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ABSTRACT 
We propose a method for computer-based speed writing, 
SHARK (shorthand aided rapid keyboarding), which 
augments stylus keyboarding with shorthand gesturing.  
SHARK defines a shorthand symbol for each word 
according to its movement pattern on an optimized stylus 
keyboard. The key principles for the SHARK design 
include high efficiency stemmed from layout optimization, 
duality of gesturing and stylus tapping, scale and location 
independent writing, Zipf’s law, and skill transfer from 
tapping to shorthand writing due to pattern consistency. 
We developed a SHARK system based on a classic 
handwriting recognition algorithm. A user study 
demonstrated the feasibility of the SHARK method. 

Keywords 
Text input, shorthand, gesture, stylus keyboard, virtual 
keyboard, pervasive, mobile, handheld devices, human 
memory, learning, skill acquisition. 

INTRODUCTION 
Text input - ranging from writing emails, filling forms, 
typing commands, taking notes, to authoring articles and 
coding programs - constitutes one of the most frequent 
computer user tasks. The QWERTY keyboard, for various 
reasons, has been accepted as the standard tool to 
accomplish this task for desktop computing (see [25] for a 
brief review). The emergence of handheld and other 
forms of pervasive or mobile computing devices, however, 
calls for alternative solutions. Consequently text input has 
been revived as a critical HCI research topic in recent 
years. There have been various methods proposed, 
developed or studied (See [5, 14] for surveys). The two 
classes of solutions that have attracted most attention are 
handwriting and stylus based virtual keyboarding.   

Handwriting is a rather “natural” and fluid mode of text 
entry, thanks to users’ prior experience from writing on 
paper. Various handwriting recognition systems, such as 

Graffiti in the Palm Pilot and Jot in Windows CE, have 
been used in commercial products. The fundamental 
weakness of handwriting as a text entry method, however, 
is its limited speed, typically around 15 wpm [6].  Such a 
speed is good enough for entering names and phone 
numbers on a PDA, but too limited for writing longer text. 

Virtual keyboards, tapped serially with a stylus, are also 
available in commercial products, typically in the familiar 
QWERTY layout. To improve movement efficiency, stylus 
keyboard layout can be optimized either by trial and error 
[15] or algorithmically [25]. Depending on the degree of 
optimization, the expert text entry speed with stylus 
keyboard can be more than 45 wpm on layouts such as 
ATOMIK (Fig. 1, see [26] also [15]). There are also 
weaknesses to stylus keyboarding. The simple tapping 
movement may feel tedious to repeat for prolonged use. 
Stylus keyboarding also requires intense visual attention, 
virtually at every key tap, which prevents the user from 
focusing attention on text output. 

Our current work began with two observations in stylus 
keyboard research. First, it has been noted that some 
words or fragments of words are connected in stylus 
keyboards. With these words, such as the in Fig 1, it is 
possible to stroke through the keys rather than tapping on 
them individually, hence introducing a form of more fluid 
movement closer to drawing [25]. Second, for a well-
practiced word, users tend to remember its pattern, the 
trajectory of stylus movement from key to key as an 
integrated chunk, rather than individual key taps [25].  

These two observations led us to imagine letting the user 
directly write patterns as a basic mode of entering words 
on a stylus keyboard. Each pattern of a word is formed by 
the trajectory from the first to the last letter of the word on 
the keyboard. Fig. 2 shows a few examples of such 
patterns defined by the ATOMIK keyboard in Fig. 1.  
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Fig. 1 The ATOMIK Keyboard (adapted from [25]  
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Fig. 2 Word patterns defined by ATOMIK Keyboard 
 (a dot indicates the starting end) 

MOTIVATING PRINCIPLES 
Scale and location independency 
Is there any advantage to pattern gesturing over individual 
letter tapping? The answer depends on how the gesture is 
produced and recognized. To precisely cross all letters 
defining a word would require just as much, if not more, 
visual attention as serially tapping all the letters.  
Furthermore, the time to perform such visually guided 
steering cannot be expected to be any shorter than 
tapping1. Therefore, for gesturing to be effective, patterns 
must be recognized at least partially independent of scale 
and location. As long as the user produces a pattern that 
matches the shape of the prototype of a word, the system 
should recognize and type the corresponding word for the 
user. If so, the users could produce these patterns with 
much less visual attention and presumably greater ease 
and comfort. Scale and location independency is the first 
principle in our current work. 

