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space, can a given polyhedron (often referred to as a sofa or piano) be moved

from the source point to the destination point without coming in contact with

any of the obstacles. The generalized mozlev’s problem allows the object to be

moved to consist of a collection of polyhedra freely linked together at various

vertices. Both the classical and generalized mover’s problems have obvious

applications to robotics motion planning problems and have been of interest to

researchers in this field for some time (e.g., Lozano-Perez [1980], Lozano-Perez

and Wesley [1979], Wangdahl et al. [1974], Vaccaro [1974]; see Schwartz et al.

[1987] for further references). Although the generalized mover’s problem is

PSPACE-hard [Reif 1979] even for planar reachability of simple linkages

[Hopcroft et al. 1982; Joseph and Plantinga 1985], the classical mover’s prob-

lem can be solved in polynomial time [Reif 1979; Schwartz and Sharir 1981,

1982]. In this paper, we consider the two-dimensional minimal mouement

problem; that is, the problem in two dimensions of determining the shortest

possible movement, if one exists.

We limit our attention to the movement of a single point in the plane.

Besides its relevance to computational geometry, this apparently simple prob-

lem is fundamental to more general versions of the minimal movement

problem. For example, we show how our algorithm can be used to compute

minimal movement for a disk; this gives rise to minimal movement computa-

tions for arbitrary objects and obstacles, to within the accuracy obtainable by

enclosing the object with the smallest possible disk and enclosing obstacles

with polygons (in fact, our construction allows polygons to have rounded

corners of arbitrary radius). One application of the efficient computation of

minimal movement is to robotics. For example, consider a warehouse with a

robot server that must repeatedly proceed from a source point (the service

window) to various points in the warehouse (to retrieve objects).

Throughout this paper, we let n denote the size of the obstacle space (the

number of obstacle edges) and k denote the number of islands in the obstacle

space (number of connected components). For many practical problems, it may

be that k << n. For example, the layout of a particular floor in an office

building may be such that the hallways divide the layout into only a few distinct

connected components even though it requires hundreds of thousands of edges

to accurately describe the layout.

A straightforward algorithm for finding shortest paths in the plane is to

construct a graph containing one vertex for each obstacle vertex and one edge

for each pair of obstacle vertices that are mutually visible; (this graph has

O(nz ) edges and can be constructed in O(nz log n) time and O(nz) space) and

then apply Dijkstra’s single-source shortest path algorithm for graphs;l this

approach is used by Sharir and Schorr [1984] to derive an 0( rr2 log n) algo-

rithm for finding the Euclidean shortest path between two points that avoids a

set of polygons (Larson and Li [1981] use this type of approach to derive a

quadratic algorithm for finding the rectilinear shortest path between two points

that avoids a set of polygons and present algorithms of greater than quadratic

‘ For a graph of IVI vcrticcs and IEI edges, standard implementations of Dijkstra”s algorlthm

rcqulre (I(IVIZ) or 0( IEI log IEI) time (e.g., see Aho et al. [1983]). Using Fibonacci heaps, a

slightly better asymptotic worst-case bound of 0(1 El + IVI log IVl) can be obtained [Fredman and

T~rjan 1984]. In addition, specialized algorithms may be appropriate for restricted classes of

graphs (e.g., Fredrickson [1984] and Sedgewick and Vitter [1984]).
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complexity for multiple origin-destination pairs). More recent approaches that

have quadratic complexity include Welzl [1985], Asano et al. [1986], and

Hershberger and Guibas [1988], Mitchell and Papadimitriou [1985] survey

techniques for computing shortest paths, and the paper of Mitchell and

Papadimitriou [1991] addresses shortest paths through weighted regions and

contains additional references to recent work. Clarkson [1987] considers ap-

proximation algorithms.

It should be noted that more efficient algorithms are known for some special

cases. Chazelle [1982] presents an 0( n log n) algorithm for finding the Eu-

clidean shortest path between two points inside a simple polygon; this algo-

rithm is linear when combined with the linear time triangulation algorithm for

a polygon of Chazelle [1990]. Guibas et al. [1986] present an algorithm for the

Euclidean single-source multiple destination problem inside a simply polygon;

this algorithm is also linear when combined with Chazelle [1990]. Lee and

Preparata [1984] present an 0( )Z log rZ) algorithm for finding the Euclidean

shortest path between two points that avoids ~Z disjoint parallel line segments.

de Rezende et al. [1985] and Wu et al. [1987] present an O(n log ~z) algorithm

for finding the rectilinear shortest path between two points that avoids a set of

rectangles (with sides parallel to the coordinate axes). Clarkson et al. [1987]

present an O(n log nz) algorithm and Mitchell [1987] presents an O(n log nL/

log log n) algorithm for finding the rectilinear shortest path between two points

that avoids a set of polygons.

Prior to this work, it has been open as to whether more efficient algorithms

exist for the general Euclidean single-source multiple destination problem with

polygonal obstacles. In this paper, we present an efficient algorithm for the

case when the number of islands is small. Our algorithm assumes that along

with the input is provided either a triangulation or a Voronoi diagram for the

obstacle space.z Both of these data structures can be precomputed in O(n log n)

time. Since they are both common general purpose data structures, we have

chosen to leave the time for their computation out of the statement of our

running times so that our results are independent of improved algorithms for

either one of these data structures that might be available for specific classes

of data.3

Given that a triangulation or a Voronoi diagram for the obstacle space is

provided with the input, we present an O(k~Z) time algorithm for the Euclidean

plane (with arbitrary polygonal obstacles) that uses only O(n) space and, given

a source point, produces a data structure that is a triangulation of the plane

with the following properties:

(1) The data structure uses O(7Z ) space.

(2) Point location queries can be answered in O(log n) time.

(3) Given the location of a point x (x is not necessarily an obstacle vertex or a

point on an obstacle edge), the (Euclidean) distance from x to the source

can be computed in 0(1) time.

3We mean the Voronoi diagram of the edges of the obstacle space, often called the generalized

Voronoi diagram m the litemture [Drysdale 1979; Kirkpatrick 1979; Yap 1984]; this is different

from one for the points of the obstacle space [Shames 1975; 1978].

3For example, when there is only a single island, Chazelle [1990] presents a linear time

triangulation algorithm.
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(4) The minimal length path between the source and any point x in the plane

can be output in time proportional to the number of edges it contains (it

must be that any minimal length path consists of a sequence of at most

O(n) straight line segments).

The algorithm efficiently computes the shortest path between two points for

practical problems where k << n. In addition (and perhaps more importantly),

once the data structure has been constructed, a sequence of queries about the

distance of points from the source can be answered efficiently.

The data structure produced by this algorithm works as follows: For a set of

polygonal obstacles S and a source point s, we augment S with a set of O(rL)

line segments to form S+, a (planar) triangulation of the finite region of the

plane that contains S. Associated with each vertex L1 of this triangulation are

the values:

d( LI ) = length of a minimal length path between s and L,

b( 1’) = a vertex adjacent to u in S+ that is along a minimal path between

s and 1’.

