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Abstract We present a practical algorithm for finding minmmum-fength paths between points in
the Euclidean plane with (not necessarily convex) polygonal obstacles. Prior to this work, the best
known algorithm for finding the shortest path hetween two pomts in the plane required
QUn” log n) tme and (X #*) space. where » denotes the number of obstacle edges. Assummg that
a triangulation or a Voronoi diagram for the obstacle space is provided with the nput (if is nut,
either one can be precomputed in O(n log n) time), we present an (N4n) time algorithm, where &
denotes the oumber of “islands™ (connected components) 1n the obstacle space, The algorithm
uses only O(n) space and, given a source point s, produces an O n) size data structure such that
the distance between s and any other point x 1n the plane {x 15 not necessarily an obstacle vertex
Or a point on an obstacle edge) can be computed in O{1) hme. The algorithm can also be used to
compute shortest paths for the movement of a disk (so that optimal movement for arbitrary
objects can be computed to the accuracy of enclosing them with the smallest possible disk).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algonithms, Performance

Additional Kcy Words and Phrases: Fuclideun plane, munimal movement problem, motion
planning, mover's problem. polygonal obstacles, robotics, shortest path

1. Introduction

The classical mover’s problem is: Given a source point and a destination point
along with a set of polyhedral obstacles in two or three dimensional Euclidean
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space, can a given polyhedron (often referred to as a sofa or piano) be moved
from the source point to the destination point without coming in contact with
any of the obstacles. The generalized mouver’s problem allows the object to be
moved to consist of a collection of polyhedra freely linked together at various
vertices. Both the classical and generalized mover’s problems have obvious
applications to robotics motion planning problems and have been of interest to
researchers in this field for some time (e.g., Lozano-Perez [1980], Lozano-Perez
and Wesley [1979], Wangdahl et al. [1974], Vaccaro [1974]; see Schwartz et al.
[1987] for further references). Although the generalized mover’s problem is
PSPACE-hard [Reif 1979] even for planar reachability of simple linkages
[Hopcroft et al. 1982; Joseph and Plantinga 1985], the classical mover’s prob-
lem can be solved in polynomial time [Reif 1979; Schwartz and Sharir 1981,
1982]. In this paper, we consider the mwo-dimensional minimal movement
problem; that is, the problem in two dimensions of determining the shortest
possible movement, if one exists.

We limit our attention to the movement of a single point in the plane.
Besides its relevance to computational geometry, this apparently simple prob-
lem is fundamental to more general versions of the minimal movement
problem. For example, we show how our algorithm can be used to compute
minimal movement for a disk; this gives rise to minimal movement computa-
tions for arbitrary objects and obstacles, to within the accuracy obtainable by
enclosing the object with the smallest possible disk and enclosing obstacles
with polygons (in fact, our construction allows polygons to have rounded
corners of arbitrary radius). One application of the efficient computation of
minimal movement is to robotics. For example, consider a warehouse with a
robot server that must repeatedly proceed from a source point (the service
window) to various points in the warehouse (to retrieve objects).

Throughout this paper, we let n denote the size of the obstacle space (the
number of obstacle edges) and k denote the number of islands in the obstacle
space (number of connected components). For many practical problems, it may
be that k& < n. For example, the layout of a particular floor in an office
building may be such that the hallways divide the layout into only a few distinct
connected components even though it requires hundreds of thousands of edges
to accurately describe the layout.

A straightforward algorithm for finding shortest paths in the plane is to
construct a graph containing one vertex for each obstacle vertex and one edge
for each pair of obstacle vertices that are mutually visible; (this graph has
O(n?) edges and can be constructed in O(n* log n) time and O(n*) space) and
then apply Dijkstra’s single-source shortest path algorithm for graphs;' this
approach is used by Sharir and Schorr [1984] to derive an O(n* log n) algo-
rithm for finding the Euclidean shortest path between two points that avoids a
set of polygons (Larson and Li [1981] use this type of approach to derive a
quadratic algorithm for finding the rectilinear shortest path between two points
that avoids a set of polygons and present algorithms of greater than quadratic

"For a graph ot [V] vertices and |E| cdges, standard implementations of Dijkstra’s algorithm
require O(|V[7) or O(E[log|El} time {(c.g., sece Aho et al. [1983]). Using Fibonacci heaps, a
slightly better asymptotic worst-case bound of O(|E| + [V|log |[V']) can be obtained [Fredman and
Tarjan 1984]. In addition, specialized algorithms may be appropriate for restricted classes of
graphs (e.g., Frederickson [1984] and Sedgewick and Vitter [1984]).
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complexity for multiple origin-destination pairs). More recent approaches that
have quadratic complexity include Welzl [1985], Asano et al. [1986], and
Hershberger and Guibas [1988], Mitchell and Papadimitriou [1985] survey
techniques for computing shortest paths, and the paper of Mitchell and
Papadimitriou [1991] addresses shortest paths through weighted regions and
contains additional references to recent work. Clarkson [1987] considers ap-
proximation algorithms.

It should be noted that more efficient algorithms are known for some special
cases. Chazelle [1982] presents an O(n log n) algorithm for finding the Eu-
clidean shortest path between two points inside a simple polygon; this algo-
rithm is linear when combined with the linear time triangulation algorithm for
a polygon of Chazelle [1990]. Guibas et al. [1986] present an algorithm for the
Euclidean single-source multiple destination problem inside a simply polygon;
this algorithm is also linear when combined with Chazelle [1990]. Lee and
Preparata [1984] present an O(n log n) algorithm for finding the Euclidean
shortest path between two points that avoids n disjoint parallel line segments.
de Rezende et al. [1985] and Wu et al. [1987] present an O(n log n) algorithm
for finding the rectilinear shortest path between two points that avoids a set of
rectangles (with sides parallel to the coordinate axes). Clarkson et al. [1987]
present an O(n log n?) algorithm and Mitchell [1987] presents an O(n log n*/
loglog n) algorithm for finding the rectilinear shortest path between two points
that avoids a set of polygons.

Prior to this work, it has been open as to whether more efficient algorithms
exist for the general Euclidean single-source multiple destination problem with
polygonal obstacles. In this paper, we present an efficient algorithm for the
case when the number of islands is small. Our algorithm assumes that along
with the input is provided either a triangulation or a Voronoi diagram for the
obstacle space.” Both of these data structures can be precomputed in O(n log n)
time. Since they are both common general purpose data structures, we have
chosen to leave the time for their computation out of the statement of our
running times so that our results are independent of improved algorithms for
either 03ne of these data structures that might be available for specific classes
of data.

Given that a triangulation or a Voronoi diagram for the obstacle space is
provided with the input, we present an O(kn) time algorithm for the Euclidean
plane (with arbitrary polygonal obstacles) that uses only O(n) space and, given
a source point, produces a data structure that is a triangulation of the plane
with the following properties:

(1) The data structure uses O(n) space.

(2) Point location queries can be answered in O(log n) time.

(3) Given the location of a point x (x is not necessarily an obstacle vertex or a
point on an obstacle edge), the (Euclidean) distance from x to the source
can be computed in O(1) time.

“We mean the Voronoi diagram of the edges of the obstacle space, often called the generalized
Voronoi diagram 1in the literature [Drysdale 1979; Kirkpatrick 1979; Yap 1984]; this is different
from one for the points of the obstacle space [Shamos 1975; 1978].

*For example, when there is only a single island, Chazelle [1990] presents a linear time
triangulation algorithm.
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(4) The minimal length path between the source and any point x in the plane
can be output in time proportional to the number of edges it contains (it
must be that any minimal length path consists of a sequence of at most
O(n) straight line segments).