Efficiency 
The second principle of the current work lies in efficiency. 
In comparison to hand writing based on alphabetic or 
logographic characters such as Chinese, writing a word 
pattern defined by a stylus keyboard can be much more 
efficient, with each letter constituting only one straight 
stroke and with the entire word as one shape. In other 
words, this can be a form of shorthand writing.  

In theory such form of shorthand can be defined on any 
keyboard layout. However if we define it on the familiar 
QWERTY layout, for example, it would involve frequent 
left-right zigzag strokes, because the commonly used 
consecutive keys are deliberately arranged on the opposite 
sides of QWERTY (See [24] for a long and [25] for a short 
review on this issue). We choose the ATOMIK layout for 
the current work. See Fig. 2 and Table 1 for examples of 
shorthand symbols defined on ATOMIK (Fig 1).  ATOMIK 
(Alphabetically Tuned and Optimized Mobile Interface 
Keyboard) was optimized by a Metropolis algorithm in 
which the keyboard was treated as a "molecule" and each 
key as an "atom". The atomic interactions among all of 
the keys drove the movement efficiency  - defined by the 
summation of all movement times between every pair of 
keys, weighted by the statistical frequency of the 
corresponding pair of letters  - towards the minimum.  
                                                           
1 It is possible to use the law of steering [1] and Fitts’ law of 
pointing to quantitatively analyze the difference between 
tapping and tracing. 

This means that in any given scale, the average word 
gesturing length on ATOMIK is also minimized. ATOMIK is 
also alphabetically tuned, causing a general tendency that 
letters from A to Z run from the upper left corner to the 
lower right corner of the keyboard. This gives helps users 
look for letters that are not yet memorized. Furthermore, 
it maximizes, without sacrificing the first two features, the 
letter connectivity of the most common words [25]. 

Duality 
Traditional shorthand writing systems, such as Pitman’s, 
takes significant time and effort to master. With the 
exception of touch-typing on physical keyboards, which 
takes hundreds of hours of practice to be proficient [7], 
users are usually reluctant to invest time in learning a 
human computer interaction skill. A shorthand system 
defined on a stylus keyboard, however, does not have to 
contain a complete or even a large set of words, because 
one can use both tapping and shorthand gesturing. For 
familiar words whose patterns are well remembered, the 
user can write their shorthand. For the less familiar, one 
can use stylus tapping. Both modes of typing are 
conduced on the same input surface and the system 
distinguishes tapping from stroking and gives output 
accordingly. We call this combination method SHARK - 
shorthand aided rapid (stylus) keyboarding.  

Zipf’s law effect 
Fourth, word frequency in a language tends to follow 
Zipf’s law2, with a highly skewed distribution (Fig. 3). 
For example, the 100 most common individual words 
make up 46% of the entire British National Corpus 
(http://www.bnc.org). The word the alone constitutes over 
6% of the BNC. This means that a relatively small set of 
shorthand gestures can cover a large percentage of text 
input. The benefit of using shorthand for a small set of 
common words is disproportionably large.  
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Fig. 3 Word frequency distribution in BNC 

Transition from tapping to gesturing 
Finally, a user’s repertoire of shorthand symbols can be 
gradually expanded with practice. Gesturing and tapping a 
word with SHARK share a common movement pattern, 
which may facilitate skill transfer between the two modes. 

                                                           

2  Zipf’s law models the observation that frequency of 
occurrence of event f, as a function of its rank i, is a power-law 
function f ~ 1/ia with the exponent a close to unity. 

the word have 



    

 

For a novice user, visually guided tapping is easier. When 
a word is tapped enough times, the user may switch to the 
more fluid “expert” mode of shorthand gesturing3. If a 
shorthand gesture is forgotten, one can fall back to taping, 
which reinforces the pattern and pushes the user back to 
expert mode. This gradual and smooth transition from 
novice to expert behavior can be very similar to the 
process of mastering marking menus [10, 11], and 
constitutes the fifth principle of SHARK. 