Hence, after S+ has been constructed, for a vertex L’ it is possible in O(1) time

to determine the length of a minimal path between s and LI (and by using the

b( ) pointers, a minimal length path between s and LI can be output in time

proportional to the number of edges it contains). Furthermore, for each point

x of the plane that is not a vertex of S‘, a minimal length path between s and

x can be obtained by placing a straight line segment between x and the vertex

L] of the triangle T containing x such that d(x, L’) + d( L!) is minimum, and

then following b( ) pointers back to s (actually, for some of the algorithms we

present, it may also be necessa~ to compare d(x, L’) + d(LI) with d(x, w) +

d(w) where w is one of the vertices of the three triangles that shares an edge

with T).

Hence, if it is known in which triangle a point p lies, then the length of a

minimal length path between s and p can be determined in 0(1) time. If it is

not known in which triangle p lies, then this can first be determined in

O(log n) time. That is, it is possible to augment our data structure in O(n log n)

time (the augmented structure is linear in the size of the original one) so that

point location queries (“Which triangle contains p?”) can be answered in

O(log n) time.~

We assume the standard RAM mode15 of computation augmented with real

variables, where the following operations on real variables can be performed in

constant time:

(1) Tests of the form x >0.

(2) Arithmetic operations of the form x + y, x – y, x *y, and x\y,

(3) The square root operation.

This assumption provides a simple machine independent environment in which

to study practical constructive computational geomet~ problems, similar as-

sumptions are commonly used by other authors in this area. In practice, the

4Such an algorithm for point location in a triangulated plane was first given by Lipton and Tarjan

[1977] and a more practical algorithm to do this is given by Kirkpatrick [1983].

5See, for example, Aho et al. [1983].
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time required for the operations specified above, as well as the precision that

can be expected, depends on the hardware being used.

Section 2 contains basic definitions, including the definition of an obstacle

space. An obstacle space can be thought of as a number of islands contained in

a room with arbitrary walls, as depicted in Figure 1; the dashed line shows a

shortest path between points A and B. The enclosing wall allows the notion of

an obstacle space to model practical problems where movement is restricted to

some finite area. Our algorithm can also handle the case where we are

interested in shortest paths from the source to all points of the (infinite) plane.

Section 3 examines the special case where there are no islands; the approach

used for this algorithm is central for our algorithm for the case when islands

are present. Section 4 presents an “island merging” algorithm that solves the

single-source shortest path problem (with islands) for all vertices of the

obstacle space. Section 5 augments the data structure developed in Section 4 to

handle the single-source shortest path problem for all points of the plane.

Section 6 generalizes the results of Section 5 to the minimal movement of a

disc.

2. Basic Definitions

Figure 1 depicts the general flavor of an obstacle space: a straight-line planar

map that consists of a polygonally bounded area, containing polygonal obsta-

cles. We assume the reader to be familiar with formal definitions of standard

notions such as a planar map, faces of a planar map, how planar maps are

represented, etc. For additional background on computational geometry, the

reader may refer to the textbooks of Preparata and Shames [1988] and

Edelsbrunner [1987]. Before precisely defining the single-source shortest path

problem for an obstacle space, we must define the notion of an obstacle. Not

only may polygons (a straight-line planar map such that each vertex has degree

exactly 2) be nonconvex, but we allow objects that are not really polygons in the

strict sense, because degenerate l-dimensional objects are allowed to “hang”

off polygons.

Definition 2.1. A generalized pol~gorz is a straight-line planar map Q such

that there exists an internal fice F of Q, called the prinza~ face of Q, such

that all edges of Q lie along the perimeter of F or along the perimeter of the

external face.

Figure 3 shows two generalized polygons: One is the line segment XY and

the other is everything else in the figure (which contains the line segment AT’

in its primary face).

DejZnition 2.2. An obstacle space O is a finite set of generalized polygons

satisfying the following properties:

(1) No two members of O intersect.

(2) Exactly one member of O, called the enclosing wall of O, contains all of

the other members of O in its primary face.

(3) All members of O that are not the enclosing wall, called islands, are

generalized polygons and no island contains any other islands of O in any

of its internal faces.
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,’

A “
FIG. 1. An obstacle space.

Any point x of the plane that is not in the exterior face of the enclosing wall

of O and not in the internal face of an island of O is referred to as a point

of O. Note that a vertex of O is a point of O, but a point of O may not be a

vertex. A shortest path between two points s and t of O is a minimal length

l-dimensional curve that does not cross an obstacle edge.

Figure 1 is an example of an obstacle space; the dashed line shows a shortest

path between points A and 1?. Figure 2 is an example of an obstacle space that

contains exactly one island (the interior of the island has been shaded to make

it easier to distinguish). Figure 3 is also an example of an obstacle space that

contains exactly one island (the line segment XY).

Several aspects of our definition of an obstacle space should be noted:

—Movement that follows obstacle edges is allowed.

—Both the enclosing wall and islands may be arbitrarily nonconvex; Figure 2

depicts an enclosing wall that “spirals” with a single island.

—Obstacles with degenerate features (features with zero width), as depicted by

Figure 3, are allowed; in fact, a single point is a legal island.

—for the parameter k, the enclosing wall counts as an island, as does the

source point if it is not part of the enclosing wall or an island.
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FIG. 2. Nonconvex obstacles

FIG. 3 Obst~cles with degenerate f’ea

tures,

We are now ready to formally define the single-source shortest path problem.

Definition 2.3. The 2-dimensional single-source, multiple destination shortest

path problem, which we henceforth refer to as simply the single-source shortest

path problem, is:

Input: An obstacle space O and a source point s (.T is a point of O).

output: A straight-line planar map O‘, called a single source data structure with the

following properties:

(1)

(2)

(3)

(4)

The ;[ze of O+ is linear in the size of O, and O+ contains O as a subset.

All internal faces of 0+ are triangles (i.e., a face bounded by exactly three

edges).

Associated with each vertex r of 0+ are the two values:

d(c)): The length of the shortest path from L to s.

b(~,): A vertex v + that is adjacent to c and along a shortest

path from [ to s,

Associated with each triangle T of O+ are two vertices p and q, called the

exit L1ertices of T,b such that for every point x of the plane that is contained in

(or lies on an edge of) T, the shortest path from x to the source is obtained
by determining which of d(x, p) + d(p) and d(x, q) + d(q) is smaller,

traveling in a straight line from x to that vertex, and then following LX 1

pointers back to s. That is, the length of a shortest path between s and .x can

be computed in 0(1) time and the path itself can be constructed in time

proportional to the number of edges it contains.

60ne of the exit vertices is of the three vertices of T. The other exit vertex (which is not needed

for much of what we shall do) is a vertex of one of the three triangles that shares an edge with T.
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The unbounded single-source shortest path problem is like the regular

single-source shortest path problem except that the obstacle space does not

have an enclosing wall and the data structure for the output is augmented with

a set of simple nonintersecting quadratic curves that partition the infinite

region of the plane; point location for these infinite regions (to find betsveen

which pair of curves a point lies) can be done in O(log n) time, the length of a

shortest path between s and any point in the infinite region can be computed

in O(1) time, and the path itself can be constructed in time proportional to the

number of edges it contains.