The algorithm efficiently computes the shortest path between two points for
practical problems where k < n. In addition (and perhaps more importantly),
once the data structure has been constructed, a sequence of queries about the
distance of points from the source can be answered efficiently.

The data structure produced by this algorithm works as follows: For a set of
polygonal obstacles S and a source point s, we augment S with a set of O(n)
line segments to form S¥, a (planar) triangulation of the finite region of the
plane that contains S. Associated with each vertex ¢ of this triangulation are
the values:

d(v) = length of a minimal length path between s and v,
b(r) = avertex adjacent to v in §* that is along a minimal path between
s and v.

Hence, after S* has been constructed, for a vertex v it is possible in O(1) time
to determine the length of a minimal path between s and ¢ (and by using the
b() pointers, a minimal length path between s and ¢ can be output in time
proportional to the number of edges it contains). Furthermore, for each point
x of the plane that is not a vertex of S*, a minimal length path between s and
x can be obtained by placing a straight line segment between x and the vertex
v of the triangle T containing x such that d(x, v) + d(v) is minimum, and
then following b() pointers back to s (actually, for some of the algorithms we
present, it may also be necessary to compare d(x, v) + d(v) with d(x, w) +
d(w) where w is one of the vertices of the three triangles that shares an edge
with T').

Hence, if it is known in which triangle a point p lies, then the length of a
minimal length path between s and p can be determined in O(1) time. If it is
not known in which triangle p lies, then this can first be determined in
O(log n) time. That is, it is possible to augment our data structure in O(n log 1)
time (the augmented structure is linear in the size of the original one) so that
point location queries (“Which triangle contains p?”) can be answered in
O(log n) time.*

We assume the standard RAM model® of computation augmented with real
variables, where the following operations on real variables can be performed in
constant time:

(1) Tests of the form x > 0.
(2) Arithmetic operations of the form x +y, x —y, x *y, and x/y.
(3) The square root operation.

This assumption provides a simple machine independent environment in which
to study practical constructive computational geometry problems, similar as-
sumptions are commonly used by other authors in this area. In practice, the

*Such an algorithm for point location in a triangulated plane was first given by Lipton and Tarjan
[1977] and a more practical algorithm to do this is given by Kirkpatrick [1983].
>See, for example, Aho et al. [1983].
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time required for the operations specified above, as well as the precision that
can be expected, depends on the hardware being used.

Section 2 contains basic definitions, including the definition of an obstacle
space. An obstacle space can be thought of as a number of islands contained in
a room with arbitrary walls, as depicted in Figure 1; the dashed line shows a
shortest path between points 4 and B. The enclosing wall allows the notion of
an obstacle space to model practical problems where movement is restricted to
some finite area. Our algorithm can also handle the case where we are
interested in shortest paths from the source to all points of the (infinite) plane.
Section 3 examines the special case where there are no islands; the approach
used for this algorithm is central for our algorithm for the case when islands
are present. Section 4 presents an “island merging™ algorithm that solves the
single-source shortest path problem (with islands) for all vertices of the
obstacle space. Section 5 augments the data structure developed in Section 4 to
handle the single-source shortest path problem for all points of the plane.
Section 6 generalizes the results of Section 5 to the minimal movement of a
disc.

2. Basic Definitions

Figure 1 depicts the general flavor of an obstacle space: a straight-line planar
map that consists of a polygonally bounded area, containing polygonal obsta-
cles. We assume the reader to be familiar with formal definitions of standard
notions such as a planar map, faces of a planar map, how planar maps are
represented, etc. For additional background on computational geometry, the
reader may refer to the textbooks of Preparata and Shamos [1988] and
Edelsbrunner [1987]. Before precisely defining the single-source shortest path
problem for an obstacle space, we must define the notion of an obstacle. Not
only may polygons (a straight-line planar map such that each vertex has degree
exactly 2) be nonconvex, but we allow objects that are not really polygons in the
strict sense, because degenerate l-dimensional objects are allowed to “hang”
off polygons.

Definition 2.1. A generalized polygon is a straight-line planar map @ such
that there exists an internal face F of Q, called the primary face of , such
that all edges of Q lie along the perimeter of F or along the perimeter of the
external face.

Figure 3 shows two generalized polygons: One is the line segment XY and
the other is everything else in the figure (which contains the line segment XY
in its primary face).

Definition 2.2. An obstacle space O is a finite set of generalized polygons
satisfying the following properties:

(1) No two members of O intersect.

(2) Exactly one member of O, called the enclosing wall of O, contains all of
the other members of O in its primary face.

(3) All members of O that are not the enclosing wall, called islands, are
generalized polygons and no island contains any other islands of O in any
of its internal faces.
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FiG. 1. An obstacle space.

Any point x of the plane that is not in the exterior face of the enclosing wall
of O and not in the internal face of an island of O is referred to as a point
of O. Note that a vertex of O is a point of O, but a point of O may not be a
vertex. A shortest path between two points s and ¢ of O is a minimal length
1-dimensional curve that does not cross an obstacle edge.

Figure 1 is an example of an obstacle space; the dashed line shows a shortest
path between points 4 and B. Figure 2 is an example of an obstacle space that
contains exactly one island (the interior of the island has been shaded to make
it easier to distinguish). Figure 3 is also an example of an obstacle space that
contains exactly one island (the line segment XY).

Several aspects of our definition of an obstacle space should be noted:

—Movement that follows obstacle edges is allowed.

—Both the enclosing wall and islands may be arbitrarily nonconvex; Figure 2
depicts an enclosing wall that “spirals” with a single island.

—Obstacles with degenerate features (features with zero width), as depicted by
Figure 3, are allowed; in fact, a single point is a legal island.

—for the parameter k, the enclosing wall counts as an island, as does the
source point if it is not part of the enclosing wall or an island.
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FiG. 3
tures.
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F1G. 2. Nonconvex obstacles.

Obstacles with degenerate fea-

We are now ready to formally define the single-source shortest path problem.

Definition 2.3. The 2-dimensional single-source, multiple destination shortest
path problem, which we henceforth refer to as simply the single-source shortest
path problem, is:

Input:
Output:

An obstacle space O and a source point s (s is a point of O).

A straight-line planar map O%, called a single source data structure with the

following properties:

(1) The size of O™ is linear in the size of O, and O™ contains O as a subset.

(2) All internal faces of O™ are triangles (i.e., a face bounded by exactly three
edges).

(3) Associated with each vertex ¢ of O" are the two values:

d(v): The length of the shortest path from v to s.
b(r): A wvertex v' that is adjacent to ¢ and along a shortest
path from v to s.

(4) Associated with each triangle T of O* are two vertices p and ¢, called the
exit vertices of T.° such that for every point x of the plane that is contained in
(or lies on an edge of) T, the shortest path from x to the source is obtained
by determining which of d(x, p)+ d(p) and d(x, ¢q) + d(g) is smaller,
travelling in a straight line from x to that vertex, and then following 5()
pointers back to s. That is, the length of a shortest path between s and x can
be computed in O(1) time and the path itself can be constructed in time
proportional to the number of edges it contains.

®One of the exit vertices is of the three vertices of 7. The other exit vertex (which is not needed
for much of what we shall do) is a vertex of one of the three triangles that shares an edge with 7.
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The unbounded single-source shortest path problem is like the regular
single-source shortest path problem except that the obstacle space does not
have an enclosing wall and the data structure for the output is augmented with
a set of simple nonintersecting quadratic curves that partition the infinite
region of the plane; point location for these infinite regions (to find between
which pair of curves a point lies) can be done in O(log n) time, the length of a
shortest path between s and any point in the infinite region can be computed
in O(1) time, and the path itself can be constructed in time proportional to the
number of edges it contains.

