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SUMMARY

When a hybrid electric vehicle (HEV) is certified for emissions and fuel economy, its power management
system must be charge sustaining over the drive cycle, meaning that the battery state of charge (SOC)
must be at least as high at the end of the test as it was at the beginning of the test. During the test cycle,
the power management system is free to vary the battery SOC so as to minimize a weighted combination
of fuel consumption and exhaust emissions. This paper argues that shortest path stochastic dynamic
programming (SP-SDP) offers a more natural formulation of the optimal control problem associated with
the design of the power management system because it allows deviations of battery SOC from a desired
setpoint to be penalized only at key off. This method is illustrated on a parallel hybrid electric truck model
that had previously been analyzed using infinite-horizon stochastic dynamic programming with discounted
future cost. Both formulations of the optimization problem yield a time-invariant causal state-feedback
controller that can be directly implemented on the vehicle. The advantages of the shortest path formulation
include that a single tuning parameter is needed to trade off fuel economy and emissions versus battery
SOC deviation, as compared with two parameters in the discounted, infinite-horizon case, and for the
same level of complexity as a discounted future-cost controller, the shortest-path controller demonstrates
better fuel and emission minimization while also achieving better SOC control when the vehicle is turned
off. Linear programming is used to solve both stochastic dynamic programs. Copyright q 2007 John
Wiley & Sons, Ltd.

Received 11 August 2005; Revised 24 May 2007; Accepted 26 September 2007

KEY WORDS: dynamic programming; hybrid electric vehicles; optimal control; Markov decision
processes

1. INTRODUCTION

To achieve greater fuel efficiency and lower emissions in vehicles using internal combustion
engines, there have been two basic approaches used in the powertrain. The first approach is to
improve the thermodynamic cycle used to convert fuel into power. Technologies such as cylinder
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deactivation [1], variable cam phasing [2] and timing [3], continuously variable transmissions
[4], automated shift transmissions [5] and exhaust gas recirculation [6] are all used to improve
the instantaneous efficiency and decrease emissions from a powertrain. The second approach is
to improve on the system performance of the powertrain by storing and releasing energy over a
drive cycle, allowing the engine to operate in more favorable regions, which improves the average
thermal efficiency of the engine. One technology for achieving this is the hybrid electric vehicle
(HEV), which consists of an electric powertrain coupled to a conventional powertrain.

A conventional vehicle powertrain consists of an engine, transmission, differential and controls.
The controls translate a request for torque from the driver into inputs for the engine and transmission
that produce desired torque, while achieving multiple objectives. These objectives include fuel
economy, emissions, torque deviations and component protection. An HEV retains all of the
control complexity of a conventional powertrain and introduces new complexity. This increase in
complexity occurs because of the additional components and the coupling among those components.
These additional components increase the number of states to be controlled, the inputs for control,
and the outputs available for feedback. Additionally, there are new control objectives. Owing to
federal and state regulations [7–10], the controls must manage battery charge in a manner that
satisfies certification requirements. In addition to certification requirements, a manufacturer may
have other control objectives including battery life management, system thermal management to
prevent component overheating, and minimization of the customer’s perceptions of ‘odd’ behavior.
While this design process focuses on fuel economy, other factors can also be incorporated.

1.1. Prior art

To design control laws for HEVs, several approaches have been taken. The dominant design
approach in the literature is some form of rule-based design, relying on engineering intuition and
logic. For example, the work in [11] determined the optimal control choice by selecting the best
action based on the instantaneous cost, where this instantaneous cost includes an approximation
of the cost in fuel for electrical energy from the battery. In [12] a similar scheme is employed. As
a means to analyze the properties of an optimal control, dynamic programming (DP) is used in
[13, 14]. However, these analyses were not used to generate a causal control law. Reference [15]
uses the solution to a DP to design a rule-based controller. In that paper, a DP is solved to find
a globally optimal sequence of control inputs for the powertrain. The insights gained from this
solution were then used to design a realizable control law and implement it. This design approach
achieved significant improvements in fuel economy and emissions reduction over heuristically
derived control laws when tested in an Eaton prototype HEV [16].

Utilizing assumptions of perfect future knowledge of the vehicle trajectory, Back [17] proposed
a causal model predictive control (MPC) law. Unfortunately, perfect future knowledge is rarely
available. In an engineering problem similar to the HEV energy storage issue, Kummert [18]
applied stochastic MPC to a passive solar building. This approach used a prediction (weather
forecast) and a confidence in the prediction to determine an optimal schedule for heating and
cooling a building. This would suggest that the path prediction with a prediction confidence could
be used in a scheme similar to [17], although no work proposing such a technique has been found.

Recently, Lin et al. [19] proposed stochastic dynamic programming (SDP) as a technique to
directly design an HEV control law. This design technique yielded better performance than any
heuristically derived rule-based controller previously employed. The primary advantage of this
approach is that the control law is designed from an optimization criterion, a model of the plant
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dynamics and a model of the driving pattern statistics. A weakness in this approach is that the
optimization criterion discounts future costs and assigns a penalty to state of charge (SOC) deviation
from a set point at every instant in time. This optimization contains two tuning parameters, the
discount factor and the SOC deviation penalty.