We have outlined five motivations and rationales of using 
SHARK as a new approach to text entry. In what follows 
we first briefly point out previous work related to SHARK. 
We then describe the design and implementation of a 
SHARK system to demonstrate that SHARK is practically 
feasible based on current pattern recognition technology. 
We then switch to the human side by presenting an 
experiment that tested users’ ability to learn and recall 
SHARK gestures. We will conclude the paper with a 
discussion of future work. 

RELATED WORK 
The need of entering text on mobile devices has driven 
numerous inventions in text entry in recent years, 
although the majority has not been properly researched 
with either theoretical or empirical human performance 
studies. In this short review we focus on continuous 
gesture-based text input. For stylus keyboard optimization, 
which is an important foundation of SHARK, readers are 
referred to [25] and also [15]. For other input methods, 
see [5, 14, 25].  

The idea of optimizing gesture for speed is embodied in 
the Unistrokes alphabet designed by Goldberg and 
Richardson [9]. In Unistrokes every letter is written with a 
single stroke but the more frequent ones are assigned with 
simpler strokes.  If mastered, one can potentially write 
faster in the Unistrokes alphabet than in Roman alphabet. 
The fundamental limitation of Unistrokes, however, is the 
nature of writing one letter at a time. 

Quikwriting designed by Perlin [17] uses continuous 
stylus movement on a radial layout to enter letters. Each 
character is entered by moving the stylus from the center 
of the radial layout to one of the eight outer zones, 
sometimes crossing to another zone, and finally returning 
to the center zone. The stylus trajectory determines which 
letter is selected. While it is possible to develop “iconic 
gestures” for common words like the, such gestures are 
rather complex due to the fact that the stylus has to return 
to the center after every letter. In this sense, Quikwriting 
is fundamentally a character entry method. 

                                                           

3  The SHARK system may count the frequency of each word 
used. When beyond certain threshold, a SHARK shorthand 
pattern can be optionally displayed on the keyboard (by 
connecting the letters with dotted line, for example) suggesting 
that the user switch to shorthand for that word. 

Cirrin (Circular Input), designed by Mankoff and Abowd 
[16], is probably the closest prior art to SHARK.  Cirrin 
operates on letters laid out on a circle. The user draws a 
word by moving the stylus through the letters. Cirrin 
explicitly attempts to operate on a word level – the pen 
lifts up at the end of each word.  Cirrin also attempts to 
optimize pen movement by arranging the most common 
letters closer to each other. However, some of the key 
bases of SHARK such as open-loop pattern production 
rather than crossing individual keys, location and scale 
independency, combination with and transition from 
stylus tapping, are not in Cirrin.  

The idea of bridging novice and expert modes of use by 
common movement pattern in SHARK was inspired by 
Kurtenbach, Buxton and colleagues’ work on marking 
menu [10, 11]. Instead of having pull-down menus and 
shortcut keys - two distinct modes of operation for novice 
and expert respectively, a marking menu uses the same 
directional gesture on a pie menu for both types of users. 
Particularly innovative in marking menu is the use of 
delayed feedback. For a novice whose action is slow and 
needs visual guidance, marking menu “reveals” itself by 
displaying the menu layout. For an expert whose action is 
fast, their system does not display visual guidance at all 
so the user’s actions become open loop marks. The same 
movement gesture affords smooth transition from novice 
to expert.  

A self-revealing menu approach has also been explored in 
text entry, in the T-Cube method designed by Venolia and 
Neiberg [22]. T-Cube defines an alphabet set by cascaded 
pie menus. A novice enters characters by following the 
visual guidance of menus, while an expert user could 
enter the individual characters by making menu gestures 
without visual display. A weakness of the T-Cube is that 
it works at alphabet level and hence could not be very fast, 
as was shown by the authors [22]. 

Dasher, by Ward, Blackwell and MacKay [23], is another 
approach of continuous gesture input. Dasher 
dynamically arranges letters in multiple columns, with 
likely target letters closer to user’s cursor based on the 
proceeding context. A letter is selected when it passes 
through the cursor, whose movement is hence minimized. 
This minimization, however, is at the expense of visual 
attention. Because the letter arrangement constantly 
changes, Dasher demands user’s visual attention to 
dynamically react to the changing layout. 

