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ABSTRACT For a family of optimal two-dimensional circulant networks with an analytical description, two 

new improved versions of the shortest path search algorithm with a constant complexity estimate are 

obtained. A simple, based on the geometric model of circulant graphs, proof of the formulas used for the 

shortest path search algorithm is given. Pair exchange algorithms are presented, and their estimates are given 

for networks-on-chip (NoCs) with a topology in the form of the considered graphs. New versions of the 

algorithm improve the previously proposed shortest path search algorithm for optimal generalized Petersen 

graphs with an analytical description. The new proposed algorithm is a promising solution for the use in 

NoCs which was confirmed by an experimental study while synthesizing NoC communication subsystems 

and comparing the consumed hardware resources with those when other previously developed routing 

algorithms. 

INDEX TERMS two-dimensional circulant graphs, diameter, shortest path, optimal generalized Petersen 

graphs, networks-on-chip.

I. Introduction 

Along with the wide interest in circulant networks in various 

fields of computer science and computer engineering [1–4], 

their application as network-on-chip (NoC) topologies [5] is 

becoming relevant. This is due to their best structural 

characteristics [6] and high scalability with a large number of 

nodes compared to standard NoC topologies (mesh, torus). In 

connection with the need to reduce the hardware cost of 

resources for NoCs, an important task is the development of 

effective routing algorithms in networks with circulant 

topology. This paper discusses efficient pair routing 

algorithms designed for two-dimensional circulant networks. 

Let               be integers such that                 An undirected graph   with a set of vertices   {         }  and a set of edges   {(   )                    ̅̅ ̅̅ } is called a circulant network. 

Parametric description of type (   ) defines a circulant of 

order   and dimension l with a set of generators   (          ).  The symmetry property of circulants allows us to 

restrict ourselves to considering circulant graphs with 

generators not exceeding ⌊   ⌋.  
The diameter D of a graph is equal to            (   ), 

where  (   )  is the length of the shortest path between 

vertices   and  . The average distance  ̅  is equal to  ̅  (   (   ))∑  (   )   . The diameter and average 

distance estimate maximum and average transmission delays 

in the network. As studies have shown, the best structures of 

computing systems, according to various criteria of 

functioning (reliability, connectivity, bisection bandwidth) 

with the same number of nodes and communication lines, are 

structures with the minimum diameter and average distance.  

In this paper, we consider two-dimensional circulant 

networks. Such networks are represented by undirected 

circulant graphs  (         )  with   vertices labeled with 

the integers modulo  , and each vertex   is joined by an edge 

to the vertices (    )       and (    )      . Fig. 1 

shows an example of such graph. 
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FIGURE 1. Two-dimensional circulant graph  (       )  
 

When using circulant graphs as communication networks of 

massively parallel computers or networks-on-chip, an urgent 

issue is an effective solution to the problem of organizing 

routing algorithms in them. In pair (two-terminal) routing, a 

message is to be routed from its source node to its destination 

node according to the model applied. Further in the article, we 

assume the undirected store-and-forward model. The 

organization of pair exchanges requires determination of the 

shortest paths in a graph. The known Dijkstra’s algorithm of 
finding the shortest paths in any connected graph of order N 

has both time and space quadratic complexity  (  )  which 

is the number of elements in the adjacency matrix. In [7] the 

authors proved that the shortest path problem is NP-hard if a 

description (   ) of a circulant graph of arbitrary dimension 

l is used. For fixed       different pair routing algorithms 

were obtained for circulant graphs in [5, 8–14]. There are 

several approaches to solve the two-terminal routing problem 

in circulants of dimension two. The first approach uses a 

construction of routing tables. Such algorithms take constant 

time to determine the next node on the shortest path of the 

packet, but require the extra space for the routing tables of the 

order  (  ) which is not acceptable for NoCs. The second 

approach is based on the  (    ) -time preprocessing 

calculating routing parameters and also requires the extra 

space to store the additional information. In the third 

approach, the dynamic algorithms are capable (without 

routing tables or preprocessing) to route the packet along the 

shortest path using only the name of the packet destination 

node. They are more flexible in case of traffic congestions or 

node/link faults, but the best known time complexity of 

dynamic algorithms is only  (    ) . According to 

engineering approach, in [5, 14] the search for the optimal 

routing algorithm in NoCs with two-dimensional circulant 

topology is implemented. It is based on the understanding of 

structural organization of NoCs and desire to offer simple 

one-hop routing algorithms with a view to reducing hardware 

costs and at the same time providing an acceptable distance 

between the nodes.  

