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Abstract 

A Bayesian model of continuous speech recognition is presented.  It is based on 

Shortlist  (Norris, 1994; Norris, McQueen, Cutler, & Butterfield, 1997) and shares many 

of its key assumptions: parallel competitive evaluation of multiple lexical hypotheses, 

phonologically abstract prelexical and lexical representations, a feedforward architecture 

with no online feedback, and a lexical segmentation algorithm based on the viability of 

chunks of the input as possible words.  Shortlist B is radically different from its 

predecessor in two respects, however.  First, whereas Shortlist was a connectionist model 

based on interactive-activation principles, Shortlist B is based on Bayesian principles.  

Second, the input to Shortlist B is no longer a sequence of discrete phonemes; it is a 

sequence of multiple phoneme probabilities over three time slices per segment, derived 

from the performance of listeners in a large-scale gating study.  Simulations are presented 

showing that the model can account for key findings: data on the segmentation of 

continuous speech, word frequency effects, the effects of mispronunciations on word 

recognition, and evidence on lexical involvement in phonemic decision-making.  The 

success of Shortlist B suggests that listeners make optimal Bayesian decisions during 

spoken-word recognition. 
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INTRODUCTION 

Sherlock Holmes seemed to know something about the power of Bayesian 

decision-making when he said to Watson: "How often have I said to you that when you 

have eliminated the impossible, whatever remains, however improbable, must be the 

truth?" (Conan Doyle, 1890 Ch 6). We argue here that listeners know this and much more 

about Bayesian decision-making. Specifically, we suggest that, in order to perceive 

continuous streams of speech as sequences of discrete words, listeners behave as optimal 

Bayesian recognizers. In support of this claim we present a new computational model that 

gives a simple and elegant account of the main empirical findings on spoken-word 

recognition. This leads to a complete reconceptualization of the word recognition process.  

The model introduces new ways of thinking about word frequency, how words are 

matched to the perceptual input, lexical competition, and lexical activation.  

In the literature on spoken-word recognition there is almost universal acceptance 

that recognition involves a process whereby the perceptual input ‘activates’ lexical 

representations, and these activated representations then ‘compete’ with each other to 

determine an appropriate segmentation of the input into words (e.g.  Allopenna, 

Magnuson, & Tanenhaus, 1998; for reviews see Frauenfelder & Floccia, 1998; Gaskell & 

Marslen-Wilson, 2002; McQueen, 2007; McQueen, Norris, & Cutler, 1994). The 

Bayesian framework we advocate here leads us to abandon the concept of lexical 

activation. 

Activation has been an extremely valuable metaphor in spoken-word recognition 

research. It is embodied in two of the most influential models, TRACE (McClelland & 

Elman, 1986) and Shortlist (Norris, 1994), both of which are based on interactive-
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activation networks. In such networks each word (or lexical candidate) is represented by 

a single node which is assigned an activation value. The activation of a lexical node 

increases as the node receives more perceptual input, and decreases when subject to 

inhibition from other words. But what is the explanatory value of the concept of 

activation? Beyond the general notion that bigger is better, activation does not directly 

determine the behavior of these models. In particular, neither reaction time nor response 

probabilities can be derived directly from activation values without additional 

assumptions. Furthermore, as we will explain later, activation is not actually a core part 

of the theory motivating Shortlist. The interactive-activation network is simply a 

convenient mechanism for performing some of the computations required by Shortlist, or 

indeed by any theory of spoken-word recognition. In this paper, therefore, we replace the 

interactive-activation network in Shortlist with Bayesian computations that provide a 

more direct implementation of the theoretical principles underlying the model. 

One consequence of adopting the Bayesian perspective is that ‘activation’ is 

replaced by the concepts of likelihood and probability, both of which have a clear formal 

interpretation. In the case of probability, this can be linked directly to measures of 

behavior. Thus, while one goal of this paper is to present a new version of Shortlist, the 

more general aim is to argue for the benefits of the Bayesian perspective in understanding 

spoken-word recognition.   

The central theoretical claims embodied in Shortlist can be derived from a simple 

higher-level claim, namely that human listeners adopt a near optimal strategy for 

recognizing speech. Here we cast this in terms of the theoretical principle that human 

listeners approximate optimal Bayesian decision makers. We then ask how much of what 
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we know about human speech perception can be explained purely on the basis of this 

simple premise. The answer, we will argue, is that the principle of optimality gives us a 

better explanation of a broader range of phenomena than any existing model. Importantly, 

this explanation follows automatically from this basic principle in such a straightforward 

way that the resulting computational model is much simpler than any of the competitor 

models.  

The starting point for this work is an analysis of the computational problems that 

must be solved in order to complete the task of  speech recognition successfully (Marr, 

1982) – in Anderson’s (1990) terms, a Rational Analysis.  We have argued in detail 

elsewhere (Scharenborg, Norris, ten Bosch, & McQueen, 2005), that, for spoken-word 

recognition to be successful, the listener must solve a number of specific computational 

problems that arise from the nature of the acoustic speech signal and from the structure of 

the vocabulary.  The original Shortlist model (Norris, 1994) and its developments  

(Norris, McQueen, Cutler & Butterfield, 1997; Scharenborg et al.., 2005)   offer 

algorithms for how these computational-level problems are solved.  According to 

Anderson’s (1990) Principle of Rationality, however, the overarching constraint on all 

information-processing theories is that the cognitive system should be optimized with 

respect to its goals.  Spoken-word recognition, therefore, should be optimal in the sense 

that a listener’s behavior should approach the best that it can be, given the constraints 

imposed both by the speech signal and by phonological and lexical knowledge.  As we 

now show, a major attraction of a Bayesian model of spoken-word recognition is that its 

behavior is guaranteed to be optimal in exactly this way. 
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If speech consisted of strings of completely unambiguous isolated words, then 

optimal word recognition would simply entail the selection of the sequence of words that 

matched the current input.  As we describe in more detail below, however, the speech 

signal is phonetically ambiguous, and it does not consist of a series of discrete words – 

instead, speech sounds unfold over time in a quasi-continuous stream.  Bayesian 

inference allows word recognition to be optimal in the face of this ambiguity by 

combining the perceptual evidence that is available (no matter how ambiguous) with 

knowledge of the prior probabilities of words.  Bayes’ theorem ensures that the way these 

sources of information are combined is optimal.  First, with completely unambiguous 

input the best-matching word will always be selected.  Second, word recognition will also 

be optimal with ambiguous input. As the ambiguity of the input increases, the influence 

of the prior probability of the words will also increase: As perceptual uncertainty 

increases, the smart money goes on the events which are more likely to occur. 

Our claim that human listeners approximate optimal Bayesian decision makers 

requires us to specify exactly what function listeners are attempting to optimize. This 

means we have to specify the listeners’ task, as it is the task that determines the function 

that must be optimized. Norris (2006) provides an extensive discussion of optimality in 

tasks involving visual word recognition. In Norris’s Bayesian Reader model, evidence is 

accumulated from the input by means of a noisy sampling process. In sequential sampling 

models there are two standard definitions of optimality, depending on the task (see 

Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006, for a recent discussion of optimal 

decision making in sequential sampling models). In tasks requiring speeded decisions, 

optimality is defined as making the fastest decision possible while achieving a given level 
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of accuracy (e.g., 95% correct).  In tasks requiring a response based on a fixed amount of 

perceptual evidence (e.g., perceptual identification), optimality is defined as selecting the 

response (word) that is most probable, given the available input.  

In both cases the primary requirement is to calculate the conditional probability of 

each word given the available input, and this conditional probability is exactly what 

Bayes’ theorem allows us to calculate:  
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Bayes' theorem specifies how to revise or update beliefs in the light of new 

evidence.  Given some initial belief about the probability of a hypothesis being true 

(P(Hypothesis)),  Bayes' theorem tells us how to update this prior probability and 

compute the posterior probability of the hypothesis being true, given the evidence 

(P(Hypothesis|Evidence)).  P(Evidence|Hypothesis) is the likelihood of the evidence 

given the hypothesis. When modeling word recognition, the hypotheses correspond to 

words: 
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where n is the number of words in the lexicon. Bayes’ theorem therefore gives us 

exactly the information we need: The conditional probability of each word, given the 

available evidence. This holds regardless of whether the input is spoken or written. It 

makes no difference whether the evidence is being accumulated by noisy sampling, as in 

the Bayesian Reader, or because spoken input is arriving over time, as in Shortlist B. 

Once these conditional probabilities have been computed, optimal decisions can be made 
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either by selecting the most probable word at a given point in time, or by making a 

response when the probability of a word exceeds a predetermined probability threshold. 

The focus of most of the simulations here will be on calculation of the relevant 

probabilities, but in the final simulations we will estimate actual reaction time (RT) 

measures in the tasks of lexical decision and phonetic categorization. 

There is one important qualification to the claim for optimality we have just 

presented. The probabilities calculated will only be true probabilities to the extent that the 

listener’s prior beliefs are a true reflection of real probabilities. For example, if a listener 

has a completely mistaken belief as to the probability of encountering a particular word in 

a particular context, the posterior probability they assign to that word will no longer 

correspond to the actual probability. Their erroneous beliefs may lead them to make 

inaccurate decisions. In most of the simulations presented here we will make the 

simplifying assumption that the appropriate prior probabilities can be estimated from 

standard measures of word frequency. However, we will also need to take account of the 

fact that word frequency represents only a fraction of the knowledge that listeners have at 

their disposal when recognizing continuous speech. 

A new, Bayesian version of Shortlist will therefore be presented: Shortlist B.  In the 

original version of the model (henceforth, Shortlist A, for Activation) the output is a 

pattern of word activations over time. In contrast, Shortlist B operates as a Bayesian 

classifier and its output is a list of the posterior probabilities of words.  Nevertheless, 

Shortlist B shares most of the key assumptions of its predecessor about, for example, the 

nature of prelexical and lexical representations, and the processing architecture of the 

recognition system.  Shortlist B therefore offers the same solutions as Shortlist A to the 
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computational problems associated with spoken-word recognition, but with the additional 

major benefit that the model makes optimal Bayesian decisions. 

The Bayesian approach taken in Shortlist B is attractive not only because it 

instantiates the assumption that word recognition is optimal, but also because almost all 

of the characteristics of the model follow directly from this assumption.  As we discuss in 

greater detail below, the ways the model deals with the data on lexical competition, word 

frequency, perceptual match and mismatch, and the relation between lexical and 

sublexical information, are all forced by the optimality assumption.  This has two major 

benefits.  First, the result is a much simpler theory than in the corresponding 

connectionist models.  TRACE, Shortlist A, and Merge (Norris, McQueen, & Cutler, 

2000b) all have a large number of free parameters.  Changes to these parameters can 

produce quite large differences in model behavior (Pitt, Kim, Navarro, & Myung, 2006).  

In contrast, as will become apparent, Shortlist B has very few parameters, and the exact 

values of these parameters are not critical. Furthermore, the parameters that are used in 

the model are all designed to reflect expectations about the structure of the linguistic 

input, or the task to be performed. 

Second, the optimal Bayesian account of phenomena such as word frequency 

effects encourages a complete reassessment of core aspects of the word recognition 

process.  Shortlist B generates insights into word recognition that cannot readily be 

derived from the traditional activation-based approach.  For instance, the effect of 

mispronunciations on lexical access is usually cast in terms of perceptual similarity: The 

degree of activation of a lexical hypothesis varies simply as a function of the phonetic 

similarity of the mispronunciation to the base word.  Probability must also be considered, 
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however.  For example, irrespective of phonetic similarity, some mispronunciations may 

be more likely renditions of a base word than others.  As will be demonstrated, Shortlist 

B offers a formal account of how the likelihood of different realizations of words can 

modulate word recognition. 

A further advantage of modeling speech recognition within a Bayesian framework 

is that it allows us to take advantage of some of the principles developed in the Bayesian 

Reader model of visual word recognition (Norris, 2006).  As will be shown, this enables 

us to give a principled account of lexical decision, and to simulate both RTs and error 

rates.  Please note that further discussion of the benefits of Bayesian methods, which 

apply just as well to spoken as to visual word recognition, is to be found in Norris (2006). 

The Bayesian approach has another important motivation.  Unlike the activation 

values output by connectionist models, the posterior probabilities generated by Shortlist 

B have a clear formal interpretation.  Activation rarely corresponds directly to behavioral 

observations such as speed, accuracy, or probability of responding.  Following 

McClelland and Rumelhart (1981),  the R.D. Luce (1959) choice rule is sometimes used 

to generate response probabilities from activation values (e.g. Allopenna, Magnuson, & 

Tanenhaus, 1998; Dahan, Magnuson, & Tanenhaus, 2001; Luce, Goldinger, Auer, & 

Vitevitch, 2000; McClelland & Elman, 1986).  But this is largely a pragmatic procedure 

for generating probabilistic data from a deterministic model.  It is therefore still unclear 

what activation values mean: In particular, do they reflect the probabilities that words 

will be recognized?  Davis, Gaskell and Marslen-Wilson (1998) have suggested that 

activations in a recurrent network trained to identify words should be interpreted as the 

conditional probabilities of identifying those words given the input.  It is not clear that 
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this is a formal property of this model, however, or even that the model would produce 

such probabilities under conditions other than the specific circumstances of the 

simulations that Davis et al. report.  Because the interpretation of activation values is not 

straightforward, we avoid any use of the activation metaphor here.  Shortlist B works 

entirely within the probability domain; interpretation of the posterior probabilities output 

by the model is therefore completely unambiguous. A related reason to favor the 

Bayesian approach over connectionist models is that the use of such models does not 

guarantee optimal word recognition.  It might be possible to build an interactive-

activation network that computed the same Bayesian functions as Shortlist B, but it is 

also possible to build networks that compute other functions. The use of an interactive-

activation framework therefore does not ensure that recognition will be optimal. In 

contrast, as we have already argued, the Bayesian framework guarantees optimality. 

Continuous speech recognition 

Previous models have taken a similar approach to the problem of speech 

recognition that we advocate here. One is the Neighborhood Activation Model (NAM; 

Luce, 1986; Luce & Pisoni, 1998); another is the Fuzzy Logical Model of Perception 

(FLMP; Massaro, 1987; Massaro, 1989a; Oden & Massaro, 1978).  As in Shortlist B, the 

NAM instantiates the critical assumption that words’ prior probabilities (i.e., their 

frequency of occurrence) are combined with bottom-up evidence to determine word 

recognition. As we describe later in the section on NAM and Shortlist B, however, the 

way in which NAM operates is not strictly Bayesian. Furthermore, the NAM offers an 

account only of the recognition of isolated monosyllabic words. A major goal in 
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developing Shortlist B was to provide an account of the recognition of words in the 

continuous speech stream, and not just isolated words. 

 The FLMP foreshadowed Shortlist B in assuming that speech recognition should 

be optimal, that optimality should be achieved through the independent evaluation of 

different sources of evidence (Massaro, 1987; Massaro & Cohen, 1991), and that 

recognition can be conceived of as a Bayesian process (Massaro, 1987; Massaro & 

Friedman, 1990). But, as with the NAM, while there are strong formal similarities 

between FLMP and Bayes’ theorem (Massaro & Friedman, 1990), the FLMP is not 

strictly Bayesian (see the FLMP and Shortlist B section below).  In addition, while the 

FLMP has been applied to many types of perceptual data, like the NAM it has not been 

applied to large-vocabulary continuous speech recognition. Where the FLMP has been 

applied to data on recognizing words in sentences (Massaro, 1978,1989b), the critical 

words have always been treated exactly as they would in a model of isolated word 

recognition.  

Any adequate model of spoken-word recognition must be able to recognize words 

in continuous speech. Because of the spaces between written words in a text like this, one 

can consider that recognition of written sentences entails the repeated application of the 

procedures used to recognize individual written words.  The spaces provided by the 

writer tell the reader where one word ends and the next one begins.  But speakers do not 

segment their utterances in this way for their listeners.  Although there is a wide range of 

cues in the speech signal that are correlated with word boundaries (Church, 1987; Cutler 

& Carter, 1987; Nakatani & Dukes, 1977), and although listeners are sensitive to these 

cues and use them in segmentation (Cutler & Butterfield, 1992; Cutler & Norris, 1988; 
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Davis, Marslen-Wilson, & Gaskell, 2002; Gow & Gordon, 1995; Mattys, White, & 

Melhorn, 2005; McQueen, 1998; Norris, McQueen, & Cutler, 1995; Salverda, Dahan, & 

McQueen, 2003; Shatzman & McQueen, 2006; Tabossi, Collina, Mazzetti, & Zoppello, 

2000; Vroomen & de Gelder, 1995) none of these cues is completely reliable1.  Word 

recognition therefore requires a solution to this segmentation problem: A mechanism 

which can work in the absence of any such signal-based cues. 

If words were not alike, then the lack of reliable segmentation cues would not be a 

problem.  Each word would be perceptually distinct and could be recognized on the basis 

of its unique material even if it were not segmented from other words.  But words are 

alike.  Because the words of a given language are made up from a limited inventory of 

speech sounds, they tend to be phonologically very similar to each other.  Words begin in 

the same way as many other words, end in the same way, and often have other words 

embedded within them (Cutler, Norris, Mister, & Sebastian-Galles, 2004; Luce, 1986; 

McQueen, Cutler, Briscoe, & Norris, 1995).  Given the continuous nature of the speech 

signal, it also often contains words that straddle word boundaries and hence yet more 

words that are not part of the sequence of words intended by the speaker. For example, 

the Italian sequence visi tediati, “faces bored”, contains the spuriously embedded word 

visite “visits”.  Experiments by Tabossi, Burani and Scott (1995) suggest that such 

between-word embedded words are indeed considered by listeners during sentence 

comprehension. 

These observations have led speech researchers to reject earlier accounts, such as 

the Cohort model (Marslen-Wilson & Welsh, 1978), in which words were identified in a 

strictly sequential order (see also Cole & Jakimik, 1978, 1980), and to believe that 
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spoken-word recognition involves a process of competition between lexical candidates, 

so that candidates that overlap in the input compete with each other (McClelland & 

Elman, 1986; Norris, 1994).  Words such as visite will be considered but will lose the 

fight with the competing words visi and tediati, and will not be consciously perceived as 

being present in the utterance.  This competition process segments the input (e.g., finds 

the boundary between visi and tediati) even in the absence of any cues signaling a lexical 

boundary. 

Both of the connectionist models that have been most widely used to explain 

continuous speech recognition (TRACE and Shortlist A) implement this competition 

process in terms of interactive-activation networks, where nodes representing the 

activation of lexical candidates inhibit each other via reciprocal inhibitory connections.  