SHARK GESTURE RECOGNITION 
This section deals with SHARK gesture recognition. Many 
pattern recognition techniques have been previously 
invented for “online” handwriting recognition, including 
template matching, syntactical modeling, statistical 
modeling and neural networks (see [21] or [4] for surveys 
of the common techniques). We have developed a SHARK 
recognition system based on the classic elastic matching 
algorithm [20] which computes the minimum distance 



    

 

between two sets of points by dynamic programming. 
One set of points is from the shape that a user produces (a 
unknown shape). The other is from a prototype – the ideal 
shape defined by the letter key positions of a word. After 
preprocessing, filtering and normalization in scale, the 
distance between the unknown shape and the prototypes 
are computed by elastic matching. The word 
corresponding to the prototype that has the shortest 
distance to the sample is returned as the recognized word. 
Based on these operations, we have written a SHARK 
notepad application with dual modes of input - shorthand 
gesturing and stylus tapping. The algorithm and 
techniques used in our system can all be found in the 
previous literature [2, 20, 21]. 

It is beyond the space limit and the scope of this paper to 
explore the optimal recognition technology for SHARK. 
However, it is necessary to discuss a special aspect of 
SHARK recognition – ambiguity handling. The shape of a 
SHARK gesture is not always unique and hence creates 
ambiguity. Although in low percentage, there are words 
that share the same SHARK gesture, particularly for some 
short words. For example, the word can, an, and to are 
completely identical if we do not consider scale and 
location.  The same is true to do and no (see Fig. 1). We 
have designed two approaches to resolve ambiguities. 
One is the use of transient pie menus. As shown in Fig. 4, 
when the recognition system found more than one match 
to a sample, it pops up a pie menu with all the candidates 
(usually only two or three) in a consistent order. A user 
inexperienced with this particular ambiguous word would 
look at the menu and make the second stroke in the 
direction of the candidate intended, independent of 
location. With experience, the user does not have to look 
at the menu, because the candidates are presented in a 
consistent location of the pie menu and the selection of 
choice depends on direction only. An experienced user 
may simply remember the second stroke as part of the 
shorthand for that word. As shown in Fig. 4, for example, 
a right horizontal stroke followed by a stroke to the upper-
left direction will always be can. Similarly left and down 
is always to and so on.  

 
Fig. 4. Resolving ambiguity by a transient pie menu 

One disadvantage to this approach is the loss of efficiency 
due to the added second stroke. The second approach we 
designed maintains efficiency but sacrifices the location 
independence principle for the ambiguous words. The 
system checks the start position, or the geometric center 
of the sample, relative to the letters defining the multiple 
ambiguous prototypes, to determine which word the user 
intends to write. For example, if the user makes a right 
horizontal stroke closer to the upper left region of the 
keyboard where c-a-n are (Fig. 1), the system gives the 
user can; if further to the right, an; if closer to the lower 
middle region, to, and so on. 

The weakness of the partial location dependency method 
is that it requires more visual attention when writing the 
words with ambiguity in order to make sure the location is 
closer to the intended word on the keyboard, although this 
is still less stringent than tapping. Further study is needed 
to find the best ambiguity resolution method for SHARK. 

Note that since the recognition is online (real time), the 
system takes the direction of the SHARK gestures from pen 
down to pen up into account. Some words that appear 
ambiguous offline are not in fact ambiguous. The word in, 
for example, is also a horizontal stroke but it will never be 
confused with the word can. 

A USER STUDY 
Issues to be explored 
The SHARK method raises many human performance 
questions. To completely address these questions requires 
extensive long-term research. At this early stage, we focus 
on the most basic question - can users learn, remember or 
discriminate (see [13] for a recent study on gesture 
similarity), and produce shorthand gestures defined on 
stylus keyboard at all? Can they learn a useful number of 
SHARK gestures in a relatively short period?  

There are reasons to expect that people can remember a 
large number of symbols. We use dozens of Roman letters, 
Arabic numbers, Greek letters, punctuation marks, and 
mathematic symbols. Trained stenographers learn a great 
number of shorthand symbols. 700 separate hieroglyph 
symbols were used in ancient Egypt [8]. A literate 
Chinese person must learn two to five thousands of 
unique characters. In sum, there are ample evidence that 
people can master a large number of symbols. 

