

 Shorthand Writing on Stylus Keyboard

Shumin Zhai Per-Ola Kristensson
IBM Almaden Research Center

650 Harry Road, San Jose, CA, USA
zhai@us.ibm.com

Department of Computer & Information Science
Linköping University, S-581 83, Sweden

perkr@ida.liu.se

ABSTRACT
We propose a method for computer-based speed writing,
SHARK (shorthand aided rapid keyboarding), which
augments stylus keyboarding with shorthand gesturing.
SHARK defines a shorthand symbol for each word
according to its movement pattern on an optimized stylus
keyboard. The key principles for the SHARK design
include high efficiency stemmed from layout optimization,
duality of gesturing and stylus tapping, scale and location
independent writing, Zipf’s law, and skill transfer from
tapping to shorthand writing due to pattern consistency.
We developed a SHARK system based on a classic
handwriting recognition algorithm. A user study
demonstrated the feasibility of the SHARK method.

Keywords
Text input, shorthand, gesture, stylus keyboard, virtual
keyboard, pervasive, mobile, handheld devices, human
memory, learning, skill acquisition.

INTRODUCTION
Text input - ranging from writing emails, filling forms,
typing commands, taking notes, to authoring articles and
coding programs - constitutes one of the most frequent
computer user tasks. The QWERTY keyboard, for various
reasons, has been accepted as the standard tool to
accomplish this task for desktop computing (see [25] for a
brief review). The emergence of handheld and other
forms of pervasive or mobile computing devices, however,
calls for alternative solutions. Consequently text input has
been revived as a critical HCI research topic in recent
years. There have been various methods proposed,
developed or studied (See [5, 14] for surveys). The two
classes of solutions that have attracted most attention are
handwriting and stylus based virtual keyboarding.

Handwriting is a rather “natural” and fluid mode of text
entry, thanks to users’ prior experience from writing on
paper. Various handwriting recognition systems, such as

Graffiti in the Palm Pilot and Jot in Windows CE, have
been used in commercial products. The fundamental
weakness of handwriting as a text entry method, however,
is its limited speed, typically around 15 wpm [6]. Such a
speed is good enough for entering names and phone
numbers on a PDA, but too limited for writing longer text.

Virtual keyboards, tapped serially with a stylus, are also
available in commercial products, typically in the familiar
QWERTY layout. To improve movement efficiency, stylus
keyboard layout can be optimized either by trial and error
[15] or algorithmically [25]. Depending on the degree of
optimization, the expert text entry speed with stylus
keyboard can be more than 45 wpm on layouts such as
ATOMIK (Fig. 1, see [26] also [15]). There are also
weaknesses to stylus keyboarding. The simple tapping
movement may feel tedious to repeat for prolonged use.
Stylus keyboarding also requires intense visual attention,
virtually at every key tap, which prevents the user from
focusing attention on text output.

Our current work began with two observations in stylus
keyboard research. First, it has been noted that some
words or fragments of words are connected in stylus
keyboards. With these words, such as the in Fig 1, it is
possible to stroke through the keys rather than tapping on
them individually, hence introducing a form of more fluid
movement closer to drawing [25]. Second, for a well-
practiced word, users tend to remember its pattern, the
trajectory of stylus movement from key to key as an
integrated chunk, rather than individual key taps [25].

These two observations led us to imagine letting the user
directly write patterns as a basic mode of entering words
on a stylus keyboard. Each pattern of a word is formed by
the trajectory from the first to the last letter of the word on
the keyboard. Fig. 2 shows a few examples of such
patterns defined by the ATOMIK keyboard in Fig. 1.

u w z

b k d

h o v

c a n i m
l e s xf

r
t

Fig. 1 The ATOMIK Keyboard (adapted from [25]

by permission)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2003, April 5–10, 2003, Ft. Lauderdale, Florida, USA.
Copyright 2003 ACM 1-58113-630-7/03/0004…$5.00.

