. Space lower bounds of distance oracles for graphs on n nodes and m edges, up to poly-
logarithmic factors. The table is supposed to be read and interpreted as follows: the lower bound

on the space (leftmost column) holds if the conditions on stretch and query time in the second
column are met, potentially with further assumptions on the model or conjectures (third column).

Lower Bounds on the Lengths of Distance Labels. Since distance labeling schemes
are in some sense distributed distance oracles, space lower bounds on oracles extend
to bounds on label lengths in a straightforward way. However, lower bounds on
label lengths can be higher, since the query algorithm is allowed to access only two
labels (as opposed to an entire data structure). Several such lower bounds are due
to Gavoille, Peleg, Pérennes, and Raz [2004] (see also Section 3.1.1). One of their
lower bounds says that, even for graphs with maximum degree 3, exact distance
labels require total label length Ω(n3/2) [Gavoille et al. 2004, Theorem 3.7].

Preprocessing Time. There is also a connection between boolean matrix multi-
plication and distance oracles with multiplicative stretch α < 2 or additive stretch
β = O(1). Dor, Halperin, and Zwick [2000, Theorem 5.1] provide a reduction be-
tween approximate APSP and matrix multiplication: if the preprocessing algorithm
is faster than the time required for matrix multiplication, then query time o(m/n)
would imply a faster algorithm for boolean matrix multiplication.

2.2 Distance Oracles for General Graphs

For an overview of distance oracles for general undirected graphs, see Table II. For
the stretch vs. space tradeoff, see Fig. 1.

Many distance oracles approximate distances by triangulation using a sublinear
number of of landmarks (also termed beacons), selected by random sampling. Nodes
store distances to all landmarks l ∈ L (stars from all landmarks) and query results
are computed as minl∈L d(s, l) + d(l, t). If any landmark l ∈ L lies on a shortest
path from s to t, the exact distance can be recovered. However, most schemes
do not guarantee that shortest distances are retrieved. Furthermore, instead of
minimizing over all landmarks (in time O(|L|)), in many schemes, nodes designate
a nearest landmark for triangulation. Let ls (lt) denote a landmark that is closest
to s (t). Then, the result is simply min{d(s, ls) + d(ls, t), d(s, lt) + d(lt, t)}.

The approximation obtained by triangulation can be rather inaccurate if s and t
are close to each other. Triangulation may incur a detour that is arbitrarily large
with respect to the shortest-path distance. The approximate distance oracles de-
scribed in the following differ mainly in their handling of short distances.

Odd Integral Stretch. In a seminal work, Thorup and Zwick [2005] provide both
the lower and the matching upper bound: for any integer k > 1 there is a distance
Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.
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Preprocessing Space Query Time Stretch (α, β) Reference

O(mn) O(n2) O(1) exact APSP
none O(m) O(m+n lgn) exact SSSP
Õ(mn/σ) Õ(m + n2/σ) O((σm/n)t) α = 1+1/t [Agarwal 2013], σ∈ [1, n]
Õ(mn/σ) O(m + n2/σ) O((2σm/n)t) α = 1+2/(t+1) [Agarwal and Godfrey 2013], σ∈ [1, n]
O(poly(n)) O(m1/3n4/3) O(m1/3n1/3) α = 1+2/3 [Fakcharoenphol and Saranurak 2010]
O(poly(n)) O(m1/3n4/3) O(1) α = 2 [Patrascu and Roditty 2010]
O(poly(n)) O(m +m1−θn) O(mθ) α = 2 [Agarwal et al. 2011], θ ∈ (0, 1/2]
Õ(mn1/k) O(kn1+1/k) O(1) α = 2k − 1 [Chechik 2013]

Õ(m+n1+c/
√
k) O(kn1+1/k) O(lg k) α = 2k − 1 [Wulff-Nilsen 2012; 2013], fixed c = Θ(1)

Õ(mn1/k) O(kn1+1/k) O(k) α = 2k − 1 [Thorup and Zwick 2005; Roditty et al. 2005]
Õ(n2) O(n3/2) Θ(lgn) α = 3 [Baswana and Kavitha 2010]
O(poly(n)) O(m) O(m1/2) α = 3 [Patrascu and Roditty 2010], implicit
O(poly(n)) O(m) O(m1/(k+1)) α = 4k − 1 [Agarwal et al. 2011]
O(poly(n)) O(m+m(1−θ)(1+1/k)) O(mθ) α = 4k − 1 [Agarwal et al. 2011], θ∈ (0, 1)
Õ(n2) O(kn1+1/k) O(k) α = 2k − 1 [Baswana and Kavitha 2010], k > 3
O(poly(n)) Õ(n1+1/(k±1/`)) O(k + `) α=2k−1±2/` [Patrascu et al. 2012], sparse graphs

O(mn) O(nm1−ε/6) O(m1−ε/6) (1 + ε,0) [Porat and Roditty 2013], ε > 0
O(poly(n)) O(n5/3) O(1) (2,1) [Patrascu and Roditty 2010]
O(poly(n)) Õ(n1+2/(2k−1)) O(k) (2k − 2,1) [Abraham and Gavoille 2011], k > 2
O(n2) O(kn1+1/k) O(k) (2k − 1,0) [Baswana and Sen 2006]
O(m + n23/12) O(n3/2) O(1) (3,10) [Baswana et al. 2008], similar for α > 3

Table II. Time and space complexities of distance oracles for general, undirected graphs, sorted by

stretch (more precisely, by the minimum stretch possible). For the oracles in the lower part, the
bounds apply for unit-length graphs only and the stretch often also involves an additive term β.

Approximate distance oracles are included only if the space requirement is at most o(n2).

oracle using space O(kn1+1/k) with stretch α = 2k − 1 and query time O(k). For
their oracles, the tradeoff between space complexity and stretch is essentially tight.
Note that for k = 1 this yields an exact distance oracle with Õ(mn) preprocessing
time, which essentially corresponds to APSP [Zwick 2001].

The relationship between size and stretch is almost optimal with respect to the
lower bound implied by the girth conjecture (for earlier results, see [Awerbuch et al.
1998; Cohen 1998; Matousek 1996]). The time complexities (query and preprocess-
ing) are not tight; both have been improved upon independently. Chechik [2013],
based on earlier work of Mendel and Naor [2007] (see also [Mendel and Schwob
2009]) and Wulff-Nilsen [2013], reduces the query time down to O(1). Baswana
and Kavitha [2010], Baswana and Sen [2006], and Baswana, Gaur, Sen, and Upad-
hyay [2008] improve the performance of the preprocessing algorithms to quadratic
and even subquadratic time. Wulff-Nilsen [2012] proves that the distance oracle
can be computed in time almost proportional to the space requirements, obtaining
an oracle that is optimal for sufficiently dense graphs.

For k = 2 (multiplicative stretch α = 3), the Thorup–Zwick distance oracle
works as follows: landmarks are chosen independently at random with probability
p := 1/

√
n (see [Roditty et al. 2005] for deterministic landmark selection). Storing

stars from all np landmarks (in expectation) requires space proportional to n2p.
Node pairs at short distances are handled by precomputing and storing shortest-
path trees and distances for open balls. Each node u (with nearest landmark lu)
stores distances to all nodes v within distance strictly less than d(u, lu), i.e., to all
the nodes in the open ball B(u) = {v ∈ V : d(u, v) < d(u, lu)}. The expected ball
size is 1/p, which yields expected total space requirements of n2p+n/p = O(n

√
n).