The following well-known fact guarantees that the above definition is well-
founded:

If s and t are two points in an obstacle space O, then all minimal length
1-dimensional curves between s and t consist of a sequence of straight-line
segments whose endpoints (with the possible exception of s and t) are vertices of
O. Furthermore, if O contains no islands, then the shortest path from s to t is
unique.

We close this section with a technical note concerning “triangles” like the
face F shown in Figure 4 (face F is bounded by five vertices; however, the 4
vertices a, x, y, and d are colinear). One way to deal with such faces is to store
with each edge (u, v) on the adjacency list of u in an obstacle space O the
value reach(u, v), which is the farthest vertex that can be reached by traveling
from u in a straight line in the direction of v along the edges of O (e.g., in
Figure 4 reach(a, x) = reach(x, y) = reach(y, d) = d). Another way is to fully
triangulate by adding additional edges (e.g., in Figure 4, the additional edges
(¢, x) and (¢, y) would be added). In this alternate representation, given a
point z inside a face F, the shortest path from z to the source point is
obtained by going in a straight line from x to one of the three vertices
associated with the face in the original structure that contains F (this line may
cross some of the new edges, but no “real” edges) and then following b()
pointers as usual. The precise way in which faces like face F in Figure 4 are
handled is not important, and we shall not address this issue further.

3. Single-Source Problem without Islands

In this section, we present an O(nlogn) algorithm for the single-source
shortest path problem with no islands. We approach this problem by first
presenting an O(nlog n) algorithm for the single-source, single-destination
shortest path problem without islands, where a destination vertex ¢ is specified
in addition to the source vertex s and the problem is to find a shortest path
from s to ¢ that avoids obstacles. Although, as mentioned in the introduction,
this simpler problem is already known to be solvable in O(n log n) time, the
algorithm we present now uses techniques that motivate the more complicated

algorithm for the single-source problem without islands that is presented later
in the next section.

We start by describing the shortcut operation. The idea is as follows: Given a
vertex y along the enclosing wall of the obstacle space O that forms an acute
angle with its neighboring vertices x and z, if neither the source s or the
destination ¢ is in the triangle defined by x, y, and z, then we might as well
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FiG 4. A pseudo-triangle.

FACEF

replace the portion (x, y, z) of the enclosing wall by (x, z) and then proceed to
solve the smaller problem. The problem with doing this is that the straight line
from x to z may be obstructed by other portions of the enclosing wall of O, as
depicted in Figure 5. In this case, the best we can do is to bend around the
intruding walls as closely as possible; this is shown as a dashed line in Figure 5.
We now formally define shortcur as the operation of replacing the path (x, y,
z) by the dashed line shown in Figure 5. In fact, the following definition allows
the slightly more general case where x and z are not necessarily the endpoints
of the edges adjacent to y.

Definition 3.1. Let § be the perimeter of an internal face /' of a planar
map, let y be an acute vertex of § (with respect F), and let x and z be points
that lie along the each of the two edges adjacent to x (i.e., x and z are on
different edges adjacent to y, x # y, and z # y). Let C be the convex hull of
the vertices x, z, and all those vertices of § that are in the interior of the
triangle defined by x, y, and z. Then C is either a path from x to z consisting
of colinear line segments, in which case shortcut(x, y, z) is defined to be C, or
C is a cycle formed from two disjoint paths from x to z, in which case
shortcut(x, y. z) is defined to be the closest of these two paths to x (ie., if C
were added to S, shortcut(x, y, z) would be the path that formed a face with x
and was homotopic to the path (x, v, z)). Let short_first(x, y, z) be the vertex
of shortcur(x, v, z) that is closest to x, and shori_last(x, v, z) be the vertex of
shortcut(x, y, z) that is closest to z. If short_first(x, y, z) = z (and hence
short_last(x, y, z) = x) or short_first(x, y, z) and shori_lust(x, y, z) are the
same, then the basis of shortcut(x, y, z) is defined to be empty; otherwise, it is
defined to be the path in S between short—first(x, y, z) and short_last(x, y, z)
(actually. there are two such paths: we mean the one that does not contain (x,
short_first(x, y, z)) and (short_lust(x, y, z), z)). The set dead(x, y, z) is
portion of the plane defined by the union of the following two sets:

(1) The line segment (x, v) less the point x and the line segment (y, z) less
the point z, together with the region defined by the cycle formed by (x, y),
(v, z), and shortcut(x, y, z).

(2) The edges of the basis of shortcut(x, v, z) not in shorfcut(x, y, z) together
with the regions defined by these edges and the shorfcur path.

To reduce notation, we shall simply write shori_cut(y) and dead(y) when it
is the case that x and z are the vertices of § that are adjacent to y (the full
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FiG. 5. The shortcut operation.

generality of shortcut(x, y, z) where x and z are arbitrary points on the edges
adjacent to y will not be used until later in this section). The following lemma
gives a formal characterization of how portions of the obstacle space that
intersect dead(y) may be “‘discarded” when computing a shortest path.

LemMMA 3.1. If y is an acute vertex in an obstacle space without islands such
that dead(y) does not contain the source s or the sink t, then dead(y) is disjoint
from any minimal path.

PrOOF. Assume the contrary, and suppose that a shortest path P from s to
¢ intersected dead(y) where y was in an acute vertex such that dead(y) does
not contain s or f. The only way that P can enter dead(y) is to cross
shortcut(y) at some point ¢ and the only way that P can leave dead(y) is to
cross shortcut(y) at some other point b (it could be that a = b). Replacing the
portion of P in dead(y) by the path from a to b along shortcut(y) would result
in a shorter path from s to ¢ than P, contradicting the fact that P is a shortest
path from s to t.

Given the above lemma, Algorithm 3.1 (Figure 6) is a simple strategy for
computing the shortest path between a source vertex s and the destination
vertex ¢t of an obstacle space O (without islands); it works by repeatedly
replacing an acute vertex y (where dead(y) does not contain s or ¢) and its two
incident edges by shorrcut(y) (i.e., the portion of O that intersects dead(x) is
“thrown out”). Before Algorithm 3.1 begins, there is a single generalized
polygon (the enclosuring wall, with no islands). After the algorithm finishes,
there is just a single path (a minimal length path between s and 7). During the
execution of the algorithm there is, in general, a sequence of generalized
polygons connected by portions of a minimal length path. That is, replacing an
acute vertex y (and the two edges incident to y) by shortcut(x) may split a
generalized polygon into two generalized polygons connected by shortcut(y);
whenever this happens, one or both of the vertices adjacent to y are enqueued
if they are not already present in the queue and they have become acute as a
result of the shortcut operation (and their dead regions do not contain s or ¢).

THEOREM 3.1.  Algorithim 3.1 halts after at most n iterations of the while loop
and produces a minimal length path between s and t.

ProOF. First, to verify that Algorithm 3.1 always halts after at most n
iterations of the while loop, observe that exactly one vertex is dequeued on
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1. Enqueue all acute vertices y of O such that dead(y) does not contain s or ¢.