1.2. New contributions

When the controls for an HEV are developed based on vehicle certification requirements, there is
no cumulative cost for deviation from an SOC set point, except when the vehicle is turned off at the
end of the test. At that point, there is a penalty for the battery charge being too far from a set point.
Additionally, the total fuel consumed and total emissions generated while driving are measured
and penalized. Ideally, the optimization problem posed for designing a controller should minimize
some combination of the total fuel consumption, the total emissions generated and the deviation of
the SOC from a set point when the vehicle is turned off. Toward this goal, this paper investigates
the use of shortest path stochastic dynamic programming (SP-SDP) to design an optimal control
law.

SP-SDP is a variation of infinite-horizon SDP. In SP-SDP, the state space is constructed so there
is a set of states that represent a terminal condition. In this terminal condition, no costs are incurred
and there is zero probability of transitioning out of this set. The terminal set is absorbing. Every
element of the state space outside of the terminal set is constructed so that, under control, there is
a positive probability of transitioning into the terminal set within a finite time. The existence of
this terminal set and the ability to control the system, so that the state transitions into the terminal
set, guarantees that the expected costs in the system are finite, even in the undiscounted case.

2. MODELS

2.1. An HEV dynamic model

This study assumes the HEV model of [15, 19]. A detailed description of the model is available
in [20]. The vehicle is a parallel hybrid electric truck, with an automatic transmission and diesel
engine. The electric machine is coupled to the output shaft of the transmission. Figure 1 provides
a schematic of the HEV powertrain and controls. For control design, the HEV powertrain is
simplified. The vehicle is reduced to a quasi-steady, discrete time, state model with two state
variables and two inputs. There is a state associated with the charge in the battery (q) and a state
associated with the vehicle speed (v). The charge is normalized to a value between 0 and 1. The
vehicle speed is limited to a range of 0–100 miles per hour. The state variables are assumed to
be perfectly observed. The battery is modeled using ohmic resistance and charge efficiency with
an open-circuit voltage curve that is a function of the SOC. The transmission gear control is
simplified to a function of engine speed, engine torque and vehicle speed. The transmission gear
is selected a priori to minimize the instantaneous linear combination of fuel consumption and
emissions generation that matches the weighting in the control objectives. Gear shifts are assumed
to occur in negligible time and their control is provided by an autonomous low-level controller.
The vehicle command from the driver, Vcmd, is either a wheel power demand, a command to turn
the vehicle off or an indication that the vehicle is off where

Vcmd∈{[Pmin, Pmax], ‘turn off’, ‘off’} (1)
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Figure 1. The environment, driver and HEV as a system.

Power demands are limited by Pmin and Pmax to a range of −100 to 150 kW as measured at the
wheels. When the vehicle command is ‘turn off’, at the next time step, the vehicle command
transitions to ‘off’. Once the vehicle command transitions to ‘off’, the vehicle command stays at
‘off’. The deterministic dynamics associated with the HEV are time invariant and summarized as

[q v]Tk+1= fHEV([q v]Tk , [PSR Vcmd]Tk ) (2)

The deterministic HEV model also generates outputs associated with instantaneous fuel consump-
tion and emissions. When the vehicle command, Vcmd, is ‘turn off’ or ‘off’, these outputs are 0.
These relationships are time invariant and summarized as

[ṁf ṁPM ṁNOx ]Tk =hHEV([q v]Tk , [PSR Tdem]Tk ) (3)

where ṁf is engine fueling rate, and ṁNOx and ṁPM are, respectively, NOx and particulate matter
emission from the engine. The inputs to the HEV are the vehicle command from the driver, Vcmd,
and the power split ratio, PSR, from the supervisory controller which is defined as

PSR= engine power measured at the wheels

power measured at the wheels
(4)
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Figure 2. A signal flow diagram of the environment, driver and HEV as a system.

There exists a low-level controller that interprets a PSR command and where feasible, delivers
engine power, measured at the wheels, that is equal to the product of PSR and the power demand
in the vehicle command. Inertial effects are ignored in calculating this ratio. Gearing and losses
are considered in this equation. Any power excess or deficit is balanced by the electric machine.
Figure 2 illustrates the signal flow for this system.

2.2. Forming a controlled Markov process from a conditional probability drive cycle model

One way to model a vehicle drive cycle is as a white-noise process that is transformed into power
demands by the environment and driver. This transformation can be visualized as shown in Figure 2.
A white noise describes the unique changes in the environment as the vehicle moves through
it. The environment correlates these changes and, in turn, provides cues to the driver to adjust
his internal state. Based on the immediate environmental cues, feedback on vehicle position and
velocity and the driver’s internal state, the desired wheel torque is determined. This is a complex
process and multiple approaches have been used in modeling.

A stationary Markov model based on ‘microtrips’ is proposed in [21]. The ‘microtrips’ describe
maneuvers over a few seconds: accelerations, quasi-cruising, cruising and decelerations. A collec-
tion of ‘microtrips’ is created using statistical analysis of representative driving data. A probability
transition matrix describes the conditional probability of transitioning from one ‘microtrip’ to
another.