Given a pair of nodes (s, t) at query time, the algorithm checks whether s ∈ B(t)
or t ∈ B(s), in which case the exact distance has been precomputed and can be
returned. Otherwise, the error introduced by triangulation can be bounded using
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the triangle inequality: d(s, lt) + d(lt, t) 6 d(s, t) + d(t, lt) + d(lt, t) 6 3d(s, t).
For k > 2, landmarks are selected at k levels: at level i, landmarks are sampled

with probability p := n−i/k. Balls at higher levels are defined to contain only land-
marks of the level below, hence balls at each level have expected size proportional
to n1/k. The query algorithm alternates between landmarks of source and target.
For details, see [Thorup and Zwick 2005; Wulff-Nilsen 2013].

Even Integral Stretch. Pǎtraşcu and Roditty [2010] (see also [Agarwal et al. 2011])
observe that the worst-case stretch is attained when neither s ∈ B(t) nor t ∈ B(s),
but almost, meaning that the balls intersect, i.e. B(s)∩B(t) 6= ∅. They prove that,
for unit-length graphs, there is a (2, 1)–approximate distance oracle using space
O(n5/3). The tradeoff extends to weighted sparse graphs and to general k > 2 with
stretch (2k − 2, 1) and space Õ(n1+2/(2k−1)) [Abraham and Gavoille 2011].

In the following, we briefly describe the simplified construction of Abraham and
Gavoille [2011], building on [Patrascu and Roditty 2010]. Let the cluster of a node v
contain all the nodes u that have v in their balls, i.e., C(v) := {u : v ∈ B(u)}.
An algorithm that carefully resamples landmarks can find a set of landmarks of
size |L| = Õ(n2/3) such that, for all v ∈ V , both |B(v)| = Õ(n1/3) and |C(v)| =
Õ(n1/3) [Thorup and Zwick 2001]. Then, each node v stores distances to landmarks,
to all nodes in its ball u ∈ B(v), and to all nodes whose ball has a non-empty
intersection with B(v) (bounded by Õ(n2/3)).

The stretch (2, 1) bound is proven as follows. If s ∈ B(t), t ∈ B(s), or B(s) ∩
B(t) 6= ∅, the exact distance has been precomputed and can be returned. Otherwise,
since B(s) ∩B(t) = ∅, and since the open ball B(u) has radius d(u, lu)− 1,

(d(s, ls)− 1) + (d(t, lt)− 1) < d(s, t)
d(s, ls) + d(t, lt) 6 d(s, t) + 1.

Without loss of generality, let us assume that the radius of B(t) is at most the
radius of B(s), which is equivalent to d(t, lt) 6 d(s, ls). Therefore,

d(t, lt) 6 (d(s, t) + 1)/2.

Then d(s, lt) + d(lt, t) 6 d(s, t) + 2d(lt, t) 6 2d(s, t) + 1.

Sparse graphs. The Pǎtraşcu–Roditty result extends to graphs with general non-
negative edge lengths and the additive term β = 1 in the stretch can be avoided:
for graphs on m edges, there is a distance oracle using space O(m1/3n4/3) with
stretch α = 2 and query time O(1) [Patrascu and Roditty 2010]. More generally,
for many stretch values between α = 2 and α = 3, there is a distance oracle using
space Õ(m1+1/(k±1/`)) with stretch α = 2k− 1± 2/` [Patrascu et al. 2012]. For an
illustration of the tradeoff, see Fig. 1.

For multiplicative stretch α < 2, oracles with subquadratic space and constant
query time are unlikely to exist (Section 2.1). However, for sparse graphs, oracles
with subquadratic space and sublinear query time have been found [Fakcharoen-
phol and Saranurak 2010; Porat and Roditty 2013; Agarwal and Godfrey 2013].
Agarwal and Godfrey [2013] provide smooth tradeoffs between query time and
stretch and also between query time and space. Further improvements have been
announced [Agarwal 2013].
Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.
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APSP
n2

n4/3

n7/5

n3/2

n5/3

S

α
654321

Fig. 1. Distance oracles (with O(1) query time) for sparse graphs (n nodes, m = Õ(n) edges):

the tradeoff between stretch [α] and space [S], depicted using a linear scale for the stretch and

a logarithmic scale for the space. Oracles with odd integral stretch (white circles) are due to
Thorup and Zwick [2005]. Oracles with even integral stretch (gray circles) are due to Pǎtraşcu

and Roditty [2010] and Abraham and Gavoille [2011]. Oracles in between (black dots) are due
to Pǎtraşcu, Roditty, and Thorup [2012]. Their results say that, for many stretch values α > 2,

there is a distance oracle using space S = O(n1+2/(α+1)).

The oracle of Thorup and Zwick [2005] achieves Õ(n) space for k = lg n with
O(lg n) multiplicative stretch and O(lg n) query time. The oracle of Chechik [2013]
improves the query time to O(1). It would be interesting to reduce the stretch to
O(1) instead. The girth-based space lower bound proves that this is impossible for
dense graphs. It is an open question whether such oracles exist for sparse graphs
(Agarwal et al. [2011] refer to such oracles as the holy grail).

Exact Distances. An exact distance oracle for general graphs (which also works
for directed graphs) with a different type of worst-case guarantee on the space and
query complexities is due to Cohen, Halperin, Kaplan, and Zwick [2003]. Their
2–hop cover is a distance labeling scheme, which works as follows. Each node u
precomputes and stores distances to a set of landmarks L(u) such that, for any
pair of nodes s, t, at least one node on a shortest s− t path is in L(s) ∩ L(t) (each
shortest path is covered by a landmark). The query algorithm simply returns the
best distance using a landmark l ∈ L(s) ∩ L(t). There is no absolute guarantee on
the size of L(·), however, their polynomial-time preprocessing algorithm returns an
O(lg n)–approximation for the cover with minimum total size (cf. SetCover for
the set of all shortest paths). Babenko, Goldberg, Gupta, and Nagarajan [2013]
provide an O(lg n)–approximation algorithm for the cover minimizing the maximum
label size (and more general objective functions), thereby minimizing the worst-case
query time (up to a log factor). 2–hop covers have been implemented, engineered,
and evaluated for road networks (see Section 3.2.2) and also for more complex
networks (see Section 4).
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3. THEORY AND PRACTICE OF ROUTE PLANNING FOR ROAD NETWORKS

Efficiently finding “good” routes in transportation networks is arguably the main
application scenario for shortest-path query methods. Due to its immediate prac-
tical implications, this scenario stimulated a large body of research.

As mentioned in the introduction, we assume that all relevant information is
incorporated into the network and the length function. In the following, we shall
not attempt to cover various modeling aspects, despite their practical importance.
Let us just briefly mention that some methods discussed in this section (e.g. [Holzer
et al. 2008; Delling et al. 2009; Delling et al. 2013a]) can in addition to mere expected
travel times also effectively incorporate selected aspects of real-world road networks
such as times spent at intersections and turn restrictions, route complexities (as,
e.g. the number of turns), various uncertainties, fuel costs, and dynamic traffic
information or time dependencies derived from historical traffic data. Most methods
in this section, however, may require substantial modifications to fully incorporate
such cost models.

We first give a brief historical overview and then we survey exact and approximate
methods for planar graphs and methods for road networks, further subdividing into
hierarchical and graph-labeling approaches.