Fig. 2 Word patterns defined by ATOMIK Keyboard
 (a dot indicates the starting end)

MOTIVATING PRINCIPLES
Scale and location independency
Is there any advantage to pattern gesturing over individual
letter tapping? The answer depends on how the gesture is
produced and recognized. To precisely cross all letters
defining a word would require just as much, if not more,
visual attention as serially tapping all the letters.
Furthermore, the time to perform such visually guided
steering cannot be expected to be any shorter than
tapping1. Therefore, for gesturing to be effective, patterns
must be recognized at least partially independent of scale
and location. As long as the user produces a pattern that
matches the shape of the prototype of a word, the system
should recognize and type the corresponding word for the
user. If so, the users could produce these patterns with
much less visual attention and presumably greater ease
and comfort. Scale and location independency is the first
principle in our current work.

Efficiency
The second principle of the current work lies in efficiency.
In comparison to hand writing based on alphabetic or
logographic characters such as Chinese, writing a word
pattern defined by a stylus keyboard can be much more
efficient, with each letter constituting only one straight
stroke and with the entire word as one shape. In other
words, this can be a form of shorthand writing.

In theory such form of shorthand can be defined on any
keyboard layout. However if we define it on the familiar
QWERTY layout, for example, it would involve frequent
left-right zigzag strokes, because the commonly used
consecutive keys are deliberately arranged on the opposite
sides of QWERTY (See [24] for a long and [25] for a short
review on this issue). We choose the ATOMIK layout for
the current work. See Fig. 2 and Table 1 for examples of
shorthand symbols defined on ATOMIK (Fig 1). ATOMIK
(Alphabetically Tuned and Optimized Mobile Interface
Keyboard) was optimized by a Metropolis algorithm in
which the keyboard was treated as a "molecule" and each
key as an "atom". The atomic interactions among all of
the keys drove the movement efficiency - defined by the
summation of all movement times between every pair of
keys, weighted by the statistical frequency of the
corresponding pair of letters - towards the minimum.

1 It is possible to use the law of steering [1] and Fitts’ law of
pointing to quantitatively analyze the difference between
tapping and tracing.

This means that in any given scale, the average word
gesturing length on ATOMIK is also minimized. ATOMIK is
also alphabetically tuned, causing a general tendency that
letters from A to Z run from the upper left corner to the
lower right corner of the keyboard. This gives helps users
look for letters that are not yet memorized. Furthermore,
it maximizes, without sacrificing the first two features, the
letter connectivity of the most common words [25].

Duality
Traditional shorthand writing systems, such as Pitman’s,
takes significant time and effort to master. With the
exception of touch-typing on physical keyboards, which
takes hundreds of hours of practice to be proficient [7],
users are usually reluctant to invest time in learning a
human computer interaction skill. A shorthand system
defined on a stylus keyboard, however, does not have to
contain a complete or even a large set of words, because
one can use both tapping and shorthand gesturing. For
familiar words whose patterns are well remembered, the
user can write their shorthand. For the less familiar, one
can use stylus tapping. Both modes of typing are
conduced on the same input surface and the system
distinguishes tapping from stroking and gives output
accordingly. We call this combination method SHARK -
shorthand aided rapid (stylus) keyboarding.

Zipf’s law effect
Fourth, word frequency in a language tends to follow
Zipf’s law2, with a highly skewed distribution (Fig. 3).
For example, the 100 most common individual words
make up 46% of the entire British National Corpus
(http://www.bnc.org). The word the alone constitutes over
6% of the BNC. This means that a relatively small set of
shorthand gestures can cover a large percentage of text
input. The benefit of using shorthand for a small set of
common words is disproportionably large.

Frequency of English Words (%)

0
2
4

6
8

1 11 21 31 41 51 61 71 81 91Rank

Fig. 3 Word frequency distribution in BNC

Transition from tapping to gesturing
Finally, a user’s repertoire of shorthand symbols can be
gradually expanded with practice. Gesturing and tapping a
word with SHARK share a common movement pattern,
which may facilitate skill transfer between the two modes.

2 Zipf’s law models the observation that frequency of
occurrence of event f, as a function of its rank i, is a power-law
function f ~ 1/ia with the exponent a close to unity.

the word have

For a novice user, visually guided tapping is easier. When
a word is tapped enough times, the user may switch to the
more fluid “expert” mode of shorthand gesturing3. If a
shorthand gesture is forgotten, one can fall back to taping,
which reinforces the pattern and pushes the user back to
expert mode. This gradual and smooth transition from
novice to expert behavior can be very similar to the
process of mastering marking menus [10, 11], and
constitutes the fifth principle of SHARK.