The following well-known fact guarantees that the above definition is well-

founded:

[f s and t are two points in an obstacle space O, then all minimal length

I-dim ensiotud curLes between s and t consist of a sequence of straight-line

segments whose endpoints (with the possible exception ofs and t) are vertices of

O. FLlrthW7WW, if O contains no islands, then the shortest path from s to t is

urlique.

We close this section with a technical note concerning “triangles” like the

face F shown in Figure 4 (face F is bounded by five vertices; however, the 4

vertices a, x, y, and d are colinear). One way to deal with such faces is to store

with each edge (u, L) on the adjacency list of u in an obstacle space O the

value reach( u, L’), which is the farthest vertex that can be reached by traveling

from u in a straight line in the direction of L’ along the edges of O (e.g., in

Figure 4 reach(a, x) = reach( x, y) = reach( y, d) = d). Another way is to fully

triangulate by adding additional edges (e.g., in Figure 4, the additional edges

(c, x) and (c, y) would be added). In this alternate representation, given a

point z inside a face F, the shortest path from z to the source point is

obtained by going in a straight line from x to one of the three vertices

associated with the face in the original structure that contains F (this line may

cross some of the new edges, but no “real” edges) and then following b( )

pointers as usual. The precise way in which faces like face F in Figure 4 are

handled is not important, and we shall not address this issue further.

3. Single-Source Problem without Islands

In this section, we present an O(n log n) algorithm for the single-source

shortest path problem with no islands. We approach this problem by first

presenting an O(n log n) algorithm for the single-source, single-destination

shortest path problem without islands, where a destination vertex t is specified

in addition to the source vertex s and the problem is to find a shortest path

from s to t that avoids obstacles. Although, as mentioned in the introduction,

this simpler problem is already known to be solvable in O(n log n) time, the

algorithm we present now uses techniques that motivate the more complicated

algorithm for the single-source problem without islands that is presented later

in the next section.

We start by describing the shortcut operation. The idea is as follows: Given a

vertex y along the enclosing wall of the obstacle space O that forms an acute

angle with its neighboring vertices x and z, if neither the source s or the

destination t is in the triangle defined by x, y, and z, then we might as well
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B

FJ~ 4, A pseudo-tmmgle.

D

replace the portion (x, y, z) of the enclosing wall by (x, z) and then proceed to

solve the smaller problem. The problem with doing this is that the straight line

from x to z maybe obstructed by other portions of the enclosing wall of O, as

depicted in Figure 5. In this case, the best we can do is to bend around the

intruding walls as closely as possible; this is shown as a dashed line in Figure 5.

We now formally define .dtortcut as the operation of replacing the path (x, y,

z) by the dashed line shown in Figure 5. In fact, the following definition allows

the slightly more general case where x and z are not necessarily the endpoints

of the edges adjacent to y.

Definition 3.1. Let S be the perimeter of an internal face F of a planar

map, let y be an acute vertex of S (with respect F), and let x and z be points

that lie along the each of the two edges adjacent to x (i.e., x and z are on

different edges adjacent to y, .x #y, and z + y). Let C be the convex hull of

the vertices x, z, and all those vertices of S that are in the interior of the

triangle defined by .~, y, and z. Then C is either a path from x to z consisting

of colinear line segments, in which case slzortcf{t(x, y, z) is defined to be C, or

C is a cycle formed from two disjoint paths from x to z, in which case

.shortcut( x, y, z) is defined to be the closest of these two paths to x (i.e., if C

were added to S, shorteuf( x, y, Z) would be the path that formed a face with x

and was homotopic to the path (.x, y, z)). Let s;zort–first( x, y, z) be the vertex

of shortcut( X, y, z ) that is closest to x, and short-last( x, Y, z) be the vertex of

shortcut(.x, ]’, :) that is closest to z. If short-firsd x, y, z ) = z (and hence

shott–lust( X, y, z) = .x) or short-jlrst(x, y, z) and slzort-l(lst(x, y, z) are the

same, then the basis of shortcttt(l, y, z) is defined to be empty; otherwise, it is

defined to be the path in S between short-jirst(.x, -Y, z) and short-last(x, y, z)

(actually. there are two such paths: we mean the one that does not contain (~-,

short-first (.x, y, z)) and (shorl-ktsr(s, j), z), z)). The set dead[x, y, z) is

portion of the plane defined by the union of the following two sets:

( 1) The line segment (x, y) less the point x and the line segment (y, z) less

the point z, together with the region defined by the cycle formed by (x, y),

(v, z), and shortcut(x, y, z).

(2) The edges of the basis of shortcut(x, J), z) not in shortcut(x, y, z) together

with the regions defined by these edges and the shottcut path.

To reduce notation, we shall simply write shorf-cut(y) and dead(~’) when it

is the case that .x and z are the vertices of S that are adjacent to y (the full
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Y

z

FIG. 5. The shortcut operation.

generality of shortcut(x, y, z) where x and z are arbitrary points on the edges

adjacent to y will not be used until later in this section). The following lemma

gives a formal characterization of how portions of the obstacle space that

intersect dead(y) may be “discarded” when computing a shortest path.

LEMMA 3.1. If y is an acute uertex in an obstacle space without islands such

that dcaci( y ) does not contain the source s or the sink t, then dead(y) is disjoint

from any minimalpath.

PROOF. Assume the contrary, and suppose that a shortest path P from s to

t intersected dead(y) where y was in an acute vertex such that dead(y) does

not contain s or t. The only way that P can enter dead(y) is to cross

.dzortcut( y) at some point a and the only way that P can leave dead(y) is to

cross shortcut at some other point b (it could be that a = b). Replacing the

portion of P in dead(y) by the path from a to b along shorfcut( y) would result

in a shorter path from s to t than P, contradicting the fact that P is a shortest

path from s to t.

Given the above lemma, Algorithm 3.1 (Figure 6) is a simple strategy for

computing the shortest path between a source vertex s and the destination

vertex t of an obstacle space O (without islands); it works by repeatedly

replacing an acute vertex y (where dead(y) does not contain s or t)and its two

incident edges by shortcut(y) (i.e., the portion of O that intersects dead(x) is

“thrown out”). Before Algorithm 3.1 begins, there is a single generalized

polygon (the enclosuring wall, with no islands). After the algorithm finishes,

there is just a single path (a minimal length path between s and t).During the

execution of the algorithm there is, in general, a sequence of generalized

polygons connected by portions of a minimal length path. That is, replacing an

acute vertex Y (and the two edges incident to y) by shortcut(x) may split a

generalized polygon into two generalized polygons connected by shortcut(y);

whenever this happens, one or both of the vertices adjacent to y are enqueued

if they are not already present in the queue and they have become acute as a

result of the shortcut operation (and their dead regions do not contain s or t).

THEOREM 3.1. Algorithm 3.1 fzalts after at most n iterations of the while loop

and produces a minimal length path between s and t.

PROOF. First, to verify that Algorithm 3.1 always halts after at most n

iterations of the while loop, observe that exactly one vertex is dequeued on
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as defined by Definition 2.3. Nevertheless, the use of the shortcut operation in

Algorithm 3.1 motivates the approach that we shall now take for the single-

source shortest path problem (without islands).