Researchers started investigating point-to-point shortest path problems imme-
diately after the introduction of the general shortest-path problem [Minty 1957;
Dantzig 1960; Klee 1964; Smolleck 1975]. Experimental evaluation [Hitchner 1968;
Bourgoin and Heurgon 1969; Dreyfus 1969; Gilsinn and Witzgall 1973; Pape 1974;
Golden 1976; Cherkassky et al. 1996; Zhan and Noon 1998; Demetrescu et al. 2008]
has always been a central part of research on shortest-path algorithms. Starting
from classical single-source shortest-path algorithms it has been noted that, if an
application requires only point-to-point distances, many SSSP algorithms can be
stopped early. Furthermore, SSSP algorithms may run faster when executed from
the source and the target simultaneously — this technique is also called bidirectional
search [Dantzig 1963; Nicholson 1966; Boothroyd 1967; Chartres 1967; Murchland
1967; Pohl 1971]. Bidirectional search can be a very powerful technique for networks
other than transportation networks as well.

Researchers further found that the representation of a graph in memory greatly
affects the performance of the algorithm. For sparse graphs, representing the graph
by an adjacency list is quite efficient, sorting each list by starting nodes (this rep-
resentation is sometimes termed forward star form [Mehlhorn and Sanders 2008]).
It may be efficient to also sort the edges of a node by their length [Dial et al. 1979].
Such a sorting step can be seen as preprocessing the graph in order to speed up the
query algorithm (albeit without decreasing the worst-case query time).

Reordering nodes and edges was just the beginning. Researchers tried to further
speed up the shortest-path algorithms of Dijkstra [1959], D’Esopo [Pollack and
Wiebenson 1960; Pape 1974], and Moore [1959]. Network decomposition [Kitamura
and Yamazaki 1965; Mills 1966; Land and Stairs 1967; Farbey et al. 1967; Hu 1968;
Hu and Torres 1969] was used to speed up APSP algorithms on sparse networks
(see Fig. 2). Other than the articles on the network decomposition technique, to the
best of my knowledge, the thesis of Smolleck [1975] (see also [Smolleck and Chen
1981]) and an article of van Vliet [1978] appear to be among the first reports on the
Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.
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shortest-path query problem with considerable preprocessing. Somewhat related, a
method of Gallo [1980] effectively uses a prior shortest-path computation to speed
up subsequent shortest-path computations (cf. [Klein 2005]). If, however, the next
computation is “far” from the previous one, speedups may be minimal.

Fig. 2. Illustrations of early preprocessing techniques, extracted from the corresponding papers:

Left: The network decomposition technique as originally depicted by Hu and Torres [1969]. First,

the network is decomposed into overlapping subnetworks. Next, with each subnetwork treated
separately, conditional shortest paths are obtained using triple operations. Finally, these condi-

tional shortest paths are used to obtain the shortest paths between paired nodes in the original
network by matrix mini-summation.

Right: The spider web transformations of van Vliet [1978], illustrated by contractions for nodes

of degrees 2, 3, and 4. Van Vliet’s methods contract nodes such that groups of two or more links
from the original network are combined into single links representing minimum distance paths

between their end nodes.

Smolleck models the network by an electric circuit, wherein each edge is mapped
to an impedance to efficiently answer approximate shortest-path queries. According
to [Deo and Pang 1984], Smolleck achieves a speedup of 30 compared to Dijkstra’s
algorithm (on a graph with 2,047 nodes and 2,547 edges); the paths are on aver-
age 1.9% longer than the optimal path; the preprocessing time is reported to be
1,000 times slower than the query time. Van Vliet introduced3 heuristics termed
spider web techniques [van Vliet 1978, Section 6], which contract nodes and in-
troduce shortcut edges (Fig. 2). Van Vliet in some sense combined APSP and
SSSP techniques into a query method, illustrating the tradeoff that shortest-path

3Van Vliet attributes the idea to Hu [1969], who termed it distance-equivalent networks. There
may be a connection to the minimum-route transformations of Akers [1960] and William S. Jewell

(no reference). These network changes are based on Wye-Delta–transformations of electrical
networks. However, the transformations appear to be restricted to planar networks and to two
or three terminals. Hu and Torres [1969, p. 390] attribute smaller flow-equivalent networks to

Akers [1960]. Van Vliet also relates it to triple operations [Floyd 1962; Murchland 1965; Hu 1968].
Such a triple operation compares an edge length with the lengths of paths with two edges using

an intermediate pivot node. The method is mainly used in APSP algorithms.
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query methods address. According to the article, van Vliet’s contraction techniques
decrease the CPU time for multiple queries by approximately 25%.

For road networks, if in addition to the graph the geographical coordinates of the
nodes are known, A* heuristics [Gelernter 1963; Samuel 1963; Doran 1967; Hart
et al. 1968] based on the Euclidean distance have been used to guide the search
towards the target [Sedgewick and Vitter 1986]. These heuristics are quite well
known, rather easy to implement, and widely used. More recent techniques (see
Section 3.2), however, yield substantially improved speedups.

3.1 Theoretical Results on Distance Oracles for Planar Graphs and Generalizations

Due to the importance of planar graphs as a more-or-less accurate model for road
networks, shortest-path queries for planar graphs have been studied extensively.
Real-world road networks may not actually be planar graphs but they seem to
share some properties with planar graphs such as small separators and some sense
of orientation [Eppstein and Goodrich 2008]. One might also argue that, among
the graph classes theoreticians know how to design efficient algorithms for, pla-
nar graphs and their extensions are the closest to road networks. Other related
graph classes with known approximate distance oracles are geometric graphs [Gud-
mundsson et al. 2008; Sankaranarayanan and Samet 2009; Sankaranarayanan et al.
2009], and graphs with bounded doubling dimension [Har-Peled and Mendel 2006;
Abraham et al. 2008a; Bartal et al. 2011; Kawarabayashi et al. 2011].

3.1.1 Exact Shortest Paths. The contents of this section were partially extracted
from [Mozes and Sommer 2012, Section 1.1]. In the following, as above, Õ(·)–
notation accounts for logarithmic factors. We give a brief overview of results; a
summary can be found in Table III, illustrated in Fig. 3.

Djidjev [1996], improving upon Feuerstein and Marchetti-Spaccamela [1991],
proves that, for any S ∈ [n, n2], there is an exact distance oracle using space
O(S) with query time O(n2/S). Concurrent results for smaller ranges can be found
in [Arikati et al. 1996; Buchholz and Riedhofer 1997; Riedhofer 1997]. These con-
structions use only recursive O(

√
n)–separators [Ungar 1951; Lipton and Tarjan

1979; Djidjev 1985; Gilbert et al. 1984; Alon et al. 1990], and consequently, oracles
with these space–query time tradeoffs also exist for bounded-genus and minor-free
graphs. Experimental results indicate that real-world road networks appear to have
recursive separators of size proportional to roughly 3

√
n [Delling et al. 2011], except

that road networks contain some grids of considerable sizes as subgraphs (with
separators of size Ω(k) for a k × k–grid).