However, even Chinese characters are made of common 
radicals. It is likely that in people’s memory Chinese 
characters are reduced to these radicals and the two 
dimensional relationships among the radicals.  SHARK 
gestures (See Table 1 for examples), on the other hand, 
are formed in a novel approach that does not break a 
continuous shape down to elements, although experienced 
users may transfer common traces between some words, 
such as -ing and -tion. Clearly, to understand people’s 
ability to learn SHARK, an empirical study is necessary. 



    

 

How well people can learn new skills partly depends on 
the methods they learn and practice the new skill with. 
The secondary goal of this user study is to design an 
effective method to help users learn SHARK gestures.  

Learning method 
The literature on skill acquisition (e.g. [18]) and human 
memory (e.g. [3]) presents a variety of theories, models 
and insights on how people learn and remember skills. A 
compelling method from that literature that may be 
relevant and useful in helping people to learn SHARK is 
practicing with expanding rehearsal interval (ERI) [12]. 
ERI has been acclaimed as an important result in human 
memory research and is also supported by recent thoughts 
in the field of skill acquisition and memory [19].  

Briefly, the ERI method suggests that trial repetitions for 
learning should be neither totally massed nor randomly 
distributed. Rather, they should be optimized by 
systematically increasing the interval between repetitions. 
Recently it has been shown that such a method could be 
effective to learning stylus keyboarding [26], although the 
rate of expansion and the unit of training in stylus 
keyboarding needed further investigation. Different from 
the original ERI method which schedules rehearsal at 
increasing but preprogrammed intervals, we decided to 
make ERI adaptive based on the learner’s performance. 
The interval of rehearsal for a particular SHARK gesture 
expands only if the learner could recall the gesture 
correctly.  Otherwise, the interval stays the same. We 
could also make the interval shrink if the learner 
repeatedly fails to recall a gesture, but our experience 
shows that this is not necessary in practice and may lead 
to frustration. 

In each cycle of rehearsal of a particular word by our ERI 
method, the participant was asked to write the SHARK 
shorthand for that word on the stylus keyboard area that 
did not show the layout (Fig. 5). This forced the user to 
actively retrieve SHARK movement patterns from memory. 
Research has shown that active retrieval is a key to 
memory retention [19]. The word that matched the user’s 
SHARK gesture was then displayed in the last entry area 
(Fig. 6). If correct,  the word would be rescheduled to 
appear at an interval twice the current value. The user 
may go on to the next word or practice the current word a 
few more times with the choice of seeing the keyboard 
layout by clicking show keyboard, before moving on. 

If the participant could not recall the SHARK gesture of a 
practiced word or failed to write it correctly, the rehearsal 
interval will keep its current value. The user could choose 
to learn (for a new word) or relearn (for a forgotten word) 
the SHARK gesture by displaying the ATOMIK keyboard, 
together with the gesture prototype drawn in dotted lines 
connecting the letters in the word (Fig. 6). The user could 
write the SHARK gesture anywhere on the keyboard in any 
scale, and practice the gesture as many times as wanted to 

explore the tolerance of acceptable shapes for the target 
word. 
 

 
Fig. 5. Screenshot of the experimental set-up: the user was 

asked to write a word (“inside”) by SHARK without  
visual reference 

 

 
Fig. 6. The user may learn a SHARK gesture by displaying  

the ATOMIK keyboard layout 
 
The learning program maintained two lists of words: a 
word list containing the maximum number of words to be 
learned in the study and a rehearse list keeping all words 
being actively rehearsed at various intervals. Each word 
in the rehearse list had its own timer, counting down from 
its current rehearsal interval value. The algorithm that 
managed the ERI scheduling worked as follows: 
1. If the rehearse list is empty, pick a new word from the word 

list and initialize it with a rehearse interval of 30 sec and put it 
in the rehearse list. 

2. Pick the word from the rehearse list that has the earliest 
rehearse time according to the value left in its timer. 

3. If the timer is below 30 sec present the word to the user. 
Otherwise pick a new word from the word list and present it to 
the user.  