In this paper, the another approach based on analytical and 

mathematical methods of graph analysis was chosen; i.e., it is 

proposed to first solve the routing problem analytically with 

the time complexity  ( ) independent of the network size 

and then adapt the solution for practical use in NoCs. 

For the convenience, Table 1 lists the notations used in this 

paper. 
TABLE Ⅰ 

DESCRIPTION OF KEY NOTATIONS AND ABBREVIATIONS USED IN THIS PAPER 

Notation  Description   number of nodes in a network   dimension of a circulant   (          ) set of circulant generators  (            ) circulant graph with   nodes and   generators   network diameter  (   ) distance between the nodes   and    ̅ average internode distance in a network   ( ) exact lower bound of the diameter in  (       )    maximal number of nodes in  (       ) of diameter d     (       ) shortest path vector from node 0 to node     (     ) generalized Petersen graph with    nodes and 

generators (       )  (       ) optimal two-dimensional circulant graph (network) 

REG number of occupied memory resources in NoC 

ALM number of occupied logical blocks in NoC 

PEA new routing algorithm (Pair exchange algorithm) 

 
II. Optimal two-dimensional circulants 

Two-dimensional circulants are intensively studied in the 

literature in connection with various practical applications [1–
3]. The exact lower bound of the diameter of two-dimensional 

circulants for any order     is   ( )   (   (    )   )    [15]. 

Bermond et al. [16], Boesch and Wang [17], Yebra et al. [18] 

showed that   ( )  can be achieved by taking      ( )       ( )   . In 1981, the author of work [15] 

proved that for every    circulant graphs can achieve 

simultaneously both minimum diameter   ( ) and minimum 

possible average distance (i.e., to be optimal). 

Theorem 1. For every      the optimal two-dimensional 

circulant of order   is 

  (        ), where    (   (    )   )    (1) 

here     is the nearest integer to  . 

In 1991, R. Beivide et al. [19] obtained the same circulant 

family (1) written in a different form. 

Theorem 2. For every      the optimal two-dimensional 

circulant of order   is 

  (        )  where   ⌈(   )   ⌉. (2) 

The two optimal families (1) and (2) are identical both in 

numerical values of generators and orders, as well as in the 

ranges to be optimal with these generators. Let us prove it. 

Lemma 1. For every order      circulant graphs  (        )  and  (        ) , described by (1) and (2), 

respectively, coincide for      . 

Proof. Let     be any given number. For family (1), the 

definition of the nearest integer implies      
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((    )    )          Hence, after simple 

transformations, we obtain            (   )     . Since   is an integer, we have        (   ) . 

Similarly, for family (2), it follows from the definition of   :     (   )      and  (   )       . 

Since the obtained ranges of variation of   take place for any 

given  , this implies      . The lemma is proved. 

Research issues of the found family of optimal circulants as 

communication networks of computer systems have been 

extensively studied. Liestman et al. [20] studied network 

features of such circulants in particular optimal graphs of 

type   (         )  and considered the possibility of 

embedding of lattices into them. Hereinafter,             is the maximum possible order of a two-dimensional 

circulant of diameter      In [21–23] the authors 

considered optimal networks (2) called Midimew networks 

(mesh-connected networks with wrap-around links) as a 

technical implementation of communication networks of 

supercomputer systems. Puente et al. [21] showed that under 

real loads for Midimew networks, there is an increase in 

network performance and a decrease in the length of average 

communication path compared to tori. In [21, 22] a practical 

solution to the problem of preventing deadlocks (path locks 

during packet transmission) was presented. Yang et al. [23] 

used several examples of such graphs as a basis in the design 

of communication networks of parallel systems. Martinez et 

al. [13, 24] applied circulant networks, in particular a family 

of type  (         ), in coding theory when constructing 

perfect group codes. The implementation of the graphs 

described by (1) or (2) was proposed as a topology in the 

design of supercomputers with mass parallelism and 

NoCs [5, 23, 25]. A number of new hierarchical network 

designs were also constructed using the Minimum Distance 

Mesh with Wrap-around links (Midimew networks) as 

elements [26, 27]; simple use of circulant (Midimew) 

topologies instead torus topology in TESH [28] topology 

notably improved network performance parameters [29]. 