Djidjev’s method also follows the overall approach described in Section 1.2: the
set of landmarks is chosen as the set of boundary nodes of an r–division [Fred-
erickson 1987; Klein et al. 2013]. An r–division is essentially a partition of the
edges into O(n/r) regions of size r such that each region R has at most O(

√
r)

boundary nodes ∂R (a node is called a boundary node if it is adjacent to edges in
different regions). Next, pairwise distances among all landmarks are computed and
stored. The space requirements for this distance table are S = O((n/

√
r)2). The

query algorithm, given a pair of nodes (s, t), first searches (using SSSP [Henzinger
et al. 1997]) both regions Rs, Rt. If s and t are in the same region R, and if the
shortest path is entirely contained in R, the shortest-path distance has been found
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in time O(r) (short-range query). Otherwise, exact distances to all corresponding
landmarks (boundary nodes in ∂Rs, ∂Rt, respectively) have been computed, and
the distance is the minimum among all pairs of landmarks (ls, lt) ∈ ∂Rs × ∂Rt of
d(s, ls) +d(ls, lt) +d(lt, t). Since the number of boundary node pairs is bounded by
O((
√
r)2), the query time for long-range queries is also O(r).

For a smaller range, also exploiting non-crossing properties of planar graphs,
Djidjev proves that, for any S ∈ [n4/3, n3/2], there is an exact distance oracle with
space O(S), and query time Õ(n/

√
S). For further improvements and extensions,

see [Chen and Xu 2000; Cabello 2012; Nussbaum 2011; Mozes and Sommer 2012].
Djidjev observes that, if the boundary nodes ∂R of each region R form a simple
cycle,4 then not all pairs (ls, lt) ∈ ∂Rs × ∂Rt need to be considered for long-range
queries: the intersection pattern among shortest paths between nodes on two dis-
joint cycles of a planar graph is limited such that, instead of exploring O((

√
r)2)

pairs, the intermediate minimization step for long-range distances can be computed
in time O(

√
r lg r) (the intersection pattern is restricted only if intermediate dis-

tances are computed in G\(Rs∪Rt) and not in G). Distances from each node to its
region’s boundary nodes are then either stored, computed at query time using an
SSSP algorithm, or retrieved using multiple MSSP data structures [Klein 2005] (see
also Section 3.1.3). Short-range distances can be computed faster by recursively
computing distance oracles for each region.

Preprocessing Space Query Time Restriction (if any) Reference(s)

none O(n) O(n) [Henzinger et al. 1997]
o(n2) o(n2) O(1) [Wulff-Nilsen 2010]

O(n3/2) O(n3/2) O(
√
n) [Arikati et al. 1996; Djidjev 1996]

O(S) O(S) O(n2/S) S ∈ [n3/2, n2] [Djidjev 1996, Thm. 3]

O(n
√
S) O(S) O(n2/S) S ∈ [n, n3/2] [Djidjev 1996, Thm. 4]

O(n lg2 n) O(nlgn) O(
√
n lg2 n) [Fakcharoenphol and Rao 2006; Klein et al. 2010]

O(n lgn) O(n) O(n1/2+ε) [Nussbaum 2011; Mozes and Sommer 2012]
O(n lg lgn) O(n) O(n/poly(lgn)) [Italiano et al. 2011]

O(n
√
S) O(S) O((n/

√
S) lgn) S ∈ [n4/3, n3/2] [Djidjev 1996, Thm. 5]

O(n3/S) O(S) O((S/n) lgn) S ∈ [n4/3, n3/2] [Chen and Xu 2000]

O(n
√
S) O(S) O((n/

√
S) lg(n/

√
S)) S ∈ [n3/2, n2] [Chen and Xu 2000]

O(S lgn) O(S) O((n/
√
S) lg(n/

√
S)) S ∈ [n4/3, n2] [Nussbaum 2011, Thm. 4.1]

O(S) O(S) O((n/
√
S) lg1.5n) S ∈ [n4/3 lg1/3 n, n2] [Cabello 2012, Thm. 12]

O(S
p
S/n lg2 n) O(S) O(n/

√
S) S ∈ [n4/3, n2] [Nussbaum 2011, Thm. 5.2]

O(S lg2n) O(S) O((n/
√
S) lg2.5n) S ∈ [n lg lgn, n2] [Mozes and Sommer 2012]

Table III. Time and space complexities of exact distance oracles for directed planar
graphs. The tradeoff between space and query time is illustrated in Fig. 3.
For the large-space result of Chen and Xu [2000], an additive inverse-Ackermann
term in the query time is suppressed in this table.

Fakcharoenphol and Rao [2006] further exploit the non-crossing property (which
they call the Monge property [Monge 1781; Hoffman 1963]). They call the complete
bipartite graph among ∂Rs×∂Rt in G\ (Rs∪Rt) a Dense Distance Graph (DDG).
Their query algorithm can efficiently handle multiple DDGs simultaneously in time

4More generally, O(1) cycles can be handled; this simplified overview assumes a single boundary

cycle per region.
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Fig. 3. Distance oracles for planar graphs: The figure illustrates the tradeoff between the Space [S]
and the Query time [Q] for different data structures on a doubly logarithmic scale, ignoring

constant and logarithmic factors.

The upper line represents the Q = n2/S tradeoff (completely covered by [Djidjev 1996]; the range
S ∈ [n3/2, n2] is covered by [Arikati et al. 1996], for S = n3/2 see also [Buchholz and Riedhofer

1997; Riedhofer 1997]; SSSP (S = Q = n) and APSP (S = n2) also lie on this line). Planarity is
not necessary; only recursive separators of size O(

√
n) are assumed to achieve this tradeoff.

The lower line represents the Q = n/
√
S tradeoff; the range S ∈ [n4/3, n3/2] is covered by [Djidjev

1996]; extended to S ∈ [n4/3, n2] by [Chen and Xu 2000; Cabello 2012] (query time improvements
by [Nussbaum 2011]), the point S = n is covered by [Fakcharoenphol and Rao 2006] (similar

claims in [Buchholz 2000]), and the full range is covered by [Mozes and Sommer 2012].

roughly proportional only to the number of nodes in these DDGs (as opposed to the
number of edges, which for DDGs is quadratic). Their technique is used for various
distance oracles with low space and preprocessing complexities [Fakcharoenphol
and Rao 2006; Italiano et al. 2011; Nussbaum 2011; Mozes and Sommer 2012].

The only lower bounds known are for distance labels, proving that total label
length Ω(n3/2) is required for planar graphs with edge lengths [Gavoille et al. 2004,
Corollary 3.11] (the best upper bound uses total label length O(n3/2 log n) [Gavoille
et al. 2004, Corollary 2.5]). There are no lower bounds on distance oracles for planar
graphs. It is an open problem whether there exists another tradeoff curve strictly
below Q = Õ(n/

√
S).

3.1.2 Approximations. To obtain constant or polylogarithmic query times while
maintaining almost linear space, approximate distance oracles are considered. Tho-
rup [2004] presents efficient (1 + ε, 0)–approximate distance oracles for directed
planar graphs. One of the main ingredients of Thorup’s construction is a special
separator consisting of a constant number of shortest paths (instead of a general
set of O(

√
n) nodes as in the Lipton-Tarjan separator theorem [1979]). Each node

computes and stores shortest-path distances to a set of O(1/ε) landmarks per level,
recursively for O(lg n) levels (see also [Klein and Subramanian 1998; Klein 2002]
for related constructions). For directed graphs, the construction is actually more
involved and the bounds show a moderate dependency on the largest edge length.
Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.