This, however, is certainly not the only solution to the problem of identifying the 

sequence of words in a stretch of continuous speech.  Indeed, this is never the solution 

adopted in Automatic Speech Recognition (ASR) systems.  In ASR, the task of 

discovering the sequence of candidate words that provides the best coverage of the input 

is usually thought of as a search problem. As we will explain below, candidate words can 

be encoded in a graph or lattice (see Figure 1) and the task is to find the best contiguous 

path through the lattice. The best path should correspond to the best fitting sequence of 

words. In Marr’s (1982) terms, lattice-based search and competitive inhibition in a 

connectionist model are different algorithms for the same computational function, that of 

searching for the sequence of words that best matches the input. 

In a Bayesian model such as Shortlist B, words do not have ‘activation’ values and 

there is no direct inhibition among lexical hypotheses. The same assumptions are made in 
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the FLMP (Massaro, 1987, 1989a; Massaro & Oden, 1995). But path probabilities can be 

computed and compared with each other in Shortlist B.  This, then, is the solution to the 

segmentation problem instantiated in Shortlist B.  While there is no competitive 

inhibition in the new model, it still has a search algorithm which evaluates multiple 

lexical hypotheses simultaneously.  The parallels between the two approaches are 

illustrated in Figure 1 (see also Scharenborg et al., 2005).  The upper panel shows the 

standard representations of candidate words in an interactive-activation network like that 

in Shortlist A.  Each candidate is connected to every overlapping candidate by inhibitory 

links.  The lower panel represents the same candidates in terms of a word lattice, as in 

ASR systems and Shortlist B.  The aim of the recognizer here is to search for the best 

path through the lattice.  This example mainly shows paths that link contiguous word 

candidates.  Standard ASR practice is to allow discontinuous paths too, but to penalize 

paths that leave some part of the input unaccounted for.  Examples of discontinuous paths 

are also shown in Figure 1; we discuss below how such paths are processed in Shortlist B. 

------------- 

Insert Figure 1 about here 

------------- 

In practical ASR systems the number of alternative paths through a lattice can 

become very large indeed. The search process is usually simplified by using dynamic 

programming techniques such as Viterbi search (Viterbi, 1967) or token-passing (Young, 

Russell, & Thornton, 1989).  The parallels between lattice-based search and inhibition in 

an interactive-activation network were recognized by Norris (1994), who suggested that 

dynamic programming techniques could be used as an alternative to the interactive-
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activation network in Shortlist.  Although Shortlist B does not use dynamic 

programming, it does work by performing computations on paths. 

The details on how path probabilities are computed are given below.  Two points 

about how Shortlist B deals with continuous speech can already be made, however.  The 

first is that, with respect to the segmentation problem, the high-level computation 

performed by the new model is the same as that in Shortlist A.  The second is that the key 

computations involve path probabilities rather than word probabilities.  A major goal in 

the development of Shortlist B was to examine whether Bayesian decisions based on 

paths are successful in explaining the data on human continuous spoken-word 

recognition. 

The Input to Shortlist B 

A final motivation for the development of Shortlist B was the need to improve on 

the account of early-phonetic analysis offered by the original Shortlist model.  The input 

to Shortlist A is simply a string of phonemes.  The representations of those phonemes 

have no internal structure, and all phonemes are treated equally.  There is therefore 

nothing in the input to the word-recognition process to indicate that listeners find some 

phonemes more confusable than others.  Furthermore, this kind of input to word 

recognition is discrete and categorical in two inappropriate ways.  First, it is discrete in 

temporal terms.  That is, there is no overlap of evidence for different speech sounds, as if, 

counterfactually, there were no effects of coarticulation in the speech signal.  Second, this 

kind of input is discrete in informational terms: For any segmental position in the input 

there is 100% support for one and only one phoneme.  There is, however, considerable 

evidence (reviewed in McQueen, 2007) to suggest that the word-recognition process is 
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continuous in both the temporal and informational senses.  Acoustic information 

modulates word recognition on a much finer time-scale than phoneme by phoneme, and 

that information concerns within-phoneme variability.  The input to Shortlist A is 

therefore inadequate.     

To date there have been three different approaches to producing more realistic input 

representations in models of spoken-word recognition.  One option is to model the input 

non-categorically.  The input in TRACE (TRACE II, to be more precise; McClelland and 

Elman, 1986), for example, consists of a vector of phonetic features that varies over time. 

While this kind of input is more detailed, it still involves considerable oversimplification, 

particularly with respect to the time-course with which featural information becomes 

available.  Critically, this approach depends on a largely untested set of assumptions 

about what evidence the listener can extract about different features (and hence 

phonemes) in any stretch of input.   

A second option is to construct a model that takes the raw acoustic waveform as its 

input. Both TRACE I (Elman and McClelland, 1986) and SpeM (Scharenborg et al., 

2005) take this approach.  A limitation of this method, once again, is that there is little 

reason to believe that there will be a close mapping between the acoustic-phonetic 

processes and representations in these models and those used by human listeners.  

Scharenborg et al., for example, derive phonemic representations with a conventional 

hidden Markov model phone recognizer, as used in ASR systems.  To the extent that this 

recognizer deviates from human behavior, the results of the SpeM model as a whole 

could be misleading. 
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A third alternative is to accept that it may be premature to expect to produce a well-

motivated model of the early stages of speech recognition and, instead, to try to simulate 

these processes using data from human phoneme or word confusions (e.g. Luce & Pisoni, 

1998).  Even though this approach sidesteps the question of how the early stages of 

recognition operate, it enables one to present later stages of a model with input that 

corresponds more closely to the input that would be received from the human perceptual 

system.  For example, if listeners have more difficulty discriminating one pair of 

phonemes than another, then the input to the model should reflect that difference.  Luce 

and Pisoni (1998) have used this procedure to great effect in the NAM to explain a wide 

range of data on lexical neighborhoods and word frequency in tasks such as perceptual 

identification and lexical decision.  

The confusion data driving the NAM is derived entirely from errors that listeners 

make in identifying words in noise (see also Benki, 2003; Miller & Nicely, 1955; Pickett, 

1957; Wang & Bilger, 1973).  This is a significant limitation because most of the 

psycholinguistic data one would wish to model are collected under relatively noise-free 

listening conditions.  These confusion data also provide no information about how 

listeners accumulate perceptual evidence as the acoustic waveform arrives over time.  

This is again a serious problem since many aspects of the word-recognition data to be 

modeled concern the time-course of lexical processing and the speed of responding in RT 

tasks. 

The input to Shortlist B is similar in spirit to that in NAM, in the sense that it too is 

based on perceptual confusion data.  But, unlike in NAM, those data are not based on 

identification of words in noise, and do provide information about how confusions 
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change over time.  Specifically, they are derived from a gating task in Dutch (Smits, 

Warner, McQueen, & Cutler, 2003; Warner, Smits, McQueen, & Cutler, 2005).  These 

gating data provide fine-grained information about how listeners accumulate perceptual 

information from the speech signal over time.  These data are also very extensive, in that 

they cover confusions about almost all possible diphones in Dutch. 

Given the Bayesian principles of Shortlist B, its input should consist of probability 

values rather than, for example, phoneme activations.  The confusion data from the gating 

task are ideal in this regard.  As will be described in more detail later, it is straightforward 

to derive, from the responses of the listeners in the gating task, a sequence of multiple 

phoneme probabilities over three time slices per segment.  This forms the input to the 

word-recognition process in the new model. 

SHORTLIST B 

In summary, Shortlist B makes two significant advances over its predecessor.  First, 

the new model is based on Bayesian principles rather than on interactive activation.  

These principles, based on path probabilities rather than simple word probabilities, are 

applied to the problem of word recognition in continuous speech.  Second, the input to 

the new model is based on phonetic confusion data, derived from a large-scale gating 

study.  Thus, in contrast to Shortlist A, Shortlist B has a much more realistic input. 

We will present simulations showing that the new model can simulate key findings 

in spoken-word recognition.  These results establish the viability of Shortlist B and, 

perhaps more importantly, show how a Bayesian perspective can offer valuable insights 

into the problems of speech recognition.  For example, Shortlist B offers new and 
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principled accounts of word frequency effects and the effects of perceptual match and 

mismatch.  First, however, we present the model itself. 

Bayesian assumptions 

Basic equations 

The most important equation is Equation 2, which specifies how to compute the 

conditional probability of each word given the evidence. In Equation 2, P(Wordi) 

represents the listener’s prior belief, before any new perceptual evidence has been 

accumulated, that Wordi will be present in the input. In all of the simulations reported 

here we assume that P(Wordi) can be approximated by the word’s frequency of 

occurrence in the language. However, P(Wordi) will also be influenced by factors outside 

the scope of the present model, such as semantic or syntactic context.   

P(Evidence|Wordi) is calculated from the evidence for sublexical units of 

representation. Spoken-word recognition appears to be mediated by the recognition of 

phonologically abstract sublexical units at a prelexical level of processing (Healy & 

Cutting, 1976; Massaro, 1975; McNeill & Lindig, 1973; McQueen, Cutler & Norris, 

2006; Scharenborg et al., 2005) .  A number of units could serve this function, including 

(bundles of) features, phonemes, and position-specific allophones.  It remains to be 

determined which of these alternatives is the most plausible.  In Shortlist B, as indeed in 

Shortlist A, we make the assumption that these units are phonemes.  It is important to 

stress, however, that this is only a working assumption; we have no reason to commit to 

phonemes as the prelexical unit of representation. The following arguments, and the 

implementation of Shortlist B, do not depend on the phonemic status of the prelexical 

representations, only that there is a prelexical stage of processing involving abstract 
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sublexical representations of phonological form which mediates between the speech 

signal and the mental lexicon. The choice of phonemes as units is also constrained by the 

choice of the diphone database as input to the model. 

Given the assumption of prelexical phonemes, therefore, P(Evidence|WordBi B) is 

derived from phoneme probabilities, which in turn, using Bayes’ theorem, are derived 

from phoneme likelihoods. First: 
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where m is the number of phonemes in the language. The likelihood of WordBi B is 

then given by the product of the probabilities of the phonemes in that word, 

P(PhonemeStringBi B): 
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where l is the length of the word. P(Word|Evidence) is then computed as follows: 
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Note that these computations do not take directly into account any statistical 

dependencies among phonemes (e.g., differences in their transition probabilities). In the 

case of word recognition, however, these dependencies are built into the lexicon (words 

with common sequences will tend to have many lexical neighbors). Sequential 

dependencies will thus modulate word recognition as a function of the influence of 

similar-sounding words on P(Word | Evidence) (cf. equation 5). As we will see later, 
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Shortlist B can indeed simulate the negative effects of large and dense lexical 

neighborhoods on word recognition (Luce & Pisoni, 1998; Vitevitch & Luce, 1998, 

1999).  But if the task is phoneme identification, or the input does not consist of a word, 

one might also want to take account of sequencing constraints. It has indeed been shown 

that listeners are sensitive to phonotactic constraints (Massaro & Cohen, 1983b), and 

phoneme transition probabilities (Pitt & McQueen, 1998) in phonetic categorization, and 

that transition probability effects are different for words and nonwords (Vitevitch & 

Luce, 1998, 1999). A more complete model would therefore include modulation of the 

computation of P(PhonemeString) as a function of transition probabilities. In the current 

version of Shortlist B, however, the probability of each phoneme in an input string is 

computed independently of all other phonemes in that string.  

Phoneme likelihoods 

Phoneme likelihoods (i.e., P(Evidence|Phoneme), cf. equation 3) are an essential 

component of the Bayesian theory underlying Shortlist B. Implicit in the use of Bayes’ 

theorem is the idea that a particular input signal might possibly have been generated by 

more than one phoneme, that is, that there is some ambiguity in the input. If the input 

were unambiguous, it would correspond to a sequence of phonemes, each of which had a 

probability of 1.0.  A single word would therefore also have a probability of 1.0, and, at 

least in the case of isolated word recognition, successful word recognition would be a 

rather trivial consequence of phoneme recognition. The speech signal, however, is 

inherently ambiguous. First, there is variability in the way phonemes are realized. A 

given acoustic signal can be a possible realization of more than one phoneme (e.g., 

Sawusch & Jusczyk, 1981) . Second, ambiguities can be introduced by noise in the 
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environment. Additional ambiguities could arise as a consequence of noise within the 

perceptual system itself. 

In all of these cases a particular signal presented to the word-recognition process 

might have been generated by more than one phoneme. Figure 2 illustrates this by 

considering an idealized case where there are only two phonemes, A and B,  that differ 

along a single perceptual dimension, I. I is a continuously valued variable whose 

probability distribution for a particular phoneme is given by the density function 

ƒ(I|Phoneme). Figure 2 shows the probability density functions (pdfs) of the values of 

tokens of the two phonemes on that dimension. The broader distribution for phoneme B 

indicates that the realization of phoneme B is much more variable than the realization of 

phoneme A. Given the input IBxB, the probability that the input is Phoneme BAB is given by 

equation (6) 
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where ƒ(I BxB|Phoneme BxB) corresponds to the height of the pdf at IBxB, and n is the total 

number of phonemes. ƒ(I BxB|Phoneme Bi B) is called the likelihood function of Phoneme Bi B. When 

different phonemes are being compared on the basis of IBxB, it is the ratio of the phoneme 

likelihoods that influences the revision of the prior probabilities (as shown in equation 6). 

In general, of course, different speech sounds are likely to vary on multiple physical or 

perceptual dimensions. In this case the variance of the likelihood functions in the 

different dimensions will determine how the evidence from the different dimensions is 

weighted. Because they are more diagnostic, dimensions with small variance will have a 

greater influence than more variable dimensions.  
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------------- 

Insert Figure 2 about here 

------------- 

The underlying assumption here, therefore, is that listeners are able to learn the 

likelihood functions for recurring units (e.g., phonemes) in their language. This is exactly 

the same assumption that underlies the use of Hidden Markov Models in ASR and is 

similar to the proposals for ‘episodic’ theories of speech recognition presented by 

Johnson (1997a; 1997b) and  Pierrehumbert (2002), although these theories are not 

expressed in terms of Bayes’ theorem. There are several ways that listeners could learn to 

characterize the likelihood functions of phonemes. For example, each phoneme might be 

described in terms of Gaussian distributions over each perceptual dimension. Whatever 

way this learning may be implemented, the central assumption is that listeners have 

knowledge about the likelihood that speech-sound categories are associated with 

particular perceptual events.  The foundations of this learning are put in place in the first 

year of life (Maye, Werker, & Gerken, 2002; Werker & Tees, 1999).  However, the 

listener’s estimate of the likelihood function should not simply represent the aggregate of 

past experience, but should be updated in the light of new experience. As we will see 

later, adjustments can still be made even in adulthood.   

A complete implementation of a Bayesian model of spoken word recognition would 

compute phoneme probabilities in the manner described above. Unfortunately, however, 

we have no direct access to the representations of the likelihood functions that listeners 

have acquired, and therefore cannot estimate f(Evidence|Phoneme), especially not across 

the multitude of perceptual dimensions along which speech sounds vary. Indeed, we 
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cannot even be sure what all the relevant perceptual dimensions may be. The only 

practical solution available, therefore, was to find a way of estimating phoneme 

probabilities, while still preserving the key theoretical assumption that listeners acquire 

knowledge of phoneme likelihoods. The solution in the implementation in Shortlist B was 

to take advantage of the perceptual confusion data from Smits et al. (2003).  The 

listeners’ identification responses are used to estimate directly P(PhonemeBi B|Evidence) 

(and hence P(Evidence|WordBi B), cf. equation 4): 

∏
=

=
l

j
jji onemeStimulusPhnemeRespondPhoPWordEvidenceP

1

)|()|(              (7) 

where P(RespondPhoneme Bj B| StimulusPhoneme Bj B) is the probability that the listeners 

identified the jBth Bphoneme in the input as the jBth    Bphoneme in the word. We specify in 

more detail below how phoneme probabilities are derived from the perceptual confusion 

data. 

NAM and Shortlist B 

Equation 7 has the same form as the Stimulus Word Probability equation of Luce 

and Pisoni (1998) and inserting equation 7 into equation 2 makes the latter take on the 

same form as Luce and Pisoni’s Frequency-Weighted Neighborhood Probability Rule 

(FWNPR). However, despite the superficial similarities, the interpretation of these 

equations is different in NAM and Shortlist B.  First, in Shortlist B all of these 

probabilities depend on the assumption that listeners are able to compute the likelihood 

f(Evidence|Phoneme). This is central to our claim that listeners are behaving as optimal 

Bayesian recognizers. As we will show later, this has important implications for our 

analysis of perceptual match and mismatch. Thus, while our use of the confusion data 

from the diphone database is similar in spirit to the use of confusion data in the NAM, 
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and this leads also to a computation based on response probabilities (equation 7), it is 

important to stress that these similarities concern the way Shortlist B has been 

implemented, and not the underlying theory. In other words, if we did have access to 

listeners’ likelihood functions, there would be less similarity between the models. The 

core assumption that listeners compute phoneme likelihoods is not made in the NAM. 

Second, in Shortlist B the left-hand term in equation 5 is a posterior probability. In 

contrast, Luce and Pisoni interpret their corresponding equation as being an application of 

the R.D. Luce (1959) choice rule. That is, the FWNPR estimates P(ID), the probability of 

correctly identifying a stimulus word. A response probability is not the same as the 

posterior probability of a hypothesis given the evidence. For example, in the NAM, if 

P(ID) = 0.95, this implies that the listener will respond with the stimulus word 95% of the 

time. Shortlist B, however, employs the optimal Bayesian decision rule and thus, if 

P(Wordx|Evidence) = 0.95, Shortlist B will always respond with Wordx because Wordx has 

the maximum posterior probability. 

The NAM and Shortlist B therefore have important similarities – in particular the 

use of perceptual confusion data, weighted by word frequency, and the use of a relative 

evaluation metric. Both models are based on the key idea that optimal word recognition 

depends on the combination of bottom-up evidence and prior lexical probabilities. 

Finally, as we will see later, contextual information is considered to influence lexical 

priors in Shortlist B just as word frequency does. This assumption was also prefigured by 

the NAM. But the NAM and Shortlist B also have fundamental differences – only 

Shortlist B is strictly Bayesian, and only Shortlist B is designed to recognize words in 

continuous speech.  
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Continuous speech 

In themselves, equations 2 and 7 are not sufficient to assign probabilities to words 

in continuous speech.  Even if a word matches the input extremely well, it will not be 

recognized if it overlaps with competitors or is not, with other words, part of a path 

through the input which fully accounts for that input.  Furthermore, we can not simply try 

to calculate probabilities by comparing a word only with other words that it overlaps 

with.  Those words may, in turn, overlap with yet other words that influence their 

probabilities.  What we need is a measure of word probability that takes account of 

whether or not the word is on a high or low probability path.  For that we first need to 

calculate path probabilities. 