2. while (queue is not empi_v) do begin
a. Dequeue a vertex y and let z and z be its adjacent vertices
b. P := shortcut(y)
¢. Replace (z,y), (v, 2), and the basis edges by P

d. if {basis of P is not empty) then begin
if (z is acute, not in queue, and s, ¢ not in dead(x)) then enqueue
if (= is acute, not in queue, and s,¢ not in dead{z)) then enqueue z

end

Fi6. 6. Algorithm 3.1—Single-source, single-destination, without islands.

each iteration and this vertex can never be added again (since it is deleted from
O in Step (2c) of the while loop). Furthermore, the only vertices that can go
from being obtuse to acute as a result of Step (2c) are x and z. Since Step (2c)
never disconnects O, by Lemma 3.1, it must be that the straight-line planar
map produced by Algorithm 3.1 together with its internal faces must contain all
minimal length paths between s and . Thus, we are left with showing that
Algorithm 3.1 always transforms O to a single path; that is, the resulting planar
map has no internal faces. Assume that this is not the case. Since the shortcut
operation has the effect of transforming a polygon to two polygons connected
by a simple path, it must be that the straight-line planar map M that remains
after the execution of Algorithm 3.1 consists of a sequence of polygons
connected by simple paths (vertices along a polygon or along a path have
degree 2, vertices where paths connect to polygons have three, and a polygon
has at most two vertices of degree 3). Furthermore, M ‘must consist of at most
two polygons connected by a single path because if a polygon did not contain
either s or ¢, it would have at least on acute:vertex that could be added to the
queue.” Since either s or ¢ or both must be a vertex of a polygon in~“M °

(otherwise, M would be a simple path), without loss of generality assume that s -

is a vertex of a polygon P in M. If M is not a single polygon, then for the
remainder of this proof, let ¢ denote the vertex of degree 3 of P. Let P, and P,
be the two distinct paths from s to ¢ in P and, if they exist, let p, be the first
acute vertex on the path P, from s to ¢ and p, be the first acute vertex on the
path P, from s to ¢t (p, and p, cannot be s or ¢). It can’t be that both P, and
P, contain acute vertices because it is not possible for 7 to be in both dead(p,)
and dead(p,). Hence, without loss of generality, assume that P, has no acute
vertices (except possibly s or ¢) and dead(p,) contains ¢. But then the path
from p, to ¢ in P (that does not pass through s) must contain at least one
additional acute vertex that could have been added to the queue; a contradic-
tion.

Algorithm 3.1 is not efficient (a straightforward implementation requires
linear space and quadratic time). In addition, even if Step (c) is modified to be

¢. Add the line segments of P to O.

(so that the algorithm never deletes any edges of 0), it may not be possible to
augment the resulting planar map to form a legal single-source data structure
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as defined by Definition 2.3. Nevertheless, the use of the shortcut operation in
Algorithm 3.1 motivates the approach that we shall now take for the single-
source shortest path problem (without islands).

We first define two “conservative” versions of the shorfcur operation, called
crosscut and extend; essentially, these two operations take just the first edge of
shortcut and extend it until it hits an obstacle. Given the crosscut and extend
operations, the algorithm proceeds by starting at s and expanding outward to
triangulate the obstacle space; that is, initially the planar map is the original
obstacle space without islands, at the completion of the algorithm we are left
with a planar map such that the primary face has been triangulated, and at any
point during the execution of the algorithm there is a connected region of the
primary face that is not triangulated.

Definition 3.2. Let § be the perimeter of an internal face F of a planar
map. Let x be a vertex of S such that a vertex y adjacent to x is acute (with
respect to F). Let z be the other vertex adjacent to y (i.e., z # x). Define:

cross_first(x, y, z) = short_first(x, y, z)

If shortcut(x, y, z) has an empty basis, then define crosscut(x, y, z) to be (x,
z). Otherwise, crosscut(x, y, z) is the line segment obtained by extending the
segment (x, cross—first(x, y, z)) from cross_first(x, y, z) until it intersects the
line segment (y, z); this point of intersection is cross_last(x, y, z). Since the
points x and y together with the face F uniquely determine the point z, we
use the notation crosscut(x, y, F), cross_first(x, y, F), and cross_last(x, y, F)
interchangeably with the above notation. The crosscut operation divides the
original face F into primary face (the face containing the vertex y on its
perimeter), the secondary face (the face containing the vertex x on its perime-
ter), and possibly a number of additional faces called induced faces. If
cross—first(x, y, z) and cross_last(x, y, z) are the same, then there are no
induced faces. If there are vertices of the obstacle space in addition to
cross—first(x, y, z) that lie on the line segment from x to cross_last(x, y, z),
then there will be more than one induced face.

Figure 7 illustrates the crosscut operation where a = cross_first(x, y, z),
¢ = crosslast(x, y, z), and point b just happens to be colinear with « and c,
causing there to be more than one induced face; note that this is a case where
the technical note at the end of Section 2 applies. Figure 8 is similar to Figure
7 for the extend operation that we shall define next. The extend operation is
virtually identical to the crosscut operation except that the line segment
introduced is restricted to be at least colinear with the edge incident to x that
is not (x, y).

Definition 3.3. Let S be the perimeter of an internal face I of a planar
map. Let x be a vertex of § such that a vertex y adjacent to x is acute (with
respect to F). LEt z be the other vertex adjacent to y (i.e., z # x). Let w be
the other vertex adjacent to x (i.e., w # y). If the (infinite) line defined by the
two points w and x does not intersect the line segment (y, z), then define
extend(x, y, z) = crosscut(x, y, z) (and define ex_first(x, y, z) and ex_last(x, y,
z) to be cross—first(x, y, z) and cross_last(x, y, z), respectively). Otherwise, let
£ denote this intersection point and define extend(x, y, z) = crosscut(x, y, 2)
(and define ex_first(x, y, z) and ex_last(x, y, z) to be cross—first(x, y, Z) and
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cross—lasi(x, y, 2), respectively). Since the points x and y together with the
face F uniquely determine the point z, we use the notation extend(x, y, F),
ex—firsi(x, y, F), and ex_last(x, y, F) interchangeably with the above notation.
As with the crosscut operation, the extend operation divides the original face F
into the primary face (the face containing the vertex y on its perimeter), of this
extend operation, the secondary face (the face containing the vertex x on its
perimeter), and a number of induced faces.

LEMMA 3.2.  Let x be a vertex on the perimeter of a face F such that a vertex y
adjacent to x is acute. Then the shortest path between x and any point p in F may
have points in common with at most one of the primary, secondary, and induced
faces of crosscut(x, y, F) and at most one of the primary, secondary, and induced
faces of extend(x, y, F).

PrOOF. This should be clear from inspection of Figures 6 and 7.

Algorithm 3.2 is the procedure SPACE" which takes two arguments, a vertex
x and a face F; it will always be the case that the shortest path from any vertex
on F to the source point must pass through x. Given an obstacle space O
(without islands) and source vertex s, the initial call is SPACE(s, F), where F
is the primary face of O. In order to simplify the presentation, Algorithm 3.2
makes use of the following procedure:

procedure UPDATE (x,vy) :

d(y) = d(x) + [(x, Il
bly) =x

"After the writing of this paper, a similar approach was considered 1n Guibas et al. [1986].
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When a minimal path between s and a vertex x is known and it has also
been determined that a minimal path between s and a vertex y passes through
x, UPDATE(x, y) is called. Algorithm 3.2 works as follows: Case 1 is the
degenerate condition where F is a simple triangle; and so it suffices to simply
update points y and z and return. In Case 2, there is an acute vertex adjacent
to x to which we can apply the crosscut operation; so the crosscut edge is
added in Step (2b) and then the algorithm is called recursively on the sec-
ondary, induced, and primary faces in Steps (2¢), (2d), and (2¢). In Case 3
(where there is not an acute vertex adjacent to x), Step (3a) searches along the
perimeter of F from x to find an acute vertex, Step (3b) works its way back to
x by applying the extend operation to each vertex, and Step (3¢) calls the
algorithm recursively on the portion of F that remains.