We first define two “conservative” versions of the shortcut operation, called

crosscut and extend; essentially, these two operations take just the first edge of

shortcut and extend it until it hits an obstacle. Given the crosscut and extend

operations, the algorithm proceeds by starting at s and expanding outward to

triangulate the obstacle space; that is, initially the planar map is the original

obstacle space without islands, at the completion of the algorithm we are left

with a planar map such that the primary face has been triangulated, and at any

point during the execution of the algorithm there is a connected region of the

primary face that is not triangulated.

Definition 3.2. Let S be the perimeter of an internal face F of a planar

map. Let x be a vertex of S such that a vertex y adjacent to x is acute (with

respect to F). Let z be the other vertex adjacent to y (i.e., z # x). Define:

cross–first (x, y, z) = short–first( x, y, z)

If shortczzt(x, y, z) has an empty basis, then define c-rosscut(x, y, z) to be (x,

z). Otherwise, crossczzt( x, y, z) is the line segment obtained by extending the

segment (x, cross–jirst(x, y, z)) from cross–first(x, y, z) until it intersects the

line segment (y, z); this point of intersection is cross–last(x, y, z). Since the

points x and y together with the face F uniquely determine the point z, we

use the notation crosscut(x, y, F), cross–first(x, y, F’), and cross–last(x, y, F)

interchangeably with the above notation. The crosscut operation divides the

original face F into primary face (the face containing the vertex y on its

perimeter), the secondav face (the face containing the vertex x on its perime-

ter), and possibly a number of additional faces called induced faces. If

cross–first(x, y, z) and cross–last(x, y, z) are the same, then there are no

induced faces. If there are vertices of the obstacle space in addition to

cross–first(x, y, z) that lie on the line segment from x to cross–hst(x, y, z),

then there will be more than one induced face.

Figure 7 illustrates the crosscut operation where a = cross+st(x, y, z),

c = cross–last(x, y, z), and point b just happens to be colinear with a and c,

causing there to be more than one induced face; note that this is a case where

the technical note at the end of Section 2 applies. Figure 8 is similar to Figure

7 for the extend operation that we shall define next. The extend operation is

virtually identical to the crosscut operation except that the line segment

introduced is restricted to be at least colinear with the edge incident to x that

is not (x, y).

Definition 3.3. Let S be the perimeter of an internal face F of a planar

map. Let x be a vertex of S such that a vertex y adjacent to x is acute (with

respect to F). LEt z be the other vertex adjacent to y (i.e., z # x). Let w be

the other vertex adjacent to x (i.e., w # y). If the (infinite) line defined by the

two points w and x does not intersect the line segment (y, z), then define

extend(x, y, z) = crosscut(x, y, z) (and define ex–first(x, y, z) and ex–last(x, y,

z) to be cross–fimt(x, y, z) and cross–last(x, y, z), respectively). Otherwise, let

2 denote this intersection point and define extend(x, y, z) = crosscut(x, y, .2)

(and define ex-flrst(x, y, z) and ex-last(x, y, z) to be cross-jlrst(x, y, 2) and
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FIG. 7. The crosscut operation,
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cmss-last(x, y, 2), respectively). Since the points x and y together with the

face F uniquely determine the point z, we use the notation extend(x, y, F),

ex–first(x, y, F), and ex–last(x, y, F) interchangeably with the above notation.

As with the crosscut operation, the extend operation divides the original face F

into the prirna~face (the face containing the vertex y on its perimeter), of this

extend operation, the secorduy face (the face containing the vertex x on its

perimeter), and a number of induced faces.

LEMMA 3.2. Let x be a uer?ex on the perimeter of o face F sllch that a uertex y

adjacent to x is acute. Then the shottest path between x and any point p in F may

hale points in common with at most one of the primay, seconday, and induced

faces of crosscut(x, y, F) and at most one of the primaty, secondaiy, and induced

faces of extend(x, y, F).

PROOF. This should be clear from inspection of Figures 6 and 7.

Algorithm 3.2 is the procedure SPACE7 which takes two arguments, a vertex

x and a face F; itwill always be the case that the shortest path from any vertex

on F to the source point must pass through x. Given an obstacle space O

(without islands) and source vertex s, the initial call is SPACE(S, F), where F

is the prima~ face of O. In order to simplify the presentation, Algorithm 3.2

makes use of the following procedure:

procedure UPDATE (x, Y ) :

d(v) := d(x) + II(X,.Y)ll

b(y) :=x

7After the writing of this paper, a similar approach was considered m Guibas et al. [1986].
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When a minimal path between s and a vertex x is known and it has also

been determined that a minimal path between s and a vertex y passes through

x, UPDA TE(x, y) is called. Algorithm 3.2 works as follows: Case 1 is the

degenerate condition where F is a simple triangle; and so it suffices to simply

update points y and z and return. In Case 2, there is an acute vertex adjacent

to x to which we can apply the crosscut operation; so the crosscut edge is

added in Step (2b) and then the algorithm is called recursively on the sec-

ondary, induced, and primary faces in Steps (2c), (2d), and (2e). In Case 3

(where there is not an acute vertex adjacent to x), Step (3a) searches along the

perimeter of F from x to find an acute vertex, Step (3b) works its way back to

x by applying the extend operation to each vertex, and Step (3c) calls the

algorithm recursively on the portion of F that remains.

Each triangle of the data structure produced by Algorithm 3.2 can have

exactly one of its three vertices designated as the exit vertex (there is no need

here for more than one exit vertex per triangle). We have not bothered to

include this labeling with the presentation of Algorithm 3.2. In fact, in practice,

it may be simpler not to bother with the labeling and when given a point x in

the interior of a triangle defined by the three vertices (o ~, U2, us), compute the

minimum of d(x, Ul) + d(ul), d(x, ~)z) + d(~’z), and d(x, ~’~) + d(ut) to

determine through which vertex of the triangle to exit.

THEOREM 3.2. Algorithm 3.2 (when called with x as the source and F as the

primaiy face) always halts and transforms the obstacle space into a single-source

data structures In addition, assuming that a triangulation or a Voronoi diagram

for the obstacle space is prolided with the input, it can be implemented to run in

O(n) time and space. (See Figure 9.)

PROOF. To verify that the algorithm always halts, observe that all recursive

calls are made on a face with a number of edges on its perimeter that is at least

one less than the number of edges on the perimeter of the face of the current

call. Algorithm 3.2 is initially called with s as the first argument and the

primary face of the obstacle space as the second argument.

To verify that the algorithm always transforms the obstacle space into a

single-source data structure, it suffices to show that for each recursive call

SPACE( x, F) it is always true that the shortest path from any point in F to s

must pass through x. For the recursive calls of Step (2), this follows directly

from Lemma 3.2. For the recursive calls of Step (3), we observe that the

shortest path between x and 2 must follow the edges of the perimeter

connecting x and i?.

We now consider the running time of the algorithm. If we exclude the time

spent on crosscut and extend operations, the running time of the algorithm is

proportional to the number of new edges introduced (by the crosscut and

extend operations); since either a new crosscut or extend edge forms a triangle

for the primary face (and the new edge can be “charged” to the vertex of this

triangle that is not common to this new edge) m- the new edge passes through

two vertices of F (and since edges can never cross, only a linear number of

pairs can be connected).