The analytical solution to the problem of finding the shortest 

paths by a parametric description for optimal two-dimensional 

circulant graphs described by (1) and (2) was proposed in [30] 

and by Beivide et al. [19, 22]. In the present study, the above 

mentioned analytical solution was improved and corrected, as 

well as used to develop universal dynamic pair routing 

algorithm applied for the routing in NoCs with 

two-dimensional circulant topologies. 

III. Finding the shortest paths in two-dimensional 
circulants 

Let us consider an effective solution to the problem of finding 

the shortest paths by a parametric description for optimal 

circulant graphs having descriptions of type  (        )  
where   is determined by (1). 

Let     (         )  (   )  denote a vector of the 

shortest path from vertex   to vertex  ,       in a 

circulant graph  (         ). Here |   | sets the number of 

generators     |   |  sets the number of generators    

included in the shortest path from   to            and         determine the directions of motion in the shortest 

path along (+) or against (–) of the corresponding generator. 

We show that for these graphs, the relationship between the 

numbers of vertices   and  ,  and vector of shortest path     

from   to   can be obtained analytically. 

To do this, we need to consider the geometric model of a 

graph  (        ) [15]. This graph is constructed on a    plane as a rhomboid configuration from unit squares of an 

integer lattice, where each point of the lattice (   ) is labeled 

by a number       (   )        where       

is a vertex number of the graph. All vertex marks       are repeated on the plane an infinite number of times 

forming a dense packing of rhomboid-like configurations of 

unit squares. Fig. 2 shows how, from a rhombus with the 

number of vertices        (indicated by a solid line), all 

optimal configurations with the number of vertices          (   )     by building up (Fig. 2a) and 

contraction (Fig. 2b) of cells (vertices) on the last layer, are 

obtained. All vertices of a graph  (        )  of the 

diameter   {                                           (   )     
are located inside the rhombus      {(   )|| |  | |   },  and the layers from   to     are completely filled, and 

among the numbers of the vertices located on these layers, 

there are not the same numbers. By virtue of the indicated 

features, for vertices       of a graph  (        ) 

of diameter    we have the following: to define the vector of 

shortest paths from   to    it suffices to calculate the paths in 

the rhombus   .  

 

FIGURE 2. Geometric model of graphs  (        )  
 

As an example of the geometric representation of graphs of 

the family  (        )  Fig. 3 shows the graph  (       ) of diameter     in the coordinate system (   ). For 

simplicity of the image, the wrap-around links (edges) in the 

graph are not shown. The graph  (       )  has the 

maximum possible order among the graphs of family (1) with 
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generators          . Note that the graph  (       ) 

is also optimal. 

 

FIGURE 3. Graph  (       )  
 

Theorems 3 and 4 solve the problem of computing the vector 

of shortest paths from a zero vertex to all vertices of the 

graphs of family (1). Moreover, in the proof of Theorem 3, 

division of the vertex number of the graph by generator    is 

used which corresponds to selected horizontal regions of the 

graph in Fig. 3a; in the proof of Theorem 4, division by 

generator    is used which corresponds to the selected vertical 

regions of the graph in Fig. 3b. 

Theorem 3. Let       be a vertex number in a graph  (        ) . Then the coordinates of vector     (         ) are calculated as follows: 

when   ⌊   ⌋ (         )  {(   )            (         )          (  (   )    )             (3), 

where             ⌊   ⌋      
when   ⌊   ⌋ (        )  (              ). 

Proof. According to the property of circulants (       )  (             )  for any vertex        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Thus, 

definition of the shortest path vector     for all ⌊   ⌋      reduces to definition of the shortest path vector of the 

vertex with number (   ) (the vertex lies in the upper part 

of the rhombus to the right of the lines      for     and        for    ) and replacing the signs of received 

coordinates with the opposite ones. Now let     ⌊   ⌋. 
It is required to find              such coordinates of 

the vertex with number   that 

       (   )  (4) 

In the proof, we use the fact that for any positive integers   

and  , number   is uniquely representable in terms of the 

integer part and remainder of the division by  : 

  
  ⌊   ⌋          ⌊   ⌋                        (5) 

1) Consider the region of rhombus    representing a graph  (        ) and bounded by the following lines: {                           

In this region of rhombus, {             
Thus, if we represent number   of the vertex from this region 

written in the form (4) as    (   )   ,  then, due to the 

uniqueness of expression (5) for  ,  we obtain ⌊   ⌋                 
This implies   ⌊   ⌋                          . 

Substituting the found expressions for   and   in the record of 

lines bounding the region under consideration, we find that 

the formulas found for   and   hold when           ⌊   ⌋           . 