We have outlined five motivations and rationales of using
SHARK as a new approach to text entry. In what follows
we first briefly point out previous work related to SHARK.
We then describe the design and implementation of a
SHARK system to demonstrate that SHARK is practically
feasible based on current pattern recognition technology.
We then switch to the human side by presenting an
experiment that tested users’ ability to learn and recall
SHARK gestures. We will conclude the paper with a
discussion of future work.

RELATED WORK
The need of entering text on mobile devices has driven
numerous inventions in text entry in recent years,
although the majority has not been properly researched
with either theoretical or empirical human performance
studies. In this short review we focus on continuous
gesture-based text input. For stylus keyboard optimization,
which is an important foundation of SHARK, readers are
referred to [25] and also [15]. For other input methods,
see [5, 14, 25].

The idea of optimizing gesture for speed is embodied in
the Unistrokes alphabet designed by Goldberg and
Richardson [9]. In Unistrokes every letter is written with a
single stroke but the more frequent ones are assigned with
simpler strokes. If mastered, one can potentially write
faster in the Unistrokes alphabet than in Roman alphabet.
The fundamental limitation of Unistrokes, however, is the
nature of writing one letter at a time.

Quikwriting designed by Perlin [17] uses continuous
stylus movement on a radial layout to enter letters. Each
character is entered by moving the stylus from the center
of the radial layout to one of the eight outer zones,
sometimes crossing to another zone, and finally returning
to the center zone. The stylus trajectory determines which
letter is selected. While it is possible to develop “iconic
gestures” for common words like the, such gestures are
rather complex due to the fact that the stylus has to return
to the center after every letter. In this sense, Quikwriting
is fundamentally a character entry method.

3 The SHARK system may count the frequency of each word
used. When beyond certain threshold, a SHARK shorthand
pattern can be optionally displayed on the keyboard (by
connecting the letters with dotted line, for example) suggesting
that the user switch to shorthand for that word.

Cirrin (Circular Input), designed by Mankoff and Abowd
[16], is probably the closest prior art to SHARK. Cirrin
operates on letters laid out on a circle. The user draws a
word by moving the stylus through the letters. Cirrin
explicitly attempts to operate on a word level – the pen
lifts up at the end of each word. Cirrin also attempts to
optimize pen movement by arranging the most common
letters closer to each other. However, some of the key
bases of SHARK such as open-loop pattern production
rather than crossing individual keys, location and scale
independency, combination with and transition from
stylus tapping, are not in Cirrin.

The idea of bridging novice and expert modes of use by
common movement pattern in SHARK was inspired by
Kurtenbach, Buxton and colleagues’ work on marking
menu [10, 11]. Instead of having pull-down menus and
shortcut keys - two distinct modes of operation for novice
and expert respectively, a marking menu uses the same
directional gesture on a pie menu for both types of users.
Particularly innovative in marking menu is the use of
delayed feedback. For a novice whose action is slow and
needs visual guidance, marking menu “reveals” itself by
displaying the menu layout. For an expert whose action is
fast, their system does not display visual guidance at all
so the user’s actions become open loop marks. The same
movement gesture affords smooth transition from novice
to expert.

A self-revealing menu approach has also been explored in
text entry, in the T-Cube method designed by Venolia and
Neiberg [22]. T-Cube defines an alphabet set by cascaded
pie menus. A novice enters characters by following the
visual guidance of menus, while an expert user could
enter the individual characters by making menu gestures
without visual display. A weakness of the T-Cube is that
it works at alphabet level and hence could not be very fast,
as was shown by the authors [22].

Dasher, by Ward, Blackwell and MacKay [23], is another
approach of continuous gesture input. Dasher
dynamically arranges letters in multiple columns, with
likely target letters closer to user’s cursor based on the
proceeding context. A letter is selected when it passes
through the cursor, whose movement is hence minimized.
This minimization, however, is at the expense of visual
attention. Because the letter arrangement constantly
changes, Dasher demands user’s visual attention to
dynamically react to the changing layout.