Let us now consider the implementation of the crosscut and extend opera-

tions. The obvious implementation is to simply follow the faces of the triangu-

8In fact, every triangle will have exactly one exit point, which is one of its three vertices.
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case 1, F’ is a triangle with vertices z, y, and z: UPDATE(X,Y); UPDATE(X,Z):

case 2, A vertex y adjacent to z (on perirneter(F’)) is acute w.r.tll

a) Compute crosscut(z, y, F) and let:

‘u := Cross.ji?-st(z, y, F)

v := crossJast(z, y, F)

FP := primary face of crosscut(z, y, F)

F, := secondary face of mosscut(z, y, F)

b) Add Ci”OSSCUt(Z, y, ~P) to G

c) SPACE(Z, F,)

d) for each induced face F, of crosscut(x, y, F’) do begin

UPDATE(X,U);

SPACE(U, F,);

end

e) SPACE(Z, FP)

case 3, Both vertices adjacent to z (on perirneter-(~)) are obtuse w r.t. F:

a) 2:=z; y:=dock(t, F)

while (y is obtuse w.r t. F) do begin

UPDATE(2,Y)

it:=y; y:=clock(;, F)

end

b) while (i #z) do begin

while (2 is not 180 degrees w.r.t. F) do begin

Proceed exactly as with case 2 except use.

2 for x

extend for crosscut

ex.ftrst for cross-first

ex-fast for crosslast

end

2 := c-dock(i, F)

end

c) SPACE(Z, F)

FIG. 9. Algorithm 3.2 —SPACE(X, F) single-source, shortest path algorlthm, without Islands.

lation or Voronoi diagram. That is, by following the line segment from x to z

through the faces, we will discover all obstructing vertices and edges, and hence

be able to compute the crosscut or extend path to be tangent to the vertex or

edge that protrudes most towards y. The problem with this is that the number

of vertices and edges that we encounter in this process may be large (possibly

O(n)). The key observation is that these are vertices and edges that we will. at

some point, have to incorporate anyway, so that we can simply process them as

they are encountered. That is. we can modify Algorithm 3.2 as it has been

presented thus far, so that each computation of a crosscutor extend operation

is implemented via a sequence of recursive calls. For example, Figure 10

depicts six vertices. A through F that might be encountered in crosscut( X, F),

where F denotes the single face defined by Figure 10 less than the dashed

lines; here, Case 2 of Algorithm 3.2 would expand to:

UPDATE( X, A): SPACE( .4, F~ )

UPDATE(A, B); SPACE( B, Fc )

SPACE( .%’. F{))
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FIG. 10. Vertices encountered in a crosscut operation.

SPACE( X, FE)

UPDATE( X, E); SPACE( E, F,)

SPACE(E, F=)

SPACE( X, FY)

A “visibility stack” must be maintained in order to compute in 0(1) time the

first component in a call to space; for example, when vertex C is encountered

in Figure 10, we must be able in O(1) time to find vertex B, the first vertex on

a minimal path back to X, before making the call SPACE( 1?, Fc ). The visibility

stack for the operation crosscut( X, F), in Figure 10 would be manipulated as

follows:

PUSH(X)

PUSH(A)

PUSHS and corresponding POP’s when computing SPACE(A, F1j )

PUSH(B)

PUSH’s and corresponding POP’s when computing SPACE( B. Fc )

PUSH(C)

POP(C)

POP(B)

POP(A)

PUSH’s and corresponding POP’s when computing SPACE(X, F~)

PUSH(D)

POP(D)

PUSH’s and corresponding POP’s when computing SPACE(X, F,, )

PUSH(E)

PUSH’s and corresponding POP’s when computing SPACE( E. FF)

PUSH(F)

POP(F)

PUSH’s and corresponding POP’s when computing SPACE(E, F=)

Since each vertex is placed on the visibility stack at most once, the total time

for maintaining the visibility stack is 0(n).
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4. Island Merging

The approach of the last section for when no islands are present was to start at

the source vertex and “grow” outward to triangulate the obstacle space. As this

process progresses, the source point effectively moves, so that at any point in

time, the minimal length path from the source to any point in an as yet

unexplored region of the obstacle space goes through a unique “virtual” source

vertex. However, when islands are present, it is not clear which way to go

around them. Recall that we let k denote the number of islands in the obstacle

space (and that the enclosing wall counts as one of the islands).

In this section we present an algorithm that connects the islands to produce

an obstacle space with no islands but with as many as O(k) “virtual” source

points. The island merging algorithm computes the shortest path from the

source to all vertices of the obstacle space; the next section will discuss how the

data structure produced by the island merging algorithm can be triangulated so

that shortest paths to points in the obstacle space that are not vertices can also

be calculated.

Definition 4.1. A path P between two points x and y in an obstacle space

O with source point s and virtual source points s, “.” s~ is safe if for any point

p of O, there is a minimal length path between p and s that is allowed to pass

through virtual source points but does not cross P (however, p may intersect

P).

LEMMA 4.1. Let P be a shortest path between the sources and some point p ill

an obstacle space O. Then for any two points x and y on P, the path (x, v ) is safe.

PROOF. Assume the contrary: that is, suppose that there is a point p in O

for which there is no shortest path to s that does not cross (x, y). Let Q be a

shortest path between q and s; going from q to s along Q, let a be the first

point (excluding q) that is in (x, y) and going from a to s on Q let b be the

first point (excluding a) that is in P (it may be that b = s). Then, the path

constructed by going from p to a along P, from a to b along Q, and then from

b to s along P is shorter than going from a to s along P, which contradicts P

being a minimal length path between p and s.

The idea behind the island merging algorithm to be presented shortly is to

successively link the islands of the obstacle space together with safe paths. The

following lemma provides the mechanism for doing this.

LEMMA 4.2. Gi6’eil an obstacle space O consisting of an enclosing wall W

together with a single island I such that the source Lertexs is along the perinleter of

I, assuming that a triangulation or a Voronoi diagram for O is prolided with the

i?~put, then it is possible to compute in 0(n) time a safe path P betwt?efl s and some

point w of W.

PROOF. A simple approach for finding such a path P is to first find a vertex

L’ of I and a vertex w of W such that L’ and w are mutually visible, form the

planar map 6 by adding the line segment (L, w) to O (by construction this line

segment cannot cross any edges of O), and then run Algorithm 3.2 to compute

a minimal length path P in ~ from s to w. Because w is an endpoint of the

edge (u, w), P cannot cross ( LI, w) in 6. Hence, P is also a minimal length path

between s and w in O, and by Lemma 4.1, it follows that P is safe.

Furthermore, the time to compute P k O(n), provided that the vertices LI and
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w can be found in 0(n) time. This can be done by letting ~) be a leftmost

vertex of 1 (taking u to be any point on the convex hull of 1 will do) and then

using the triangulation or Voronoi diagram to identify a vertex w of W that is

visible from u. Finding a leftmost vertex of 1 can be done in 0(n) time by

simply examining all vertices of 1 and selecting the one with smallest horizon-

tal coordinate.

Algorithm 4.1 (Figure 11) is the island merging algorithm. As depicted in

Figure 12, it takes as input an obstacle space and a source point and produces

as output the obstacle space together with a set of k safe line segments that

cause the obstacle space to be a single straight-line planar map.