4. If the user writes the correct SHARK gesture of the target word, 
return it to the rehearse list with a doubled rehearsal interval, 
else return it with an unaltered rehearsal interval, Go to 2. 

Experimental set up and procedure 
The experiment was carried out on a PC attached with a 
Wacom tablet model ET-0405-U as the pen input device.  

Six paid volunteers, two male four female, between 20 
and 30 years old, participated in a five-session experiment. 
None of them had any prior experience with SHARK or the  



    

 

Table 1. Words in the study and their SHARK shorthand4 
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4  Due to space constraint these SHARK symbols can only be 
listed in small size. The static shapes do not reveal the dynamic 
stroke directions, which make them more distinct. A solid dot 
signifies the start point of a SHARK symbol. Note also symbols 
listed in the table are SHARK prototypes. Actual user’s sample 
shapes always deviate from the prototypes, with rounded corners 
for example. 

ATOMIK keyboard.  Session 1 was 40 minutes practice 
with ERI only. Session 2, 3, and 4 consisted of two parts. 
Part one was a test session of words a participant had 
practiced in previous sessions, lasting from 6 to 20 
minutes. There was a period of minimum one day (night), 
and sometimes a full weekend between a test and the 
previous practice session.  Part two was 40 minutes 
practice with ERI. Participants were asked to take a 5-
minute break in the middle of the practice session, and 
were suggested to take short breaks anytime they liked to. 
Session 5, the last session, was a final test session only.  

In test sessions, words were presented in a random order. 
The participants were given at most two chances to recall 
and write the SHARK gesture correctly. 

In the experiment a total of 100 words were in the word 
list. We focused on the baseline of SHARK shorthand 
memory in this experiment and made sure no ambiguity 
existed in the list.  50 of the 100 words used were selected 
from the top 100 most common words in the British 
National Corpus. The next 50 words were selected from 
the top 100 to top 300 most common words. These words 
and their corresponding SHARK shorthand prototypes are 
listed in Table 1. 

Results and discussion 
The results of the user study shows that all of the 
participants could learn to write correctly recognizable 
SHARK gesture for any word presented to them, if 
practiced enough times (typically 7 to 15 ERI cycles). Fig. 
7 shows the ERI traces of a few sample words by one 
participant. Note that all these traces ran across different 
days (sessions). Some participants felt that new words 
disappeared too quickly, suggesting the expansion rate 
(factor of 2) too aggressive, whereas others found the 
frequency of practicing adequate. Some participants could 
keep up with the ERI expansion and correctly write the 
SHARK gesture every time (See other in Fig. 7 for 
example). In sum, the ERI method appeared effective, but 
it could certainly be further tuned. For example, it is 
possible to make the expansion rate adaptive to 
individuals based on their performance. 
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Fig. 7. Sample ERI traces  



    

 

As shown in Fig. 8 and 9, participants were able to 
correctly write more words in each learning session, on 
average about 15 words more per session. In the final test, 
on average they correctly produced 48.83 (between 62 
and 39) words in their first attempt, and 58.67 (between 
77 and 49) words if counting the second attempt when the 
first failed.  Interestingly, the number of new words 
learned per session was rather constant, or slightly higher 
toward later sessions (Fig. 9). 
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Fig. 8. Total number of words correctly written in test 
sessions, averaged across participants 

Mean and Standard Deviation of the number of 
new words learned per session

0
2
4
6
8

10
12
14
16
18

1 2 3 4
Testing session  

Fig. 9. More words learned in each session 

During the study participants were encouraged to write 
down comments on SHARK and the learning method used 
each day. Most of them found the SHARK method exciting, 
particularly in the initial sessions (“It is fun!” “Ought to 
be a really effective way of writing once you get a hang of 
it” etc). User’s initial reaction is often the most critical to 
the adoption of an interface style. None of the participants 
found the method tedious throughout the study. In the 
final questionnaire, participants rated 0.6 on the scale of 
(–3 frustrating, +3 satisfying); 1.83 on (–3 dull, +3 
stimulating); 0.6 on (–3 difficult, +3 easy) to use;  0.6 on 
(–3 difficult, +3 easy) to learn. To the question “If such a 
method is made available for practical use, would you 
learn it?”, their answer averaged 1.6 on the scale of (–3 
definitely no,  +3 definitely yes).  When asked if they 
would use it in a list of situations, 0/6 participant choose 
“not at all”, 2/6 answered “Yes, when a physical keyboard 
is not available” and 4/6 “Yes, to replace keyboard typing 
sometimes”, and 0/6 “Yes, to replace keyboard typing all 
the time”.  It is particularly encouraging that the majority 
could imagine using SHARK even to “replace keyboard 

typing sometimes”. Since there is no direct comparison to 
methods with similar amount of experience and the study 
was short and necessarily artificial, these subjective data 
can only be taken as a reference, not conclusions.  