Given any possible path (string of phonemes), the probability of observing that path 

will largely be determined by the product of the probabilities of the phonemes on the 

path.  But since paths are also sequences of words, we must also take into account the fact 

that some sequences of phonemes (those consisting of concatenations of higher frequency 

words) will be more likely than others. As shown in equation 8, therefore, path 

likelihoods are based on word likelihoods. The likelihood of a path is given by: 
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where w is the number of words in the path. The probability of each path is then given by 

normalizing over the sum of the path likelihoods: 
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where p is the number of paths through the lattice. P(WordBi B|Evidence) is then given by 

summing the P(PathBi B|Evidence) for all paths in which that word occurs in that position: 
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where n is the number of paths the word lies on. This means, for example, that if there 

were two paths with the same probabilities, both of which contained the same word in the 

same position, the word probability would be twice what it would be if it appeared on 

only one of those paths. 

We can now summarize the chain of probability estimations in Shortlist B which 

lead to the estimates of the probability of individual words given a continuous speech 

input (i.e., P(WordBi B|Evidence)). P(Evidence|WordBi B) is derived from the diphone database 

using equation 7, and P(WordBi B) is derived from the frequency of occurrence counts in the 

CELEX database (Baayen, Piepenbrock & Gulikers, 1995). These terms, across multiple 

words and paths, influence P(Path|Evidence), as in equations 8 and 9.  Finally, 

P(Path|Evidence) determines P(WordBi B|Evidence), via equation 10. 

Consequences of Bayesian assumptions 

Several things follow from this Bayesian path-based approach.  First, if there is 

only one path with a non-zero likelihood, P(Path|Evidence) will have a probability of 1.0, 

and all words on that path will have a probability of 1.0.  This follows from the fact that 

what we are doing here is deriving the probability of words, given that the input really is 

a sequence of real words. If a path is the only possible one that is consistent with the 

input, then its probability, and the probability of all words on that path, must be 1.0, 

regardless of how well the words fit the input.  The model thus follows the advice of 

Sherlock Holmes with which we began this paper: "How often have I said to you that 
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when you have eliminated the impossible, whatever remains, however improbable, must 

be the truth?" (Conan Doyle, 1890 Ch 6). One might object that the word probability 

derived from path probabilities takes no account of the fact that listeners obviously can 

judge the goodness of a particular token of a word, even when there is no doubt as to 

which word is presented.  The fact that listeners can make judgments about goodness of 

fit does not imply, however, that these judgments are based on exactly the same 

information as that used to determine recognition. For example, goodness of fit might be 

based on likelihoods (P(Input|Word)). In effect, when a listener is presented with a word 

that is poorly articulated, they might be in a position to be completely certain what the 

word must be but, at the same time, be certain that this is an unusual exemplar of that 

word. 

Second, although all words on a path can have a probability of 1.0, this does not 

mean that the model always behaves in a winner-takes-all fashion. For example, if paths 

differ only in terms of two words with non-zero probabilities, the final probability of the 

better matching word will be reduced because of the presence of its competitor. This 

illustrates the fact that although the model does not have direct inhibition between 

alternative lexical candidates as in the original Shortlist model (and TRACE), there is, 

nevertheless, a form of lexical competition. The more probable one word is, the less 

probable overlapping words will be. 

Third, a strictly Bayesian approach requires the computation of exact probabilities. 

In order to assign exact probabilities2 to words we would need to calculate all possible 

paths through the lattice, because the denominator in equation 9 corresponds to the sum 

of the probabilities of all paths. In fact, the denominator is equivalent to P(Evidence), the 
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probability of observing that particular input. In ASR systems it is generally impractical 

to calculate all paths, so only the best few paths are computed. Because the main 

requirement is simply to identify the best path, there is little need to assign meaningful 

probability values to either the paths or the words. This is fortunate because the total 

number of possible paths can be enormous, in part because of limitations in the 

performance of the phoneme or word recognition techniques used.  Another reason for 

the large number of possible paths is that it is often necessary in ASR to compare paths 

containing overlapping tokens of the same word or phoneme beginning at slightly 

different times, and this leads both to more paths and to problems in pooling evidence 

from the same words on different paths. (Note that these problems do not arise here, 

because, in Shortlist B, all phoneme and word candidates are aligned with fixed phoneme 

boundaries.) ASR systems, therefore, are usually designed to discover the path (sequence 

of words) that is most likely to have produced the observed input (i.e., they use maximum 

likelihood methods which are designed to find the path that maximizes 

P(Evidence|Path)). For this, only the best few paths need to be computed.  In some ASR 

applications, however, it is helpful to be able to assign confidence measures to individual 

words, and various techniques have been developed to approximate Bayesian word 

probabilities (cf. Bouwman, Boves, & Koolwaaij, 2000; Wessel, Schlueter, Macherey, & 

Ney, 2001). 

We adopt the same pragmatic approach in Shortlist B.  In practice there is no need 

to consider words and paths with very low probabilities, as these will not make a 

significant contribution to the probabilities of more likely candidates. In fact the 

simulations to be described later are set up so that we can limit the number of candidate 
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words starting at each position, exactly the constraint on which the name of the original 

Shortlist model was based. These hard limits on the candidate set in Shortlist B are purely 

for practical convenience, however: They allow the simulations to run more rapidly. 

Nevertheless, the idea that only a shortlist of candidates is considered at any point in time 

is more strongly motivated in the new model than in Shortlist A. Even if there were no 

practical limit imposed on set size, the Bayesian computations would guarantee that low 

probability words (and paths) effectively remove themselves from the running, so that 

only the shortlist of best candidates influences recognition performance.   

A fourth consequence of the Bayesian approach in Shortlist B is that unknown 

words require special treatment.  As described so far, an assumption behind our use of 

Bayes’ theorem is that the input consists of a sequence of known words. For the posterior 

word probabilities in the model to have a direct interpretation as real probabilities, the 

input must be interpreted as a sequence of known words in the lexicon, where the 

probability of each input word is the same as its prior probability (i.e., the frequency as 

indicated in the lexicon).  But clearly there will be occasions when the input (or part of it) 

will not consist of words in the lexicon. The input may contain, for example, a genuinely 

unknown word (such as a foreign name), or a word that is so badly mispronounced as to 

be unrecognizable. Under these conditions the product of the candidate word probabilities 

on all paths will be zero. Consequently, a single unrecognizable word could prevent 

recognition of any word in the utterance. 

The problem here is that the model’s prior belief is wrong: the input will not always 

be a sequence of known words, properly pronounced.  As noted earlier, a Bayesian 

system (listener or model) will only make optimal decisions to the extent that prior 
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beliefs accurately reflect the structure of the real world. The set of hypotheses under 

consideration must therefore be extended beyond the set of known words in the language. 

The model has to consider the hypothesis that the input is not a known word. We will 

refer to such hypotheses as dummy words. The dummy word serves a similar function to 

the ‘garbage model’ used in ASR systems.  A dummy word is a hypothesis that matches 

any stretch of the input to some extent. Dummy words can therefore fill in the gaps in 

incomplete paths (e.g., the paths including dotted and dashed arrows in the lower panel of 

Figure 1). This means that there will always be at least one complete path with a finite 

probability. Now consider what will happen when a nonword is inserted into a sentence. 

Assume that all paths pass through the nonword.  The raw accumulated path scores of all 

paths would therefore be multiplied by the probability of the dummy word. Actual path 

probabilities depend on the ratio of a given path score to the sum of the path scores for all 

paths (equation 9). As the numerator and denominator of equation 9 will both be 

multiplied by the probability of the dummy word (cf. equation 8), the effect of the 

dummy probability will cancel out, and the final word probabilities in any given path will 

therefore be unaffected by the presence of the nonword. In practice it would be almost 

impossible to insert a nonword into a sentence without creating additional paths, but this 

example does illustrate how the use of a dummy word can make a path-based system 

behave robustly when faced with unknown words. Without the dummy word, Shortlist B 

would have the wrong prior beliefs, and would make the wrong decisions. 

The dummy word has two other important functions.  First, as we discuss in detail 

when we present the simulations, the dummy plays a critical role in word segmentation.  

Second, it can be used to perform lexical decision. If a listener in a lexical-decision 
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experiment is presented with a nonword, the only fully spanning path will contain a 

dummy word. The listener can therefore judge whether a stimulus is a word or not simply 

by determining whether the best path contains a dummy word (or is a dummy word). If a 

path containing a dummy word is much more probable than paths consisting only of 

words, the stimulus is a nonword, otherwise it is a word. The general procedure for 

performing lexical decisions using Bayesian techniques is discussed in more detail in 

Norris (2006). Although that paper deals only with the case of visual word recognition, 

the principles apply equally to spoken word recognition. 

At this point we should note that the dummy words, and lexical candidates in 

general, are all tokens representing phonological forms. A lexical candidate represents the 

hypothesis that the input corresponds to at least one word in the lexicon with that 

phonological form. If the phonological form matches more than one lexical entry (i.e. 

homophonous words) then higher-level syntactic, semantic, or contextual information 

would have to be brought to bear to determine the appropriate interpretation of that 

phonological form. A dummy word represents the hypothesis that a particular sequence 

of segments does not correspond to any word in the lexicon. 

Model input: The diphone database 

The input to Shortlist B is derived from a database of perceptual confusions 

collected in a gating task (for discussion of the gating task, see Grosjean, 1996). Smits et 

al. (2003) presented Dutch listeners with 2294 diphone sequences in Dutch – effectively 

all possible diphones in the language (1179 different diphones sequences, most recorded 

in multiple stress contexts).  Each diphone was presented at six gates, corresponding 

roughly to each third of each of the two phonemes in the diphone.  On each trial, listeners 
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were presented with one of the six possible gates of one of the diphones, and were 

required to identify both phonemes of the diphone as members of the standard inventory 

of 38 Dutch speech sounds.  All stimuli were presented in pseudo-random order such that 

listeners never heard the same diphone on successive trials.  That is, listeners were not 

exposed to each diphone gated incrementally. A detailed statistical analysis of the pattern 

of confusions obtained is presented in Warner et al. (2005). 

The data from this gating task tell us, for each input phoneme, in each diphone 

context, what the probability is that that phoneme will be identified as each possible 

Dutch phoneme.  This database therefore has three major advantages over other 

confusion data.  First, it gives information about how confusions change over time. 

Second, it tells us how confusions for a particular phoneme vary according to their 

phonetic context (i.e., as a function of the other phoneme of the diphone). Finally, at 

gates corresponding to the first phoneme in the diphone (gates 1-3) it tells us how 

coarticulatory information present during that phoneme can start to specify the identity of 

the upcoming phoneme. 

Computing probabilities from the diphone database 

There are 37 phonemes in Shortlist B, 22 consonants and 15 vowels. There were 16 

vowels in the stimulus and response sets in the diphone identification experiment, but, as 

discussed by Smits et al. (2003), the vowels [ә] and [ʉ] effectively formed a single 

category in the listeners’ responses. One vowel, [}], thus represents this compound 

category both in the diphone database and in Shortlist B. The phoneme inventory of the 

model is listed in Appendix A.  The input for any simulation consists of a sequence of 

these phonemes (and, optionally, a silence marker, “[”). Unless noted otherwise, 
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examples throughout this paper of input to the model, and output from it, will be based on 

the machine-readable (DISC) transcriptions used by the model, rather than IPA 

transcriptions. 

We assume that the average responses of the listeners in the gating experiment 

correspond to the output of prelexical processing. Any phonotactically legal sequence of 

phonemes can be represented as a concatenation of diphones.  We can therefore use the 

database to estimate the similarity of phoneme sequences of arbitrary length to any word 

in Dutch.  For each phoneme at a particular gate, and in a particular diphone context, we 

know the probability that listeners will identify that phoneme as each possible phoneme, 

that is, P(RespondPhonemej | StimulusPhonemej), as required for equation 7. 

The prelexical stage of processing is therefore simulated by retrieving these 

conditional probabilities from the diphone database.  These probabilities then form the 

input to the word-recognition component of the model.  Posterior word probabilities are 

derived from this input (and from the prior word probabilities) using equations 7-10.  

These computations are carried out cyclically, for each of the three gates within each 

phoneme.  

For all but the first and last phoneme in a sequence, the diphone database provides 

two estimates of phoneme confusability. Consider, for example, the case where a single 

CVC word, p1p2p3, is presented.  The word can be represented by the overlapping 

diphones [p1,p2] and [p2,p3], with each diphone corresponding to six gates. For the 

vowel p2 (and, more generally, any non-terminal phoneme) we therefore have responses 

to overlapping gates contributed from both diphones.  The probabilities used in the 

calculations in Shortlist B are derived by taking the maximum of the probabilities from 



Norris & McQueen 36

each pair of overlapping gates, and then renormalizing those values so that they sum to 

1.0. Using another procedure, such as taking the average probability, or always using the 

probability for either the first or second diphones, would make little difference to the 

behavior of the model. The most reliable evidence for a given phoneme usually comes 

from the response at the last gate of the diphone where that phoneme is the first half of 

that diphone.  As the final phoneme of a word is necessarily the final phoneme in a 

diphone, however, there is no option for word-final phonemes but to use the probability 

derived from the last gate of the final diphone (i.e., where that phoneme is the second half 

of that diphone). 

As a concrete example, the probabilities of correctly identifying the phonemes of 

the input [b}s] (the Dutch word meaning “bus”) are shown in Table 1. The sharp increase 

in the probability of correctly identifying the [}] between gates 3 and 4 (and the [s] 

between gates 6 and 7) is typical of the database (see Figures 1-3 in Smits et al., 2003). 

This corresponds to the point where the input changes from providing information based 

on anticipatory coarticulation alone to providing information from the segment itself 

(e.g., gate 3 is the last gate of the [b], containing the stop release burst, with relatively 

little information about the upcoming vowel, while gate 4, in contrast, is the first third of 

the vocalic portion of the vowel itself). This example also illustrates that the probability 

of the correct phoneme can sometimes go down as well as up. Note also that once the 

diphone containing a particular phoneme has finished (e.g., gate 6 for [b]), the probability 

of the phoneme remains fixed at its final value throughout the rest of the input. 
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------------- 

Insert Table 1 about here 

------------- 

P(Evidence|Word) for the word [b}s] is given by multiplying the phoneme 

probabilities over the row corresponding to the current gate. At gates 1-3 therefore, the 

probability is determined by only the first two phonemes. If the input really is the word 

[b}s] then, after two phonemes, P(Evidence|Word) is given entirely by the probabilities 

of those two phonemes. 

Limitations of the diphone database 

Although using the diphone database to generate the input to a model of speech 

recognition represents a considerable advance over Shortlist A, it still has a number of 

limitations. The first is that the procedure for collecting the diphone confusions allowed 

participants as much time as they liked to make responses (performance on the task was 

self-paced, and participants were not put under any time pressure). This means that the 

data indicate how much information listeners can potentially extract from a stimulus of a 

particular duration, but this will not necessarily be an exact reflection of how much 

information they have extracted at the time the stimulus ends. It seems reasonable to 

assume that there must be some lag between presentation of the input and complete 

perceptual processing of the input.  If this lag were constant for all stimuli, it would not 

really be a source of concern. It seems more than likely, however, that some speech 

sounds will take longer to process than others.  Since this is not captured in the diphone 

data, there is almost certainly an undesirable source of error in the simulations. 
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Another element of noise in the diphone data is that, although listeners in the gating 

study performed extremely well, they were not perfect (they were approximately 90% 

correct on final gates overall; Smits et al., 2003).  There are many reasons for this, 

including errors arising from ambiguities in the speech materials, errors due to perceptual 

noise, and random errors in participants’ responses.  It is impossible to distinguish among 

these types of error, or, especially at early gates, between errors and the perceptual 

confusions we are interested in here.  The high overall accuracy rates, and the orderliness 

in the diphone data (Smits et al., 2003; Warner et al., 2005) indicate that there are 

relatively few such errors, but those that are in the database cannot be avoided; they can 

only be passed on to the model. 

There is also no noise or moment-by-moment variability in processing in Shortlist 

B. This makes it hard to simulate both RT and error rate together.  Later we will present 

simulations using a variant of the model based on the stimulus sampling mechanism used 

in the Bayesian Reader (Norris, 2006). In this version of the model the same input can 

generate different response probabilities on different trials. These simulations show that it 

is possible to give a principled account of how a Bayesian model should operate with 

noise in perceptual processing. Unfortunately it is not yet practical to do this with the 

diphone input. For these later simulations we will therefore have to use hand-crafted 

input.  

Model overview 

The processing architecture of Shortlist B is the same as that of Shortlist A.  Specifically, 

there is in both models a prelexical and a lexical level of processing, and information 

flows forward from the prelexical to the lexical level but not back from the lexical to the 
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prelexical level during on-line processing. The two models also agree with respect to key 

representational assumptions.  In Shortlist A prelexical representations are phonemes, 

while in Shortlist B the prelexical level outputs phoneme probabilities. Furthermore, 

lexical representations in both models are phonologically abstract (they are strings of 

phonemes in both cases).  Importantly, both models also make a distinction between type 

representations of words (lexical representations stored in long-term memory) and token 

representations of words (those standing for current hypotheses about what is being 

heard). Thus, in common with the token word units that are wired on the fly into the 

lexical network of Shortlist A, the word nodes in the word lattice of Shortlist B are also 

all temporary token representations. Token representations are necessary so that multiple 

versions of the same word can simultaneously stand for hypotheses that instances of that 

word appear at different locations in an utterance (see Norris, Cutler, McQueen, & 

Butterfield, 2006). 

Word recognition proceeds phoneme by phoneme, and within each phoneme, using 

the data from the diphone database, gate by gate.  At each gate the model performs the 

following sequence of operations to compute word probabilities: 

1. Derive phoneme probabilities from the diphone responses corresponding to 

that gate. 

2. For every segment, calculate P(Evidence|Word) for all words beginning at that 

segment according to equation 7. 

3. Construct or update the word lattice. 

4. Calculate path probabilities according to equations 8 and 9. 
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5. Sum word probabilities over paths to compute P(Word|Evidence) for all words, 

as in equation 10. 

6. Input next gate and return to step 1. 

Some additional housekeeping during the simulations is also required. The number 

of word candidates considered at any one phoneme (candidates always start on a 

phoneme boundary) is limited to 50.  When this limit is exceeded, the lowest scoring 

candidate words are eliminated. Similarly, there is a limit of 500 paths, so low-scoring 

paths are pruned when this limit is passed. These limits are quite generous and the model 

performs almost identically with much smaller or larger numbers of phonemes, words, or 

paths3.  These limits are therefore not free parameters, strictly speaking. In its basic form, 

the model is parameter-free and its behavior follows directly from Bayesian principles. 