2) Now consider the region of the rhombus bounded by the 

lines {                  
In this region of rhombus, {                   
Thus, if we represent number   of the vertex from this region 

written in the form (4) as   (     )  (   ), 

then, due to the uniqueness of expression (5) for  ,  we obtain ⌊   ⌋                     
This implies   ⌊   ⌋          (   )              
Similarly to case 1, we find that the formulas found for   and   hold when ⌊   ⌋                     
3) For vertices with numbers                         the coordinates are (   ) (   ) (     )  
respectively. The coordinates (        )  calculated by 

formula (3) coincide with the data. These formulas hold when ⌊   ⌋             
The theorem is proved. 

Note that in graphs  (        ) for            to 

calculate the vector of shortest paths from   to any vertex, it is 

sufficient to use only the first two types of formulas from (3). 

Theorem 3 gives an analytical solution to the problem of 

determining the shortest paths vector by the number of the 

vertex of a graph  (        ) with respect to the zero 

vertex. Thus, calculation of the shortest paths in the structures 

of the considered description turns out to be simpler than the 

similar procedure for two-dimensional circulants with a 

description different from that mentioned above [8].  

Another type of formulas that can be used in calculating the 

shortest path vectors in circulant graphs  (        ) is 

determined by the following theorem. 
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Theorem 4. Let       be a vertex number in a graph  (        ) . Then the coordinates of vector      (       ) are calculated as follows: 

for   ⌊   ⌋  
 (        )  {(    )                   (         )            (6), 

where         (   )   ⌊  (   )⌋     
for   ⌊   ⌋  (        )   (              )  
Proof. By analogy with the proof of Theorem 3, the definition 

of vector     for all ⌊   ⌋      reduces to determining 

the vector of the shortest paths of the vertex with number (   ) and replacing the signs of resulting coordinates with 

the opposite ones. 

Now let        .  It is required to find             such coordinates of the vertex with number   that 

       (   ). (7) 

For the proof, we will use the fact that for any positive integers   and      , number   is uniquely representable in terms of 

the integer part and remainder of the division by      : 

 
  ⌊  (   )⌋(   )        (   ) ⌊  (   )⌋            (   )       (8) 

1) For vertices with numbers    (   )  the 

coordinates are       ⌊  (   )⌋  
2) Consider the region of the rhombus    representing a 

graph  (        ) and bounded by the following lines: {                
In this region of the rhombus, {                
Thus, if we represent number   of the vertex from this region 

written in the form (7) as   (   )(   )  (  ), then 

due to the uniqueness of expression (8) for  , we obtain ⌊  (   )⌋                    (   )    . 

This implies          (   )   ⌊  (   )⌋        (   )  
Substituting the found expressions for   and   in the record of 

lines bounding the rhombus region under consideration, we 

find that the formulas found for   and   hold when ⌊  (   )⌋             (   ). 

Thus, the kind of formulas found for case 2 also holds for case 

1 under the condition        (   )     
3) Let us now consider the region of the rhombus bounded 

by lines {                            
In this region of the rhombus, {                      

Thus, if we represent number   of the vertex from this region 

written in the form (7) as   (     )(   )  (     ), then, due to the uniqueness of expression (8) for  , we 

obtain ⌊  (   )⌋               (   )         
This implies          (   )          ⌊  (   )⌋        (   )     
Similarly to case 2, we find that the formulas found for   and   hold under the condition            (   )  ⌊  (   )⌋  
The theorem is proved. 

Note that in circulant topologies, the application of the 

shortest path vector     (       )  for development of 

routing algorithms offers a possibility to use a total number of 

different shortest paths defined by this vector. More precisely, 

a total number of all the shortest paths for     is (|   |  |   |)  (|   | |   | ). Thus, this property makes it possible 

to construct an adaptive dynamic pair exchange algorithm 

avoiding potential routing problems (traffic congestions or 

node/link faults). 