Another way to characterize a drive cycle is using conditional probabilities coupled with deter-
ministic models, as described in [19]. This results in a compact description of a stationary controlled
Markov process [22]. Because the concept of ‘turning the vehicle off’ is included in this model,
the vehicle command can either be a power level, a command to turn the vehicle off or a command
to keep the vehicle off. A conditional probability model is created that defines the probability of
the next vehicle command given the current vehicle speed and the current vehicle command. The
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values of the transition probabilities are calculated from representative data that include speed and
power demands. This conditional probability, for the drive cycle, combined with the HEV dynamic
model, forms a controlled Markov process. The state space is the 3-tuple (vehicle command,
velocity, battery charge). The controllable input is the PSR.

The resulting conditional probability of the next vehicle command is

Vcmd,next∼Pr(Vcmd,next=W |Vcmd,v) (5)

Once the current vehicle command is ‘off’, all subsequent vehicle commands are ‘off’.
Wheel power is used to represent the driver’s demand because the range of driver requests is

primarily limited by engine and machine power. When using a rectangular grid of fixed resolution
for approximating (5), the use of power rather than torque results in more points with nonzero
probabilities. This is advantageous because it increases the amount of information available versus
torque when using simple sampling schemes. One issue with using power rather than torque is
how to handle a velocity of zero. Considering only positive speeds, at approximately zero velocity,
the power is found by assuming that vehicle speed is a small positive number. To implement this,
the driver’s request in terms of torque is converted to power using

Pwhl=
{
Twhl ·v, |v|>�

Twhl ·� otherwise
(6)

where � is 1 mile per hour.

3. CONTROL LAW FORMULATIONS

3.1. Optimal cycle-specific formulation using deterministic DP

For reference, the optimal cycle-specific controller is illustrated. This is introduced to highlight
the differences between the deterministic programming approach and the SDP approach. The aim
of the deterministic controller is to minimize weighted fuel and emissions over a finite horizon for
a specific cycle, while returning the battery to a known SOC when the vehicle is turned off. The
optimization problem is formulated as

J = min
PSRk∈Uk(qk)

{
K−1∑
k=1

cTinst ·hHEV,k(qk,PSRk)

}
(7)

subject to the system dynamics,

qk+1= fHEV,k(qk,PSRk) (8)

and a requirement to balance the charge in the battery at the end of the cycle,

qK =q1 (9)

In this problem, fHEV,k , is the time-varying dynamics formed by a single trajectory or sample
path of Vcmd,k and eliminating that term from Equation (2). The time-varying fuel and emissions
of the system, hHEV,k , are formed from (3) in a similar manner. The product of cTinst and hHEV,k
determines the instantaneous cost of operation of the HEV. This weighting allows the fuel economy
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to be traded off relative to the emissions. The set Uk contains all of the feasible choices for the
PSR at time step k.

Under the assumption of perfect knowledge of the trajectory of the system, an optimal open-loop
control law can be found. However, this formulation of the optimal control problem is problematic
because there are states at specific time steps that cannot satisfy (9). For example, if the battery
is fully charged at the k−1 time step and q1 is 50% charge, there may be no action that can
satisfy (9). Because of these infeasible states, either the constraint formulation must be changed or
auxiliary control objectives must be defined to handle infeasible regions. By revising the objective
in (7) to include a quadratic cost when turning the vehicle off, the equality constraint in (9) can
be approximated. This revised objective is

J = min
PSRk∈Uk(qk)

{(
K−1∑
k=1

cTinst ·hHEV,k(qk,PSRk)

)
+cterm(qK −qtarget)

2

}
(10)

In this form, a time-varying feedback control law can be constructed that is valid for any initial
condition. In (10), the constant cterm is used to scale a quadratic penalty for deviation from a
battery SOC setpoint at termination of the drive cycle.

A time-varying feedback controller for (10) can be found by forming a DP and solving for the
value function [23–25]:

V ∗
k (q)=

⎧⎪⎨
⎪⎩

min
PSR∈Uk (q)

(cTinst ·hHEV,k(q,PSR)+V ∗
k+1( fHEV,k(q,PSR))) if k∈{1, . . . ,K −1}

min
PSR∈Uk (q)

(cterm(qK −qtarget)
2) if k=K

(11)

Once the value functions have been computed, the optional control law for the PSR is determined
by solving

PSR∗
k(q)∈argmin

PSR
(cTinst ·hHEV,k(q,PSR)+V ∗

k+1( fHEV,k(q,PSR))) ∀k∈{1, . . . ,K −1} (12)

Similar formulations have been presented in [13–15]. The use of finite-horizon DP to design a
time-varying feedback control law has three distinct drawbacks. First, the optimality of the control
does not apply if the drive cycle is different than the one used in (11). Second, the optimal action
is not defined after time step K . Third, for implementation in a vehicle, this control law can be
considered a ‘cycle beater’: a strategy that is specifically tuned to perform well on a testing regime
while behaving significantly differently in other circumstances. ‘Cycle beater’ strategies are not
permitted by the regulatory agencies that certify vehicles. For this reason, among others, the work
in [15, 19] focused on stationary (i.e. time-invariant) control laws and assumed that perfect state
information was available. The restriction to stationary control laws is a trade-off. It allows the
control law to avoid the ‘cycle beating’ designation. However, in general, it reduces the optimality
of the resulting control laws.