However, as will be discussed below, the complete model requires five free parameters, 

three which influence the model’s segmentation and lexical decision performance, one 

which influences how it deals with mispronunciations, and one which deals with aligning 

the model to eye-tracking data.  In principle these should not be free parameters at all. 

The first four are all probabilities which should accurately reflect the statistical properties 

of the input. In effect, they represent the model’s prior beliefs about the input and the task 

that is being performed. These parameters have fixed values across the simulations we 

report; it was thus unnecessary to adjust these values for each specific simulation, nor 

indeed to choose the particular values we use here (the model is stable across a range of 

values).  The fifth parameter is required to link the model to the eye-tracking behavior. It 

simply shifts model output relative to the data by a fixed amount, as motivated by the 

literature (see below). It too is therefore not truly a free parameter.   
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SIMULATIONS 

Shortlist B will now be evaluated via five sets of simulations.  In most simulations 

the model was run on an actual or possible set of items from a listening experiment, and 

the model’s performance was averaged over those full item sets.  In a few cases, 

however, the model was run on a single input in order to explicate an aspect of its 

operation. The simulations are designed to reflect, as transparently as possible, the 

underlying principles of the model, and the way it is influenced by the properties of the 

diphone database. Therefore, we have not added additional parameters or modifications 

to improve the fit of the model to particular data-sets. 

All of the Shortlist B simulations use a lexicon of 20250 Dutch words.  These 

word-forms, together with their frequency of occurrence, were extracted from the 

CELEX database (Baayen et al., 1995) .  Phonemic transcriptions were adjusted where 

necessary so that all words could be described in terms of the 37 phonemes in the 

model’s inventory (see Appendix A).  This involved collapsing the vowels [ʉ] and [ǝ] to 

[}] (see above), and the voiced and voiceless velar fricatives [x] and [ɣ] to one voiceless 

category [x] (the voicing distinction for velar fricatives is preserved in CELEX, but many 

Dutch speakers now neutralize the distinction (Gussenhoven, 1992); only the voiceless 

variant was therefore included in the Smits et al., 2003, study). The lexicon consists of 

the 20,000 most frequent words in CELEX, plus 250 additional words which were added 

as required for specific simulations (e.g., if an experiment used a word which was not in 

the top 20,000).  Like its predecessor, Shortlist B is therefore able to simulate listeners’ 
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performance across a range of actual items in an experiment, using a realistically large 

lexicon4. 

1. Recognizing continuous speech 

Parallel evaluation of multiple hypotheses and the effects of following context 

The first critical test of Shortlist B is whether it can indeed recognize words in 

continuous speech.  As we have already argued, any plausible model of spoken-word 

recognition must have a means of segmenting the speech stream into words in the 

absence of any segmentation cues.  In interactive-activation models such as TRACE and 

Shortlist A, inhibitory competition among activated lexical hypotheses has this role.  We 

have suggested that path-based Bayesian evaluation can serve the same function.  Can 

Shortlist B therefore recognize words in continuous speech when no lexical boundaries 

are marked?  

A related question concerns the model’s ability to revise interpretations on the basis 

of following context.  A listener’s interpretation of an utterance can certainly change in 

the light of information arriving later in time (Bard, Shillcock, & Altmann, 1988; 

Connine, Blasko, & Hall, 1991; Grosjean, 1985). To varying degrees, the interactive 

activation networks in TRACE and Shortlist A allow them to account for these 

retroactive effects. In Norris (1994) this was illustrated by presenting Shortlist A with the 

input “shippingquiry”. This input first activates ship, but then shipping dominates the 

activation landscape.  When inquiry becomes strongly activated, however, it competes 

with shipping, and the interpretation of the input is finally revised to the correct 

segmentation ship inquiry.  This is, a word boundary is finally postulated in the right 

place, even though the input to the simulation did not mark that boundary in any way. An 
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example like this thus serves not only to test whether subsequent context can modulate 

word recognition, but also, more fundamentally, whether the model can segment 

continuous speech. 

Norris (1994) pointed out that the optimal interpretation of an input like ship 

inquiry could be obtained by resetting the network activations in Shortlist A after every 

phoneme. When activations are reset, the network recomputes a near optimal 

interpretation of the input taking both new and old information into account. If 

activations are not reset, the network can lock into a state where the high activations of 

words favored by the initial interpretation of the input prevent that interpretation being 

revised by the later context. Norris, McQueen and Cutler (1995) and Norris et al. (1997) 

showed that simulations of a number of effects were more accurate when Shortlist A 

employed an activation reset.  Shortlist B also needs to recompute word probabilities as 

path probabilities change over time. For example, if a path reaches an impasse and its 

probability drops, then the probabilities of all words on that path need to be modified, and 

this will alter the final probabilities of all of the words on all other paths. The need to 

recompute probabilities is an inevitable consequence of the need to revise interpretations. 

The only alternative (in any model) is to wait until the end of the utterance and then 

perform a single computation.  Given the strong evidence on the continuity of spoken-

word recognition (see McQueen, 2007, for review), this alternative is very implausible.  

In the first simulation, therefore, we tested Shortlist B on a Dutch version of ship 

inquiry.  We also took the opportunity to compare the new model with the old. 

Furthermore, to facilitate direct comparison between the new and old models, and to 
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highlight the effect of word frequency on the new model, we also ran simulations using 

the new model, but with the effect of frequency disabled. 

 The input kar personen, cart people, was therefore presented to Shortlist B, and, 

using the same Dutch lexicon, to a version of the 1994 Shortlist A model.  In analogy to 

shipping in ship inquiry, [kArp}rson}] contains karper, carp. The results are shown in 

Figure 3.  For clarity, only a selection of candidates is plotted. In both models many other 

words are considered. 

------------- 

Insert Figure 3 about here 

------------- 

At the broadest level the two models produce similar output: the same candidates 

are considered at the same times. The most obvious difference between the two is that 

Shortlist B reaches a completely unambiguous interpretation of the input: at the offset of 

the input only the intended words have a probability of greater than 0.01. In contrast, 

although the two intended words are activated most strongly in Shortlist A, the 

unintended word [kArp}r] is almost as strongly activated as the intended word [kAr] at 

the end of the input. This has two causes. In Shortlist A the activations are partly 

determined by the amount of bottom-up evidence. The longer word has more evidence 

than the shorter word, and this partly compensates for the fact that [kArp}r] is being 

inhibited by both [kAr] and [p}rson}]. A second factor is that the final interpretation in 

Shortlist B is strongly influenced by frequency, while there is no frequency effect in 

Shortlist A The effect of frequency can be seen most clearly in the comparison between 

Figures 3b and 3c. [p}rson}] (personen, people) is much higher in frequency than 
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[p}rson] (persoon, person), and [kAr] is higher in frequency than [kArp}r]. The 

difference in probability between the words on the [kAr] [p}rson}] parsing and their 

competitors is therefore more extreme in the simulation incorporating frequency than in 

the simulation without frequency. 

Shortlist B can thus segment continuous speech successfully, and use following 

context to revise earlier interpretations. 

2. Word frequency 

Spoken word recognition is strongly influenced by the frequency with which a word 

occurs in the language (Connine, Mullennix, Shernoff, & Yelen, 1990; Dahan, 

Magnuson, & Tanenhaus, 2001; Howes, 1954; Luce, 1986; Marslen-Wilson, 1987; 

Pollack, Rubenstein, & Decker, 1960; Savin, 1963; Taft & Hambly, 1986). However, 

neither TRACE nor Shortlist A gives any account of how frequency influences spoken-

word recognition. Even though Dahan et al. (2001)  have investigated ways of 

incorporating frequency into TRACE, there is no principled reason for preferring one of 

those methods over another. 

The Bayesian approach, in contrast, forces a specific account of word frequency 

effects. The essence of Bayesian statistics is to use evidence to revise prior beliefs. The 

expected frequency with which a word occurs in the language generally provides our best 

initial estimate of the prior probability of encountering a particular word. In the present 

simulations we simply assume that P(Word) is given by the frequency of  the word in the 

CELEX database. But many factors other than frequency can alter the probability of 

encountering a word in a particular context. The most obvious of these are the local 

semantic and syntactic context. In ASR systems these contextual prior probabilities are 
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usually incorporated into what is known as a language model. Frequency itself is a 

unigram language model. In the Bayesian approach frequency and context are therefore 

given a unified explanation.  

Norris (2006) provides an in-depth discussion of the advantages of a Bayesian 

interpretation of word frequency effects along with a number of simulations of word-

frequency effects in visual word recognition.  For example, he shows that the commonly 

observed logarithmic relationship between identification time and frequency (e.g. 

Whaley, 1978) falls directly out of a Bayesian model, even though the model is driven by 

standard linear probabilities (as it must be for Bayes’ theorem to be valid). 

An important feature of the way frequency influences P(Word|Input) in Bayes' rule 

is how frequency trades off against perceptual information. The better the perceptual 

information, the less the effect of frequency (Luce & Pisoni, 1998). As the perceptual 

evidence for a word increases, the denominator in equation 2 tends to become dominated 

by the frequency-weighted evidence for that particular word. The overall probability of 

identifying the word therefore asymptotes to 1.0, regardless of the frequency of the word. 

That is, word frequency has a potentially large effect when perceptual evidence is poor, 

but this decreases as the perceptual evidence improves. This is a highly desirable state of 

affairs. In the absence of reliable perceptual evidence, it makes sense to be influenced by 

prior knowledge of the probability of the word. In the limiting case, when there is no 

perceptual evidence, frequency is the only available basis for responding. However, once 

the perceptual evidence becomes completely unambiguous, frequency should never 

override it. Because frequency and context are treated identically in the Bayesian 

approach, in that they both alter prior probabilities, the influence of context will also be 
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dependent on the reliability of perceptual evidence. Although context will influence 

recognition when the perceptual evidence is poor, context will never be able to override 

reliable perceptual evidence. This provides the ideal way of taking full advantage of 

contextual information without running the risk of hallucinating. 

This interplay between perceptual and contextual information has been studied 

extensively by Massaro and colleagues (Massaro, 1979; Massaro & Cohen, 1983a, , 

1983b; Massaro & Friedman, 1990; Massaro & Oden, 1995).The trade-off in Shortlist B 

between perceptual evidence on the one hand and frequency/contextual evidence on the 

other has a direct parallel with a similar trade-off in the FLMP model. Indeed, the 

“American football” pattern (e.g. Massaro, 1987), where context plays a greater role in 

the ambiguous region in the middle of a phonetic continuum than at the unambiguous 

endpoints, has been taken as a kind of trademark for the FLMP.     

The Bayesian procedure for combining perceptual and frequency information has 

significant advantages over other ways of incorporating a frequency bias in models of 

word recognition. In the logogen model (Morton, 1969), frequency is represented as a 

constant additive bias on resting levels or thresholds. The effect of frequency is to reduce 

the amount of perceptual evidence required for recognition, regardless of the absolute 

amount of perceptual evidence for either that word, or for any other word.  This way of 

incorporating a frequency bias into a model runs the risk that, if the frequency bias is too 

strong, low frequency words might never be recognized. Forster (1976) pointed out that if 

a low frequency word has a high frequency neighbor then the higher frequency word 

could always have more activation than the low frequency word. This might be a 

particular problem in speech recognition where many words do not become unique until 



Norris & McQueen 48

their final phoneme. If the frequency bias were sufficient to make a high-frequency word 

be recognized early, then low frequency words in the same cohort would be likely to be 

misidentified as the high-frequency word. Equally badly, a very high frequency word, if 

it were embedded in a sequence of very low frequency words, might dominate its 

competitors and lead to a complete mis-analysis of the input. The Bayesian approach to 

word frequency in Shortlist B avoids these problems. 

Although this approach is an important feature of the new model, there is no data 

on frequency using Dutch materials that we can simulate directly. Instead, we illustrate 

the behavior of the model by constructing sets of Dutch stimuli modeled as closely as 

possible on the English stimuli used in experiments by Luce and Pisoni (1998) and by 

Dahan et al. (2001) . All subsequent Shortlist B simulations will be of experiments 

carried out in Dutch. These simulations therefore use the exact stimuli used in those 

experiments. 

Frequency and neighborhood effects 

Luce and Pisoni (1998) reported a lexical decision experiment (Experiment 2) 

where they orthogonally manipulated word-frequency, neighborhood density, and 

neighborhood frequency of CVC words. We selected eight sets of 34 Dutch CVC words 

that mirrored Luce and Pisoni’s original English stimuli. The characteristics of the 

English and Dutch stimuli are given in Table 2 and Luce and Pisoni’s lexical decision 

data are shown in Table 3. The frequency difference between high- and low-frequency 

words is much smaller for our stimuli than for those of Luce and Pisoni. This is because 

of the constraints imposed by matching our stimuli closely across conditions. We thought 
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it more important to produce matched sets of stimuli than to equate our frequencies with 

those of Luce and Pisoni. 

The main points to note about their data are that there were significant effects of 

both word frequency and neighborhood frequency in both RTs and errors, but the effect 

of neighborhood density was less consistent. For low-frequency words, the effect of 

neighborhood density was inhibitory in RTs, but facilitatory in errors. The results of 

simulations using the Dutch stimuli are plotted in Figure 4. 

------------- 

Insert Tables 2 & 3 and Figure 4 about here 

------------ 

Shortlist B simulates the human data well. The probability of high frequency 

words is higher than that of low frequency words.  In addition, there are smaller effects of 

both neighborhood frequency (word probability is higher for words in low frequency 

neighborhoods) and neighborhood density (word probability is higher for words in low 

density neighborhoods).  We confirmed that these patterns were robust across items by 

performing an analysis of variance on item probabilities for all input slices. The effects of 

frequency (F2(1, 264) = 25.01, p< .0001), neighborhood frequency (F2(1, 264) =  7.37, 

p<.01) and neighborhood density (F2(1, 264) = 4.00, p < .05) were all significant. 

Luce and Pisoni (1998) did not in fact present any NAM simulations of their 

lexical decision data. Simulations using NAM would produce only a single probability 

value for each word. Because the confusion data collected by Luce and Pisoni come from 

identification in noise, phonemes are never identified with a probability near 1.0. In 

NAM, factors such as lexical neighborhood size and word frequency therefore have their 
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effect on the overall probability of correct identification.  However, with some 

exceptions, listeners can identify the input very reliably by the end of a diphone. 

Consequently, by their end, most words in Shortlist B are identified almost perfectly, and 

competing words become completely inconsistent with the input.  This means that almost 

all of the inter-item variability in Shortlist B occurs before the end of the word, very 

much as it does in TRACE and Shortlist A. As can be seen in Figure 4, the effects of 

frequency, neighborhood frequency, and neighborhood density therefore mainly 

influence how quickly the probabilities rise over time, and not their asymptotic value. A 

more general point is that in longer stretches of input, most alternative paths or 

interpretations of the input die out quite quickly, and there are only multiple paths 

covering the last few phonemes on the input. Informal observation suggests that multiple 

paths rarely extend more than two words back. However, if the input is degraded in any 

way, multiple paths will become far more prevalent. The effects of stimulus quality on 

identification can be seen in the next simulation. 

Word frequency and stimulus quality 

The Dutch words selected to match the stimuli used by Luce and Pisoni (1998) can also 

be used to illustrate the way that the influence of frequency in the Bayesian framework 

varies as a function of the reliability of perceptual information. We can do this by 

modifying the phoneme confusion probabilities. That is, we can calculate the confusion 

probabilities that we would expect to obtain if the listening conditions were to permit 

listeners to make more accurate responses. The details of the procedure are given in 

Appendix B.  Figure 5 shows simulations averaged over all high- and all low-frequency 

words. The upper panel shows the separate probabilities for high and low-frequency 
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words with both the empirically determined confusion probabilities, and the modified 

probabilities that make the phonemes less confusable. The lower panel shows the 

difference between high- and low-frequency items under the two conditions. 

------------- 

Insert Figure 5 about here 

------------ 

The critical feature of these simulations is that the frequency effect decreases as 

the perceptual evidence improves. This is particularly apparent in the asymptotic levels of 

performance. Using the empirically determined probabilities, there is residual ambiguity 

at the end of the word that allows room for an influence of word frequency. In contrast, 

when using the modified probabilities, the ambiguity is effectively removed, so frequency 

plays a smaller role in recognition. In terms of Equation 1, P(Evidence|Hypothesis) tends 

towards zero for all competitor words, therefore the numerator and denominator both 

reduce towards P(Evidence|target word) x P(target word), so that P(target 

word|Evidence) tends towards 1.0. 

Shortlist B can therefore simulate word frequency effects, and how these effects 

interact with lexical neighborhood characteristics and with stimulus quality.  We now 

turn to a detailed examination of how the influence of word frequency changes over time. 

The time-course of word-frequency effects 

Dahan et al. (2001) studied the effect of word frequency of a target word and its 

neighbors in an eye-tracking study.  On each trial participants saw a display containing 

pictures of four objects. In the critical conditions, the names of three of the objects 

overlapped phonologically, and the name of the fourth object was phonologically 
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unrelated. For example, on one trial participants saw pictures of a bench, a bed, a bell and 

a lobster. Participants were instructed to “Pick up the bench”. The target words had a 

mean frequency of 14.5 per million (Francis & Kucera, 1982). One of the non-target 

competitors was low frequency (10 per million) and one was high frequency (138 per 

million).  

Dahan et al.’s (2001) data (from their set A items) are reproduced in Figure 6 

along with simulations from Shortlist B.  Once again, it was necessary to generate a set of 

Dutch stimuli which were matched to the English materials in the original study.  Twenty 

triplets consisting of three words which shared their first two or three phonemes were 

selected from CELEX.  One of the words in each triplet was the analogue of the target 

word (mean frequency 9 per million), a second was the low frequency competitor (mean 

frequency 9 per million), and the third was the high frequency competitor (mean 

frequency 139 per million).  Since these materials were not intended for use in an actual 

eye-tracking study it was not necessary that all of them refer to picturable objects.  The 

unrelated distracter in each triplet was a target from one of the other triplets which began 

with a different phoneme.  Mean probabilities derived from Shortlist B for these 20 sets 

of items are shown in Figure 6.   

------------- 

Insert Figure 6 about here 

------------ 

In presenting their TRACE simulations, Dahan et al. (2001) corrected for the fact 

that, because there are only 4 visual targets, the baseline fixation probability for each 

visual target is 0.25. In the Shortlist B simulations the probabilities shown are therefore 
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calculated as follows: Corrected fixation probability = ((1.0 – sum of raw word 

probabilities for all 4 targets)/4) + raw word probability. That is, we assume that any 

probability not taken up by one of the four target words is distributed equally among all 

of the targets. 