IV. Pair exchange algorithm in two-dimensional 
circulants 

Consider the path procedure that implements pair interactions 

(pair exchange) in a NoC with an optimal two-dimensional 

circulant topology described by (1). Suppose, it is required to 

transfer a packet from a source node   to a destination node  . 
Provided that the shortest path vector     (of a destination 

node   with respect to a node   executing the path procedure) 

is known in each transit node  , modification of the shortest 

path vector to determine the output direction belonging to the 

shortest path to the destination node is reduced to operation  

 
(    )          (    )                         {        }  (9) 

If there are no failures of the nodes and communication lines 

in a network, then the vector of the shortest paths between the 

nodes will be calculated in the source node by the number of 

the destination node and written to the packet header. In each 

transit node along the path to the destination, any of the 

directions belonging to the shortest path is selected, and the 

vector of the shortest paths is modified by operation (9) in 

order to reduce the absolute value of nonzero coordinates of 

the vector. The modified vector is written to the packet header 

which is passed on. The end of the path procedure is the 

equality to zero of all coordinates of vector of the shortest 

paths. 

The data for the pair exchange algorithm can be described as 

follows:     is a vector of the shortest paths of the destination 

node with number   relative to a node   executing the path 

procedure; W    is a set of numbers of output directions 

belonging to the shortest path to the destination node; the 

entry        means that a packet with the sign “pair 
exchange” has arrived at the input port with number   (that is, 
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from the source node); the entry        means that from a 

neighboring node, the packet with the sign “pair exchange” 
has arrived at the input port with number  , (     ̅̅ ̅̅̅); the 

entry “put the packet in the output port     ” means that the 

packet is put in the output port with number  .  

Depending on the chosen method of calculating the shortest 

path vector     and using formulas (3) or (6), two versions of 

the algorithm are obtained: version (1) and version (2), 

respectively. 

Algorithm 1: (Pair exchange algorithm) 

Input: parameters      for version (1), or        for 

version (2);   is the node number of the receiver;   is the 

number of the node performing the path procedure (in the 

source node    ). 

Output: modified vector of the shortest paths    . 

1: If        then            |   | and go to 5. 

2: If        then 

3:   If       then 

        go to 9, 

4:     else go to 8. 

5: If      then 

              and go to 7, 

6:   else       . 

7: If   ⌊   ⌋ then 

                and       . 

     Calculate     by the formulas (3) or (6), 

                 . 

8: Choose any number    , modify     by operation (9),   

    write      in  the packet header,  

    put the packet in the output  port     . 

9: End of the algorithm. 

We give estimates of this algorithm. NoC with the number of 

nodes   requires         ⌈    (   )   ⌉ bits to store in 

memory the values of two parameters:   and generator   for 

version (1), or generator     for version (2). Items 1 

and 5-8 of the algorithm are executed in the source node. In 

total, for version (1), regardless of the number of nodes in the 

network, 1 modulo operation, 2 division operations, 

2 multiplication operations, 19 operations (such as addition), 

and about 40 words of RAM are required. For version (2) of 

the algorithm, 5 operations (such as addition) less are 

required. In transit nodes, items 2–4, 8 are performed: 

1 operation of multiplication and 3 operations (such as 

subtraction) and 10 words of RAM are required. 

In order to determine the time complexity of the proposed pair 

exchange algorithm, we experimentally checked its 

realization with Python 3 programming language on Intel 

Core i5-8265 processor. We tested circulant networks with the 

number of nodes   from 20 to 150000 and obtained a 

constant time of execution of algorithm which proves our 

estimate. In Table 2, the overall time of execution of the 

shortest path algorithm is presented provided that the 

messages are delivered from node 0 to all the other      
nodes. 

TABLE 2 

OVERALL TIME (T) OF THE EXECUTION OF THE SHORTEST PATH ALGORITHM 

IN CIRCULANTS OF TYPE  (        ) 

Number of 

nodes N 
       (sec) 

Number of nodes 

N 
       (sec) 

15000 1.3969 90000 1.2855 

30000 1.2964 105000 1.3967 

45000 1.2881 120000 1.3968 

60000 1.3962 135000 1.2346 

75000 1.3963 150000 1.2240 

 

The presented algorithm for finding the shortest paths in 

optimal two-dimensional circulants does not use routing 

tables and adjacency matrices; it is adapted to node and link 

failures and load distribution of nodes; it has a constant 

complexity  ( )  that does not depend on the size of the 

graph, in contrast to the following algorithms: 1) Dijkstra’s 
algorithm with quadratic complexity  (  )  for any 

connected graph of order  ; 2) the algorithm from [8] with an 

estimate of  (    ) of the time for calculating the shortest 

paths for circulants of type  (        ) and    ( ) of the 

routing steps, where   is the distance between the vertices, and    is the diameter of the network; 3) the algorithm from [9] 

having the overall time complexity of one routing step  (    ); 4) the algorithm from [10] with  (    )-     

preprocessing; 5) the algorithm from [11] with an estimate of  (    ) arithmetic operations; 6) the algorithm from [12] 

having a constant estimate of the time complexity to calculate 

the shortest path for circulants of type  (        )  but 

requiring preliminary calculation of the parameters for 

calculation with time complexity  (     )  7) the 

algorithm from [13] in circulants of type  (         ) 

with an estimate of  ( ). 