LEMMA 4.3. Assuming that procided with an obstacle space O is a triangula-

tion or a Voronoi diagram, Algorithm 4.1 uses time 0( kn) and space 0(n) to

augment O with a set of at most k safe paths that cause O to become a single

planar map.

PROOF. By Lemma 4.1, the path P added in Step (1) must be safe. In

addition, each of the iterations of the while loop of Step (4) adds a safe path

and leaves OCU, as a connected planar map. Analysis of the running time goes

as follows: Using Lemma 4.2, Step (1) can be done in 0(n) time. Step (2) can

be done in O(1) time. Step (3) can be done in O(n) time. Hence, it suffices to

verify that each of the at most k – 1 iterations of the while loop of Step (4) can

be done in 0(n) time. Step (A) can be done in 0(1) time. By applying Lemma

4.2 and then Algorithm 3.2, Step (B) can be done in O(n) time; although the

data structure is not a single generalized polygon, in this step, Algorithm 3.2 is

only being applied to a portion of the data structure that is (the territory

between p and the virtual source points). Note also that the construction of

Algorithm 3.2 that is outlined in the proof of Theorem 3.3 is easily modified to

work when a triangulation or Voronoi diagram for O is used in place of the

one for OC,,,. Step (C) can be done in O(n) time by traversing the triangulation

for Voronoi diagram. The data structure updates of Step (D) can easily be

done in O(n) time.

THEOREM 4.1. GiL’en an obstacle space together with its Voronoi diagram and

a source point s, assuming that a triatqydation or a Voronoi diagram for the

obstacle space is prooided with the input, a shortest path data structure fors to all

uertices of the obstacle spacey can be computed in 0( kn ) time and 0(n) space.

PROOF. First, Algorithm 4.1 (island merging algorithm) can be run. Second,

we can label each vertex of the obstacle space with weight infinity. Third, for

each virtual source point, we can run Algorithm 3.2 (single-source shortest

paths without islands) and update all vertices reachable from that source

point.]’)

COROLLARY 4.1 a. Assuming that a triangulation of a Voronoi diagram for the

obstacle space is provided with the input, the single-source, single-destination

problem can be soked in O(kn ) time and O(n) space.

‘That is, each vertex of the obstacle space will be correctly labeled with its d( ) and M ) values but

there is no guarantee that these values can be used to compute shortest pduIs fur arbitrmy points

of the plane in the obstacle space.

l’)The obvious implementation of this third step takes time 0( ,kn) (which suffices for this proof);

however, this can be done more efficiently by maintaining a priority queue and running Algorithm

3.2 in parallel in a breadth-first fidshion from all of the virtual source points.
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(1) Imtialize Om, to be the subset of the obstacle space consisting of the enclosing wall W together with

the island 1 containing the source point s. If O 1s two components (i.e., f # ~), then let P be a shofi~t

path between s and some vertex v of W and add P to 0, where ~ IS the portion of P that does not

intersect I or W.

(2) Initialize the set of virtual source points S to be the ~urce point and ass]gn the source weight 0

(3) Initialize O,s/~~~ to be all islands that are not in O@,.

(4) while (O,~lan& M not empty) do begin

(A) Let I be any island of O,s[m& and let v be one of its vertices

(B) Compute tbe shortest path P from v to the source in 0~, (which may pass through wrtual source

points); do this by computing the shortest paths from v to all wrtual source points (and then add

in the weights of the virtual source points to determine which path is sbort=t).

(C) Going from s to v along P, let z be the first point that P intersects a vertex or edge of an island I

of o,=~and, (it could be that z is v and 1 = 1). Going from z to s along P, let y be the first Point

that is a vertex of Om, and let ~ be the sub-path of P consisting of the line segment (z, y)

(D) Modify the data structure aa follows

●

0

●

end

Remove 1 from O,=ian*.

Add P and ~ to Ow,.

if u is not m S then add g to S (wezght(y) = distance to s along P)

FIG. 11. Algorithm 4. I—Island-merging algorithm.

FIG. 12. Island merging.

~\

PROOF. This follows directly from the

alternate approach that is a bit simpler than

to proceed as follows. Given a source point

above theorem. In addition, an

the proof of the above theorem is

s, we can first run Algorithm 4.1.

Then, given any destination point t, we ~an run Algorithm 3.2 (the single-source

shortest path algorithm without islands) with t as the source point to compute

the shortest path from t to all virtual source points that are reachable from t.

Finally, the best of these at most k possible paths can be chosen (i.e.> add the

length of these paths to the weights of their respective virtual source points to

determine which one is best).
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FIG. 13. A style.

5. The Single Source Problem

The construction of the last section does not, in general, fully triangulate the

plane to yield a solution to the single-source shortest path problem. Instead, it

may leave a number of untriangulated regions with virtual source points along

their border. The following definition introduces the notion of a “flower” data

structure that contains quadratic curves that are ridge points between portions

of these regions with different shortest paths back to the source. This defini-

tion and the lemmas following it provide the machinery to triangulate such

regions. Before proceeding, it may help the reader to look ahead to Figures 13,

14, and 15 to get an idea of where we are heading.

Dejlnition 5.1. A stamen is a connected straight-line planar map whose

perimeter consists of the union of a finite set of polygons such that any two of

these polygons intersect at most a single vertex. A vertex on the perimeter of

this stamen that is acute with respect to the external face is a critical vertex.

Critical vertices have weights associated with them (which in practice will be

the distance between this critical vertex and the source). A stamen must have

the property that cyclic traversal of its critical points (as defined by the

ordering induced by the perimeter of the stamen) produces a (not necessarily

convex) polygon, called the periant}z. An anther of a stamen is a critical vertex

together with the two consecutive edges of the perimeter of the stamen that
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FIG. 14. An outward-growing flower.

FIG. 15. An inward-growing flower.

are incident to this critical point; note that the two anthers can share a

common critical point and at most one common edge. Two anthers are said to

be comecuti[e if no critical point of any other anther lies between the critical

points of these anthers when traversing the perimeter of the stamen. The

anthers partition the perimeter into convex paths called the petals of the

stamen, that connect two consecutive anthers. A outward growing ~Zower is a

planar map that consists of a stamen together with a lattice of one dimensional

curves, called s~les.

As shown in Figure 13, each style is a sequence of quadratic curves that is

constructed as follows: Initially, for each petal, a style originates from the point

on the petal, called the base of the style, that is equal distance from either of

the petal’s associated anthers (i.e., the geometric distance to each anther added
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to the weight of the anther is the same). The points on the style are those for

which the minimum distance to the portion of the petal on one side of the base

is the same as the minimum distance to the other side of the petal. Each style

is terminated at the first point that it intersects another style or the stamen.

For each such intersection point, a new style is originated based on the two

anthers to either side of the anthers delimiting the styles forming the intersec-

tion point. This process is repeated until no new intersection points are

introduced.

We leave it to the reader to verify that styles are well defined and that the

number of curves that compose a given style is no more than the number of

vertices on the corresponding petal. Furthermore, a “joint” point that connects

curve c1 to curve c1 + 1 of a given style can be located by projecting one of the

edges of the petal until it intersects c1.