SHARK GESTURE RECOGNITION
This section deals with SHARK gesture recognition. Many
pattern recognition techniques have been previously
invented for “online” handwriting recognition, including
template matching, syntactical modeling, statistical
modeling and neural networks (see [21] or [4] for surveys
of the common techniques). We have developed a SHARK
recognition system based on the classic elastic matching
algorithm [20] which computes the minimum distance

between two sets of points by dynamic programming.
One set of points is from the shape that a user produces (a
unknown shape). The other is from a prototype – the ideal
shape defined by the letter key positions of a word. After
preprocessing, filtering and normalization in scale, the
distance between the unknown shape and the prototypes
are computed by elastic matching. The word
corresponding to the prototype that has the shortest
distance to the sample is returned as the recognized word.
Based on these operations, we have written a SHARK
notepad application with dual modes of input - shorthand
gesturing and stylus tapping. The algorithm and
techniques used in our system can all be found in the
previous literature [2, 20, 21].

It is beyond the space limit and the scope of this paper to
explore the optimal recognition technology for SHARK.
However, it is necessary to discuss a special aspect of
SHARK recognition – ambiguity handling. The shape of a
SHARK gesture is not always unique and hence creates
ambiguity. Although in low percentage, there are words
that share the same SHARK gesture, particularly for some
short words. For example, the word can, an, and to are
completely identical if we do not consider scale and
location. The same is true to do and no (see Fig. 1). We
have designed two approaches to resolve ambiguities.
One is the use of transient pie menus. As shown in Fig. 4,
when the recognition system found more than one match
to a sample, it pops up a pie menu with all the candidates
(usually only two or three) in a consistent order. A user
inexperienced with this particular ambiguous word would
look at the menu and make the second stroke in the
direction of the candidate intended, independent of
location. With experience, the user does not have to look
at the menu, because the candidates are presented in a
consistent location of the pie menu and the selection of
choice depends on direction only. An experienced user
may simply remember the second stroke as part of the
shorthand for that word. As shown in Fig. 4, for example,
a right horizontal stroke followed by a stroke to the upper-
left direction will always be can. Similarly left and down
is always to and so on.

Fig. 4. Resolving ambiguity by a transient pie menu

One disadvantage to this approach is the loss of efficiency
due to the added second stroke. The second approach we
designed maintains efficiency but sacrifices the location
independence principle for the ambiguous words. The
system checks the start position, or the geometric center
of the sample, relative to the letters defining the multiple
ambiguous prototypes, to determine which word the user
intends to write. For example, if the user makes a right
horizontal stroke closer to the upper left region of the
keyboard where c-a-n are (Fig. 1), the system gives the
user can; if further to the right, an; if closer to the lower
middle region, to, and so on.

The weakness of the partial location dependency method
is that it requires more visual attention when writing the
words with ambiguity in order to make sure the location is
closer to the intended word on the keyboard, although this
is still less stringent than tapping. Further study is needed
to find the best ambiguity resolution method for SHARK.

Note that since the recognition is online (real time), the
system takes the direction of the SHARK gestures from pen
down to pen up into account. Some words that appear
ambiguous offline are not in fact ambiguous. The word in,
for example, is also a horizontal stroke but it will never be
confused with the word can.

A USER STUDY
Issues to be explored
The SHARK method raises many human performance
questions. To completely address these questions requires
extensive long-term research. At this early stage, we focus
on the most basic question - can users learn, remember or
discriminate (see [13] for a recent study on gesture
similarity), and produce shorthand gestures defined on
stylus keyboard at all? Can they learn a useful number of
SHARK gestures in a relatively short period?

There are reasons to expect that people can remember a
large number of symbols. We use dozens of Roman letters,
Arabic numbers, Greek letters, punctuation marks, and
mathematic symbols. Trained stenographers learn a great
number of shorthand symbols. 700 separate hieroglyph
symbols were used in ancient Egypt [8]. A literate
Chinese person must learn two to five thousands of
unique characters. In sum, there are ample evidence that
people can master a large number of symbols.

However, even Chinese characters are made of common
radicals. It is likely that in people’s memory Chinese
characters are reduced to these radicals and the two
dimensional relationships among the radicals. SHARK
gestures (See Table 1 for examples), on the other hand,
are formed in a novel approach that does not break a
continuous shape down to elements, although experienced
users may transfer common traces between some words,
such as -ing and -tion. Clearly, to understand people’s
ability to learn SHARK, an empirical study is necessary.