Note, also, that in common with Dahan et al. (2001) and with other simulations of 

eye-movement data (e.g., Allopenna, Magnuson, & Tanenhaus, 1998), we have adjusted 

the position of the simulated results on the time axis to allow for lag in initiation of eye 

movements.  As noted earlier, because of the nature of the diphone database, changes in 

probability in the model are likely to occur earlier than probabilities computed by 

listeners. Listeners in the Smits et al. (2003) study were not required to identify the 

diphones quickly, so the database tells us how much information listeners can extract 

from the input at a given point, and not how long it takes listeners to actually extract that 

information. The simulated results are shifted back in time by eight slices. The time scale 

is mapped onto the data using the same procedure as in Dahan et al. Our targets were on 

average 5.3 phonemes long; their targets were on average 5.4 phonemes long.  This 

corresponds to about 16 time-slices in Shortlist B. Since Dahan et al.’s set A items were 

498ms long, on average, one time-slice in Shortlist B is thus equivalent to about 31 ms. 

Each slice in the model therefore maps almost exactly onto one of the 33-ms time-slices 

in the Dahan et al. data. 

The simulations in Figure 6 closely parallel the Dahan et al. data. Fixations to the 

high-frequency competitors are most probable (in the model and the data) until the effect 

of the phonological divergence of the target from the competitors starts to emerge in the 

eye-movement record. Furthermore, there is little difference in fixation probabilities 
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between targets and low-frequency competitors in either the data or the model until the 

target starts to dominate the fixation pattern.  The only difference between the data and 

the model is that the model tends to over-estimate the proportion of fixations to the 

unrelated distracter.   With respect to the three phonologically related conditions, 

Shortlist B thus captures the time-course of fixation probabilities very accurately. 

Dahan et al. presented simulations of their data using TRACE, and contrasted 

three different methods of implementing word frequency in TRACE.  They compared 

implementing frequency in terms of resting level, connection weights, or in a post-

activation decision stage.  In terms of ability to simulate the overall pattern of data, all 

three methods were roughly equivalent, and little different from simulations with no word 

frequency mechanism. The main difference between the simulations was in terms of their 

ability to account for the difference between high- and low-frequency competitors. Here 

the best fit was obtained when frequency was implemented by varying the connection 

weights to words.  In the data, fixation probabilities only become greater for high- than 

low-frequency competitors after about 100ms. In fact, before that there is a slight 

reversal. However, the resting level and post-activation decision simulations both show a 

high-frequency advantage from the outset. Only in the connection weight simulation does 

the frequency difference build up over time. Shortlist B shows the same pattern. 

Figure 7 shows the Shortlist B simulations of the difference between high- and 

low-frequency competitors along with the equivalent data from Dahan et al. (2001) and 

their connection-weight simulation of these data in TRACE. The Shortlist B simulation is 

very similar to the data, and close to the TRACE simulations. The main difference is that 

the peak is narrower in the Shortlist B simulation. As noted earlier, a more complete 
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model would include internal noise in the simulations. One effect of including noise 

would be to smooth this peak.  

The TRACE simulations use 20 parameters, and the connection-weight 

mechanism is just one of a number of possible procedures that might be added to TRACE 

to make it sensitive to frequency. Significantly, there is no theoretical basis to prefer the 

connection-weight procedure to any other. In contrast, the Shortlist B simulation depends 

only on a single free parameter, representing the time-alignment between the simulation 

and the data.  This parameter, which corresponds to 264 ms (eight 33ms slices) is roughly 

what would be expected on the basis of eye-movement research. Even the simplest eye 

movements have a latency of 150-175 ms (Rayner, Slowiaczek, Clifton & Bertera, 1983). 

In the context of a more complex linguistic task such as reading, the time to program and 

execute saccades is generally estimated to take about 100ms more. For example, Version 

7 of the E-Z Reader model (Reichle, Rayner, & Pollatsek, 2003) uses an estimate of 245 

ms as the time required to program a saccade. Furthermore, a common assumption in 

visual-world studies (including that of Dahan et al., 2001) is that programming and 

launching a saccade introduces a delay of at least 200 ms between auditory stimulation 

and a resulting eye movement. Other than this fixed time-alignment parameter, there are 

no free parameters in the Shortlist B simulation. For example, the way the model 

simulates frequency effects is independent of the number of candidates or the number of 

paths. The behavior of the model follows entirely from the underlying assumption of 

optimality. There is really nothing we could do to make the model behave differently. 
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------------- 

Insert Figure 7 about here 

------------ 

3. Speech segmentation: The Possible Word Constraint 

Although segmentation can be achieved using only a lexical competition 

mechanism (either the interactive-activation type in Shortlist A or TRACE, or the path-

based search in Shortlist B, as the kar personen simulation showed), there is more to 

segmentation than this.  Human listeners are able to make use of a range of cues to help 

them segment the input into words. Shortlist A has been extended to simulate the effect 

of segmentation cues such as those provided by metrical information (Cutler & Norris, 

1988; McQueen, Norris, & Cutler, 1994; Vroomen & de Gelder, 1995) and phonotactic 

information (McQueen, 1998). A unified account of segmentation effects in a 

competition-based model was presented by Norris et al. (1997).  In these Shortlist A 

simulations, segmentation cues affected word recognition by modulating lexical 

activation. Specifically, words that are misaligned with cued lexical boundaries had their 

activation levels reduced according to the operation of what Norris et al. termed the 

Possible Word Constraint (PWC). 

In experiments using the word-spotting task, Norris et al. (1997) showed that 

listeners found it far harder to spot words (e.g., sea) embedded in nonsense words such as 

"seash" than in nonsense words such as "seashub". In the former case, the nonsense word 

has to be parsed into the word "sea" plus the single phoneme residue [ʃ]. In the latter 

case, the residue is a syllable. Norris et al. therefore proposed that segmentation is driven 

by the PWC: The preferred segmentation of the input is always in terms of units that are 
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possible words. The single consonant [ʃ] is not a possible word in English, whereas the 

syllable [ʃʌb] is. The word "sea" in "seash" is therefore penalized because it is not part of 

a segmentation consisting of possible words. 

In the experiment just described, the PWC applies to the residue between the end of 

the candidate word and the silence at the end of the nonsense word. More generally, 

however, the PWC operates between the ends of candidates (their onsets or their offsets) 

and the nearest likely word boundary.  Such a boundary can be indicated by any one of a 

number of different segmentation cues (e.g., a phonotactically signaled boundary, 

McQueen, 1998, or the onset of a strong syllable, Cutler & Norris, 1988). The extent to 

which a candidate that violates the PWC is inhibited is assumed to depend on the 

reliability of the segmentation cue (cf. Mattys, White, & Melhorn, 2005). 

One of the central motivations for postulating the PWC was that it would help deal 

with unknown words. To some extent the competition process in Shortlist A will break 

down if parts of the input do not correspond to known words. The PWC ensures that the 

input is always parsed in terms of units that could possibly be words. Norris, McQueen, 

Cutler, Butterfield and Kearns (2001) and Cutler, Demuth, & McQueen (2002) have 

shown that the PWC appears to be a language-universal constraint. That is, the residue 

does not need to be a possible word in the listener’s language; it need only be a syllable. 

Johnson, Jusczyk, Cutler and Norris (2003) have also shown that 12-month-old infants 

behave as if they are observing the PWC. Infants should indeed benefit from the PWC as, 

in the course of acquiring the vocabulary of their native language, they continually 

encounter words that are unknown to them. 
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How can the PWC be implemented in Shortlist B?  The central requirement of the 

PWC is to penalize paths containing words whose boundaries are misaligned with known 

syllable boundaries in the input. That is, even if a path consists of a series of contiguous 

words that fully span the input, that path should be penalized if one or more of those 

words violates the PWC. This can be achieved straightforwardly by reducing the 

probability of words that violate the PWC. This, in turn, will reduce the probability of the 

paths those words lie on. This procedure applies both to real words and to dummy words. 

In practice, the path probability is multiplied by a very small number (the PWC 

parameter, 10P

-9
P).P

 
PThis has exactly the same effect as inserting a very low frequency word 

into the path. The influence of the PWC has parallels with the effect of dummy words: 

The PWC parameter penalizes paths that violate the constraint, but if the only possible 

path is one that violates the PWC, that path will still be assigned a high probability. 

In the example in Figure 1, the connections shown with dashed arrows are parts of 

paths which contain dummy words which fail the PWC (e.g., the single segment [l] 

between inner and eye is a dummy word, but this path violates the PWC).  The 

connections shown with dotted arrows, however, are parts of paths with dummy words 

that pass the PWC (e.g., the vowel-consonant sequence [ɒɡ] between cattle and in is a 

dummy word with a vowel, on a path that is consistent with the PWC). Consequently, 

paths leaving a syllable as a residue have a far larger probability than paths leaving a 

phoneme as a residue. 

Earlier we saw that, in order to deal with unknown words, the model’s beliefs had 

to be modified to include a dummy word. The model’s beliefs also have to be modified to 

allow it to carry out experimental tasks where the input has different statistical properties 
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from normal speech. One example of this is the word-spotting task. The word-spotting 

task is unusual in that the input never corresponds to a complete word. All word targets 

are embedded in nonword carriers and there is never a path consisting of a sequence of 

words that fully spans the input.  

In the study by Norris et al. (1997), the target “sea” in "seash" can only be 

recognized by parsing the input in terms of “sea” + “sh”, where “sea” violates the PWC. 

In contrast, the dummy word “seash” matches the input (by definition) and does not 

violate the PWC. Given that the probability of “sea” will thus be less than that of “seash” 

(because “sea” violates the PWC) the embedded word will never be recognized. Outside 

of the context of a word-spotting experiment this seems to be exactly the right behavior. 

Try randomly interjecting “seash” into conversations and count the number of times 

someone says ‘Oh, you mean “sea”, but you’ve added “sh” onto the end’. 

Participants in word-spotting experiments, however, need to revise their prior 

beliefs about where words might be located in the input.  In the following simulations we 

do this by reducing the probability of dummy words that fully span the input, so as to 

increase the probabilities of embedded words. That is, we reduce the probability that the 

entire input (e.g., "seash" or "seashub") will be a dummy word. We do so using a fully-

spanning-path parameter: any path which consists of a single dummy word has its 

probability multiplied by a very small number (10-10). This parameter would not apply in 

normal listening situations, nor indeed in an auditory lexical decision task, where the 

listener is told that some inputs will not be real words. 

A third parameter reflects the probability that the input will contain sequences that 

will not correspond to known words (irrespective of whether those sequences span some 
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or all of a complete input utterance). This dummy-word parameter in the following 

simulations is again a very small number (10-12): All dummy words have this prior 

probability assigned to them, just as if they were words with an extremely low frequency 

of occurrence (the parameter thus acts in the model in exactly the same way as word 

frequency does for real words). As with the fully-spanning-path parameter, the dummy-

word parameter will have to change depending on the nature of the linguistic input. In the 

lexical decision simulations reported below, for example, the probability of a dummy-

word interpretation of the input becomes much higher because half of the stimuli are 

nonwords. Listeners need to take this kind of prior knowledge into account when 

computing response probabilities in different experimental tasks. This flexibility is 

required not only for listeners to perform optimally in different psycholinguistic 

experiments, but also in different real-world listening conditions. In a commentary on an 

international football match, for example, the names of many of the players may be 

unknown words. It would be easier to parse this kind of input if the probability of  

dummy words were increased to reflect this increased frequency of novel words. The 

Bayesian approach in Shortlist B thus provides a straightforward and theoretically 

motivated account of the way in which listeners respond to different probabilities of 

encountering unknown words in different listening situations. 

The PWC, fully-spanning-path and dummy-word parameters thus control the 

segmentation behavior of Shortlist B. The first parameter is essential for the model to be 

able to capture effects of the viability of sequences of the input as possible words, but 

simulations show that the model’s behavior was stable when this parameter was varied 

over a range of numerical values. The other two parameters are less critical to the model's 
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segmentation performance per se, but are required for the model to be able to give an 

adequate account of performance across a range of tasks. Once again, model behavior 

does not depend on precise numerical values for these parameters, other than that the 

fully-spanning-path parameter must be non-zero for the model to simulate word-spotting 

data.  Note that the same values for all three parameters are used in all Shortlist B 

simulations reported in this paper. The value of these parameters has a negligible effect in 

the simulations where there is a fully-spanning path consisting entirely of words. 

We now turn to simulations of segmentation experiments. McQueen and Cutler 

(1998) examined the operation of the PWC in Dutch. Their materials can therefore be 

used in Shortlist B simulations.  As in Norris et al. (1997), listeners were asked to spot 

real words embedded in either single consonant or syllabic nonsense contexts. Target 

words were 24 bisyllabic verbs and 24 bisyllabic nouns, with preceding consonant, 

bisyllabic, strong-syllable or weak-syllable contexts, as shown with examples in Table 4.  

A further 24 targets were included in contexts that did not test the PWC, and there were 

144 fillers which did not contain embedded words.  As in the Norris et al. study, 

therefore, the probability that a trial would include a real word target was .33.  As shown 

in Table 4, both types of target word were harder to spot in single-consonant contexts 

than in any type of syllabic context.  

------------- 

Insert Table 4 and Figure 8 about here 

------------ 

Simulations were carried out using the same 48 target words, each in 3 nonsense 

contexts.  The results of these simulations are shown in Figure 8.  As in the human data, 
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the model performs much better on verbs and nouns in syllabic contexts than on these 

same words in single-consonant contexts. These simulations thus show that Shortlist B, 

with its implementation of the PWC, can segment continuous speech into words.  Path-

based probability computations provide the basic means by which continuous speech can 

be segmented, even when there are no cues to the location of word boundaries that could 

help.  These cues are nonetheless used, when available, via the PWC, to reduce the 

probability of paths which contain impossible words. 

Vroomen and de Gelder (1995) also examined segmentation of continuous Dutch.  

They used a cross-modal identity-priming technique to examine the joint influence of 

metrical structure and lexical competition on segmentation.  Participants heard bisyllabic 

spoken sequences containing a Dutch CVCC word followed by a VC sequence with 

either a strong or a weak vowel. The strong second syllables were either consistent with 

many other Dutch words or with few Dutch words (see Table 5 for examples), and the 

weak syllables were consistent with no Dutch words. Participants saw visual letter strings 

250 ms after the end of the embedded CVCC words, and made lexical decisions to those 

visual stimuli. Relative to an unrelated control condition, lexical decisions were faster 

when the visual targets matched the spoken prime words, but the amount of priming 

showed a stepwise pattern. Priming was largest when the second syllables of the spoken 

sequences contained weak vowels, smaller when they contained strong vowels with few 

lexical competitors, and smallest when they contained strong vowels with many 

competitors.  We have previously interpreted these results as being consistent with the 

operation of the PWC in Shortlist A (Norris et al., 1997). Words are poorer hypotheses 

(and thus generate weaker priming) in strong-strong than in strong-weak sequences 
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because the onset of the second strong syllable is a likely word boundary but that of the 

weak syllable is not (Cutler & Norris, 1988). The CVCC words are thus misaligned with 

those boundaries and have the PWC penalty applied to them.  For example, melk, milk, in 

melkaam is misaligned with the likely word boundary before the [k] because the [k] is not 

a vowel and thus not a possible word. In addition, the number of words beginning at that 

segmentation point influence recognition: the more words there are beginning at the 

second syllable, the stronger the competition between them and the target CVCC words.      

------------- 

Insert Table 5 and Figure 9 about here 

------------ 

The results of the Shortlist B simulations using the Vroomen and de Gelder (1995) 

stimuli are shown in Figure 9. The model captures the pattern in the human data.  Thus, 

while the simulations of the McQueen & Cutler (1998) study show how the operation of 

the PWC in Shortlist B influences how the model segments continuous speech, the 

present simulations show in addition how this segmentation process is modulated by 

lexical competition. Prime probabilities in both strong-strong conditions are lower than in 

the strong-weak condition because of the application of the PWC penalty.  In addition, 

the more paths there are with different words beginning at the onset of the second strong 

syllable, the lower the probability of the prime. 

Note that the data being simulated here come from a cross-modal identity priming 

task. That is, responses cannot have been driven directly by the probabilities of the 

spoken words. Instead we assume that the probabilities of the spoken prime words can 

modulate the prior probabilities of the visually presented target words, and it is this 
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change in priors that produces priming. This is exactly the account of priming in visual 

word recognition proposed in the Bayesian Reader model (Norris, 2006). As we 

explained earlier, the critical factor influencing recognition in the Bayesian framework is 

the prior probability of each of the lexical hypotheses. Although our main emphasis here 

has been on priors determined by frequency of occurrence, they will also be altered by 

the context in which the word appears. If information in the speech signal makes a 

particular word more probable, then this change in priors will speed recognition of that 

word when it appears visually. The changes in word probabilities observed in the 

Shortlist B simulations should therefore lead to parallel changes in the speed of 

recognition of the visual target words given the three types of speech context tested by 

Vroomen & de Gelder (1995).  

Shortlist B can thus simulate how segmentation is influenced by competition 

among spoken words, and can in principle account for priming effects.   

4. Perceptual match and goodness of fit 

Word recognition necessarily involves a comparison of the evidence in the current 

acoustic input with stored knowledge about the phonological form of words.  Models of 

speech recognition generally assume that the degree of match between the signal and a 

lexical representation is determined by a similarity metric reflecting the perceptual 

distance between the input and the lexical representation. Experiments examining the 

effect of mispronunciations on lexical access, for example, have shown that the degree of 

disruption caused by the mispronunciation depends on the phonetic similarity of the 

mispronounced segment to the correct segment. The substitution of a phonetically 

unrelated segment can completely block lexical access (Marslen-Wilson & Zwitserlood, 
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1989), while substitution of phonetically similar segments does not necessarily do so 

(Connine, Blasko, & Titone, 1993).  There appears to be more support for lexical 

hypotheses as the phonetic similarity of the mispronounced segment to that in the 

intended word increases (Connine, Titone, Deelman, & Blasko, 1997; Marslen-Wilson, 

Moss, & van Halen, 1996), and distortions of the phonetic properties of a segment which 

do not change the segment’s identity influence lexical processing as a function of the size 

of those distortions (Andruski, Blumstein, & Burton, 1994; McMurray, Tanenhaus, & 

Aslin, 2002; but see van Alphen & McQueen, 2006). 