Shortest-Path Queries in Static Networks · 15

Distances among subsets of landmarks (those on the same shortest path Q) can be
represented in a very compact way by just storing the position on Q. Improved
tradeoffs have been announced [Kawarabayashi et al. 2013].
Thorup’s oracle for undirected graphs has been implemented and evaluated for
road networks [Muller and Zachariasen 2007]. The results however indicate that,
for these road networks, it is not competitive with the specialized methods discussed
in Section 3.2.

Kawarabayashi, Klein, and Sommer [2011] extend Thorup’s results to undirected
graphs embedded in a surface of Euler genus g. Abraham and Gavoille [2006]
extend Thorup’s result to minor-free graphs. They prove that minor-free graphs
can be recursively separated using a (large) constant number of shortest paths.
Based on these shortest-path separators, they then construct approximate distance
oracles as in [Thorup 2004]. Kawarabayashi et al. [2011] provide tunable tradeoffs
for the aforementioned approximate distance oracles for planar, bounded-genus,
and minor-free graphs such that the space requirements can be made linear in the
graph size while maintaining polylogarithmic query time (with techniques similar
to those used for exact tradeoffs illustrated in Fig. 3).

3.1.3 Restricted queries.

Bounded-length queries. Kowalik and Kurowski [2006] prove that, for unit-length
planar graphs, there is a distance oracle with linear preprocessing time and space
requirements that answers queries for distances bounded by a constant h in constant
time (which is an improvement over the O(lg n) query time in Eppstein [1999,
Theorem 12]). Dvorak, Král, and Thomas [2010] extend their result to essentially
all sparse graphs (sparse as defined in [Nesetril and de Mendez 2006]).

One-face queries. Klein [2005] gives a distance oracle that preprocesses a graph
with a specified face f in time and space O(n lg n) to answer distance queries
between any node incident to f and any other node (incident to an arbitrary face)
in time O(lg n). This data structure is also referred to as a Multiple Source Shortest
Paths (MSSP) data structure and it is used as an ingredient in other distance
oracles. Schmidt [1998] provides a similar data structure for grid graphs. Cabello
and Chambers [2012] give a different and simpler algorithm, which also extends
Klein’s result to graphs with genus g.

3.2 Route Planning for Road Networks

Route planning for transportation networks (road networks in particular) has been
studied intensively for many years. Recently, the 9th DIMACS Implementation
Challenge, which took place in 2006, stimulated a lot of research with impressive
results [Demetrescu et al. 2008]. In the following, we give a brief overview. The
tradeoffs between space and query time are summarized in Fig. 4. For more details
on recent results we refer to the survey on route planning [Delling et al. 2009a],
the survey on A*–based point-to-point shortest-path queries [Goldberg 2007] (see
also [Goldberg et al. 2009]), the overview on engineering large network applica-
tions [Zaroliagis 2008], and the Ph.D. theses of Schultes [2008] and Delling [2009].
Route planning is also strongly related to efficient path query processing on spatial
networks [Papadias et al. 2003; Gupta et al. 2004; Demir et al. 2008; Samet et al.
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Fig. 4. Route planning for road networks: the tradeoff between space [S] and query time [Q] for

recent shortest-path query data structures, depicted using doubly-logarithmic scales. The per-

formance numbers represented by this figure were extracted from [Delling et al. 2009a, Table 1],
[Bauer et al. 2010b, Table 8], [Abraham et al. 2011b, Table 1], [Arz et al. 2013, arXiv Table 5],

and [Delling et al. 2013b, Table 2]. Performance numbers were obtained on different machines

and scaled with best effort to make methods comparable. Colors and dashed lines do not carry
any meaning; lines serve the purpose of visually connecting dots corresponding to different imple-

mentations or different variants of the same method.

Methods using Contraction Hierarchies (CH) [Geisberger et al. 2008; Sanders et al. 2008; Geis-
berger et al. 2012] dominate the low-space regime; methods based on Reach [Gutman 2004; Gold-

berg et al. 2009] and Highway Hierarchies (HH) [Sanders and Schultes 2005; 2006; Delling et al.
2009b] can be seen as the “first generation” of CH; Transit-Node Routing (TNR) [Bast et al.

2007a; Bauer et al. 2010b; Arz et al. 2013] and Hub Labels (HL) [Abraham et al. 2011b; Delling

et al. 2013b] dominate the fast-query-time regime.

2008; Sankaranarayanan et al. 2009; Sankaranarayanan and Samet 2009]. Let us
re-emphasize that the focus of this survey is on static networks. There are numer-
ous methods that work with more dynamic transportation networks (for various
definitions and interpretations of dynamic) but these methods are not considered
in this survey.

From a technical perspective, two types of route planning methods can be dis-
tinguished: (i) methods that obtain improvements mainly by exploiting structural
properties of the input graph (somewhat related to the exact methods for planar
graphs, as described in Section 3.1.1), and (ii) methods that also exploit properties
of the shortest-path metric (induced by the underlying edge lengths), which appears
to be of hierarchical nature in road networks. Methods of that second type tend to
yield significantly improved tradeoffs, at the cost of, potentially, being somewhat
less “robust” (meaning that changes to the edge length function such as dynamic
updates or incorporating realistic turn costs may have unexpected consequences to
the methods’ performances).

Efficient practical methods to answer shortest-path queries are often devised
by following a feedback loop that consists of four steps: design, analysis, imple-
mentation, and experimentation. This approach is also called algorithm engineer-
ing [Sanders 2009, Fig. 1]. Since experimentation is an integral part of the feedback
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loop, the choice of the datasets may highly influence the outcome of the algorithm
engineering process. Whenever possible, experiments are run with input graphs
that are actually used in practice. Route planning methods discovered by an algo-
rithm engineering process include, for example, Highway Hierarchies (HH) [Sanders
and Schultes 2005; 2006] and its exceedingly popular successor called Contraction
Hierarchies (CH) [Geisberger et al. 2008]. Both methods depend on structural prop-
erties of the input graph and rather heavily on the edge lengths and the shortest-
path metric they impose. If the length function is chosen such that edge lengths
correspond to Euclidean distances, the methods still work well but their perfor-
mance is worse than the performance when edge lengths correspond to (estimated)
travel times. It is for the so-called travel time metric, where these hierarchical
methods excel, and where the performances obtained are truly impressive (see also
other methods, as illustrated in Fig. 4). However, estimating travel times for road
segments is a highly non-trivial task in itself and it is not entirely clear to what
extent the estimates used in research datasets are accurate representations for ac-
tual travel times observed in the real world. To the best of my knowledge, there
are only few studies on the robustness of these methods, investigating whether the
performances would drop significantly upon changes to the length function, see
e.g. [Delling et al. 2013a]. Recent theoretical research (Section 3.2.4) strives to
explain the success of these speedup techniques, analyzing the running times of
preprocessing and query algorithms by appropriately modeling graph and metric
properties of road networks.

In our overview of recent methods, two preprocessing strategies (mostly orthog-
onal to the above types) are distinguished. Approaches based on graph annotation
attach additional information to each node or edge, based on which, at query time,
the search tree can be prioritized or pruned. These approaches are inherently based
on an SSSP algorithm such as Dijkstra’s algorithm. They are quite general in na-
ture, and some also work very well on graphs other than those stemming from
road networks. Hierarchical approaches are often somewhat more tailored towards
their use in road networks. These algorithms usually compute an additional graph
structure to speed up shortest-path queries.