Each triangle of the data structure produced by Algorithm 3.2 can have
exactly one of its three vertices designated as the exit vertex (there is no need
here for more than one exit vertex per triangle). We have not bothered to
include this labeling with the presentation of Algorithm 3.2. In fact, in practice,
it may be simpler not to bother with the labeling and when given a point x in
the interior of a triangle defined by the three vertices (v, v,, v5), compute the
minimum of d(x, v,) + d(v,), d(x, v,) +d(v,), and d(x, v,y) + d(v,) to
determine through which vertex of the triangle to exit.

THEOREM 3.2.  Algorithm 3.2 (when called with x as the source and F as the
primary face) always halts and transforms the obstacle space into a single-source
data structure.’ In addition, assuming that a triangulation or a Voronoi diagram
for the obstacle space is provided with the input, it can be implemented to run in
O(n) time and space. (See Figure 9.)

PrOOF. To verify that the algorithm always halts, observe that all recursive
calls are made on a face with a number of edges on its perimeter that is at least
one less than the number of edges on the perimeter of the face of the current
call. Algorithm 3.2 is initially called with s as the first argument and the
primary face of the obstacle space as the second argument.

To verify that the algorithm always transforms the obstacle space into a
single-source data structure. it suffices to show that for each recursive call
SPACE(x, F) it is always true that the shortest path from any point in F to s
must pass through x. For the recursive calls of Step (2), this follows directly
from Lemma 3.2. For the recursive calls of Step (3), we observe that the
shortest path between x and X must follow the edges of the perimeter
connecting x and X.

We now consider the running time of the algorithm. If we exclude the time
spent on crosscut and extend operations, the running time of the algorithm is
proportional to the number of new edges introduced (by the crosscut and
extend operations); since either a new crosscut or extend edge forms a triangle
for the primary face (and the new edge can be “charged” to the vertex of this
triangle that is not common to this new edge) or the new edge passes through
two vertices of F (and since edges can never cross, only a linear number of
pairs can be connected).

Let us now consider the implementation of the crosscut and extend opera-
tions. The obvious implementation is to simply follow the faces of the triangu-

*In fact, every triangle will have exactly one exit point, which is one of its three vertices.
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case 1, F is a triangle with vertices z, y, and z: UPDATE(x,y); UPDATE(x,z):

case 2, A vertex y adjacent to z (on perimeter(F)) is acute w.r.t.F:
a) Compute crosscut(z,y, F) and let:
u := cross_first{z,y, F')
v = cross_last(z,y, F)
F, = primary face of crosscut(z,y, F)
F, := secondary face of crosscut(z,y, F)

b) Add crosscut(z,y, ;) to G
¢) SPACE(z, F)

d) for each induced face F, of crosscut(z,y, F) do begin
UPDATE(x,u);
SPACE(w, F,);
end

e) SPACE(z, F)

case 3, Both vertices adjacent to z (on perimeter(F)) are obtuse wr.t. F:

a) &:=z; y:=clock(Z, F)
while (y is obtuse w.r t. ) do begin
UPDATE(Z,y)
Zi=y; yi=clock(z, F)
end
b) while (% # z) do begin
while (2 is not 180 degrees w.r.t. F') do begin
Proceed exactly as with case 2 except use.
z for z
extend for crosscut
ez_first for cross_first
ez last for cross_last
end
Z = c_cock(z, F)
end

¢) SPACE(z, F)

FI1G. 9. Algorithm 3.2—SPACE(x, F) single-source, shortest path algorithm, without 1slands.

lation or Voronoi diagram. That is, by following the line segment from x to z
through the faces, we will discover all obstructing vertices and edges, and hence
be able to compute the crosscut or extend path to be tangent to the vertex or
edge that protrudes most towards y. The problem with this is that the number
of vertices and edges that we encounter in this process may be large (possibly
O(n)). The key observation is that these are vertices and edges that we will. at
some point, have to incorporate anyway, so that we can simply process them as
they are encountered. That is, we can modify Algorithm 3.2 as it has been
presented thus far, so that each computation of a crosscut or extend operation
is implemented via a sequence of recursive calls. For example, Figure 10
depicts six vertices. A through F that might be encountered in crosscut( X, F),
where F denotes the single face defined by Figure 10 less than the dashed
lines; here, Case 2 of Algorithm 3.2 would expand to:

UPDATE(X, A). SPACE(A4, Fy)

UPDATE(A, B); SPACE(B, F,)
SPACE(X. F)
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Y

FiG. 10.  Vertices encountered in a crosscut operation.

SPACE(X, F;)

UPDATE(X, E); SPACE(E. F,)
SPACE(E, F,)

SPACE(X. FY)

A “visibility stack” must be maintained in order to compute in O(1) time the
first component in a call to space; for example, when vertex C is encountered
in Figure 10, we must be able in O(1) time to find vertex B, the first vertex on
a minimal path back to X, before making the call SPACE(B, F,). The visibility
stack for the operation crosscut( X, F), in Figure 10 would be manipulated as
follows:

PUSH(X)

PUSH(A4)

PUSH’s and correspondig POP’s when computing SPACE(A, Fp)
PUSH(B)

PUSH's and corresponding POP’s when computing SPACE(B, F.)
PUSH(C)

POP(C)

POP(B)

POP(A)

PUSH’s and corresponding POP’s when computing SPACE(X, F,)
PUSH(D)

POP(D)

PUSH’s and corresponding POP’s when computing SPACE(X, F,,)
PUSH(E)

PUSH’s and corresponding POP’s when computing SPACE(E. F;.)
PUSH(F)

POP(F)

PUSH’s and corresponding POP’s when computing SPACE(E, F,)

Since each vertex is placed on the visibility stack at most once, the total time
for maintaining the visibility stack is O(n).
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4. Island Merging

The approach of the last section for when no islands are present was to start at
the source vertex and “grow” outward to triangulate the obstacle space. As this
process progresses, the source point effectively moves, so that at any point in
time, the minimal length path from the source to any point in an as yet
unexplored region of the obstacle space goes through a unique “virtual” source
vertex. However, when islands are present, it is not clear which way to go
around them. Recall that we let k& denote the number of islands in the obstacle
space (and that the enclosing wall counts as one of the islands).

In this section we present an algorithm that connects the islands to produce
an obstacle space with no islands but with as many as O(k) “virtual” source
points. The island merging algorithm computes the shortest path from the
source to all vertices of the obstacle space; the next section will discuss how the
data structure produced by the island merging algorithm can be triangulated so
that shortest paths to points in the obstacle space that are not vertices can also
be calculated.

Definition 4.1. A path P between two points x and y in an obstacle space
O with source point s and virtual source points s, -+ s, Is safe if for any point
p of O, there is a minimal length path between p and s that is allowed to pass
through virtual source points but does not cross P (however, p may intersect
P).

LEMMA 4.1.  Let P be a shortest path between the source s and some point p in
an obstacle space O. Then for any two points x and y on P. the path (x, y) is safe.

PrROOF. Assume the contrary; that is, suppose that there is a point p in O
for which there is no shortest path to s that does not cross (x, y). Let Q be a
shortest path between g and s; going from g to s along Q. let a be the first
point {excluding ¢) that is in (x, y) and going from a to s on Q let b be the
first point (excluding «) that is in P (it may be that b = s). Then, the path
constructed by going from p to a along P, from a to b along Q, and then from
b to s along P is shorter than going from a to s along P, which contradicts P
being a minimal length path between p and s.

The idea behind the island merging algorithm to be presented shortly is to
successively link the islands of the obstacle space together with safe paths. The
following lemma provides the mechanism for doing this.