Models of spoken-word recognition account for these findings using similarity 

metrics based on perceptual distances.  In TRACE, for example, overlap in terms of 

features and phonemes between the signal and the lexicon determines degree of lexical 

activation.  In contrast, in a Bayesian approach, posterior probabilities are driven by 

likelihoods and not by any simple measure of perceptual or physical similarity. In Figure 

2, whether or not the input Ix provides more support for phoneme A or phoneme B does 

not depend on the distance between Ix and the mean of the likelihood functions for A and 

B, but only on the likelihoods (the height of the pdf) at Ix. That is, the critical measure is 

how likely we are to observe a particular acoustic-phonetic signal, given that the signal 

was generated by that phoneme, and not by how ‘similar’ the representations of the 

phoneme and the signal are (though of course similarity and likelihood measures may 

often be closely related). This means that the pattern of variation in the realization of a 

particular word or phoneme is more important than any measure of absolute distance in 

some physical or perceptual space (cf . Newman, Clouse,  & Burnham,  2001).  In fact, if 
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decisions are to be Bayesian optimal, posterior probabilities must be driven by the 

likelihood functions and not by perceptual distance or similarity. 

As an illustration of this, consider the case of a phoneme that is always realized in 

almost exactly the same way. As shown in Figure 2, there is little variability between 

tokens of Phoneme A. In contrast, for another phoneme there might be wide variation in 

how it is realized (Phoneme B in Figure 2). In the former case, even a small deviation 

from the modal representation of that phoneme will greatly reduce f(Evidence|Phoneme).  

That is, even a small deviation will make it very unlikely that the input signal originated 

from that phoneme. But in the latter case, a similar deviation may do little to alter 

f(Evidence|Phoneme) because prior experience has shown that that phoneme can be 

produced in a larger variety of different ways. If follows that an input that falls exactly 

half way between the peak values of A and B will not give equally strong support for A 

and B. P(Phoneme B|Input)  will be greater than P(Phoneme A|Input) because at that 

point the likelihood of B is greater than A. Note that while there is no guarantee that the 

likelihood functions that listeners learn will take the simple Gaussian form shown in 

Figure 2, this argument does not depend on these distributions being strictly Gaussian.  

The critical difference between computation of goodness of fit based on perceptual 

similarity versus likelihoods becomes clear when one considers asymmetries in 

perceptual confusions.  For instance, one phoneme may be more often misperceived as 

another phoneme than the reverse (as indeed occurred, e.g., in the diphone gating study, 

Smits et al., 2003, Warner et al., 2005). This cannot be explained in the simplest version 

of a model in which goodness of fit is based only on perceptual distance. On any 

similarity metric (e.g., the number of shared acoustic-phonetic features, or the difference 
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in a value of a continuous phonetic variable), one phoneme will be as different from 

another as the reverse. Any explanation of asymmetries in perceptual confusions about 

these phonemes would thus require some additional mechanism in a model based on 

perceptual distance, such as a decision bias.  In a model in which perception is based on 

phoneme likelihoods, however, asymmetric patterns of confusion will arise naturally 

whenever the relevant likelihoods are asymmetric. In Figure 2, because of the difference 

in the width of the two functions (and not simply the distance between the peaks of the 

distributions), there is a wider range of values on the perceptual dimension for which 

Phoneme B is likely to be misrecognized as Phoneme A than the reverse. Tenenbaum and 

Griffiths (2001) explain how distributional properties of exemplars can give rise to 

different patterns of generalization in a Bayesian category-learning model. This 

explanation for asymmetries in phonetic perception is an important motivation for the 

assumption in Shortlist B that phoneme recognition is based on likelihood functions.   

As we have already suggested, the knowledge necessary to compute likelihoods is 

probably initially acquired in infancy, as a result of exposure to the distribution of  

phonetic variability of phonological categories in the language the infant hears (Maye et 

al., 2002).  But since this knowledge reflects the cumulative effect of prior experience 

with speech sounds, it should continue to change over the listener’s lifetime. Importantly, 

in order to maintain optimal performance, the listener’s estimate of the distributions of 

speech sounds should be continuously updated. Recent results indeed suggest that speech 

perception can be altered in response to the current input. That is, perceptual learning 

about speech sounds can occur in adulthood. For example, adult listeners appear to be 

able to adjust their phonetic categories as a result of the combination of prior lexical 
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knowledge and very limited exposure to a talker speaking in an unusual way (Norris, 

McQueen, & Cutler, 2003).  After a group of listeners were exposed to an ambiguous 

sound, midway between [f] and [s], in lexical contexts which indicated that the sound 

should be interpreted as [f], those listeners interpreted more sounds on an [f]-[s] 

continuum as [f] than another group of listeners who had been exposed to the same 

ambiguous sound but in [s]-biased lexical contexts. In terms of the density functions 

sketched in Figure 2, the distributions of phonemic categories were altered given lexical 

knowledge and only brief exposure to an idiosyncratic talker. These listeners had thus 

learned to adjust the estimate of the density functions which we argue are used to 

compute f(Evidence|Phoneme). 

Clayards, Aslin, Tanenhaus and Jacobs (2007) have recently shown that adult 

listeners are sensitive to the distribution of phonetic cues.  Listeners who were exposed to 

more strongly peaked bimodal distributions of voiced and voiceless stops on a VOT 

continuum produced a sharper category boundary in their identification responses to that 

continuum than listeners exposed to broader distributions. As Shortlist B predicts, as the 

variability of two phonemes on a phonetic dimension decreases, those phonemes’ 

likelihood functions will become steeper, and thus, for values on the dimension spanned 

by either of those functions, f(Evidence|Phoneme) will increase, leading in turn to a 

sharper category boundary between those phonemes. Clayards et al. thus show that adult 

listeners are tracking the distribution of the phonetic realization of phonemes exactly as is 

required in a model in which word recognition is based on calculation of likelihoods, 

such as Shortlist B. Feldman and Griffiths (2007) illustrate the value of a Bayesian 

approach in understanding categorical perception and, more specifically, the perceptual 
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magnet effect (Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992).  They assume that 

in phonetic discrimination tasks, in addition to simply identifying the appropriate 

phonetic category of a speech sound, listeners attempt to extract phonetic detail and to 

recover the speaker’s original target production. In order to perform optimally the 

listener’s inferences must be influenced by their prior knowledge of the structure of their 

phonetic categories. Feldman and Griffiths present simulations of data from Iverson and 

Kuhl (1995) to show that this leads to the perceptual warping characteristic of the 

perceptual magnet effect, whereby speech sounds near the center of a category are treated 

as being closer together in perceptual space whereas sounds near category boundaries are 

perceived as being further apart. Once again, it is worth pointing out that the Bayesian 

approach is not restricted to speech perception. Huttenlocher, Hedges, and Vevea (2000) 

have presented a similar Bayesian analysis of category effects in the judgment of visual 

stimuli. 

The suggestion that f(Evidence|Phoneme), or f(Evidence|Word), should play a role 

in speech recognition has important implications for how we should explain  

psycholinguistic data on the consequences of a mismatch between input and the canonical 

form of words. Using a cross-modal priming task in Dutch, Marslen-Wilson and 

Zwitserlood (1989) showed that words such as honing, honey, were not reliably accessed 

when nonwords with a different initial sound (e.g., foning) were presented.  That is, the 

mismatching phoneme appeared effectively to block lexical access.  At least subjectively, 

however, it seems quite easy to appreciate that ‘shigarette’ is an instance of cigarette. 

Whether this is true or not is ultimately an empirical issue, but there is an important 

difference between the two cases. Listeners are unlikely to ever have heard honing 
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pronounced as [fonIN]. That is, P(Evidence is like [f] | stimulus is [h]) is likely to be 

close to zero, and so P(Evidence is [fonIN] | Word is honing) is also likely to be near 

zero. In contrast, given suitable experience of listening to drunks, P(Evidence is like [S] | 

stimulus is [s]) might be non-zero. If this probability is non-zero, and the probability of 

alternative words is zero, [SIg{rEt] should be recognized as cigarette. In this specific 

example it happens to be the case that there is phonetic similarity between [s] and [S], 

caused by drunks’ poor control over their articulators.  But the same effect (recognizing 

cigarette given [SIg{rEt]) would hold even if [s] and [S] were highly distinctive. That is, 

there need be no correlation between mismatch and similarity. Furthermore, this is an 

example of the asymmetries that can arise in perceptual confusability that we discussed 

earlier. Speakers sometimes produce tokens of /s/ as /S/, but rarely produce /S/ as /s/. /S/ 

should therefore be more confusable with /s/ than /S/ is with /s/. 

The question, then, is whether Shortlist B will be able to recognize a word with an 

initial mispronunciation (like cigarette given shigarette) or not (like honing given 

foning). Simulations of the recognition of two word-initial mispronunciations are shown 

in Figure 10.  As can be seen from the solid probability functions, Shortlist B successfully 

recognizes chianti, chianti, when presented with [pijAnti], but does not recognize sigaret, 

cigarette, when presented with [SixarEt].  This might appear surprising, given that the 

phonetic differences between the correct and mispronounced are well matched (both 

changes involve alteration of only one phonetic feature, that of place of articulation).  The 

reason for this difference is not that Shortlist B is privy to knowledge that Dutch drunks 

are more likely to mispronounce their alcohol than their tobacco (should that even be 

true).  The radically different behavior of the model on the two mispronunciations is due 
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instead to differences in probabilistic knowledge.  It happens to be the case that, on the 

last gate of the [Si] diphone, the listeners in the Smits et al. (2003) study made no [s] 

responses, while on the last gate of the [pi] diphone there was at least one [k] response.  

Since p(response [s]|[Si]) = 0 when all of the diphone has been heard, then, following 

equation 7, the probability of sigaret will also be zero.  Even though p(response[k]|[pi]) is 

very small (0.028), it is still enough to keep chianti in the running; ultimately, since there 

are no other plausible paths, chianti dominates the probability landscape. 

------------- 

Insert Figure 10 about here 

------------ 

This difference between examples is clearly a consequence of a rather arbitrary 

difference in the diphone database.  It could easily have been the case that the response 

probabilities in the two contexts were reversed. But the difference nevertheless serves to 

exemplify the point that word recognition in Shortlist B is determined by likelihood (i.e., 

P(Evidence|Word)) and not simply by perceptual similarity.  It is of course the case that 

the model is strongly influenced by the patterns of perceptual confusions in the diphone 

database, such that P(Evidence|Word) is modulated by phonetic similarity, but, as we 

have just shown, this is not the only modulating factor.  It is reasonable to assume that the 

participants’ responses in the diphone experiment were driven in part by prior 

probabilistic knowledge.  For example, when listeners heard a sound that was consistent 

with two alternatives, they may well have chosen one based on a probabilistic bias (e.g., 

that one of those two sounds is more often confusable; though note that Warner et al., 

2005, showed that simple transition probabilities did not have a strong influence on 
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listener behavior in the diphone study). These biases are part of the diphone database, and 

thus of the operation of the model.  Thus, while the model does not have specific 

knowledge that some mispronunciations may be more likely than others, nor that they 

may be more likely in some situations than others (e.g., listening to a sober vs. a drunk 

person), we can see how the model would work if the model were enriched in that way.  

Critically, the Bayesian approach offers a principled account of how recovery from 

mispronunciations in word recognition can vary as a function of the mispronunciation 

involved and as a function of different listening situations. When there is a change in the 

likelihood that the source of an input is a given word, the probability of recognizing that 

word changes. 

It is clear from the sigaret example, however, that the probabilities in the diphone 

database are inappropriate for the modeling of experiments on the recognition of 

mispronounced words.  Specifically, the forced-choice nature of the task in the diphone 

gating task resulted in many situations (particularly at later gates) where the probabilities 

of many responses are zero.  It is plausible to assume that, although the probabilities of 

some responses for a given input may be very small, they should not be zero.  That is, 

there is some non-zero probability that any apparent phoneme in the input could in fact be 

any other phoneme.  A minimum-probability parameter was therefore added to the 

model. All phonemes for which P(response|input) is zero are assigned that probability 

value (10-18).  As can be seen from the dashed probability functions in Figure 10, this 

small adjustment has no effect on the recognition of chianti given [pijAnti], but now 

allows sigaret to be recognized given the input [SixarEt].  That is, as soon as the 

probability that the initial segment is [s] is not zero, the word sigaret easily becomes the 
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most likely interpretation of this input. The minimum-probability parameter was switched 

off in all other simulations presented here, but, with the limitation that the parameter 

value must be very small, model behavior in those simulations does not change 

substantially across parameter values. Note that it is appropriate for the parameter to be 

switched off when modeling experiments (other than those on mispronunciations) where 

high-quality laboratory speech was used.  

The key insight offered by Shortlist B into how listeners deal with 

mispronunciations, therefore, is that recognition of a mispronounced word is determined 

ultimately not by perceptual similarity but by the the listener’s estimate of the probability 

that that type of mispronunciation might occur. Thus, while perceptual similarity can of 

course influence such likelihoods, it can also be the case that the likelihood of a 

mispronounced word can change across contexts where perceptual similarity is the same.  

Just as there may be differences in likelihoods under different listening conditions in the 

everyday world (e.g., listening to drunks rather than sober people), and adjustments in 

these probabilities due to perceptual learning (Norris et al., 2003), there can also be 

differences across experiments as a function, for example, of changes in experiment-

internal probabilities of particular events (Clayards et al., 2007). This analysis suggests 

that an important issue for future research will be to establish the range of tolerance that 

listeners have for perceptual mismatches. 

5. Lexical influences on phoneme identification  

One of the central theoretical motivations driving Shortlist A was to demonstrate 

the viability of a completely bottom-up model of spoken word recognition. This argument 

was developed further by Norris, McQueen and Cutler (2000a, 2000b)  who  argued that 
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many phenomena that appeared to be attributable to a top-down effect of lexical 

information on prelexical processing were actually fully consistent with a completely 

bottom-up feed-forward architecture. In support of this argument they developed the 

Merge model. Merge is an elaboration of Shortlist A designed to simulate the effects of 

lexical knowledge in tasks such as phoneme identification and categorization. In Merge, 

there are phoneme decision units that integrate information from lexical and prelexical 

levels (see Figure 11). Responses in tasks requiring phoneme identification are 

determined by these decision units and not by the prelexical phoneme units themselves. 

Prelexical processing is therefore completely independent of lexical processing: There is 

no feedback from lexical to prelexical processing. 

------------- 

Insert Figure 11 about here 

------------ 

In this section we show that Merge is compatible with the Bayesian approach taken 

in Shortlist B. It is in fact more than compatible: the Bayesian approach necessarily 

forces us to adopt the same architecture in Shortlist B as in Merge. Furthermore, the 

Bayesian approach provides a more principled motivation for the Merge architecture, and 

leads to a model (Merge B) that is computationally simpler than the original network 

implementation (Merge A). 

The central argument that Norris et al. (2000a) presented against the use of top-

down lexical feedback in prelexical processing was that it can be of no benefit. The best 

that any recognition system can do is to match its input against the representations in 

memory, and to select the closest match.  Feedback cannot improve this process.  Note, 
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however, that our discussion of Bayesian decision-making should make it clear that there 

is an important qualification to this statement: The decision process should also take prior 

probability into account. 

If feedback cannot improve the process of matching perceptual input onto lexical 

representations, why should there be lexical effects on phoneme identification at all? The 

answer is that, under some circumstances, lexical information can improve phoneme 

identification.  This possibility is a key feature of Merge B. An essential restriction on 

this Bayesian model, however, is that any lexical influences on phoneme identification 

must not form part of a feedback loop. Lexical information should not feed back to alter 

any prelexical processes involved in word recognition itself. That is, word recognition 

must remain a feed-forward process. 

Consider what should happen if a listener is required to identify the final phoneme 

in a word like [fɪʃ]. If the listener believes that the input is a word, there are two sources 

of information that could be used to identify the phoneme. The first is the bottom-up 

perceptual evidence for [ʃ]. The second is lexical information. If the first two phonemes 

have been identified as [fɪ], then this places constraints on the identity of the final 

phoneme. The two sources of information are quite independent ([fɪ] and [ʃ]) and can 

therefore be combined. The standard way of viewing this is in terms of multiplying 

likelihood ratios. Any number of independent sources of information can be combined by 

multiplying the corresponding likelihood ratios.  Another way to think about the process 

is that one source of evidence can revise the prior probabilities, and the second source of 

evidence can then revise the priors once again. Lexical information can update the prior 
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probability of the occurrence of the phonemes (e.g., making [ʃ] more probable than [s]), 

and these probabilities can then be revised again in the light of the perceptual evidence.  

In other words, the optimum way to identify phonemes is to combine the independent 

sources of evidence from lexical and prelexical processing, exactly as in Merge A and 

Merge B. This is also the basic principle underlying the account of context effects in 

phoneme identification given by the FLMP (Massaro, 1989a; Massaro & Oden, 1995). 

This is to be expected as the FLMP has the same basic form as Bayes' theorem (Massaro, 

1987; Massaro & Friedman, 1990; for further discussion see the FLMP and Shortlist B 

section).  

The idea that phoneme identification might be a Bayesian decision process has also 

been suggested by Mirman, McClelland and Holt (2005), but they also advocate feedback 

from lexical to prelexical processes. So, what would happen if the lexical information 

were allowed to feed back to modify the prior probabilities on the prelexical 

representations driving word recognition? If lexical information revised a prelexical prior, 

this would increase the posterior probability of the phoneme for a given input. This in 

turn would increase the posterior probability for the word. If this feedback were allowed 

to continue, the input would always be identified as the most frequent word, and as 

containing the phoneme most consistent with that word. Far from improving recognition, 

any feedback at all will therefore make word recognition suboptimal.  This analysis 

reinforces the claim made by Norris et al. (2000b) that feedback can never help word 

recognition unless prelexical processing is somehow suboptimal. Optimal recognition is 

achieved by pooling relevant sources of information without feedback. An important 
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implication of this analysis is that any claim that word recognition does involve on-line 

feedback implies that the word recognition system is sub-optimal. 

To illustrate the importance of preventing lexical information from feeding back to 

modify prelexical prior probabilities (as opposed to feeding forward to influence decision 

priors), let us consider the case where a listener must determine whether the final 

phoneme of an ambiguous stimulus such as [fɪ?] is [ʃ] or [s].  First of all consider the 

case of word identification where the task is to discriminate between the words [fɪʃ] and 

[fɪn], and where fish is higher in frequency than fin.  Other things being equal, there will 

be a bias to identify the input as the higher frequency word. If that information were used 

to modulate the prelexical priors, then it would induce a further bias towards fish. That is, 

the lexical-level bias would be exaggerated by the feedback. If the lexical information 

were then fed back through the system again (as in an interactive-activation model) there 

would be a positive feedback loop, and presenting only the two phonemes [fɪ] would 

always activate the word fish as much as all three phonemes in [fɪʃ]. This would make it 

harder to recognize fin, and its final [n]. Feedback can therefore make both word 

recognition and phoneme identification worse.  