The results of these algorithms comparison on time 

complexity are presented in Table 3. 
TABLE 3 

TIME COMPLEXITY OF DIFFERENT ROUTING ALGORITHMS FOR 

TWO-DIMENSIONAL CIRCULANTS 

Algorithm Graph 
Time 

complexity 

Optimal 

path 

Pair exchange alg. (PEA)  (       )  ( ) yes 

Robic [8]  (       )  (    ) yes 

Dobravec et al. [9]  (       )  (    ) yes 

Zerovnik et al. [10]  (       )  (    ) yes 

Gomez et al. [11]  (       )  (    ) yes 

Chen et al. [12]  (       )  (     ) yes 

Martinez et al. [13]  (        )  ( ) yes 

 

Comparison of algorithms for such parameters as auxiliary 

space usage and intrinsic space usage and others is not 

required in this study, due to the specific of the required area 

of application of the developed algorithm for implementation 

at the register-transfer level (RTL) of routers in NoC. 

V. Improving the shortest path search algorithm for 
generalized Petersen graphs 

Theorems 3 and 4 can be also used to improve the shortest 

path search algorithm developed for optimal generalized 

Petersen graphs [3]. Generalized Petersen graphs as regular 

graphs of degree three can increase network reliability, 
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compared to ring networks and trees used in modern 

infrastructures, and are significantly better than chordal rings 

of degree three in a number of indicators including the 

diameter and average distance, while maintaining a low 

network cost. Thus, generalized Petersen graphs of degree 

three can also be considered as a promising topology for 

implementation in NoCs. We give the necessary definitions. 

Generalized Petersen graphs  (     )  of order    are 

graphs consisting of outer (vertices    connected by 

generator 2а) and inner (vertices     connected by 

generator 2b) rings with an equal number of vertices   

connected by edges. The edges connecting vertices    and              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  will be considered 

corresponding to generator    . Graphs  (     ) with 

the smallest possible diameter for a given order are called the 

optimal ones. 

An univalent mapping of the family of optimal 

two-dimensional circulants described by (1) was found in the 

class of generalized Petersen graphs with preserving the 

optimality of the graph, and a parametric description of 

optimal generalized Petersen graphs for any graphs of order    was obtained: 

Theorem 5. For every      there exists an optimal 

generalized Petersen graph  (       ) , where   ⌈((   )  )  ⁄ ⌉   . 

This makes it possible, on the basis of the shortest paths 

search algorithm [30] for optimal circulants described by (1), 

to find an analytical solution to the shortest paths search 

problem for the class of optimal generalized Petersen graphs. 

The use of formulas (3) and (6) makes it possible to improve 

the shortest path search algorithm for generalized Petersen 

graphs in terms of required memory and speed, since the main 

part of the calculations in it is determination of the shortest 

path vector from 0 to any vertex of an appropriate circulant 

graph  (        )   
VI. Pair exchange algorithm testing 

The first version of Algorithm 1 was implemented for NoCs. 

For its operation on the FPGA, it is necessary that the router 

receives all the necessary data for calculating the route. Based 

on the proposed algorithm, the head fleet should contain two 

fields in which the number of steps along generators    and    

(the shortest path vector    ) is stored. This is correct when 

the router sends the calculated path to the next router. But 

when receiving a packet from the IP-core, the destination 

node number should be stored in the head fleet. Thus, the load 

on the package in the general case is calculated by the 

following formula: 

            ,  

where   is the number of nodes in the network. 

Since the maximum number of hops does not exceed   (the 

diameter of a graph), we can assume that values of vector of 

the shortest paths transmitted in the head fleet will not exceed   either. Thus, the load on the package can be reduced to          , provided that                   . The number 

of such circulants does not exceed 54 % of the total number of 

possible options for       with the memory gain in 1–2 

bits; and for      , such circulants do not occur at all. 