How well people can learn new skills partly depends on
the methods they learn and practice the new skill with.
The secondary goal of this user study is to design an
effective method to help users learn SHARK gestures.

Learning method
The literature on skill acquisition (e.g. [18]) and human
memory (e.g. [3]) presents a variety of theories, models
and insights on how people learn and remember skills. A
compelling method from that literature that may be
relevant and useful in helping people to learn SHARK is
practicing with expanding rehearsal interval (ERI) [12].
ERI has been acclaimed as an important result in human
memory research and is also supported by recent thoughts
in the field of skill acquisition and memory [19].

Briefly, the ERI method suggests that trial repetitions for
learning should be neither totally massed nor randomly
distributed. Rather, they should be optimized by
systematically increasing the interval between repetitions.
Recently it has been shown that such a method could be
effective to learning stylus keyboarding [26], although the
rate of expansion and the unit of training in stylus
keyboarding needed further investigation. Different from
the original ERI method which schedules rehearsal at
increasing but preprogrammed intervals, we decided to
make ERI adaptive based on the learner’s performance.
The interval of rehearsal for a particular SHARK gesture
expands only if the learner could recall the gesture
correctly. Otherwise, the interval stays the same. We
could also make the interval shrink if the learner
repeatedly fails to recall a gesture, but our experience
shows that this is not necessary in practice and may lead
to frustration.

In each cycle of rehearsal of a particular word by our ERI
method, the participant was asked to write the SHARK
shorthand for that word on the stylus keyboard area that
did not show the layout (Fig. 5). This forced the user to
actively retrieve SHARK movement patterns from memory.
Research has shown that active retrieval is a key to
memory retention [19]. The word that matched the user’s
SHARK gesture was then displayed in the last entry area
(Fig. 6). If correct, the word would be rescheduled to
appear at an interval twice the current value. The user
may go on to the next word or practice the current word a
few more times with the choice of seeing the keyboard
layout by clicking show keyboard, before moving on.

If the participant could not recall the SHARK gesture of a
practiced word or failed to write it correctly, the rehearsal
interval will keep its current value. The user could choose
to learn (for a new word) or relearn (for a forgotten word)
the SHARK gesture by displaying the ATOMIK keyboard,
together with the gesture prototype drawn in dotted lines
connecting the letters in the word (Fig. 6). The user could
write the SHARK gesture anywhere on the keyboard in any
scale, and practice the gesture as many times as wanted to

explore the tolerance of acceptable shapes for the target
word.

Fig. 5. Screenshot of the experimental set-up: the user was

asked to write a word (“inside”) by SHARK without
visual reference

Fig. 6. The user may learn a SHARK gesture by displaying

the ATOMIK keyboard layout

The learning program maintained two lists of words: a
word list containing the maximum number of words to be
learned in the study and a rehearse list keeping all words
being actively rehearsed at various intervals. Each word
in the rehearse list had its own timer, counting down from
its current rehearsal interval value. The algorithm that
managed the ERI scheduling worked as follows:
1. If the rehearse list is empty, pick a new word from the word

list and initialize it with a rehearse interval of 30 sec and put it
in the rehearse list.

2. Pick the word from the rehearse list that has the earliest
rehearse time according to the value left in its timer.

3. If the timer is below 30 sec present the word to the user.
Otherwise pick a new word from the word list and present it to
the user.

4. If the user writes the correct SHARK gesture of the target word,
return it to the rehearse list with a doubled rehearsal interval,
else return it with an unaltered rehearsal interval, Go to 2.

Experimental set up and procedure
The experiment was carried out on a PC attached with a
Wacom tablet model ET-0405-U as the pen input device.