3.2. The ideal SP-SDP problem formulation for a stationary Markov process

The focus of this paper is on the formulation of the HEV control problem as an SP-SDP. This
formulation offers two advantages over existing formulations. It allows undiscounted future costs
and assignment of a cost that is incurred only when the system enters a ‘terminal’ state. To
guarantee that a solution to the SP-SDP exists, the ‘terminal’ state must be absorbing and all
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other states transient. Absorbing means that once the system enters the terminal state, it stays
there, and transient means that every state has a nonzero probability of entering and the absorbing
state in finite time. While in the terminal state, no costs are incurred. The SP-SDP formulation
is advantageous because it does not require a discount factor and it allows costs to be described
based on the fuel, emissions and SOC objectives specific to vehicle certification. Additionally,
this formulation reduces the number of tuning parameters used in the previous work. The SP-SDP
formulation works well with vehicle control problems since there is a guaranteed termination of
the drive cycle when the key is turned off. This controller minimizes

J = min
PSRk∈U (xk)

⎧⎪⎪⎨
⎪⎪⎩EW

⎛
⎜⎜⎝ ∞∑

k=1
�k

⎧⎪⎪⎨
⎪⎪⎩
cTinst ·hHEV(q,v,Vcmd,PSR), Vcmd /∈{‘off’, ‘turning off’}
cterm(qK −qtarget)

2, Vcmd={‘turning off’}
0, Vcmd={‘off’}

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
(13)

subject to

qk+1= fHEV(qk,PSRk) (14)

and (5). The constant � is introduced as a discount factor to keep the form of the equations similar
to the infinite-horizon controller. In the design of the SP-SDP controller, the discount factor is 1.

By manipulation of this formulation, an SP-SDP is created. The stochastic model in (5) is
augmented with the dynamics in (14) to form a controlled Markov decision process. The stochastic
disturbance to the system is

w=[Vcmd,next] (15)

The subscript ‘next’ is used to indicate that this is the next vehicle command to be selected by the
driver. The controllable input is the PSR

u=[PSR] (16)

The PSR is restricted to the set, U(x), of power splits that are capable of meeting the driver’s
vehicle command:

U(x)={set of all power split ratios that can meet Vcmd for state x} (17)

Because of the sizing of the engine and motor, for this class of problems, this set is always
nonempty. The system’s state is augmented to include the current vehicle command and defined
as

x=[q v Vcmd]T (18)

The state propagation equation from (2) is augmented to include memory of the next vehicle
command resulting in a new state propagation equation

xk+1= fHEV,aug(xk,uk,wk)=
[
fHEV([q v]Tk , [PSR Vcmd]k)

Vcmd,next,k

]
(19)
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As in (10), the instantaneous cost of operation is a weighted sum of fuel consumption and emissions.
If the vehicle is ‘off’, then no additional costs are accrued. For best fuel economy, cinst is equal to
[1 0 0]T. Following the convention in [15], to balance fuel economy and emissions optimization,
cinst is equal to [1 � �]T, where � is the weight associated with NOx emissions and � is the weight
associated with particulate matter emissions. The constant cterm is nominally large and its value
is selected by trial and error to obtain a battery SOC at the end of the cycle that is acceptable. In
this paper, cterm=1000000 is used. The resulting cost function is

c(x,u,w)=

⎧⎪⎪⎨
⎪⎪⎩
cTinst ·hHEV([q v]T, [PSR Vcmd]) if Vcmd /∈{‘off’, ‘turning off’}
cterm(q−qtarget)

2 if Vcmd={‘turning off’}
0 if Vcmd={‘off’}

(20)

The system model and cost functions are combined to solve the value function

V ∗(x)= min
u∈U (x)

(EW (c(x,u,w)+�·V ∗( fHEV,aug(x,u,w)))) (21)

In this equation, the discount factor � is introduced for ease of comparison with discounted-cost
control laws and is set to one for the SP-SDP formulation. This value function is used to find the
set of optimal torque split values using

PSR∗(x)∈argmin
u∈U (x)

(EW (c(x,u,w)+�·V ∗( fHEV,aug(x,u,w)))) (22)

Since there is no requirement for continuity in sequences of power splits, the choice from this
set is arbitrary. In the case of multiple elements, the first element is selected. Note, when realized
for vehicle control, the vehicle command in the state variable,x , is based on the driver’s vehicle
command at the instant of evaluation.

It would be desirable to solve this problem for the continuous state and action spaces in which it
was posed. However, computing a solution is difficult since it involves finding elements in infinite
dimensional spaces. These are not easily found. The generation of a continuous state Markov
process is also difficult. Because of this, the problem is approximately solved. The SP-SDP is
formulated over a discrete state, action and noise space. The approximate value function, for this
discrete problem, is found numerically. The approximate value function is then used to determine
the control law for a continuous range of states by interpolation.

3.3. The approximate SP-SDP problem formulation

To approximate the ideal SP-SDP in a form that is numerically tractable, the state space, action
space and noise space are quantized as finite sets. The conditional probability model in Section 2.2
is combined with the deterministic dynamics in Section 2.1 to form a controlled Markov process.
The cost functions for the SP-SDP are defined as in (20).