The router stores its network number, total number of routers 

in the network and the value of generator   , since    can be 

easily calculated. Additionally, the router stores the values 

calculated during the execution of algorithm. The total size of 

the stored data can be estimated using the following formula: 

                    (   )   ,  

where   is the number of nodes in the network; 

         is the required amount of memory in bits to 

store the serial number of the router in the network, total 

number of routers in the network, and values calculated by the 

algorithm; 

      (   )  is the required amount of memory in 

bits to store generator   ; 

 1 bit is the required amount of memory to store the 

flag of generator selection for transmitting the packet to the 

next node. 

Testing the operation of the proposed algorithm for the 

circulants of type  (        )  was carried out on the 

FPGA Cyclone V5CGXFC9A6U19I7 [31] by Intel FPGA. 

The routers are described in Verilog. For testing, the optimal 

circulants of type  (        )  with number of nodes 

determined by formula     , where   is the number of 

nodes in the network,   is a natural number, are chosen. 

Table 4 shows the results of the theoretical calculation of 

occupied memory in bits, as well as consumed resources REG 

and ALM obtained after the synthesis of NoC communication 

subsystem. 

The results show that the amount of required memory and 

ALM blocks occupied by one router changes in steps. This is 

due to increase in data size for the stored parameters and does 

not directly depend on the number of nodes in the network. 

The dependence can also be observed with the use of 

resources for the entire network – for those circulants, in 

which the use of registers by one router does not change, the 

increase in resource use by the entire network is less. 

There is also a discrepancy of 20–30 % in a larger direction of 

REG consumption in comparison with theoretical estimates of 

memory consumption. This discrepancy between the 

calculations can be explained by the use of additional logic to 

test the operation of the network on the FPGA whose 

modeling also takes logical and memory resources. 

VII. Comparison and analysis of routing algorithms  

We also made a comparative analysis of the hardware 

resources consumption for our algorithm and for the Table 

routing algorithm, Clockwise algorithm, Adaptive algorithm, 

and Algorithm for circulants of type  (        ) 

from [5, 14] previously realized in NoCs with 

two-dimensional circulant topology.  

It should be noted that the Clockwise algorithm does not 

guarantee the optimal path, and the Adaptive algorithm, in 

order to be optimal, requires a more complicated 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040323, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2020) 

VOLUME XX, 2020   8 
 

computational procedure when paths with more than 2 cycles 

are available. 

Besides, it is difficult to speak about comparison in terms of 

time complexity here since the algorithms from [5, 14] are 

one-hop algorithms. Unlike the Pair exchange algorithm, 

where the path is calculated at first node, and at the 

intermediate ones, there is only a modification of the vector of 

the shortest paths    , in the algorithms under consideration, 

each next hop is calculated separately at each intermediate 

node with time complexity equal to  ( ). Therefore, it can be 

argued that the complexity of all algorithms is comparable, 

but this gives little information in the context of their 

implementation in RTL. Much more information is provided 

by the dependence of occupied memory resources (REG) and 

logical blocks (ALM) on the number of nodes in the network. 

Time-depended parameters could be also measured as the 

resulting time delay of the combinational circuit which 

implements the algorithm, but it greatly depends on specific 

parameters like chip manufacturing technology, floorplaning 

procedure, etc. and cannot be a universal metric. Moreover, if 

we assume that the digital automaton implements the 

algorithm in one clock cycle, then the number of ALM can be 

considered time-dependent, and REG – space-dependent 

metric. 

The results of implementation on RTL for the proposed 

algorithm and the algorithms from [5, 14] are given in 

Tables 5 and 6.  

 

 

TABLE 4 

CALCULATION AND RTL SYNTHESIS DATA FOR THE PAIR EXCHANGE ALGORITHM 

Circulant 
Number 

of nodes 
Diameter 1 router bit 

Whole 

network bit 
1 router REG 

Whole 

network REG 
1 router ALM 

Whole network 

ALM  (      ) 9 2 27 243 27 371 104 732  (       ) 16 3 28 448 33 757 142 1825  (       ) 25 3 35 875 33 1158 143 2903  (       ) 36 4 42 1512 39 1962 175 5473  (       ) 49 5 42 2058 39 2654 175 7899  (       ) 64 6 42 2688 45 3965 216 12909  (       ) 81 6 49 3969 45 4904 218 16755  (        ) 100 7 49 4900 45 6044 218 19226 

 

TABLE 5 

DEPENDENCE OF MEMORY RESOURCES OCCUPIED BY DIFFERENT ALGORITHMS FROM [5, 14] AND PAIR EXCHANGE ALGORITHM IN REG ON NUMBER OF NODES 

IN THE NETWORK (RTL SYNTHESIS RESULTS) 