Six paid volunteers, two male four female, between 20
and 30 years old, participated in a five-session experiment.
None of them had any prior experience with SHARK or the

Table 1. Words in the study and their SHARK shorthand4

the

that

knowing

while

and

this

about

problem

in these could

against

inside

those think

service

have did people never

has does

after

house

had

done

right

down

having doing

because

school

he

are

between

report

him our

before

start

his from through

country

it

which place really

its

will become provide

they were such

local

them said change

member

was

can point

within

their

whose system always

not

went

group

follow

for gone

number

without

you

other

however during

your

another

again bring

she being world

although

her

seeing

course

example

with

knew

company question

on

4 Due to space constraint these SHARK symbols can only be
listed in small size. The static shapes do not reveal the dynamic
stroke directions, which make them more distinct. A solid dot
signifies the start point of a SHARK symbol. Note also symbols
listed in the table are SHARK prototypes. Actual user’s sample
shapes always deviate from the prototypes, with rounded corners
for example.

ATOMIK keyboard. Session 1 was 40 minutes practice
with ERI only. Session 2, 3, and 4 consisted of two parts.
Part one was a test session of words a participant had
practiced in previous sessions, lasting from 6 to 20
minutes. There was a period of minimum one day (night),
and sometimes a full weekend between a test and the
previous practice session. Part two was 40 minutes
practice with ERI. Participants were asked to take a 5-
minute break in the middle of the practice session, and
were suggested to take short breaks anytime they liked to.
Session 5, the last session, was a final test session only.

In test sessions, words were presented in a random order.
The participants were given at most two chances to recall
and write the SHARK gesture correctly.

In the experiment a total of 100 words were in the word
list. We focused on the baseline of SHARK shorthand
memory in this experiment and made sure no ambiguity
existed in the list. 50 of the 100 words used were selected
from the top 100 most common words in the British
National Corpus. The next 50 words were selected from
the top 100 to top 300 most common words. These words
and their corresponding SHARK shorthand prototypes are
listed in Table 1.

Results and discussion
The results of the user study shows that all of the
participants could learn to write correctly recognizable
SHARK gesture for any word presented to them, if
practiced enough times (typically 7 to 15 ERI cycles). Fig.
7 shows the ERI traces of a few sample words by one
participant. Note that all these traces ran across different
days (sessions). Some participants felt that new words
disappeared too quickly, suggesting the expansion rate
(factor of 2) too aggressive, whereas others found the
frequency of practicing adequate. Some participants could
keep up with the ERI expansion and correctly write the
SHARK gesture every time (See other in Fig. 7 for
example). In sum, the ERI method appeared effective, but
it could certainly be further tuned. For example, it is
possible to make the expansion rate adaptive to
individuals based on their performance.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13

Prac tice No.

does
ot her
t hose
was

Memory Rehearsa l Inte rva l (minutes)

Fig. 7. Sample ERI traces

As shown in Fig. 8 and 9, participants were able to
correctly write more words in each learning session, on
average about 15 words more per session. In the final test,
on average they correctly produced 48.83 (between 62
and 39) words in their first attempt, and 58.67 (between
77 and 49) words if counting the second attempt when the
first failed. Interestingly, the number of new words
learned per session was rather constant, or slightly higher
toward later sessions (Fig. 9).

0
10
20
30
40
50
60
70

1 2 3 4
Testing session

Total number of
words learned

First attempt only
First or second attempt

Fig. 8. Total number of words correctly written in test
sessions, averaged across participants

Mean and Standard Deviation of the number of
new words learned per session

0
2
4
6
8

10
12
14
16
18

1 2 3 4
Testing session

Fig. 9. More words learned in each session

During the study participants were encouraged to write
down comments on SHARK and the learning method used
each day. Most of them found the SHARK method exciting,
particularly in the initial sessions (“It is fun!” “Ought to
be a really effective way of writing once you get a hang of
it” etc). User’s initial reaction is often the most critical to
the adoption of an interface style. None of the participants
found the method tedious throughout the study. In the
final questionnaire, participants rated 0.6 on the scale of
(–3 frustrating, +3 satisfying); 1.83 on (–3 dull, +3
stimulating); 0.6 on (–3 difficult, +3 easy) to use; 0.6 on
(–3 difficult, +3 easy) to learn. To the question “If such a
method is made available for practical use, would you
learn it?”, their answer averaged 1.6 on the scale of (–3
definitely no, +3 definitely yes). When asked if they
would use it in a list of situations, 0/6 participant choose
“not at all”, 2/6 answered “Yes, when a physical keyboard
is not available” and 4/6 “Yes, to replace keyboard typing
sometimes”, and 0/6 “Yes, to replace keyboard typing all
the time”. It is particularly encouraging that the majority
could imagine using SHARK even to “replace keyboard

typing sometimes”. Since there is no direct comparison to
methods with similar amount of experience and the study
was short and necessarily artificial, these subjective data
can only be taken as a reference, not conclusions.