The head of a style is one of the following points:

—If the style is finite, then the head is the other end from the base.

—If the style is infinite and has no joints (it consists of a single quadratic

curve), then the head of the style is the base.

—If the style is infinite and has at least one joint, then the head is the last

joint (traveling away from the base).

Given a style s with head h and base b that separates two critical vertices v ~

and L)~, the bounding pseado-tn”angle for s is the polygon formed from the

following edges:

—The line segment (h, x), where x is the first line segment on the shortest

path from h to LI ~, and the line segment (h, Y), where x is the first line

segment on the shortest path from h to LJZ;these two line segments form the

peak of the bounding pseudo-triangle.

—The portion of the petal defined by L* and Uz between x and y; this is

called the base of the bounding pseudo-triangle.

Even though the base of a bounding pseudo-triangle is not in general a line

segment, it is convenient to think of the base as a line-segment and we shall

henceforth refer to a bounding pseudo-triangle as simply a bounding triangle.

Figure 14 illustrates an outward growing flower with eight petals and eight

anthers (critical points are circled); the dashed lines are the bounding triangles.

Definition 5.2. An inward growingflower is defined in a similar fashion to an

outward growing flower except that the stamen surrounds the styles.

Figure 15 illustrates an inward growing flower.

Fact 5.1 (Facts about Bounding Triangles). The reader may verify the

following facts about bounding triangles:

(1) The bounding triangles of two styles that share a common endpoint share a

common edge.

(2) A given style cannot intersect the bounding triangle of another style

(except at its endpoint).

(3) The base of a bounding triangle can contain at most one virtual source

point; that is, the base of a bounding triangle consists of a sequence of at

most 2 convex paths.
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LEMMA 5.1. Giuen a stamen of size m with h anthem, the styles for tile

corresponding flower can be constructed in 0( i~m] time.

PROOF. Our basic approach is to make h – 1 passes; on each pass, in O(m)

time another style is added. The constructions for inward and outward growing

flowers are virtually identical. The main difference is that with inward growing

flowers all styles must terminate by intersecting another style or by intersecting

the stamen, whereas with outward growing flowers, a style may end as a

semi-infinite simple quadratic curve; in either case, we say that the style

terminates. Going clockwise, let the il anthers be labeled al “”. al,. We start by

constructing the style that is determined by a, and aj. call it S1, until it

terminates. Next, we extend the style determined by az and a3, call it Sz, until

it terminates. If Sz terminates by intersecting SI at a point xl, then delete the

portion of s, extending outward from xl and grow Sz outward from xl (based

on the anthers al and a3) until it terminates. At stage i, the style s, that is

determined by a, and a, + 1 is grown outward until either it terminates or

intersects some style s,, 1 s j < i, at a point x,; the portion of s, extending

outward from x, is removed and then s, is extended outward from x, until it

terminates. The key observation to verify that each phase can be computed in

0(m) time is when a style is being “grown, “ it is only necessary to check for

intersection with the stamen and with at most two bounding triangle edges:

given Fact 4.1, intersection with a bounding triangle edge implies intersection

with the corresponding style (and the section of this style that is intersected can

be determined by traversing the style).

Given the notion of an inward growing flower, it is possible to resolve the

“holes” left by the construction of the last section.

THEOREM 5.1. Assuming that a triangulation or a Voronoi diagram for the

obstacle space is prol’ided witil the input, tile single-source shortest path problem

can be soked in O(kn) time and 0(n) space.

PROOF. After applying the construction of the last section, the obstacle

space is fully triangulated except possible for at most k/2 regions whose

borders form stamens: 11 the anthers of these stamens are virtual source points.

We can now apply the construction of Lemma 5.1 to build flowers in these

regions, Next, the peaks of all bounding triangles can be added and then the

faces can be fully triangulated, as illustrated in Figure 13. Note that here we

may need to have two exit vertices associated with a triangle T; one that is a

vertex of T and one that is a vertex of one of the three triangles that share an

edge with T.

THEOREM 5.?. Assuming that a triangulatiot~ or a Voronoi dia~mn for the

obstacle space is prol’ided w’itil the input, tile utlbo[mded single-source shortest patil

problem can be so[l’ed in O(kn) time and O(n) space.

PROOF. We can first surround the obstacle space with a triangle and apply

Theorem 5.1. Second, we can remove the triangle and all edges incident to its

vertices to form a stamen. Third, we can apply the construction of Lemma 5.1

to build an outward growing flower. Given an outward growing flower, such as

‘ ‘Actually. such a region may not quite satisfy the defimt]on of stamen m that a petal may have at

most one acute vertex (i.e., the petal consists of sequence two convex paths). However, this is

easily accommodated m the construction of Lemma 5.1.
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FIG. 16. Partitioning the exterior region

the one shown in Figure 16, we can add the bounding triangle peaks and rays

emanating from each petal vertex, shown by dashed lines in Figure 16 (this

introduces new virtual source points). The areas inside the bounding triangles

can be handled as in Theorem 5.1. In addition, we can assume that the

perianth is convex, since points inside its convex hull can be handled using

Theorem 5.1. With the addition of the dashed lines, the exterior region is now

divided into sectors and point location can be done as follows: Each sector is

either bounded by two rays (which meet at a virtual source point) or it is

bounded by two rays and a bounding triangle peak and contains a simple

quadratic curve (with no joints) that emanates from the head of the bounding

triangle. Given a point p in the infinite region, we can determine in which

sector it lies with a simple binary search procedure that works as follows:

Let r-l “”” r,m be the rays listed in clockwise order. Construct the path P

consisting of rl, r,~/2, and a line segment connecting the source points that

these two rays emanate from (this is a chord across the perianth). Now by

checking three inequalities, we can determine on which side of P the point

p lies. Next, we choose either the ray rW,/4 or r3m/4 (depending on which

side of P that p lies), without loss of generality suppose it is r,,, /4, and then

check which side of rm,\4 p is on. This process continues for at most log n

steps.
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Once the sector containing p has been determined, we are done if it is a

sector not containing a curve (we can travel via a straight line to the associated

virtual source point) or we must first check one quadratic inequality to

determine on which side of the quadratic curve that p lies.

6. Minimal Mol’ement of a Disc

It is known how to compute efficiently whether the movement of a disk

between two points in the presence of polygonal obstacles is possible [O’Dunla-

ing et al. 1983], and Chew [1985] presents a O(nl log n) algorithm for shortest

path movement of a disc. In this section, we show how to generalize the

construction of the last section (with only a 0(1) increase in time and space) to

movement of a disc. Our approach is to first show how an obstacle space O can

be “padded” to form a new space D,(O) in which movement of a point is

equivalent to movement of a disc of radius r in O. After this has been done, we

show how to modify the construction of the last section to handle more general

classes of obstacle spaces that arise in the transformation of O to D,(0).