LEMMA 4.2. Given an obstacle space O consisting of an enclosing wall W
together with a single island I such that the source vertex s is along the perimeter of
1, assuming that a triangulation or a Voronoi diagram for O is provided with the
input, then it is possible to compute in O(n) time g safe paith P between s and some
point w of W.

PROOF. A simple approach for finding such a path P is to first find a vertex
v of I and a vertex w of W such that v and w are mutually visible, form the
planar map O by adding the line segment (¢, w) to O (by construction this line
segment cannot cross any edges of 0), and then run Algorithm 3.2 to compute
a minimal length path P in O from s to w. Because w is an endpoint of the
edge (v, w), P cannot cross (v, w) in O. Hence, P is also a minimal length path
between s and w in O, and by Lemma 4.1, it follows that P is safe.
Furthermore, the time to compute P is O(n), provided that the vertices ¢ and
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w can be found in O(n) time. This can be done by letting ¢ be a leftmost
vertex of I (taking v to be any point on the convex hull of I will do) and then
using the triangulation or Voronoi diagram to identify a vertex w of W that is
visible from v. Finding a leftmost vertex of I can be done in O(n) time by
simply examining all vertices of I and selecting the one with smallest horizon-
tal coordinate.

Algorithm 4.1 (Figure 11) is the island merging algorithm. As depicted in
Figure 12, it takes as input an obstacle space and a source point and produces
as output the obstacle space together with a set of k safe line segments that
cause the obstacle space to be a single straight-line planar map.

LEMMA 4.3.  Assuming that provided with an obstacle space O is a triangula-
tion or a Voronoi diagram, Algorithm 4.1 uses time O(kn) and space O(n) to
augment O with a set of at most k safe paths that cause O to become a single
planar map.

ProOF. By Lemma 4.1, the path P added in Step (1) must be safe. In
addition, each of the iterations of the while loop of Step (4) adds a safe path
and leaves O,,, as a connected planar map. Analysis of the running time goes
as follows: Using Lemma 4.2, Step (1) can be done in O(n) time. Step (2) can
be done in O(1) time. Step (3) can be done in O(n) time. Hence, it suffices to
verify that each of the at most k — 1 iterations of the while loop of Step (4) can
be done in O(n) time. Step (A) can be done in O(1) time. By applying Lemma
4.2 and then Algorithm 3.2, Step (B) can be done in O(n) time; although the
data structure is not a single generalized polygon, in this step, Algorithm 3.2 is
only being applied to a portion of the data structure that is (the territory
between p and the virtual source points). Note also that the construction of
Algorithm 3.2 that is outlined in the proof of Theorem 3.3 is easily modified to
work when a triangulation or Voronoi diagram for O is used in place of the
one for O,,,. Step (C) can be done in O(n) time by traversing the triangulation

for Voronoi diagram. The data structure updates of Step (D) can easily be
done in O(n) time.

THEOREM 4.1.  Given an obstacle space together with its Voronoi diagram and
a source point s, assuming that a triangulation or a Voronoi diagram for the
obstacle space is provided with the input, a shortest path data structure for s to all
vertices of the obstacle space® can be computed in O(kn) time and O(n) space.

ProoF. First, Algorithm 4.1 (island merging algorithm) can be run. Second,
we can label each vertex of the obstacle space with weight infinity. Third, for
each virtual source point, we can run Algorithm 3.2 (single-source shortest
paths 1(\))vithout islands) and update all vertices reachable from that source
point.

COROLLARY 4.1a.  Assuming that a triangulation of a Voronoi diagram for the
obstacle space is provided with the input, the single-source, single-destination
problem can be solved in O(kn) time and O(n) space.

°That is, each vertex of the obstacle space will be correctly labeled with its d() and h() values but
there is no guarantee that these values can be used to compute shortest paths for arbitrary points
of the plane in the obstacle space.

YFhe obvious implementation of this third step takes time O(kn) (which suffices for this proof);
however, this can be done more efficiently by maintaining a priority qucue and running Algorithm
3.2 in parallel in a breadth-first fashion from all of the virtual source points.
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(1) Initialize Ocy, to be the subset of the obstacle space consisting of the enclosing wall W together with
the island I contaming the source point s. If O 1s two components (i.e., I # W), then let P be a shortest
path between s and some vertex v of W and add P to O, where P 1s the portion of P that does not
intersect I or W.

(2) Initialize the set of virtual source points S to be the source point and assign the source weight 0
(3) Initialize O,51angs to be all islands that are not in Oy,
(4) while (Oisiands 1 not empty) do begin

(A) Let I be any istand of Oysiands and let v be one of its vertices

(B) Compute the shortest path P from v to the source in Oy (which may pass through virtual source
points); do this by computing the shortest paths from v to all virtual source points (and then add
in the weights of the virtual source points to determine which path is shortest).

(C) Going from s to v along P, let = be the first point that P intersects a vertex or edge of an island [
of Oygtands (it could be that z isﬂv and [ = I). Gomng from z to s along P, let y be the first pont
that is a vertex of Oeur and let P be the sub-path of P consisting of the line segment (z,y).

(D) Modify the data structure as follows-
o Remove I from Orgiands-
e Add P and [ to Ocyr.
e if yis not 1n $ then add y to S (weight(y) = distance to s along P)

end

FiG. 11.  Algorithm 4.1—Island-merging algorithm.

FiG. 12. Island merging.

ProoF. This follows directly from the above theorem. In addition. an
alternate approach that is a bit simpler than the proof of the above theorem is
to proceed as follows. Given a source point s, we can first run Algorithm 4.1.
Then, given any destination point ¢, we can run Algorithm 3.2 (the single-source
shortest path algorithm without islands) with ¢ as the source point to compute
the shortest path from ¢ to all virtual source points that are reachable from r.
Finally, the best of these at most k possible paths can be chosen (i.e., add the
length of these paths to the weights of their respective virtual source points to
determine which one is best).
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FiG. 13.  Asstyle.

5. The Single Source Problem

The construction of the last section does not, in general, fully triangulate the
plane to yield a solution to the single-source shortest path problem. Instead, it
may leave a number of untriangulated regions with virtual source points along
their border. The following definition introduces the notion of a “flower” data
structure that contains quadratic curves that are ridge points between portions
of these regions with different shortest paths back to the source. This defini-
tion and the lemmas following it provide the machinery to triangulate such
regions. Before proceeding, it may help the reader to look ahead to Figures 13,
14, and 15 to get an idea of where we are heading.

Definition 5.1. A stamen is a connected straight-line planar map whose
perimeter consists of the union of a finite set of polygons such that any two of
these polygons intersect at most a single vertex. A vertex on the perimeter of
this stamen that is acute with respect to the external face is a crifical vertex.
Critical vertices have weights associated with them (which in practice will be
the distance between this critical vertex and the source). A stamen must have
the property that cyclic traversal of its critical points (as defined by the
ordering induced by the perimeter of the stamen) produces a (not necessarily
convex) polygon, calied the perianth. An anther of a stamen is a critical vertex
together with the two consecutive edges of the perimeter of the stamen that
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FIG. 14.  An outward-growing flower.

FIG. 15.  An inward-growing flower.

are incident to this critical point; note that the two anthers can share a
common critical point and at most one common edge. Two anthers are said to
be consecutive if no critical point of any other anther lies between the critical
points of these anthers when traversing the perimeter of the stamen. The
anthers partition the perimeter into convex paths called the petals of the
stamen, that connect two consecutive anthers. A ourward growing flower is a
planar map that consists of a stamen together with a lattice of one dimensional
curves, called szyles.