This analysis shows that the optimal way to combine evidence from word and 

phoneme levels is to process the two sources of evidence independently, as can be done 

either using Bayes’ theorem, or using fuzzy logic as in the FLMP, or using an interactive-

activation network such as that in Merge A. As we will now show, however, the Bayesian 

approach makes it is possible to implement Merge in a far simpler and more principled 
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way. To illustrate the operation of Merge B, we will show how it can simulate the data on 

subcategorical mismatch that was critical for the evaluation of Merge A.  We will not 

review all the literature on the modularity debate here; it is presented in detail in Norris et 

al. (2000a) and McQueen, Norris and Cutler (2006). As McQueen et al. argue, first, no 

data have yet been found which show convincingly that there is feedback from the 

lexicon to the prelexical level, and, second, the data of Pitt and McQueen (1998) directly 

challenge the notion of lexical-prelexical feedback. Thus, while the debate about the data 

on feedback is still ongoing (see, e.g., McClelland, Mirman & Holt, 2006), there are, in 

addition to the theoretical arguments just discussed, also empirical grounds to reject 

lexical-prelexical feedback. 

Please note also that the current version of Shortlist B does not lend itself directly 

to the fine-grained simulations of RT and error rate that are required in this analysis. That 

is why we developed Merge B instead. 

Merge B 

Subcategorical mismatch data 

Norris et al. (2000a) used Merge A to simulate data from studies by Marslen-

Wilson and Warren (1994) and McQueen, Norris & Cutler (1999). These two studies 

examined the effects of subcategorical phonetic mismatch on phoneme categorization and 

lexical decision. The critical manipulation was to cross-splice stimuli such that the initial 

portion of a word or nonword provided misleading phonetic cues as to the identity of its 

final consonant. The details of the materials are shown in Table 6. All items consisted of 

the first part of one item, up to the end of the vowel spliced onto the final consonant from 

another item. Critically, the stimuli could form words or nonwords, and their initial 



Norris & McQueen 79

portions could be derived from either a word or nonword. For example, the word job 

could be made by cross-splicing the initial portion of another word (e.g., jo from jog) 

onto a final [b] release, creating what we label as a W2W1 item, or by cross-splicing the 

initial portion of a nonword (e.g., jo from jod) onto the same [b] release (a N3W1 item). 

In addition to the cross-spliced items, there were identity-spliced items (W1W1 and 

N1N1) which were made by splicing together different tokens of the same word or 

nonword.  

------------- 

Insert Table 6 about here 

------------- 

The critical result was that the lexical status of the initial portion of the stimulus 

had an effect on phonetic categorization responses to nonwords, but not to words. When 

the first part of a nonword stimulus was derived from a word (W2N1), responses were 

slower than when it was derived from another nonword (N3N1).  There was no such 

difference for the two types of cross-spliced word (W2W1 and N3W1).  Thus, while for 

both words and nonwords there was an inhibitory effect of the subcategorical mismatch 

in the cross-spliced items (relative to the identity-spliced items), there was in addition a 

lexical effect on the nonwords.  This interaction can be attributed to lexical competition.  

When the entire string ends up sounding like a word, that word is the dominant lexical 

hypothesis and other lexical hypotheses, including critically the word matching the initial 

portion of the stimulus (i.e., the W2 word), tend to lose the competition.  There is thus an 

effect of cross-splicing (responses are slowed because of the misleading phonetic 

information) but no additional lexical effect.  But when the entire string ends up being a 



Norris & McQueen 80

nonword, W2 words in W2N1 sequences remain as viable lexical hypotheses, and these 

words thus exert an effect on phonetic categorization (i.e., over and above the bottom-up 

effect of the phonetic mismatch, the lexicon also indicates that the final sound is not what 

the post-splice information suggests). These data are important because they do more 

than show simply that lexical knowledge can influence phonetic decision-making.  They 

show further that there is a complex interaction between the effects of lexical knowledge 

and the effects of detailed phonetic information. They thus impose much stronger 

constraints on models, and their simulation is thus more valuable than simulation of a 

simple lexical effect of phonetic decision-making such as the Ganong effect in phonetic 

categorization (Ganong, 1980).  These data thus serve as a key test of the adequacy of 

Merge B.  

Model details 

Relative to Shortlist B, Merge B is a simplified Bayesian model based on the 

sampling process used in the Bayesian Reader (Norris, 2006). In the Bayesian Reader, 

visual words are represented as points in perceptual space. Any letter string (a word or a 

nonword) can be represented as a point in that space.  Input to the model consists of a 

series of samples generated by adding noise to the input. Both the input and the samples 

are vectors corresponding to points in perceptual space. The model calculates the 

standard error of the mean σ BmB of the samples based on the distances between individual 

samples and the sample mean. (See Appendix A of Norris, 2006, for details and 

equations). Given the mean and σBmB at any time, the probability of each word, given the 

perceptual input, can be calculated on the basis of the likelihood and frequency of that 

word. 



Norris & McQueen 81

A critical difference between applying the principles of the Bayesian Reader to 

reading and applying them to speech concerns how information arrives over time. The 

Bayesian Reader assumes that all of the letters in a word are presented simultaneously. 

To simulate the arrival of the speech signal over time in Merge B, each successive 

phoneme vector is presented every N steps. In the current simulations, new phonemes are 

presented every 100 steps. As with the Shortlist B simulations, each new phoneme 

remains present throughout the word. A phoneme at the beginning of a word can 

therefore carry on receiving further samples right through the word. In fact, in order to 

avoid making any assumptions about the duration of memory for perceptual input, the 

simulations allow samples to continue to be accumulated until a response is made.  Other 

than this difference in timing, Merge B calculates phoneme probabilities in exactly the 

same way that the Bayesian Reader calculates word probabilities. Once phoneme 

probabilities have been calculated, the model can compute word probabilities in just the 

same way as in Shortlist B. 

The task in these experiments is either to categorize the final phoneme (e.g., is it 

[b] or [ɡ]) or to perform lexical decision.  To deal with the fact that half of the stimuli 

will be nonwords, the lexicon also contains a dummy word. As discussed above, dummy 

words match any input to some extent. If the input becomes inconsistent with any word, 

the dummy word will dominate the likelihood calculations and have a high probability. 

When the dummy word has a high probability, the input is likely to be an unknown word 

or nonword. In these simulations we use the simplest possible lexical decision procedure: 

respond 'Yes' when the probability of any word exceeds a 'Yes' threshold, and respond 

'No' whenever the probability of the dummy word exceeds a 'No' threshold. Simulated 
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RTs are given by the number of samples/time-steps required to reach threshold. Error 

rates are simply the proportion of trials on which the probability exceeds the wrong 

threshold. The critical parameters for performing lexical decision are therefore the 'Yes' 

and 'No' thresholds, and a likelihood for the dummy word. The model also needs a 

parameter reflecting the standard deviation of the sampling noise. In the simulations 

presented here this is always 0.5. 

Simulations 

Each phoneme is coded as a vector where one element is set to 1.0 to represent that 

phoneme, and all other elements are set to 0. Words are simply a concatenation of 

phoneme vectors. At each time step in processing, the model receives a sample from the 

input vectors of all phonemes presented to that point. Each sample is constructed by 

adding zero-mean Gaussian noise to each element of the input phoneme.  As sampling 

proceeds, the model calculates the mean location of the input samples in perceptual 

space, and the standard error of the mean of the samples. This is computed on the basis of 

the distances between each sample and the mean of the input samples.  The next step is to 

calculate the distance between the mean of the input samples (i.e., the vector in which 

every element is the mean of the corresponding input elements) and each phoneme. This 

is then used to calculate the likelihood of each phoneme (determined by the height of the 

normal distribution with the calculated standard error of the mean (σBmB) at the given 

distance from the mean). These likelihoods are then used to calculate P(Phoneme|Input) 

values.  P(Word|Input) is calculated from these phoneme probabilities, exactly as 

described for Shortlist B. 
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Cross splicing is simulated by changing the vector representing the final phoneme 

at the splice point. For example, at the splice point, the vector representing [d] might be 

replaced by the vector representing [ɡ].  Consequently, the calculated mean location of 

the input vector will be a weighted sum of the samples from the [d] vector and the [ɡ] 

vector. This will slow recognition of the final phoneme, because recognition will be 

delayed until samples from [ɡ] outweigh those from the [d] in the pre-splice portion of 

the stimulus. Cross splicing in this way will also make the standard error of the mean 

larger than it would be in the unspliced case, which will also delay recognition. In the 

simulations reported here, the splice point was 50 steps into the final phoneme. 

Phoneme categorization is performed by combining the evidence from both the 

phoneme and lexical levels. In the experiments being simulated here there are only two 

alternative phonemes on each trial, and the task is simply to decide which of these two 

phonemes has been presented. The probabilities of the two output phonemes are 

calculated in exactly the same way as for the prelexical phonemes (i.e., from P(Evidence | 

Phoneme)), but using prior probabilities (i.e., P(Phoneme Bi B)) derived from the lexicon, and 

considering only the two critical phonemes. 

The stimuli could be either words or nonwords. To reflect this, we need to reduce 

the lexical influence on phoneme identification. That is, the decision units should not 

assume that the input is a word. This was achieved by taking a proportion of the lexically 

determined prior probabilities for each phoneme and redistributing it among all 

phonemes. For example, in the simulations here this value was set to 0.2, so the 

probability of each phoneme was 0.2 * (the original lexical prior) + 0.8/(number of 
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phonemes). In other words, only 20% of the lexically-determined priors were allowed to 

modulate the effective phoneme priors. Each phoneme prior was therefore at least 80% of 

what it would be in the absence of any lexical information. This parameter, and a 

parameter representing the response threshold, are the only two parameters specific to the 

phoneme categorization simulations. 

Once suitable values for the response thresholds and the dummy word are selected 

so as to control the overall accuracy of the model’s responses, the model reproduces the 

main features of both the lexical decision data and the phoneme categorization data 

reported by Marslen-Wilson and Warren (1994) and by McQueen et al. (1999). The 

results of the simulations of both phoneme categorization and lexical decision are shown 

in Table 7. These numbers are the means of 1000 trials of the model in each condition. 

Each trial uses exactly the same input, but a different random number seed. 

------------- 

Insert Table 7 about here 

------------- 

As can be seen in the upper part of Table 7, the model’s behavior on the words 

shows only a cross-splicing effect.  Phonetic categorization RTs estimated by Merge B to 

the identity-spliced W1W1 stimuli are faster than those to the cross-spliced W2W1 and 

N3W1 stimuli, and there is little difference between W2W1 and N3W1.  This is the 

pattern found in the human data – in both studies.  But in the nonwords there is a lexical 

effect superimposed upon this cross-splicing effect.  RTs estimated by Merge B to the 

identity-spliced N1N1 stimuli are faster than those to cross-spliced N3N1 stimuli, which 
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in turn are faster than those to the W2N1 cross-spliced stimuli.  Again, this mirrors what 

was found across the two studies in human listeners. 

Merge B thus successfully captures this complex interaction of lexical status and 

subcategorical phonetic mismatch.  When the sequence as a whole is consistent with a 

word, then that word dominates the probability landscape, and thus the lexical status of 

the first part of the cross-spliced stimuli does not influence phonetic categorization 

behavior.  But when the sequence as a whole is a nonword, then the W2 word (i.e., the 

source of the initial portion of a W2N1 item) remains as a plausible lexical interpretation 

and thus exerts its effect on behavior over and above the effect of the phonetic mismatch, 

making phonetic decisions to these items even slower than those to the N3N1 items.  

Merge B therefore simulates a lexical influence on phonetic decision-making without 

feedback. 

As shown in the lower half of Table 7, Merge B also accurately simulates the same 

complex interaction of subcategorical mismatch and lexical status in lexical decision. The 

account of the model’s behavior in these simulations is exactly parallel to that just given 

for phonetic categorization, except that it is based on the probability of words (or, for 

nonwords, the dummy word) rather than on the probability of phonemes.      

The most important message from both of these simulations is that the behavior of 

Merge B follows directly from the underlying Bayesian principles. This contrasts with 

Merge A. Because Merge A began as an interactive-activation network, it could equally 

well have been set up to simulate a different pattern of data (see  Pitt, Kim, Navarro, & 

Myung, 2006). There was no principled reason for Merge A to predict the detailed pattern 

of results actually observed. Several of the design decisions in Merge A were simply 
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pragmatically determined to enable the model to simulate the data. For example, there 

was a difference in the architecture of the phoneme input units and that of the word and 

decision units. Whereas the latter two had between-unit inhibition, the former did not (see 

Figure 11). The reason for not having inhibition between the phoneme input units was to 

make sure that the early stages did not force categorical responses to ambiguous stimuli. 

However, this is just a problem with interactive activation models and their tendency 

towards winner-take-all behavior. It is not a general problem with the notion of relative 

evaluation of perceptual hypotheses. As has already been noted, there is relative 

evaluation in the Bayesian calculations. If the likelihood of one hypothesis increases, then 

the probability of others will decrease. This is equivalent, at a computational level, to 

inhibition in an interactive activation model. But when there is ambiguity in the input, the 

Bayesian calculations never behave in a winner-take-all fashion. For example, even if a 

prelexical phoneme identification stage assigned a phoneme a very low probability, this 

could still be overcome at the decision stage by a strong lexical bias. The same 

computational principles therefore apply to all components of Merge B.  

Model complexity 

Table 3 of Norris et al. (2000a) lists 12 Merge A parameters with non-zero values.  

The model also has an extra parameter corresponding to the activation level for producing 

a ‘Yes’ response in lexical decision. Two additional parameters would be required to 

control the threshold and deadline for a ‘No’ response, and a further parameter is required 

to determine the threshold for a phoneme categorization response. This gives a total of 16 

parameters. As witnessed by the fact that most of the parameters are reported to three 

significant digits, the exact value of the parameters is quite critical (see Pitt et al., 2006 
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for a discussion of the sensitivity of the model). The Bayesian implementation is very 

much simpler, and its parameters are shown in Appendix C. The sampling noise is a 

scaling factor and mainly acts to speed or slow responses. The number of samples per 

segment is analogous to the number of cycles per input slice in Merge A.  The response 

threshold parameters are not critical and were simply adjusted to produce approximately 

the correct levels of accuracy. The model therefore has a total of 7 parameters. Note that 

the parameter values were adjusted by hand and not optimized.  

As well as allowing us to lose some of the parameters required by Merge A, the 

Bayesian implementation also enables us to eliminate some of the ad hoc assumptions in 

Merge A. For example, Merge A required a ‘top-down priority rule’ (Carpenter & 

Grossberg, 1987) to ensure that decision units could never become activated purely on 

the basis of lexical input. This is a property that naturally follows from Bayes’ theorem. If 

the likelihood of the phoneme is zero, then no amount of lexical evidence can raise its 

probability above zero. 

So, where have all the parameters gone? Remember that our claim here is that 

people approximate optimal Bayesian recognizers, and that this determines the functions 

that must be computed. However, an interactive activation model can compute a wide 

range of functions depending on the parameters That is, models like TRACE, Shortlist A 

and Merge A all have a large parameter space, but only part of that space comes close to 

reproducing the correct pattern of data (Pitt et al., 2006) .Without additional constraints 

these are all free parameters. However, imagine there was a network that could be 

configured to compute exactly the same function as either Shortlist B or Merge B.  The 

theoretical requirement to compute a specific function would effectively determine what 
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values the network parameters must take. That is, the parameters would no longer be free 

parameters. Such a model would just have the same set of free parameters as the 

computational-level theory. What allows us to dispense with so many free parameters are 

the strong principles underlying the theory. 

Lexical effects in Shortlist B without on-line feedback 

We have shown that Merge B can explain lexical involvement in phonetic decision-

making without feedback from the lexical level to the prelexical level. Further, we have 

argued that the success of the model arises from its underlying Bayesian principles. 

Perhaps most importantly, Merge B’s account of lexical effects is true to our initial 

assumption that speech recognition is optimal: given this assumption, there should be no 

lexical-prelexical feedback. 

Two questions remain.  First, what is the relationship between Merge B and 

Shortlist B?  The answer is that it is the same as that between Merge A and Shortlist A. 

Merge and Shortlist are really just implementations of different components of the same 

theory. All four of these implementations share key assumptions about levels of 

processing, about prelexical and lexical representations, and of course the assumption that 

there is no feedback from the lexical level to the prelexical level. In addition, Merge B 

and Shortlist B operate according to the same Bayesian principles. The differences 

between the models thus do not lie in any differences in theoretical assumptions; they 

instead lie in differences in the scope of the simulations they can perform.  On the one 

hand, Shortlist B simulates word recognition in continuous speech, but has no means, in 

its current implementation, to make phonetic decisions. On the other hand, Merge B is a 

simplification of Shortlist B, with a much smaller lexicon and no ability to deal with 
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continuous speech recognition, but can make phonetic decisions. In short, the present 

Merge B simulations show that if that model’s phonetic decision component were added 

to Shortlist B, then Shortlist B would be able to explain lexical effects on phonemic 

decision-making without feedback. Ideally Merge B and Shortlist B would be combined 

into a single program, but the simulations are much more tractable if they are kept 

distinct. 

The second question concerns perceptual learning. As we have previously 

discussed, Norris et al. (2003) have shown that listeners can use lexical knowledge to 

retune their phonetic categories when they encounter a talker speaking in an unusual way. 

How is this possible in a model without feedback? The answer is that already given by 

Norris et al.: If one accepts that there is a distinction between on-line feedback and 

feedback for perceptual learning, the findings on lexical retuning of perception are 

completely consistent with Shortlist B (and Merge B).  On-line feedback is what Shortlist 

and Merge do not have: lexical knowledge cannot modulate the prelexical analysis of a 

word as that word is being heard.  We have just presented arguments why on-line 

feedback in speech recognition is unnecessary and indeed undesirable. 

Feedback for learning is another matter entirely.  As Norris et al. (2003) argued, 

perceptual learning can benefit speech processing, for example where adjustments in 

response to a given talker’s idiosyncratic speech sounds can make it easier to understand 

what that talker is saying later. The input (Clayards et al., 2007) and the lexicon (Norris et 

al., 2003) are both sources of knowledge that listeners can use to make these adjustments, 

which, as we have already suggested, could take the form of changes to the likelihood 

functions of phonetic categories (cf. Figure 2). Such changes to f(Evidence|Phoneme) 
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over time that are directed by lexical knowledge do not require there to be any effects of 

the lexicon on on-line processing. That is, feedback for learning and on-line feedback can 

involve distinct mechanisms and therefore do not entail one another. Thus, while a future 

version of Shortlist B might well include an implementation of lexical retuning of 

phonetic perception, that version could still have no on-line feedback. 