Some of the anecdotal comments were also informative.
Two participants attempted to memorize the ATOMIK
layout and tried to guess the SHARK gesture based on their
memory of the layout when asked to write a word the first
time. The participants were usually displeased when they
wrote a word correctly in their mind, but the system was
“unfair” and did not recognize it. It suggests that our
recognizer based on a standard elastic matching algorithm,
which emphasizes the degree of proportion, did not
necessarily accurately reflect user’s cognitive model of
the SHARK gestures, which is probably more topological.
Two participants mentioned “it was easier to remember
complex shapes than simple ones”, contrary to our
concern that long words will be difficult to handle with
SHARK. Participants occasionally drew mirror image of
the correct SHARK shape, although practice eventually
overcame such types of error.

50 to 60 shorthand gestures learned in four sessions can
already be very useful in text input, given the Zipf’s law
effect. The study showed no sign of slowing down in
user’s ability to learn more SHARK shorthand symbols.
How many such symbols can eventually be learned, if
limited at all, is unknown. Because these symbols are
constructed differently from other large character sets
such as Chinese, it is difficult to find precedence of
human capability in this regard. In general, human long-
term memory capacity is only limited by acquisition
speed.

Given the prospect of creating a whole new system of
efficient writing, a great deal more research is needed in
the future to understand, validate/invalidate, improve,
change, and innovate many aspects of it. We have only
done the most basic work to show the feasibility of
SHARK. Other compelling research issues include its
expert speed limit, long term study of users’ learning and
usage of SHARK, particularly in real use of text production;
the usability of various ambiguity resolution methods;
theoretical quantification, modeling and empirical
measurement of SHARK gestures-based input in terms of
speed, accuracy, and capacity, from both human memory
and motor control, as well as machine recognition point of
view; and improvement of learning method, preferably
integrated in the SHARK system and combined with the
use of it. In terms of developing more advanced
recognition algorithm that matches human perception of
shapes more closely in the future, much can be done in
making the recognition more sophisticated, with situation
specific “work-around” and probably borrowing
techniques from modern complex speech recognition
systems. High-level constraints, such as the context of
proceeding words, can also potentially be used to make
SHARK recognition more tolerant to “sloppy” writing.

CONCLUSIONS
Speed writing is an old research topic with renewed
interest due to the need of using mobile computing
devices. To write a significant amount of text, natural
writing is too slow and stylus keyboarding is tedious and
visually demanding. We have proposed a new approach
that combines the two at a shorthand level - SHARK.
SHARK defines a shorthand symbol for each word
according to its movement pattern on a stylus keyboard
layout. The key rationale for designing SHARK rests on
five principles: efficiency, location and scale
independency, duality of tapping and gesturing, Zipf’s
law effect, and transition from tapping to gesturing. We
have developed a SHARK recognizer based on an elastic
matching recognition algorithm. A user study indicated
the feasibility of SHARK. Participants could learn SHARK
shorthand symbols, at a average rate of 15 words per (45
to 50 minutes) session, by practicing with the ERI
paradigm. Most participants found SHARK shorthand fun
to use, and considered even to use it to replace physical
typing sometimes. It was evident that people could learn a
useful number of SHARK shorthand symbols in a rather
small amount of time. To understand all issues involved
and the full potential SHARK, possibly even beyond
mobile computing as a form of speed writing, requires a
great deal more research in the future.

ACKNOWLEDGMENTS
Part of this work was conducted when Shumin Zhai was a guest
professor at Linköping University. We thank Santa Anna IT
Research Institute AB and Sture Hägglund for support. We also
thank Jingtao Wang, Paul Maglio, Maria Holmqvist and Pernilla
Qvarfordt for their assistance.

REFERENCES
1. Accot, J. and S. Zhai. Beyond Fitts' Law: Models for

Trajectory-Based HCI Tasks. Proc. CHI'97. p. 295-302.
2. Arakawa, H., Odaka, K., Masuda, I. On-line recognition of

handwritten characters – Alphanumerics, Hiragana,
Katakana, Kanji. Proc. 4th International Joint Conference
on Pattern Recognition, Nov 1978, pp. 810 – 812.