As shown in Figure 13, each style is a sequence of quadratic curves that is
constructed as follows: Initially, for each petal, a style originates from the point
on the petal, called the base of the style, that is cqual distance from either of
the petal’s associated anthers (i.e., the geometric distance to each anther added
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to the weight of the anther is the same). The points on the style are those for
which the minimum distance to the portion of the petal on one side of the base
is the same as the minimum distance to the other side of the petal. Each style
is terminated at the first point that it intersects another style or the stamen.
For each such intersection point, a new style is originated based on the two
anthers to either side of the anthers delimiting the styles forming the intersec-
tion point. This process is repeated until no new intersection points are
introduced.

We leave it to the reader to verify that styles are well defined and that the
number of curves that compose a given style is no more than the number of
vertices on the corresponding petal. Furthermore, a “joint” point that connects
curve ¢, to curve ¢, + 1 of a given style can be located by projecting one of the
edges of the petal until it intersects c,.

The head of a style is one of the following points:

—If the style is finite, then the head is the other end from the base.

—If the style is infinite and has no joints (it consists of a single quadratic
curve), then the head of the style is the base.

—1If the style is infinite and has at least one joint, then the head is the last
joint (traveling away from the base).

Given a style s with head & and base b that separates two critical vertices v,
and p,, the bounding pseudo-triangle for s is the polygon formed from the
following edges:

—The line segment (h, x), where x is the first line segment on the shortest
path from % to v,, and the line segment (A, y), where x is the first line
segment on the shortest path from % to v,; these two line segments form the
peak of the bounding pseudo-triangle.

—The portion of the petal defined by v; and v, between x and y; this is
called the base of the bounding pseudo-triangle.

Even though the base of a bounding pseudo-triangle is not in general a line
segment, it is convenient to think of the base as a line-segment and we shall
henceforth refer to a bounding pseudo-triangle as simply a bounding triangle.

Figure 14 illustrates an outward growing flower with eight petals and eight
anthers (critical points are circled); the dashed lines are the bounding triangles.

Definition 5.2.  An inward growing flower is defined in a similar fashion to an
outward growing flower except that the stamen surrounds the styles.

Figure 15 illustrates an inward growing flower.

Fact 5.1 (Facts about Bounding Triangles). The reader may verify the
following facts about bounding triangles:

(1) The bounding triangles of two styles that share a common endpoint share a
common edge.

(2) A given style cannot intersect the bounding triangle of another style
(except at its endpoint).

(3) The base of a bounding triangle can contain at most one virtual source
point; that is, the base of a bounding triangle consists of a sequence of at
most 2 convex paths.
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LemMma 5.1. Given a stamen of size m with h anthers, the styles for the
corresponding flower can be constructed in O(hm) time.

PROOF. Our basic approach is to make 4 — 1 passes; on each pass, in O(m)
time another style is added. The constructions for inward and outward growing
flowers are virtually identical. The main difference is that with inward growing
flowers all styles must terminate by intersecting another style or by intersecting
the stamen, whereas with outward growing flowers, a style may end as a
semi-infinite simple quadratic curve; in either case, we say that the style
terminates. Going clockwise, let the /1 anthers be labeled a; - a,. We start by
constructing the style that is determined by a, and a,. call it s, until it
terminates. Next, we extend the style determined by a, and a,, call it s,, until
it terminates. If s, terminates by intersecting s, at a point x,, then delete the
portion of s, extending outward from x,; and grow s, outward from x, (based
on the anthers @, and a;) until it terminates. At stage i, the style s, that is
determined by a, and a, + 1 is grown outward until either it terminates or
intersects some style s, 1 <j <, at a point x,; the portion of s, extending
outward from x, is removed and then s, is extended outward from x, until it
terminates. The key observation to verify that each phase can be computed in
O(m) time is when a style is being “grown,” it is only necessary to check for
intersection with the stamen and with at most two bounding triangle edges:
given Fact 4.1, intersection with a bounding triangle edge implies intersection
with the corresponding style (and the section of this style that is intersected can
be determined by traversing the style).

Given the notion of an inward growing flower, it is possible to resolve the
“holes” left by the construction of the last section.

THEOREM 5.1.  Assuming that a triangulation or a Voronoi diagram for the
obstacle space is provided with the input, the single-source shortest path problem
can be solved in O(kn) time and O(n) space.

ProoOF. After applying the construction of the last section, the obstacle
space is fully triangulated except possible for at most k/2 regions whose
borders form stamens:'' the anthers of these stamens are virtual source points.
We can now apply the construction of Lemma 5.1 to build flowers in these
regions. Next, the peaks of all bounding triangles can be added and then the
faces can be fully triangulated, as illustrated in Figure 13. Note that here we
may need to have two exit vertices associated with a triangle 7'; one that is a
vertex of 7" and one that is a vertex of one of the three triangles that share an
edge with 7.

THEOREM 5.2.  Assuming that a triangulation or a Voronoi diagram for the
obstacle space is provided with the input, the unbounded single-source shortest path
problem can be solved in O(kn) time and O(n) space.

PROOF. We can first surround the obstacle space with a triangle and apply
Theorem 5.1. Second, we can remove the triangle and all edges incident to its
vertices to form a stamen. Third, we can apply the construction of Lemma 5.1
to build an outward growing flower. Given an outward growing flower, such as

”Actually. such a region may not quite satisfy the definition of stamen m that a petal may have at
most one acute vertex (i.e., the petal consists of sequence two convex paths). However, this is
casily accommodated 1n the construction ot Lemma 5.1.
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FiG. 16. Partitioning the exterior region.

the one shown in Figure 16, we can add the bounding triangle peaks and rays
emanating from each petal vertex, shown by dashed lines in Figure 16 (this
introduces new virtual source points). The areas inside the bounding triangles
can be handled as in Theorem 5.1. In addition, we can assume that the
perianth is convex, since points inside its convex hull can be handled using
Theorem 5.1. With the addition of the dashed lines, the exterior region is now
divided into sectors and point location can be done as follows: Each sector is
either bounded by two rays (which meet at a virtual source point) or it is
bounded by two rays and a bounding triangle peak and contains a simple
quadratic curve (with no joints) that emanates from the head of the bounding
triangle. Given a point p in the infinite region, we can determine in which
sector it lies with a simple binary search procedure that works as follows:

Let r, -+ r,, be the rays listed in clockwise order. Construct the path P
consisting of r|, r,, /2, and a line segment connecting the source points that
these two rays emanate from (this is a chord across the perianth). Now by
checking three inequalities, we can determine on which side of P the point
p lies. Next, we choose either the ray r, /4 or rym /4 (depending on which
side of P that p lies), without loss of generality suppose it is r,, /4, and then

check which side of r,, /4 p is on. This process continues for at most log n
steps.
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Once the sector containing p has been determined, we are done if it is a
sector not containing a curve (we can travel via a straight line to the associated
virtual source point) or we must first check one quadratic inequality to
determine on which side of the quadratic curve that p lies.

6. Minimal Movement of a Disc

It is known how to compute efficiently whether the movement of a disk
between two points in the presence of polygonal obstacles is possible [O’Dunla-
ing et al. 1983], and Chew [1985] presents a O(n* log n) algorithm for shortest
path movement of a disc. In this section, we show how to generalize the
construction of the last section (with only a O(1) increase in time and space) to
movement of a disc. Our approach is to first show how an obstacle space O can
be “padded” to form a new space D,(O) in which movement of a point is
equivalent to movement of a disc of radius » in O. After this has been done, we
show how to modify the construction of the last section to handle more general
classes of obstacle spaces that arise in the transformation of O to D(O).