Definition 6.1. For a real r >0, D, denotes the planar closed disc of radius

r; D, is said to be located at a point p if its center is p. Let p be a point in an

obstacle space O with source point s. We say p is r-acceptable with respect to

O if when D. is located at p its boundary does not include any point in a face

of an island of O. We say p is r-reachable with respect to O and s if D, can be

continuously translated from s to p without being located at a point that is not

r-acceptable with respect to O. A path between s and p is r-legal with respect

to O and s if it passes only through points that are reachable with respect to O

and s. The set of r-critical points with respect to O, D,(O), is the set of points

which are positions of D, when the boundary of D, contains at least one point

that lies on an edge of O, but no point that lies on an edge of O is contained in

the interior of D,. In addition, we let D.(O, s) denote the subset of D,(0)

consisting of those points that are r-reachable with respect to O and s. When

r, O, and s are understood, we simply talk about a point being acceptable,

reachable, or critical and a path being legal.

LEMMA 6.1. The edges of D.(O) are either straight line segments or urc

segments of radius r. D,( O. s) forms a planar map such that D,( O, s) together

with the points of its internal faces is the set of reachable points.

PROOF. Left to the reader.

LEMMA 6.2. GiL)en an obstacle space O of size n together with its Voronoi

diagram V and a real r >0, D).( O, s) can be constructed in 0(n) time.

PROOF. lt suffices to show how to construct D,(0). since any “closed off”

areas of D,(O) (all regions except the one containing the source) can be

discarded to get D,(O, s). In O(H) time, we can decompose O into a set of S of

convex polygons that intersect only on their boundaries; call each element of S

a fimdamentalpolygon. For each H in S, let

C~ = {p: p is equal distance between a point of H and a point of O – H]

be the fundamental cycle for H. Then C~ forms a cycle of edges of V (and it

must be that the interior of C~ contains the interior of H). Let X~ be the set

of points in D,(O) that are in C~ or its interior. Then:
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Hence, it suffices, for each H in S, to compute X,,. Let Cfi, el, ..., e,.,, = e{)

be the edges of C}] listed in clockwise order where e, = (u,, 1,). Let a, and b,

be the points of H that are the closest to u, and r, respectively. Since H is

convex, then either al = b, or a, and b, lie on the same edge of H. Let R, be

the region enclosed by the simple cycle formed by e, and the (possibly trivial)

line segments (a, b), (a, u), and (b, u). Let:

x HJ =R,nX~.

Then since

m,,

‘H = (J x/./,>
1=1

it suffices to compute X1l,l for each i. Since et is a quadratic curve segment

and hence convex, XH,l can consist of at most two curves, both of which are

either straight-line segments (parallel and at distance r from ( a, b)) or arc

segments (of radius r centered at a = b).

Figure 17 depicts an Island consisting of three fundamental polygons and it

shows the curves CH and X~ for the middle fundamental polygon H; in

addition, for a “typical” region Ri are labeled the points u,, u,, al, b,, x,, and y,

(with the subscript i dropped to make the figure more readable).

Thus, XH can be computed in time O(m~ ) by simply considering each R,

and computing XH,, in O(1) time. Since each edge in V appears in at most two

different fundamental cycles, it must be that

HES

is O(n) and hence the total time to compute D,(O) is 0(n).

Definition 6.2. A rounded triangle is a cycle consisting of three curves, where

each curve consists of an arc segment connected to and tangent to a line-

segment connected to and tangent to an arc segment. Furthermore, each arc

segment that forms one of the segments of an edge bends towards the interior

of the cycle; that is, if the arc segment is completed to a circle, then the

interior of this circle does not intersect the interior of the cycle.

Figure 18 is an example of a rounded triangle. Note that given any point in

the interior of a rounded triangle, it is possible in 0(1) time to compute the

minimal length path between this point and any of the three vertices of the

triangle.

We now generalize the definition of the single-source shortest path problem

to the problem of partitioning the obstacle space into rounded triangles that

allow us to compute in O(1) time for any point p inside such a triangle the

length of a minimal length pair for moving a disc from p back to the source.

Definition 6.3. The single-source shortest path problem for a disc is:

Input : A radius r >0 and an obstacle space O with source point s.

Outuut: A ulanar mau O+ with the following uro~erties:.
(1)

(2)

(3)

The s~ze of O + is linear in t~~ sije of O and 0+ contains O as a subset.

All internal faces of O+ are rounded triangles.

Associated with each vertex of O+ are two values:

d(x): The length of the shortest r-legal path from x to s (this length is cc

if no such r-legal path exists).

b(x): A vertex x+ on the perimeter of the face containing x that is along

a shortest r-legal path from x to s.
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FIG. 17. Padding a fundamental polygon.

FIG. 18. A rounded tr]angle.

Associated with each rounded triangle T of O+ arc two cut ~ernces such

that for every point x that is contained in (or lies on the border of) T, the

shortest path f~om x to the source s can be obtained by computing in 0(1)

time a shortest path from x to the closest exit vertex, and then following b( )

pointers back to .s.That is, the length of a shortest path between s and x can

be computed in 0(1) time and the path itself can be constructed in time

proportional to the number of edges it contains.

The unbounded single-source shortest path problem for a disc is like the

regular single-source shortest path problem for a disc except that the obstacle

space taken does not have an enclosing wall and the data structure is aug-

mented with a set of simple non-intersecting quadratic curves that partition the
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FIG. 19. Arounded triangulation for a disc.

infinite region of the Diane: Doint location for these infinite regions (to find

between w~ich pair of ~urves ~ point lies) can be done in O(log n~time and the

minimal legal distance from any point in the infinite region can be computed in

O(1) time.

THEOREM 6.1. Assuming that the Voronoi diagram is prol)ided with the input,

the single-source shortest path problem for a disc can be sokled in 0( kn) time and

O(n) space.

PROOF. From Lemma 6.2, h follows that movement of disc in an obstacle

space can be transformed to the problem of moving a point in a rounded

obstacle space; hence, it suffices to consider the single-source shortest path

problem for a rounded obstacle space. The only difference between this

problem and the standard one is that two edges that used to come together at

an obtuse vertex now come together at an arc segment. It is straightforward to

generalize the crosscut and extend operations to place edges tangent to these

arcs. As an example, Figure 19 shows an obstacle space (thick lines), the

padding performed by Lemma 6.2 (thin lines), and the partitioning into

rounded triangles from a source s (dashed lines).

One remaining detail is point location; since we have not produced a true

triangulation of the space, we can’t directly invoke a standard point location

algorithm. However, we can add additional edges to the obstacle space so that
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all arcs are enclosed by a triangle. Given this, the space will be completely

triangulated, but each triangle may contain one arc segment and one 0(1 )-

degree curve segment (from the flower construction). Since both the arc and

the curve segment are convex, this partitions the triangle into at most five

regions and hence once it is determined in which triangle a point lies (in

O(log n) time), in 0(1) additional time the proper region within the triangle

can be determined.

The proof of the above theorem can easily be applied to slightly more

general obstacle spaces that are described by the following definition:

Definition 6.4. A rounded obstacle space is like a regular obstacle space

except that obstacle edges are allowed to be arc segments or line-segments:

however, if an edge if an arc segment, it must bend towards the interior of the

obstacle space. ‘z

COROLLARY (5. 1a. The abole theorem applies elen for rounded obstacle spaces.

PROOF. Movement of a point follows directly from the proof of the above

theorem. For movement of a disc, observe that even starting with a rounded

obstacle space, the padding performed by (the straightforward generalization

of) Lemma 6.2 is still a rounded obstacle space.
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