3. Baddeley, Human Memory - Theory and Practice. Revised
Edition. 1998, Boston: Allyn and Bacon.

4. Beigi, H.S.M. An overview of handwriting recognition.
Proc. The 1st Annual Conference on Technological
Advancements in Developing countries. 1993. Columbia
University. p. 30-46.

5. Buxton, W. Human Input to Computer Systems: Theories,
Techniques and Technology (book manuscript). 1994/2002:
available at
http://www.billbuxton.com/inputManuscript.html

6. Card, S.K., T.P. Moran, and A. Newell, The Psychology of
Human-Computer Interaction. 1983, Hillsdale, New Jersey:
Lawrence Erlbaum Associates Publishers.

7. Cooper, W.E., ed. Cognitive aspects of skilled typewriting. .
1983, Springer-Verlag: New York.

8. Gardiner, A., Egyptian Grammar: Being an Introduction to
the Study of Hieroglyphs (3rd edition). 1978: Aris &
Phillips.

9. Goldberg, D. and C. Richardson. Touching-typing with a
stylus. Proc. INTERCHI. 1993. Amsterdam, p. 80-87.

10. Kurtenbach, G. and W. Buxton. User Learning and
Performance with Marking Menus. Proc. CHI. 1994. p.
258-264.

11. Kurtenbach, G., A. Sellen, and W. Buxton, An empirical
evaluation of some articulatory and cognitive aspects of
"marking menus". Human Computer Interaction, 1993.
8(1): p. 1-23.

12. Landauer, T.K. and R.A. Bjork, Optimum rehearsal
patterns and name learning, in Practical Aspects of
Memory, 1978, Academic Press: London. p. 625-632.

13. Long, A.C., J.A. Landay, L.A. Rowe, and J. Michiels.
Visual similarity of pen gestures. Proc. CHI2000.

14. MacKenzie, I.S. and R.W. Soukoreff, Text entry for mobile
computing: Models and methods, theory and practice.
Human-Computer Interaction, 2002. 17(2&3), p.147-198.

15. MacKenzie, I.S. and S.X. Zhang. The design and
evaluation of a high-performance soft keyboard. Proc. CHI.
1999. p. 25-31.

16. Mankoff, J. and G.D. Abowd. Cirrin: a word-level
unistroke keyboard for pen input. Proc. ACM UIST, Tech.
Note. 1998. p. 213 - 214.

17. Perlin, K. Quikwriting: Continuous Stylus-based Text
Entry. Proc. ACM UIST, Tech. Note. 1998: p. 215 - 216.

18. Proctor, R.W. and A. Dutta, Skill acquisition and human
performance. 1995, Thousand Oaks, CA: Sage.

19. Schmidt, R.A. and R.A. Bjork, The conceptualizations of
practice: common principles in three paradigms suggest
new concepts for training. Psychological Science, 1992.
3(4): p. 207-217.

20. Tappert, C.C., Cursive Script Recognition by Elastic
Matching. IBM Journal of Research & Development, 1982.
26(6): p. 756-771.

21. Tappert, C.C., C.Y. Suen, and T. Wakahara, The State of
the Art in On-Line Handwriting Recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 1990. 12(8).

22. Venolia, D. and F. Neiberg. T-Cube: A Fast, Self-
Disclosing Pen-Based Alphabet. Proc. CHI. 1994. p. 265 -
270.

23. Ward, D., A. Blackwell, and D. MacKay. Dasher - A data
entry interface using continuous gesture and language
models. Proc. ACM UIST. 2000. p. 129-136.

24. Yamada, H., A historical study of typewriters and typing
methods: from the position of planning Japanese parallels.
Journal of Information Processing, 1980. 2(4): p. 175-202.

25. Zhai, S., B.A. Smith, and M. Hunter, Performance
Optimization of Virtual Keyboards. Human-Computer
Interaction, 2002. 17(2&3), p.229-270.

26. Zhai, S., A. Sue, and J. Accot. Movement Model, Hits
Distribution and Learning in Virtual Keyboarding. Proc.
CHI2002. p.17-24.