Number of 

nodes 

Table routing algorithm 

(TRA) 

Clockwise 

algorithm (CA) 

Adaptive algorithm 

(AA) 

Algorithm for circulants of 

type  (          )  

(AC) 

Pair exchange 

algorithm (PEA) 

9 274 102 81 322 371 

16 820 315 210 617 757 

25 1976 674 301 1284 1158 

36 4097 1048 546 2215 1962 

49 7442 1738 664 3186 2654 

64 12476 2419 988 4506 3965 

81 20057 3548 1356 6312 4904 

100 30429 4857 1662 8327 6044 

 

TABLE 6 

DEPENDENCE OF LOGIC RESOURCES OCCUPIED BY DIFFERENT ALGORITHMS FROM [5, 14] AND PAIR EXCHANGE ALGORITHM IN ALM ON NUMBER OF NODES IN 

THE NETWORK (RTL SYNTHESIS RESULTS) 

Number of 

nodes 

Table routing algorithm 

(TRA) 

Clockwise 

algorithm (CA) 

Adaptive algorithm 

(AA) 

Algorithm for circulants of 

type  (         )  (AC) 

Pair exchange 

algorithm (PEA) 

9 79 99 1933 1511 732 

16 187 301 4737 3192 1825 

25 536 742 11491 6257 2903 

36 1019 1354 22025 10959 5473 

49 1707 2042 30709 18318 7899 

64 2778 3230 48671 28157 12909 

81 4622 4839 65825 42333 16755 

100 6106 6324 83938 60516 19226 
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As a result of comparing the algorithms, we can conclude that 

the proposed pair exchange algorithm takes less logical 

resources than the adaptive algorithm in [5] and the algorithm 

for circulants of type  (        ) in [14]. In [5] it has 

been shown that ALMs are a more critical resource than 

RAMs which limit the number of possible routers in NoCs. At 

the same time, the pair exchange algorithm is inferior to the 

adaptive algorithm in terms of used memory resources and it 

is slightly better than the algorithm for circulants of type  (        ) . When necessary to minimize the use of 

memory registers, it is preferable to use the adaptive 

algorithm, but then the consumption of logical resources in 

comparison with the pair exchange algorithm increases by 

more than 4 times. Note that the clockwise algorithm is better 

than pair algorithm in terms of the memory used and logical 

registers, but it increases the path of a packet into several 

times and does not guarantee its successful delivery to the 

destination node. Moreover, the proposed algorithm, as 

opposed to some of the routing algorithms from [5, 14], is 

optimal, i.e. always uses the shortest paths to the packet 

destination. The analytical method proposed is an exact and 

deterministic; by using analytical formulas, it determines a set 

of the shortest paths between any two nodes of a network in 

pair routing.  

Thus, the use of the analytical method for development of a 

routing algorithm in NoCs is a sufficient effective solution. 

But the method is limited to a specialized structure of 

communication networks. In the present case, we used the 

best possible family of two-dimensional circulants of 

maximum connectivity and with minimums of diameter and 

mean distance under any number of nodes that provides the 

ability to use it as the basis to construct interconnection 

networks for NoCs. It would be promising to accept the 

analytical method of computing the shortest paths for 

development of routing algorithms in NoCs with a topology 

of other known families of three-dimensional and of higher 

dimension circulant graphs [1–3, 20, 24].  

VIII. CONCLUSIONS 

Thus, the problem of finding the shortest paths in optimal 

two-dimensional circulants was analytically solved in this 

work. The calculations proposed were mathematically proven. 

The theorems formulated and proved in the work to improve 

the shortest path search algorithm, developed for optimal 

generalized Petersen graphs, were also used. Based on the 

proposed mathematical apparatus, an effective dynamic pair 

exchange algorithm in two-dimensional circulants was 

developed. Since it always uses the shortest paths for routing, 

it is optimal. The algorithm does not use routing tables and 

adjacency matrices. Due to calculating a vector of the shortest  

paths and a possibility to use all the set of the shortest paths to 

a destination node, it is adapted to node and link failures and 

to load distribution of nodes. We experimentally showed that 

the overall time complexity  ( ) of the algorithm does not 

depend on the network size in contrast to other well-known 

algorithms like Dijkstra’s algorithm. Such properties make it a 

promising solution for the use in NoCs which was confirmed 

by an experimental study while synthesizing NoC 

communication subsystems and comparing the consumed 

hardware resources with those when other previously 

developed routing algorithms. 
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