3.3.1. Finding the conditional probability model of driving. To generate a conditional probability
model of the vehicle commands, (5), the wheel power and vehicle speed are quantitized over a
family of drive cycles. To distinguish quantitized forms of otherwise continuous variables, the
crescent ‘(�)’ will be placed over those variables. The power demand is quantitized into NP
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discrete levels. The discrete power demand,
�

Pdem, takes values in the set of power demand,
�

P,
where

�

Pdem∈ �

P={P1
dem, P2

dem, . . . , PNP
dem} (23)

The vehicle command,
�

V cmd, is selected from the set of vehicle commands, C, which is the union
of the power demands with the ‘turn off’ and ‘off’ states,

�

V cmd∈ �

C={‘off’, ‘turn off’}∪�

P (24)

The vehicle velocity is quantized into Nv discrete levels. The velocity of the vehicle is assigned

to an element in the set of possible velocity values
�

V:

�
v ∈ �

V={v1wh,v2wh, . . . ,vNv

wh} (25)

To determine the values of Pr{�

V dem,k+1|�

V dem,k,
�
vk}, a maximum likelihood method similar

to [15] is used. The conditional probability is calculated by first selecting a set of drive cycles
and using the vehicle model to obtain the wheel power requests needed to follow the drive
cycle. The vehicle speed versus time is part of the drive cycle specification. Next, this data are
sampled at a 0.05 s interval and formed into a list of 3-tuples of data: (Pdem(tk+1), Pdem(tk),V (tk))
where tk ∈{0,0.05,0.10, . . .}. These 3-tuples of data are quantized using a nearest neighbor
method and assigned to elements in (23) and (25). The resulting conditional probability model is
formed as

Pr{�

V cmd,next|�

V cmd,
�
v}�

{
Total number of samples matching

�

V cmd,next and
�

V cmd and �
v

and vehicle is not ‘off’ in next sample

}

Total number of samples matching
�

V cmd and �
v

(26)

∀�

V cmd∈ �

P,
�

V cmd,next∈ �

P (27)

This conditional probability model has the property that for some speeds and power demands,
the sum of probabilities for the next power demand is less than 1. This difference is the probability
that at the next time step, the vehicle command will be ‘turn off’ where

Pr{‘turn off’|�

V cmd,
�
v}�1− ∑

�

Pdem,next∈
�
P

Pr{�

Pdem,next|�

V cmd,
�
vk} ∀�

V cmd∈ �

P (28)

Further, the probability of the vehicle being ‘off’ is given by

Pr{‘off’|�

V cmd,
�
v}�

{
1 if (

�

V cmd= ‘turn off’) or (
�

V cmd= ‘off’)

0 otherwise
(29)
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Depending on the data set used to calculate the conditional probability, there may not be sufficient
data available to guarantee that the denominator in (26) is nonzero. The following rules were used
to guarantee that the probability distribution is defined for all points. For each triple of next power
demand, current power demand, and velocity where the denominator in (26) is zero, if the current
power demand is greater than 0, the next power demand is set to the next lowest power demand

in the set
�

P. If the current power demand is less than 0 and the velocity is greater than 0, the next
power demand is set to the minimum of the next greater power demand and the greatest negative

element in
�

P. If the current power demand is less than 0 and the vehicle speed is 0, the next power
demand is set to 0. If the current power demand is 0 and the velocity is greater than 0, the next

power demand will be the negative element in
�

P closest to 0. If the current power demand is 0
and the velocity is 0, the next power demand is set to 0.

3.3.2. Interpolation for solution of the SP-SDP. In the continuous formulation of the DP problem,
the state propagates from one distinct state to another. When the state is quantized, a different
approach is required. The propagation is modeled via partial membership in multiple discrete
states. This is equivalent to modeling the propagation stochastically, where the partial member-
ship in the multiple states is equal to the probability of transition into any single discrete
state.

For this quantization, a membership function is used that maps every value in the continuous
state space to membership in discrete state space per

M
X,

�
X

:X→[0,1]|
�
X| (30)

This function maps a continuous space X to a vector of values between 0 and 1 with one element

for each element in the discrete set
�

X. In performing this quantization, there are several choices
of how the quantization is performed and how the membership function is implemented. The
quantization can be performed on a regular or irregular grid. For this work, an irregularly spaced

rectangular grid was used. The set of points for this grid are denoted as
�

X. The membership
function can be implemented using several different types of interpolation schemes. Different
schemes have different trade-offs to consider in terms of accuracy and complexity [26–31]. Two
methods were investigated: bilinear [26] and barycentric interpolation [30]. Barycentric interpo-
lation was found to provide a better trade-off between accuracy and complexity than bilinear
interpolation.