3.2.1 Graph Annotation Approaches. An annotation approach is to attach ad-
ditional information to nodes or edges of the graph. Based on this information, the
query algorithm decides how to prioritize nodes in the queue, or which part of the
graph not to search, i.e., how to prune the search space. A subset of these methods
is sometimes also called goal-directed search algorithms.

A* [Gelernter 1963; Samuel 1963; Kung et al. 1986; Hart et al. 1968; Doran
1967] is a popular search technique in Artificial Intelligence. The idea is to direct
the search towards the goal. In the priority queue implementation of Dijkstra’s
algorithm, at each iteration, the node with the shortest distance to the source is
extracted from the queue. In the A* algorithm, instead of ordering nodes by their
distance from the source, nodes in the queue are ordered by their distance from
the source plus a potential, which estimates the remaining distance to the target.
By adding a potential to the priority of each node, the order in which nodes are
removed from the priority queue is altered. A good potential function increases the
priority of nodes that lie on a shortest path to the target (usually by decreasing
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the priority of other nodes). In road networks, for example, if the coordinates of
the target are known, the Euclidean distance provides a reasonable potential func-
tion [Sedgewick and Vitter 1986]. This has been exploited and applied successfully.
In general, however, the coordinates may not be known. Metric embeddings or
drawings [Wagner and Willhalm 2005] may provide coordinates.

Goldberg and Harrelson [2005] (see also [Goldberg and Werneck 2005; Goldberg
et al. 2006; 2007]) propose to use a set of landmarks L ⊆ V and the triangle
inequality to compute node potentials (their method is sometimes called ALT, short
for A*, Landmarks, and Triangulation). Analogous to the distance oracle of Thorup
and Zwick [2005], all nodes v ∈ V know the distance to all landmarks l ∈ L. This
auxiliary information fits perfectly into the framework of Section 1.2. For two nodes
u, v ∈ V and a landmark l ∈ L, the triangle inequality yields that d(u, v) > d(u, l)−
d(v, l). Taking the maximum difference over all l ∈ L yields the best estimate, which
is used as a potential in the A* search. The quality of the lower bound highly
depends on the landmark selection. Since in the preprocessing phase the distances
to all landmarks need to be computed and stored, the preprocessing time and the
space consumption also depend on the number of landmarks. A central question
is how to select few but good landmarks. Random selection is a straightforward
approach but it may not necessarily provide good coverage, meaning that some
nodes are far from all landmarks. Several heuristics have been proposed to improve
coverage [Goldberg and Harrelson 2005; Goldberg and Werneck 2005], or to choose
“important” nodes [Potamias et al. 2009]. Theoretical results on beacon-based
triangulations [Kleinberg et al. 2009] characterize, to some extent, the strengths
and weaknesses of ALT: for graphs with bounded doubling dimension, triangulation
using a constant number of landmarks, yields (1 + ε, 0)–approximate distances for
a (1 − σ)–fraction of the nodes; it is also shown that this slack σ is necessary.
While A* with landmarks works for general graphs, it can be expected to perform
particularly well on graphs with low doubling dimension.

A* is easy to implement and it yields decent speedups. Bidirectional A*, however,
is not entirely straightforward: either the termination criterion is changed [Pohl
1971; Kwa 1989], or the potential functions for the forward and the backward
search need to be consistent; averaging the forward and backward potential yields
a consistent potential function [Ikeda et al. 1994].

Precomputed Cluster Distances (PCD) [Maue et al. 2009] is a somewhat similar
approach. The network is partitioned into clusters and distances between any pair
of clusters are precomputed. These cluster distances yield upper and lower bounds
for distances, based on which the search space can be prioritized or pruned.

Arc Flags (AF) [Lauther 2004; Köhler et al. 2005; Möhring et al. 2006]. The pre-
processing algorithm partitions the graph into clusters and then, for each cluster C,
marks all edges where shortest paths towards nodes in C start. The query algo-
rithm prunes edges that are not marked with the target cluster. A related approach
uses geometric containers [Wagner and Willhalm 2003; Wagner et al. 2005]. On its
own, AF preprocessing is rather expensive (there is a fast parallel preprocessing al-
gorithm [Delling et al. 2013]). However, when applied within a hierarchy [Möhring
et al. 2006] or when combined with other techniques, it can be very efficient [Bauer
and Delling 2009; Bauer et al. 2010b].
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Reach-Based Routing [Gutman 2004] is technically an annotation approach, how-
ever, it should, at least in spirit, also be considered a hierarchical approach. Reach
is one of the first methods specifically capturing the hierarchical nature of road
networks and exploiting it with provable correctness guarantees. Prior industrial
methods classified roads according to heuristic hierarchies (often using road cat-
egories), thereby sacrificing correctness. In reach-based routing, each node is as-
signed a so-called reach value, which determines whether a particular node should
be considered during Dijkstra’s algorithm. To have a high reach value, a node must
lie on a shortest path that extends a long distance in both directions from the node.
A node is excluded from consideration if its reach value is small, that is, if it does
not contribute to any path long enough to be of use for the current query. When
combined with shortcuts [Goldberg et al. 2009], Reach is rather similar to many
hierarchical approaches.

3.2.2 Hierarchical Approaches. Hierarchical methods to compute shortest paths
in graphs have been proposed by many researchers. Many methods effectively
exploit the inherent hierarchical nature of road networks. However, in this section,
hierarchical does not exclusively refer to this hierarchy of roads. Many methods
construct an auxiliary graph with multiple levels: a hierarchy of graphs. A shortest-
path query is then answered by searching only a small part of the auxiliary graph,
often using Dijkstra’s algorithm. In the following, we give a brief overview of
selected recent hierarchical approaches.

Multi-Level Overlay Graphs [Jung and Pramanik 1996; Jing et al. 1998; Schulz
et al. 2002; Holzer et al. 2008; Delling et al. 2009; Delling et al. 2013a] build a
hierarchy of graphs with node sets at higher levels chosen as subsets of the node
sets at lower levels (cf. a hierarchy of landmarks). Two nodes u, v at level i may be
connected by an edge with length corresponding to the distance in G if the shortest
path in level i − 1 does not use any other node of level i. Selecting the land-
mark set on higher levels is one of the most critical components of these methods;
several selection heuristics are proposed and evaluated. Highway-Node Routing
(HNR) [Schultes and Sanders 2007] effectively uses highway nodes as landmarks
(see also paragraph below). Customizable Route Planning (CRP) [Delling et al.
2013a] uses small recursive separators [Delling et al. 2011]. CRP is currently used
in Microsoft Bing Maps. See also Section 3.1.1 for similar separator-based meth-
ods for planar graphs. Previous methods based on separators were significantly
less efficient; among other reasons, the performance of CRP is very good since
the preprocessing algorithm puts substantial effort into minimizing the sizes of the
separators [Delling et al. 2011].

Highway Hierarchies (HH) [Sanders and Schultes 2005; 2006] are based on the
observation that a certain class of edges (the highway edges) tend to have greater
representation among the portion of the shortest paths that are not in the vicinity
of either the source or target (similar to high reach values [Gutman 2004]). A
recursive computation of these edges, paired with a contraction step, leads to a
hierarchy of graphs that enables an impressive speedup at query time.