Some of the anecdotal comments were also informative.  
Two participants attempted to memorize the ATOMIK 
layout and tried to guess the SHARK gesture based on their 
memory of the layout when asked to write a word the first 
time. The participants were usually displeased when they 
wrote a word correctly in their mind, but the system was 
“unfair” and did not recognize it. It suggests that our 
recognizer based on a standard elastic matching algorithm, 
which emphasizes the degree of proportion, did not 
necessarily accurately reflect user’s cognitive model of 
the SHARK gestures, which is probably more topological. 
Two participants mentioned “it was easier to remember 
complex shapes than simple ones”, contrary to our 
concern that long words will be difficult to handle with 
SHARK. Participants occasionally drew mirror image of 
the correct SHARK shape, although practice eventually 
overcame such types of error.  

50 to 60 shorthand gestures learned in four sessions can 
already be very useful in text input, given the Zipf’s law 
effect. The study showed no sign of slowing down in 
user’s ability to learn more SHARK shorthand symbols. 
How many such symbols can eventually be learned, if 
limited at all, is unknown. Because these symbols are 
constructed differently from other large character sets 
such as Chinese, it is difficult to find precedence of 
human capability in this regard.  In general, human long-
term memory capacity is only limited by acquisition 
speed. 

Given the prospect of creating a whole new system of 
efficient writing, a great deal more research is needed in 
the future to understand, validate/invalidate, improve, 
change, and innovate many aspects of it. We have only 
done the most basic work to show the feasibility of 
SHARK. Other compelling research issues include its 
expert speed limit, long term study of users’ learning and 
usage of SHARK, particularly in real use of text production; 
the usability of various ambiguity resolution methods; 
theoretical quantification, modeling and empirical 
measurement of SHARK gestures-based input in terms of 
speed, accuracy, and capacity, from both human memory 
and motor control, as well as machine recognition point of 
view; and improvement of learning method, preferably 
integrated in the SHARK system and combined with the 
use of it. In terms of developing more advanced 
recognition algorithm that matches human perception of 
shapes more closely in the future, much can be done in 
making the recognition more sophisticated, with situation 
specific “work-around” and probably borrowing 
techniques from modern complex speech recognition 
systems. High-level constraints, such as the context of 
proceeding words, can also potentially be used to make 
SHARK recognition more tolerant to “sloppy” writing. 



    

 

CONCLUSIONS 
Speed writing is an old research topic with renewed 
interest due to the need of using mobile computing 
devices. To write a significant amount of text, natural 
writing is too slow and stylus keyboarding is tedious and 
visually demanding. We have proposed a new approach 
that combines the two at a shorthand level - SHARK.  
SHARK defines a shorthand symbol for each word 
according to its movement pattern on a stylus keyboard 
layout. The key rationale for designing SHARK rests on 
five principles: efficiency, location and scale 
independency, duality of tapping and gesturing, Zipf’s 
law effect, and transition from tapping to gesturing. We 
have developed a SHARK recognizer based on an elastic 
matching recognition algorithm. A user study indicated 
the feasibility of SHARK. Participants could learn SHARK 
shorthand symbols, at a average rate of 15 words per (45 
to 50 minutes) session, by practicing with the ERI 
paradigm. Most participants found SHARK shorthand fun 
to use, and considered even to use it to replace physical 
typing sometimes. It was evident that people could learn a 
useful number of SHARK shorthand symbols in a rather 
small amount of time. To understand all issues involved 
and the full potential SHARK, possibly even beyond 
mobile computing as a form of speed writing, requires a 
great deal more research in the future. 
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