Definition 6.1. For a real r > 0, D, denotes the planar closed disc of radius
r; D, is said to be located at a point p if its center is p. Let p be a point in an
obstacle space O with source point s. We say p is r-acceptable with respect to
O if when D, is located at p its boundary does not include any point in a face
of an island of O. We say p is r-reachable with respect to O and s if D, can be
continuously translated from s to p without being located at a point that is not
r-acceptable with respect to O. A path between s and p is r-legal with respect
to O and s if it passes only through points that are reachable with respect to O
and s. The set of r-critical points with respect to O, D,(O), is the set of points
which are positions of D, when the boundary of D, contains at least one point
that lies on an edge of O, but no point that lies on an edge of O is contained in
the interior of D,. In addition, we let D,(O, s) denote the subset of D,(O)
consisting of those points that are r-reachable with respect to O and s. When
r, O, and s are understood, we simply talk about a point being acceptable,
reachable, or critical and a path being legal.

LEMMA 6.1. The edges of DAO) are either straight line segments or arc
segments of radius r. D Q. ) forms a planar map such that DO, s) together
with the points of its internal faces is the set of reachable points.

PrROOF. Left to the reader.

LEMMA 6.2. Given an obstacle space O of size n together with its Voronoi
diagram V and a real r > 0, DO, s) can be constructed in O(n) time.

Proor. It suffices to show how to construct D,(O). since any “closed off”
areas of D,(0O) (all regions except the one containing the source) can be
discarded to get D,(O, s). In O(n) time, we can decompose O into a set of S of
convex polygons that intersect only on their boundaries; call each element of S
a fundamental polygon. For each H in §, let

Cy = {p: pis equal distance between a point of H and a point of O — H}

be the fundamental cycle for H. Then C,, forms a cycle of edges of ¥ (and it
must be that the interior of C,; contains the interior of H). Let X,, be the set
of points in D,(O) that are in C,, or its interior. Then:

D.(0)= U Xy.

HesS
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Hence, it suffices, for each H in S, to compute X,,. Let ¢y, e,...,e,, =¢;
be the edges of C},; listed in clockwise order where e, = (u,, v,). Let a, and b,
be the points of H that are the closest to i, and ¢, respectively. Since H is
convex, then either a, = b, or a, and b, lie on the same edge of H. Let R, be
the region enclosed by the simple cycle formed by e, and the (possibly trivial)
line segments (a, b), (a, u), and (b, v). Let:

Xy, =R, NX,.
Then since

gy

Xy = UXy,
1=1
it suffices to compute X;;, for each i. Since e, is a quadratic curve segment
and hence convex, X, can consist of at most two curves, both of which are
either straight-line segments (parallel and at distance r from (a,b)) or arc
segments (of radius r centered at a = b).

Figure 17 depicts an Island consisting of three fundamental polygons and it
shows the curves C,; and X, for the middle fundamental polygon H; in
addition, for a “typical” region R, are labeled the points u,, ,, a,. b,, x,, and y,
(with the subscript i dropped to make the figure more readable).

Thus, X,; can be computed in time O(m,) by simply considering each R,
and computing X, , in O(1) time. Since each edge in / appears in at most two
different fundamental cycles, it must be that

Y my

HeS
is O(n) and hence the total time to compute D,(O) is O(n).

Definition 6.2. A rounded triangle is a cycle consisting of three curves, where
each curve consists of an arc segment connected to and tangent to a line-
segment connected to and tangent to an arc segment. Furthermore, each arc
segment that forms one of the segments of an edge bends towards the interior
of the cycle; that is, if the arc segment is completed to a circle, then the
interior of this circle does not intersect the interior of the cycle.

Figure 18 is an example of a rounded triangle. Note that given any point in
the interior of a rounded triangle, it is possible in O(1) time to compute the
minimal length path between this point and any of the three vertices of the
triangle.

We now generalize the definition of the single-source shortest path problem
to the problem of partitioning the obstacle space into rounded triangles that
allow us to compute in O(1) time for any point p inside such a triangle the
length of a minimal length pair for moving a disc from p back to the source.

Definition 6.3. The single-source shortest path problem for a disc is:

Input: A radius r > 0 and an obstacle space O with source point s.
Quiput: A planar map O" with the following properties:
(1) The size of O7 is linear in the size of O and O7 contains O as a subset.
(2) All internal faces of O are rounded triangles.
(3) Associated with each vertex of O are two values:
d(x): The length of the shortest r-legal path from x to s (this length is o
if no such r-legal path exists).
b(x): A vertex x* on the perimeter of the face containing x that is along
a shortest r-legal path from x to s.



1008 I. A. STORER AND I. H. REIF

// \'h\
S

o T SN
S / ;T

/ TN
] VA
/ e
, 2

F16. 17. Padding a fundamental polygon.

FIG. 18. A rounded triangle.

(4) Associated with each rounded triangle 7 of O™ arc two exi vertices such
that for every point x that is contained in (or lies on the border of) 7. the
shortest path from x to the source s can be obtained by computing in O(1)
time a shortest path from x to the closcst exit vertex, and then following b()
pointers back to s. That is, the length of a shortest path between s and x can
be computed in O(1) time and the path itself can be constructed in time
proportional to the number of edges it contains.

The wunbounded single-source shortest path problem for a disc is like the
regular single-source shortest path problem for a disc except that the obstacle
space taken does not have an enclosing wall and the data structure is aug-
mented with a set of simple non-intersecting quadratic curves that partition the
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Fic. 19. A rounded triangulation for a disc.

infinite region of the plane; point location for these infinite regions (to find
between which pair of curves a point lies) can be done in O(log n) time and the
minimal legal distance from any point in the infinite region can be computed in
O(1) time.

THEOREM 6.1.  Assuming that the Voronoi diagram is provided with the input,
the single-source shortest path problem for a disc can be solved in O(kn) time and
O(n) space.

PrOOF. From Lemma 6.2, it follows that movement of disc in an obstacle
space can be transformed to the problem of moving a point in a rounded
obstacle space; hence, it suffices to consider the single-source shortest path
problem for a rounded obstacle space. The only difference between this
problem and the standard one is that two edges that used to come together at
an obtuse vertex now come together at an arc segment. It is straightforward to
generalize the crosscut and extend operations to place edges tangent to these
arcs. As an example, Figure 19 shows an obstacle space (thick lines), the
padding performed by Lemma 6.2 (thin lines), and the partitioning into
rounded triangles from a source s (dashed lines).

One remaining detail is point location; since we have not produced a true
triangulation of the space, we can’t directly invoke a standard point location
algorithm. However, we can add additional edges to the obstacle space so that
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all arcs are enclosed by a triangle. Given this, the space will be completely
triangulated, but each triangle may contain one arc segment and one O(1)-
degree curve segment (from the flower construction). Since both the arc and
the curve segment are convex, this partitions the triangle into at most five
regions and hence once it is determined in which triangle a point lies (in
O(log n) time), in O(1) additional time the proper region within the triangle
can be determined.

The proof of the above theorem can easily be applied to slightly more
general obstacle spaces that are described by the following definition:

Definition 6.4. A rounded obstacle space is like a regular obstacle space
except that obstacle edges are allowed to be arc segments or line-segments:
however, if an edge if an arc segment, it must bend towards the interior of the
obstacle space."”

COROLLARY 6.1a. The abouve theorem applies even for rounded obstacle spaces.

Proor. Movement of a point follows directly from the proof of the above
theorem. For movement of a disc, observe that even starting with a rounded
obstacle space, the padding performed by (the straightforward generalization
of) Lemma 6.2 is still a rounded obstacle space.
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