Contraction Hierarchies (CH) [Geisberger et al. 2008; Geisberger et al. 2012] is
the exceedingly popular successor of HH. An integral ingredient of HH is its initial
contraction step. Nodes with low degree can be contracted, since their removal
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does not cause many additional edges (an observation related to van Vliet’s spider
web [van Vliet 1978] and Hu’s distance-equivalent networks [Hu 1969]). This ob-
servation can be generalized [Geisberger et al. 2008]: for each node, the number of
potential shortcut edges is computed. If for a node under consideration the number
of shortcuts is smaller than the number of expected shortcuts based on the node
degree, the node is contracted. A node contraction can also be interpreted as a par-
ticularly structured way of adding shortcuts. Thinking about shortest-path queries
in road networks, one almost immediately notes that many nodes have degree 2 (in
the undirected sense) and that these can be contracted. Van Vliet [1978] contracts
nodes up to degree 4; it is reported that contractions of nodes with higher degrees
did not yield any speedup but a slowdown. CH uses intelligent heuristics to contract
nodes in the “right” order. This order π defines a directed star for each node as
follows: node u with rank π(u) must be connected to a node v with π(v) > π(u) if
the shortest path from u to v does not use any node w 6= v with π(w) > π(u). The
union of all these directed stars defines the forward (or upward) CH. The backward
CH is defined analogously. Using these compact auxiliary graphs, the bidirectional
query algorithm can efficiently find shortest paths. Contraction-based techniques
perform very well in practice, the space overhead is small, and the preprocessing
step is particularly efficient.

Transit-Node Routing (TNR) [Bast et al. 2007a; Bast et al. 2007b; Arz et al.
2013] is based on the following observation: when driving somewhere sufficiently
far away, drivers usually leave their current location via one of only a few access
routes to a relatively small set of landmarks called transit nodes. These landmarks
are then interconnected by a network relevant for long-distance travel. The TNR
method precomputes all shortest paths to landmarks (stars) and all shortest paths
among landmarks (clique). The preprocessing is quite expensive but the query time
is very low, since, for any two locations far enough, it essentially requires only a few
dozen table lookups for all pairs of corresponding landmarks. A recent variant of
TNR [Arz et al. 2013] can be interpreted as a sophisticated combination of CH with
a distance table: transit nodes are chosen as the top–k nodes in contraction order,
short-range queries are computed using CH, while long-range queries correspond to
several table lookups. Depending on the needs of the application, the number of
transit nodes k can be varied, thereby determining the tradeoff between space and
query time.

Hub Labels (HL) [Abraham et al. 2011b; 2012b; Delling et al. 2013b] are used
in the method that currently offers the fastest query times. During preprocessing,
each node u computes and stores the distance to a set of carefully chosen land-
marks L(u) in its label (stars; for directed graphs, different landmarks L+(u), L−(u)
may be used for forward and backward distances). At query time, given two la-
bels corresponding to distances to landmarks L(s), L(t), respectively, the algorithm
simply computes and outputs minl∈L(s)∩L(t) d(s, l) + d(l, t). This can even be im-
plemented in SQL, which allows for more general queries involving, e.g., points of
interest [Abraham et al. 2012a]. As long as L(s), L(t) are small, the query algo-
rithm is efficient. Furthermore, if labels are stored consecutively for each node, the
query algorithm also has good locality. The main difficulty lies in choosing L(u) for
a node u: for any two nodes s, t, the intersection of their landmark sets L(s)∩L(t)
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shall contain at least one node on a shortest s − t path, i.e. the set of landmarks
must cover all shortest paths (see [Cohen et al. 2003] and Section 2.2). For road
networks, small labels can be computed efficiently using CH search spaces.
In the HL method, shortest paths are represented by two hops; in the TNR method,
three hops are used. The extremely fast query times are paid for by rather high
space requirements (compression in [Delling et al. 2013b]).

3.2.3 Combinations. Combining graph annotation and hierarchical approaches
often yields powerful methods. Several combinations have been investigated and
evaluated empirically [Holzer et al. 2005; Bauer et al. 2010b]. Particularly strong
combinations are Reach with Shortcuts [Goldberg et al. 2009], CHASE [Bauer et al.
2010b], which combines Contraction Hierarchies with Arc Flags, and SHARC [Bauer
and Delling 2009; Brunel et al. 2010], which combines Shortcuts with Arc Flags.

To sum up, the “tricks of the trade” [Bast 2009, Section 3] for fast routing
on transportation networks are bidirectional search, exploiting hierarchy, graph
contraction, goal direction, and distance tables. Let us conclude by noting that
some of the methods described in this section, despite being tailored towards
their use in road networks, can be adapted to work on other networks as well,
such as those stemming from public transportation, albeit with somewhat reduced
speedups [Berger et al. 2009; Bast 2009].

3.2.4 Analysis. The observed performance of the aforementioned methods is
outstanding, however, complexity results are mostly experimental (exactness and
correctness are proven).

There are some worst-case results for various speedup techniques. One core part
of many speedup techniques, particularly the hierarchical ones, is the insertion
of shortcuts; a shortcut is an additional edge (u, v) whose length is equal to the
distance from u to v, and that represents shortest u − v–paths in the graph. Let
the hop-length of a path be defined as the number of edges on a shortest path. The
shortcut problem [Bauer et al. 2009] consists of adding a fixed number of shortcuts
to a graph such that the sum of the hop lengths of hop-minimal shortest paths
on the graph is minimized. This optimization problem is difficult to solve both
optimally and approximately unless P = NP [Bauer et al. 2009]. If the shortest
paths are unique, a greedy algorithm can find a solution that is optimal up to a
constant factor.

Contraction Hierarchies can be seen as a structured way of adding shortcuts
by contracting nodes in a sophisticated order [Geisberger et al. 2008; Geisberger
et al. 2012; Abraham et al. 2012b]. However, computing or even approximating
the optimal ordering is NP–hard [Bauer et al. 2010a]. For graphs with small
recursive separators such as planar graphs there are bounds on CH preprocessing
and space [Milosavljevic 2012] as well as query time [Bauer et al. 2013] (some based
on a relation to nested dissection [Lipton et al. 1979]).

Abraham et al. [2010; 2011a] found that, if a graph has low highway dimen-
sion, algorithms based on Reach [Gutman 2004; Goldberg et al. 2009], Contrac-
tion Hierarchies [Geisberger et al. 2008], Hub Labels [Abraham et al. 2011b], and
SHARC [Bauer and Delling 2009] have provable efficiency guarantees. Intuitively,
a graph has small highway dimension if, for every radius r > 0, there is a sparse
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set of nodes Sr such that every shortest path of length greater than r includes a
node from Sr. A set is deemed sparse if every ball of radius O(r) contains only a
small number of elements of Sr. Computing and analyzing the highway dimension
of real road networks remains an open problem.

4. COMPLEX NETWORKS

Recently, shortest-path query algorithms and data structures have been studied for
more general graphs, motivated by potential applications for real-world networks
such as social networks or regulatory networks from biology. This section of the
survey is rather vague, since research on shortest-path queries for complex networks
seems to currently be evolving quite rapidly. Also, the absence of commonly agreed
benchmarks poses difficulties on evaluation and comparison of existing algorithms.
Similar difficulties arise for theoretical work, where there is currently a rather large
variety of random-graph models for complex networks. For most of these complex
network models, the following common properties have been identified: (i) complex
networks appear to have small diameters (proportional to roughly lg n; this property
is referred to as the small-world property), (ii) oftentimes there is a large variety of
node degrees (scale-free networks; the degree sequence obeys a power law5), and (iii)
there seem to be no small separators (linear-sized core). Most of these properties
currently cannot be exploited by common algorithmic techniques; other properties
such as the one that these networks have nodes with high degree (so-called hubs)
have been exploited successfully in (approximate) shortest-path query algorithms.