3.3.3. The discrete SP-SDP equations. Using the definitions and functions developed in Sections
3.3.1 and 3.3.2, the SP-SDP is formulated. The state space is quantized into the discrete set of

points in the set
�

X. The PSRs are quantized into a discrete set
�

U. This discrete set is restricted to
ensure that the choices can best meet the vehicle command at the current state. This restricted set
is represented as U(x). The next vehicle commands are quantized as in (23). The continuous state
SP-SDP equations (21) are adapted to obtain the discrete state SP-SDP equations

V ∗(�
x)= min

�
u∈�

U(x)

⎛
⎝ ∑

�
w∈�

C

Pr(�
w|�x)(c(�

x,
�
u,

�
w)+�·(V ∗)T ·M

X,
�
X
( fHEV,aug(

�
x,

�
u,

�
w)))

⎞
⎠ ∀�

x ∈ �

X (31)
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Since the state is quantized, the value function is a vector with values that correspond to each discrete
state. The optimal control law for the PSR is then found using the value function from (31) in

PSR∗(�
x)∈argmin

u∈U(
�
x )

⎛
⎝ ∑

�
w∈�

C

Pr(�
w|�x)(c(�

x,
�
u,

�
w)+�·(V ∗)T ·M

X,
�
X
( fHEV,aug(

�
x,

�
u,

�
w)))

⎞
⎠ ∀�

x ∈ �

X

(32)

In the case where more than one power split satisfies (32), the lowest value element is chosen.

3.3.4. Interpretation of the value function. The value function, V ∗(x), that results from solving
the SP-SDP is the expected cost of operation of the HEV from the state x . Since the HEV will
always start a drive cycle from the 0-speed, 0-torque request point, the value function at this point
provides a measure of the expected costs that will be incurred over the family of drive cycles
described by the conditional probability model in (26)–(29).

3.4. Numerical solution

To solve the value function, a linear program (LP) was formulated as discussed in [23]. This
was done, rather than using value iteration (VI) or policy iteration (PI), for two reasons. First, by
creating an LP, there was no need to generate codes for VI or PI. This was a significant savings
in an engineering effort. Secondly, LPs can be solved very efficiently due to their convexity and
the existence of efficient commercial codes.

The LP can be formed because of the discrete state and action spaces used in the approximate
problem formulation. The general idea in forming an LP is that a single scalar value represents the
value function for each discrete state. This single value must be equal to the minimum obtained
when all actions are considered. By generating an inequality for each discrete action at any discrete
state, the constraints on the value function can be formed. Consider the discrete DP equations
where the action uis restricted to a discrete action space, the state space is discrete and the evolution
of the system is restricted to those discrete states. The minimization statement

V (x)=min
u∈�

U

(c(x,u)+�·V ( f (x,u))) (33)

implies that, when U is a finite and countable set, V (x) satisfies a finite system of equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V (x)�(c(x,u1)+�·V ( f (x,u1)))

V (x)�(c(x,u2)+�·V ( f (x,u2)))

...

V (x)�(c(x,uN )+�·V ( f (x,uN )))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(34)

and will satisfy at least one of those equations as an equality.
Furthermore, the set of inequalities in (33) is extended to apply to each discrete state in the

DP equations. For each of these sets of inequalities, there is a single scalar value that represents
the value function at that discrete state. By maximizing the sum of the value function at each
discrete state, an optimization problem is formed. Since the cost at each combination of state and
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actions is known, these become constants in the problem statement. Moreover, the value function
is represented as a real vector. If the value function on the right-hand side of (33) is moved to the
left-hand side, the inequality can be restated as a linear combination of value functions at specific
discrete states being less than a constant as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V (x)−�·V ( f (x,u1))�c(x,u1)

V (x)−�·V ( f (x,u2))�c(x,u2)

...

V (x)−�·V ( f (x,uN ))�c(x,uN )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∀x ∈ �

X⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A ·V�b

V ∈R|�X|

A∈R|�X|·|�U|×|�X|

b∈R|�X|·|�U|

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(35)

This set of inequalities forms linear constraints on the value function. By constructing an opti-
mization problem to maximize the sum of the elements of V subject to the inequalities in (35),
an LP is formed that solves the DP equations.

A similar procedure was used to convert the SP-SDP equations in (31) into a matrix and vector
defining the constraints in an LP.

4. CONTROL DESIGN RESULTS

The controller obtained using SDP is a function that maps vehicle speed, battery SOC and
the vehicle command to a PSR. For evaluation, the SP-SDP controller and an infinite-horizon,
discounted-cost controller designed via SDP are compared. The infinite-horizon, discounted-cost
controller is referred to as the SDP controller; it is based on the controllers presented in [19, 32].
The SDP controller minimizes

J = min
PSRk∈U (xk)

{
EW

( ∞∑
k=1

�k ·(cTinst ·hHEV(q,v,Vcmd,PSR)+Kq ·(qK −qtarget)
2)

)}
(36)

subject to (14) and (5). A discount factor of 0.95 is used to match the work in [32]. The probability
model, (5), is modified so that the probability of ‘turning off’ is zero. For the SDP controller, Kq
is set to 60 000.

Both the SDP and the SP-SDP controllers use the same value for cinst. The weighting is one
time the fuel rate in grams per second plus 40 times the NOx emissions rate in grams per second
plus 800 times the particulate matter emission rate in grams per second. In both cases, qtarget is
0.5.

For both the SDP and SP-SDP cases, four different controllers were designed. These controllers
were designed using the UDDS heavy duty cycle, the FET highway cycle, the WVU suburban
cycle and the WVU city cycle as the basis for determining the conditional probability model
of the driving pattern. Once the value function was found using (31) and linear programming,
a higher resolution grid was applied to the problem and the PSR was found using (32). Both
controllers were designed using identical quantization and interpolation. The codes to design
the controllers were identical except for the equations used to calculate the instantaneous
costs, the discount factor and the conditional probability models used to describe the driving
pattern.
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Figure 3. SP-SDP controller: engine power map.