Most results on shortest-path queries in complex networks are of experimental
nature. I am aware of only few results with worst-case bounds, which are the follow-
ing compact routing schemes.6 Enachescu et al. [2008] analyze the compact routing
scheme of Thorup and Zwick [2001] for Gn,p random graphs. They prove that
stretch α = 2 can be achieved with space Õ(n7/4) by selecting Õ(n3/4) landmarks
(later dominated by the Õ(n5/3)–space oracle of Pǎtraşcu and Roditty [2010] for
general graphs). They also claim (without proof in the proceedings version) that
multiplicative stretch α can be achieved with space Õ(n1+2/(α+1)+ε). See also [Kri-
oukov et al. 2004] for results on the stretch distribution. Chen et al. [2012] provide
an approximate distance oracle with stretch α = 3 using space O(n4/3) for certain
random power-law graphs [Aiello et al. 2000; Chung and Lu 2002] (the actual space
requirements may be smaller, depending on the power-law exponent). Their oracle
is an adaptation of the Thorup-Zwick distance oracle using high-degree nodes as
landmarks. Given that shortest paths in complex networks are usually very short
(small worlds, six degrees of separation), it is however questionable whether worst-
case guarantees on the multiplicative stretch of α = 2, 3 are particularly useful.

Implementations and Adaptations. Krioukov et al. [2004] evaluate the compact
routing scheme of Thorup and Zwick [2001] for Internet-like inter-domain topologies

5Whether or not many of these degree sequences actually obey power laws is a controversial
question [Faloutsos et al. 1999; Clauset et al. 2009; Achlioptas et al. 2009; Roughan et al. 2011].
6Any compact routing scheme may serve as an approximate shortest-path oracle, retrieving each

edge of the path by simulating the decision of each router. We do not attempt to cover results on
compact routing in this review, instead referring to [Gavoille and Peleg 2003; Thorup and Zwick

2001; Abraham et al. 2008b] and the references therein.
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and random power-law graphs. The Thorup-Zwick distance oracle uses information
precomputed in two steps (see also Section 2.2). The query result is either (i) a local
exact distance or (ii) a triangulation via landmarks. Many implementations focus
on the triangulation part, providing good estimates for long-range distances by
carefully selecting landmarks [Potamias et al. 2009; Das Sarma et al. 2010; Gubichev
et al. 2010; Tretyakov et al. 2011; Cao et al. 2011; Qiao et al. 2011; Qiao et al. 2012;
Cheng et al. 2012]. Agarwal et al. [2012] focus on the local part, computing distances
using ball intersections (which they call vicinities) with landmarks sampled with
probability proportional to their degrees. For corresponding worst-case bounds, see
also [Patrascu and Roditty 2010; Agarwal et al. 2011].
For 2–hop covers [Cohen et al. 2003], there are several implementations [Schenkel
et al. 2004; 2005; Cheng et al. 2006; 2008; Cheng and Yu 2009; Abraham et al.
2012b; Akiba et al. 2013]. Extensions to 3 and more hops have been proposed [Jin
et al. 2008; Jin et al. 2009; Chang et al. 2012]. A method of Goldman et al. [1998]
can be seen as some kind of 2–hop cover, albeit their method actually came earlier.
Rattigan et al. [2006; 2007] combine a clustering-type approach with landmarks.

Core–Fringe Methods. In the stretch–(1, D) routing scheme of Brady and Cowen
[2006], the algorithm first computes a shortest-path tree from the node with the
highest degree. All nodes up to distance D/2 for some parameter D form the core
with diameter D. The remaining nodes form the fringe, which is claimed to be
almost a forest. At query time, distance estimates are computed as the minimum
among the distances in multiple trees. Wei [2010] explores the property that many
scale-free networks have reasonably small tree-width outside the core (see also [Akiba
et al. 2012] for further speedups).

Embeddings. Zhao et al. [2010] provide an embedding into Euclidean space. Das
Sarma et al. [2010] provide an implementation of Bourgain’s embedding [1985]. Em-
beddings into hyperbolic spaces [Shavitt and Tankel 2008; Cvetkovski and Crovella
2009; Papadopoulos et al. 2010; Zhao et al. 2011] and trees [Herzen et al. 2011]
appear to be rather promising.

5. SUMMARY

Shortest-path query processing in graphs has been studied extensively both by
theoreticians and practitioners. Practical investigations focus mainly on the class
of transportation networks, for which substantial speedups with respect to classi-
cal SSSP algorithms can be achieved. For transportation networks, the focus of
practical research efforts appears to be shifting towards dynamic and personalized
scenarios. For complex networks, methods have been proposed only recently; their
efficiency and optimality is still under investigation. Common benchmark networks
have not crystalized yet.

Recent theoretical research on distance oracles for general graphs has been cen-
tered around improving preprocessing and query times (due to restrictive space
lower bounds). For restricted graph classes such as sparse graphs, planar graphs,
and power-law graphs, various questions remain to be solved. Distance oracles for
directed graphs of restricted classes are mostly unknown territory.
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Monge, G. 1781. Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie
Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la

même année, 666–704.

Moore, E. F. 1959. The shortest path through a maze. In Annals of the Computation Laboratory

of Harvard University. Harvard University Press, 285–292. Announced at the International
Symposium on the Theory of Switching 1957.

Mozes, S. and Sommer, C. 2012. Exact distance oracles for planar graphs. In 23rd ACM-SIAM
Symposium on Discrete Algorithms (SODA). 209–222.

Muller, L. F. and Zachariasen, M. 2007. Fast and compact oracles for approximate distances

in planar graphs. In 15th European Symposium on Algorithms (ESA). 657–668.

Murchland, J. D. 1965. A new method for finding all elementary paths in a complete directed

graph. Tech. Rep. LBS-TNT-22, London Business School, Transport Network Theory Unit.

Murchland, J. D. 1967. The “once-through” method of finding all shortest distances in a graph
from a single origin. Tech. Rep. LBS-TNT-56, London Business School, Transport Network

Theory Unit.

Nesetril, J. and de Mendez, P. O. 2006. Linear time low tree-width partitions and algorithmic

consequences. In 38th ACM Symposium on Theory of Computing (STOC). 391–400.

Newman, M. E. J. 2001. Scientific collaboration networks. II. shortest paths, weighted networks,
and centrality. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 64.

Ng, T. S. E. and Zhang, H. 2002. Predicting internet network distance with coordinates-
based approaches. In 21st IEEE International Conference on Computer Communications
(INFOCOM).

Nicholson, T. A. J. 1966. Finding the shortest route between two points in a network. The
Computer Journal 9, 3, 275–280.

Nussbaum, Y. 2011. Improved distance queries in planar graphs. In 12th International Symposium
on Algorithms and Data Structures (WADS). 642–653.

Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y. 2003. Query processing in spatial network

databases. In 29th International Conference on Very Large Data Bases (VLDB). 802–813.

Submitted to: ACM Computing Surveys, Vol. V, No. N, September 2013.



Shortest-Path Queries in Static Networks · 33
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