The resulting control laws were simulated over the sample path corresponding to the deterministic
drive cycles listed above. To best visualize the behavior of the control laws, the engine power as
a function of vehicle command and vehicle speed is plotted for the SP-SDP controller in Figure 3
and the SDP controller in Figure 4. These maps are from the controller designed for operation
with driving patterns similar to the FET highway cycle. There are two notable differences to
observe in these maps. First the SDP controller is more aggressive in disabling the engine to
improve performance than the SP-SDP controller. Consider the behavior at 10 mile per hour. At
this point, the SDP controller disables the engine for battery SOCs greater than about 55% and
wheel powers below about 25 kW. Conversely, the SP-SDP controller only disables the engine
above 65% battery SOC and below about 25 kW wheel power. Additionally, the SDP controller
demonstrates significantly more use of engine power to control battery SOC at all speeds than
the SP-SDP controller does. Consider the behavior at 10 miles per hour. At this speed, the SDP
controller has the engine running to the charging limit of the battery for SOC values below about
40%. Conversely, for the same operating point, the SP-SDP controller uses less engine power for
the same operating points.
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Figure 4. SDP controller: engine power map.

5. COMPARISON AND SIMULATION RESULTS

Comparison with previously published results is difficult since the SOC values for equilibrium
operation are not available. However, this work showed the improvement resulting from SDP versus
heuristic methods for improvement in fuel economy and emissions. It follows that the relative
performance obtained there holds for these results.

All of these controllers were evaluated by simulation. The only difference in the simulations
is the selection of the drive cycle and the selection of the control law, based on PSR, used. The
performance of each controller is found by executing the model such that the starting battery
SOC is equal to the final battery SOC within a tolerance of 0.0001. Under these conditions, the
performance is measured as the sum of the total fuel consumed plus 40 times the total NOx emitted
plus 800 times the total particulate matter emitted divided by the total distance in miles. For the
performance measure, smaller numbers are better. An example of the SOC under the SP-SDP
controller for the HWFET drive cycle is shown in Figure 5. It should be noted that the changes
in SOC only require a small fraction of the energy capacity of the battery. For this vehicle, the
battery is sized for durability which results in a battery with significantly more energy capacity
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Figure 5. SOC on the HWFET using the SP-SDP controller.

Table I. SP-SDP controller performance.

Test cycle

Training UDDS WVU WVU WVU Highway NYC NYC
cycle HDV interstate suburban city FET SC03 composite truck Manhattan

UDDS HDV 833.58 1031.80 756.99 576.91 914.22 1265.90 400.81 708.73 1170.70
WVU suburban 849.37 908.07 627.05 474.20 985.62 1222.30 366.65 678.09 1298.46
WVU city 889.35 939.72 731.71 509.46 898.44 1163.20 408.18 852.72 1437.18
FET highway 938.53 1045.80 561.58 705.48 944.14 1200.50 394.765 821.59 1125.71

than that needed for energy swings alone. The performance results of the SP-SDP controller are
summarized in Table I. This table shows the performance of the SP-SDP controller trained against
a single cycle controlling the vehicle over a suite of drive cycles.

For each of the tests, the equilibrium SOC at key off is also summarized in Table II. The
equilibrium SOC is the SOC obtained when the vehicle is driven on a particular cycle repeatedly
until the starting and ending SOCs are effectively the same value. In this case the cycles are
repeated until the difference between the starting and ending SOC is less than 0.0001.

The performance for the SDP controller is summarized in Table III.
The equilibrium SOC for the SDP control law is summarized in Table IV.
One interesting aspect of these results is that the best performance for both the SP-SDP and

the SDP controller does not necessarily occur when the controllers are trained and evaluated using
the same drive cycle. For example, see Table I for the WVU city evaluation using an SP-SDP.
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Table II. SP-SDP equilibrium SOC when vehicle is turned off.

Test cycle

Training UDDS WVU WVU WVU Highway NYC NYC
cycle HDV interstate suburban city FET SC03 composite truck Manhattan

UDDS HDV 0.4982 0.4626 0.4722 0.5007 0.4774 0.4674 0.5027 0.4995 0.4937
WVU suburban 0.4634 0.5038 0.5058 0.5044 0.4604 0.4677 0.5024 0.4982 0.4895
WVU city 0.4939 0.4974 0.4759 0.4997 0.4615 0.4843 0.4854 0.4932 0.4895
FET highway 0.4923 0.4831 0.5308 0.5248 0.5004 0.5038 0.5441 0.5198 0.5065

Table III. SDP controller performance.

Test cycle

Training UDDS WVU WVU WVU Highway NYC NYC
cycle HDV interstate suburban city FET SC03 composite truck Manhattan

UDDS HDV 850.46 1033.50 747.93 617.49 921.96 1298.00 459.28 820.97 1059.10
WVU suburban 861.74 923.85 654.44 513.82 983.64 1172.70 448.59 814.05 1040.80
WVU city 844.74 943.79 699.00 536.82 983.64 1172.70 448.59 814.05 1040.85
FET highway 943.03 1091.10 574.41 690.14 972.93 1234.40 406.07 826.66 1013.71

Table IV. SDP equilibrium SOC when vehicle is turned off.

Test cycle

Training UDDS WVU WVU WVU Highway NYC NYC
cycle HDV interstate suburban city FET SC03 composite truck Manhattan

UDDS HDV 0.5128 0.5027 0.5022 0.5057 0.5107 0.5034 0.5131 0.5136 0.5031
WVU suburban 0.5027 0.5072 0.5103 0.5074 0.5029 0.5030 0.5100 0.5128 0.5080
WVU city 0.5083 0.5090 0.5065 0.5095 0.5034 0.5131 0.5067 0.5128 0.5075
FET highway 0.5022 0.5026 0.5090 0.5026 0.5214 0.5025 0.5078 0.5136 0.5081

The best performance occurs when the controller is trained using the WVU suburban drive
cycle not the WVU city cycle. A similar result occurs when the SDP controller is evalu-
ated on the Highway FET drive cycle. The best performance is measured when the SDP
controller is trained using the UDDS heavy duty cycle. This is due to evaluating the perfor-
mance of the controller on a single realization of the driving cycle and not on the Markov
model of the drive cycle. The controller is designed to minimize the expected cost of opera-
tion which implies that on any single realization of the drive cycle, there may exist a better
controller.

To compare the performance of the SP-SDP controller and the SDP controller, the performance
and equilibrium SOC on a training drive cycle are considered. The relative performance improve-
ment is measured as the difference between the two controllers divided by the best performance.
The reduction in final SOC error is measured as one minus the minimum SOC error divided by
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Table V. Comparison of performance in control laws.

SP-SDP SDP SP-SDP improvement

Final Final Reduction in final
Cycle Performance SOC Performance SOC Performance (%) SOC error (%)

UDDS HDV 833.58 0.4982 850.46 0.5128 2.03 85.94
WVU suburban 627.05 0.5058 654.44 0.5103 4.37 43.7
WVU city 509.46 0.4997 536.82 0.5095 5.37 96.84
FET highway 944.14 0.5004 972.93 0.5214 3.05 98.13

the maximum SOC error. These results are summarized in Table V. In all cases considered, the
SP-SDP controller improved performance and improved equilibrium SOC error.

6. CONCLUSION

By using SP-SDP to design HEV controllers, it is possible to realize the advantages of SDP
based controller design with better SOC control and fewer parameters to tune. Additionally,
the optimization criteria for the controller better resemble the engineering goals by solving
the control problem without a discount factor and instantaneous cost associated with SOC
deviation.

While a specific model has been used in this study, SP-SDP-based control design can be applied
to any HEV where the optimal control objective meets two criteria. First there is a cost associated
with the state deviating from a specific value when ‘turned off’. Second, the control objective is to
minimize the total cost that is a function of the current state and actions plus a cost associated with
the state of the system when turned off. Any number of additional states beyond those described
here can be part of the model. Hence, this solution technique can be applied to a broad range of
HEV powertrains.

NOMENCLATURE

� the crescent is used to indicate that the variable is a discrete variable (set)
formed by quantizing a continuous variable (set) that takes on a finite number
of values

∼ used to indicate that the variable on the left-hand side is a random variable
with a probability distribution described by the right-hand side. For example,
X ∼�(0,1) would be read as ‘the random variable X has a normal distribution
with a mean of 0 and a variance of 1’

A set
�

A countable set

#{�

A} the ordinality of a set. This is the number of elements in a set
{a1,a2, . . .} an infinite and countable set
{a1,a2, . . . ,an} a finite and countable set
[a,b] the closed interval along the real line from a to b
Pr{E|F} conditional probability: the probability of event E given that event F has

occurred
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Pr{E} probability: the probability of event E
#x the ordinality of the element x in its respective ordered set. This is a

nonempty set that describes the order of an element in an ordered set.
For example, if x ∈X={a,b,c,d,e,d}, then if x=c, #x=3. Where is
x=d , we obtain #x={4,6}.

Abbreviations

A/C air conditioning
DP dynamic program
HEV hybrid electric vehicle
LP linear program
MPC model predictive control
PHEV parallel hybrid electric vehicle
PSR power split ratio
SDP stochastic dynamic programming
SOC state of charge
SP-SDP shortest path stochastic dynamic programming
TSR torque split ratio
VCT variable cam timing

Symbols

c(·) instantaneous cost. Maps a state and a control action to a real number
f (·) generally used to indicate the dynamics of the system
g(·) generally used to indicate a feedback control law or policy
h(·) generally used to indicate the output of the system
M

X,
�
X
(x) membership function that maps an element in the space X to its member-

ship in each element in
�

X
Kq instantaneous SOC quadratic cost gain
q state of charge of the battery
u action or input to the system
U the action space
�

U the discrete action space, a finite, countable set
v vehicle speed
V (x) value or ‘cost to go’ function. Maps the state space to a real number
x the state of the system
X the space of possible states of the system
�

X the discrete state space, a finite, countable set
�∈[0,1] discount factor for future costs
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