As Norris et al. (2003) and McQueen, Norris & Cutler (2006) argue, should 

convincing data that there is on-line feedback ever be forthcoming, it should probably 

best be taken as evidence for how feedback for learning is implemented. One possibility 

is that the mechanism for lexically-guided learning would have subsidiary consequences 

for on-line processing (see Mirman, McClelland & Holt, 2006, for one proposal). Lexical 

effects in on-line processing could thus potentially arise as an epiphenomenon of lexical 

involvement in perceptual learning. Such effects, should they ever be found, would 

therefore better be seen not actually as evidence for on-line interaction, which itself 

serves no useful function and may indeed be detrimental to recognition, but rather as 

further evidence for feedback for learning, which is beneficial for the listener. 

FLMP and Shortlist B 

In concluding this section on lexical influences on phoneme identification, it is important 

to compare the account offered by Shortlist B/Merge B with the FLMP (Massaro, 1987; 

Massaro, 1989a; Oden & Massaro, 1978). As we have already noted, the FLMP combines 

lexical and prelexical evidence independently to perform phoneme identification and 

categorization, just as in Merge B. Although the equation underlying the FLMP has the 

same form as Bayes’ theorem, the FLMP is assumed to generate a truth value rather than 

a posterior probability.  As Massaro and Friedman (1990) note “Bayes’s theorem and the 
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FLMP are conceptually equivalent if the truth value can be interpreted as a conditional 

probability” (p. 232).  However, in the FLMP the truth values are interpreted as response 

probabilities and not posterior probabilities. Consequently, the FLMP is not strictly 

Bayesian, and does not incorporate an optimal decision rule.  

In the FLMP responses are generated according to the R.D. Luce (1959) choice 

rule. The Luce choice rule is shown in equation 11, and gives the probability of 

generating a particular response as a function of the relative support for that response as a 

proportion of the total support for all responses. 
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The Luce choice rule is often used to generate probabilistic choice behavior from 

deterministic systems. For example, it is used to translate the activation values from 

interactive activation networks into response probabilities (e.g., Dahan et al., 2001) . As 

noted in our earlier discussion of the NAM, the Luce choice rule gives the probability of 

generating each response, and not the posterior probability of the hypothesis given the 

evidence. That is, the choice rule is interpreted as giving the proportion of responses in 

each category, and not the probability of the hypotheses. The Luce choice rule can be 

used to describe the average behavior of an optimal system, but is not itself an optimal 

decision rule. The optimal decision rule is to always select the response with the largest  

posterior probability. The Luce choice rule is a randomized decision rule which will 

always perform worse than the optimal Bayesian decision rule (Ferguson, 1967).  Thus, 

while there are close formal similarities between the FLMP and Bayes’ theorem 
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(compare equations 11 and 1), they are not identical. Most importantly, if the FLMP 

decision rule is applied at the level of the single trial, FLMP will not perform optimally. 

In addition to these formal differences between the models, it is important to note that 

there are also significant differences between the explanations of lexical effects given by 

FLMP and Merge (Massaro, 2000; Norris et al. 2000b; Oden, 2000).  

However, despite these differences, there is no doubt that the FLMP is close in spirit 

to the ideas we advance here. In particular, work within the FLMP framework has made 

some of the most important contributions to the feedback debate. Both Merge and FLMP 

incorporate the notion that perception involves combining the independent contribution 

of different sources of information. This is the hallmark of feedforward theories and the 

central contrast between them and interactive theories. Massaro (1989a) simulated the 

influence of lexical information on phoneme categorization in both the FLMP and 

TRACE, and demonstrated that only the FLMP could simulate the data accurately. 

McClelland (1991) responded by developing the stochastic interactive activation model 

which could account for the data by emulating the behavior of ‘classical’ models like the 

FLMP. In other words, the interactive model could only simulate the data to the extent 

that it behaved exactly like a non-interactive model. In fact, Massaro and Cohen (1991) 

argued that even this modified interactive model could not simulate the data as well as the 

FLMP. 

FROM ACTIVATION TO BAYES 

We have shown that Shortlist B can account for key findings on segmentation, word 

frequency, and mispronunciations. The Merge B simulations show in addition that a 

Bayesian model with the same key assumptions as Shortlist B can explain data on lexical 
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involvement in phonemic decision-making.  We now compare different versions of the 

model and, in particular, trace the development from the activation-based Shortlist A to 

the Bayesian Shortlist B.  

Shortlist A and Shortlist B 

The main aim of the Shortlist A paper was to demonstrate the viability of a strictly 

bottom-up model of spoken-word recognition. As we have just seen, Merge B (and thus, 

by extension, Shortlist B) can explain lexical effects in a strictly bottom-up fashion.  

Norris (1994) also showed that, in contrast to TRACE, there was no need to have a copy 

of the entire lexical network associated with each segment in the input. In Shortlist A, and 

in the new model, only a small subset of possible candidates need be considered at each 

segment. Furthermore, there is a clear distinction in both versions of the model between 

the process of lexical access, which generates candidates, and the process of competition 

among lexical candidates (Shortlist A) or paths (Shortlist B). This distinction corresponds 

to a contrast between representations of lexical types in the lexicon, where there is only a 

single representation of each word, and representations of candidate lexical tokens, where 

there may be many tokens of any given lexical type.  This distinction between type and 

token representations is discussed extensively in Norris et al. (2006). 

The two versions of the model thus share key assumptions about lexical 

representations.  They are not identical in every way, however. One way to appreciate the 

relationship between the two versions of Shortlist is to separate out those properties of the 

original model that were fundamental theoretical claims (T), and those properties that 

were a consequence of pragmatic assumptions made simply to make it possible to 
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construct a functioning computational model (M).  Norris (2005) enumerated these two 

sets of assumptions as follows: 

Core theoretical assumptions 

T1 The flow of information from prelexical to lexical levels is bottom-up only. 

This was the central motivation for Shortlist A. 

T2 Bottom-up selection of multiple lexical candidates is based on both matching 

and mismatching information (i.e., a claim about the procedure for computing a 

match between input and lexical entries). 

T3 Matching lexical candidates (and only those candidates) enter into a 

competition process that optimizes the parsing of the input into words. 

T4 There is no need for explicit lexical segmentation (i.e., the model does not 

need to be told where words begin and end in the input). 

Assumptions required for the implementation of Shortlist A 

M1 The input to the model is a string of phonemes. 

M2 The input contains no phoneme deletions, insertions or substitutions (i.e., 

there are no errors in the perceptual analysis). 

M3 The dictionary contains a single canonical representation of each word (i.e., 

no account of pronunciation variation). 

M4 Lexical lookup is by means of a serial search through a dictionary. 

M5 The match between the input and lexical entries is computed by counting +1 

for each matching phoneme in the correct position, and -3 for each mismatching 

phoneme. 
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M6 Matches between input phonemes and the corresponding phonemes in a 

lexical entry are all-or-none (i.e., there is no account of phoneme similarity). 

M7 The candidates are entered into the network just by wiring them in as 

required. 

M8 Overlapping candidates are connected by inhibitory links. 

M9 Competition is performed by an interactive-activation network. 

M10 The model output is a pattern of lexical activations over time. 

The only one of the core theoretical assumptions that has been revised in Shortlist B is 

the claim about the matching process being based on both matching and mismatching 

evidence (T2). The new model retains the spirit of this assumption but, as we saw in the 

fourth set of simulations, ‘match’ in the Bayesian formulation is determined by 

likelihood, rather than any simple similarity metric. Shortlist B incorporates one new 

theoretical claim: word recognition is performed optimally. That is, word recognition is 

performed by computing probabilities as determined by Bayes’ theorem.  

In contrast to the shared theoretical assumptions, most of the modeling assumptions 

have changed. The only similarities between the two versions of Shortlist are M2 and 

M3, and possibly M7 (but of course there is no ‘network’ in the new model). Purely for 

reasons of computational efficiency, the new model no longer uses a strictly serial search 

of the lexicon (M4). The model is programmed such that there is a list of words 

associated with each diphone, so only words that really are potential candidates need be 

considered. It should be clear that these differences are nothing more than changes in the 

way the program is written. The precise algorithm chosen to implement the computer 

program makes no difference to the results of the simulations. Furthermore, these 
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programming decisions most definitely do not reflect any theoretical claims about the 

nature of the lexical search process. 

The most radical differences between Shortlist A and Shortlist B are the modeling 

assumptions M8, M9 and M10. Shortlist B no longer uses a connectionist network. It is 

important to emphasize that these are modeling assumptions and not theoretical 

assumptions. The interactive activation model used in Shortlist A was never anything 

more than a convenient algorithm for determining a near-optimal segmentation, and it 

was certainly never intended to be a claim about the neural implementation of the word 

recognition process. It might be possible to design a modified interactive activation 

model that could compute the correct posterior probabilities required by Shortlist B. 

However, an appropriately designed network would, by definition, compute exactly the 

same probabilities as the current computational implementation. A connectionist 

implementation of Shortlist B would therefore add nothing to the explanatory or 

predictive value of the theory.  Worse still, there would be the possibility that a 

connectionist implementation might be a distraction from the critical insights provided by 

the Bayesian approach.  

If a model is expressed as a connectionist network, the fact that the probability of 

one word is influenced by the probability of overlapping words is most readily 

implemented in terms of inhibitory links between the representations of competing lexical 

candidates. A computational-level theory need make no assumptions about the specific 

algorithms used to perform the computations, or about the way those algorithms might be 

implemented.  
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The computational-level approach to model building we have adopted here is very 

different from connectionist models like Shortlist A and TRACE. But it is important to 

note that there is no deep philosophical incompatibility between the approaches. 

Rumelhart and McClelland (1985; 1986) suggested that, in Marr’s terms, connectionist 

models could be considered to offer explanations at an algorithmic level. A complete 

account of human speech recognition would encompass both the computational and 

algorithmic levels. However, the only way to discover which algorithms might be used is 

to know what functions those algorithms need to compute. If theories are constrained to 

use the small set of existing connectionist architectures, there is no guarantee that the 

available architectures will be able to compute the necessary functions. For example, the 

interactive activation networks in Shortlist A and TRACE do not compute the functions 

required for Bayesian inference. These models are the wrong place to start. However, in 

principle there might be infinitely many networks that could compute those functions. 

(For examples of neurally plausible Bayesian algorithms, see Rao, 2004, which contains 

suggestions as to how the cerebral cortex might implement Bayesian inference for an 

arbitrary hidden Markov model, and Bogacz and Gurney, 2007, for an illustration of how 

the basal ganglia and cortex might perform optimal decision-making). So, why would one 

choose one kind of connectionist algorithm over another? Different algorithms might 

predict different behavior, and constraints from the implementational level might lead 

one to prefer some algorithms over others. But first we need to know whether algorithms 

that can compute Bayesian inference might have anything at all to contribute to the 

explanation of spoken word recognition. 
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We end this section by summarizing the advantages of Shortlist B over Shortlist 

A. First, the critical new theoretical claim in Shortlist B is that listeners approximate 

optimal Bayesian classifiers. As we have just argued, this computational-level claim is a 

more principled starting point for model building than the interactive activation algorithm 

on which Shortlist A (and TRACE) is founded. Second, the optimality assumption gives 

Shortlist B extra explanatory power, scope and simplicity compared with Shortlist A. For 

example, the explanation of word frequency effects follows directly from this 

assumption, without the need to add any extra features or parameters. Of course, we 

might have been able to add extra features to Shortlist A to make it give an accurate 

simulation of frequency effects, in the same way that Dahan et al. (2001) did for TRACE. 

However, as with the TRACE simulations, that would still have fallen short of the 

achievement of Shortlist B, which is to explain why listeners behave as they do in 

response to differences in word frequency. Third, the input to Shortlist B, based on a very 

rich set of perceptual confusion data (Smits et al., 2003) allows the model to pass 

information continuously on to the lexical level of processing; this was not possible with 

the categorical phonemic input in Shortlist A. Finally, the new framework links the 

explanation of spoken-word recognition to a wider body of research on Bayesian models 

of perception and learning (e.g., Feldman & Griffiths, 2007; Huttenlocher et al., 2000; 

Tenenbaum & Griffiths, 2001; Tenenbaum, Griffiths & Kemp, 2006). 

 

SpeM 

The SpeM model of Scharenborg et al. (2005) is an implementation of Shortlist 

using techniques from ASR. It too shares the same theoretical assumptions as Shortlist A 
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and Shortlist B, but has a very different implementation. It uses an automatic phone 

recognizer to generate a phoneme lattice. The phoneme lattice is used to generate a word 

lattice. A measure of  'word activation' is then derived from a combination of the scores 

for individual words and the scores for the paths that they lie on. The word activation 

scores therefore reflect both the bottom-up perceptual support for the word, and how well 

that word fits in with the best path through the lattice.  In architectural terms, SpeM is 

very similar to the model being presented here, with the main difference being the form 

of the input: Real speech versus confusion data.  This means that SpeM can perform 

simulations by being fed with exactly the same speech stimuli used in a psychological 

experiment.  For example, Scharenborg et al. demonstrated that SpeM can simulate data 

from Norris et al. (1997).  However, because of some of the restrictions and complexities 

imposed by the need to recognize real speech using currently available ASR techniques, 

SpeM incorporates some necessary simplifications. In particular, the procedure it 

employs to compute word 'activations' is not strictly Bayesian. The activations are not 

directly interpretable in terms of probabilities. Shortlist B, in contrast, dispenses with the 

notion of activation altogether, and the output of the model is a pattern of word 

probabilities that changes over time. This enables us to give a more thorough treatment of 

the implications of a Bayesian approach to speech recognition.  A further limitation of 

SpeM is that the performance of the automatic phone recognizer is not perfect (see 

Scharenborg et al., 2005, for discussion). Consequently, some experimental stimuli are 

not correctly identified. Therefore, there is still a need for a model that can work with a 

phonemic transcription of the input. 
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CONCLUSIONS 

The model presented here serves two purposes. First, it shows how data from a 

gating task can be used provide a psychologically plausible input to a model of 

continuous speech recognition. Second, and more importantly, it illustrates the 

implications that a Bayesian account of speech recognition has for a number of important 

theoretical issues. Although Bayesian techniques are at the heart of almost all statistical 

pattern recognition systems, they have not previously been used in psychological models 

of spoken-word recognition. The SpeM model of Scharenborg et al. was motivated by 

Bayesian principles, but is not fully Bayesian. 

The power of the Bayesian approach is that it offers a principled account of many 

phenomena that have previously been explained in an entirely ad hoc fashion. For 

example, the effect of word frequency can be simulated in an interactive activation model 

like TRACE in terms of changes in resting levels or weights (Dahan et al., 2001). 

However, there is no principled theoretical reason to prefer one account over the other. 

Moreover, as discussed by Norris (2006), most of the mechanisms proposed as 

explanations of the word frequency effect are actually detrimental to efficient 

recognition. In contrast, the use of frequency (or prior probability) in the present model 

provides the optimum way of combining perceptual evidence with knowledge of prior 

probabilities. Exactly the same argument must also apply to the explanation of the effects 

of context. Almost by definition, contextual constraints act to make particular words 

more or less probable. The effects of frequency and context must therefore both be 

modeled in terms of their influence on prior probabilities. 
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Similarly, there has been considerable debate in the literature as to the proper 

metric for computing the degree of perceptual match between the speech input and lexical 

representations. The standard approach has been to suggest that there is some perceptual 

similarity metric that can provide a measure of the perceptual distance between different 

segments, and that it is this distance that determines the degree of match. The Bayesian 

perspective shows that a simple metric based on perceptual form is inadequate. What 

counts is not perceptual distance itself, but the likelihood that the input is an instance of 

the particular word or segment – f(Evidence|Word) or f(Evidence|Phoneme). Therefore a 

word or segment with a very variable pronunciation may be much more tolerant of 

‘mismatch’ than a word or segment that is always realized in the same way.  

The effect of lexical competition in continuous speech recognition also follows 

inevitably from the assumption of optimality. Given a particular input, there is only one 

way to calculate the posterior probabilities of the words, and those probabilities must be 

influenced by the presence of other overlapping word candidates. More specifically, the 

effect of overlapping candidates must also be influenced by the viability of the path(s) 

that the word lies on. Overlapping candidates will only compete to the extent that they lie 

on paths with a high probability. 

Finally, Bayesian principles provide a firmer theoretical underpinning for the case 

that lexical information should not influence prelexical processing during word 

recognition. In an optimally designed system, lexical knowledge should be able to 

influence decisions about the identity of phonemes in words, but that information should 

not feed back so as to influence the word recognition process itself. 
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It remains to be seen whether the Shortlist B account will stand up to future tests. 

While the present analyses suggest that word recognition closely approximates optimal 

Bayesian decision-making, new data may reveal that certain aspects of speech perception 

are not optimal. Pelli, Farrell and Moore (2003) have shown, for example, that visual 

word recognition is not as efficient as it could be. We therefore hope that Shortlist B not 

only provides important insights into speech recognition, but that it will also generate 

empirical tests of the optimality of the word recognition process.    
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Appendix A 

The phoneme inventory of Shortlist B, in IPA transcription and in the machine-readable 

transcriptions used by the model. 

 

Consonants IPA b d ɡ p t k m n ŋ l r ʋ j f v S z ʃ Ʒ x, ɣ h ʤ 

 Shortlist B b d g p t k m n N l r w j f v s z S Z x h _ 

Vowels IPA i y u e ɪ Ɛ œ o ɔ a ɑ Ɛi œy ɑu ʉ,ǝ 

 Shortlist B i y u e I E | o O a A K L M } 
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Appendix B 

The diphone confusion matrix can be assumed to be generated from a noisy 

decision process operating on stimuli located in a multidimensional perceptual space. As 

indicated in Figure 2, the likelihood f(input|phoneme) will have a pdf. If we assume that 

the pdf is a Gaussian distribution with the same variance for all phonemes, then we can 

calculate the distances between pairs of phonemes that would be required to produce a 

likelihood that would result in the empirically determined P(response|input). Given these 

distances we can alter the variance of the pdf, and recompute a new set of likelihoods and 

probabilities. If we make the variance smaller, the new probabilities will correspond to 

what we might expect with perceptually clearer input. If we make the variance larger, the 

new probabilities will correspond to what we might expect with perceptually more 

ambiguous input. A sharpen variable was defined which controlled these variance 

adjustments. In the simulations summarized in Figure 5, the model was run in two ways. 

In one case, the model was run with its default parameters, that is, with no sharpening or 

broadening of the pdf variance, and thus with the empirically-determined phoneme 

likelihoods (sharpen = 1). In the other case the variance was halved, and phoneme 

likelihoods were recomputed (improved probabilities; sharpen = 0.5). 

To perform the simulations these calculations are performed on the phoneme 

probabilities computed at each slice, and not on the complete confusion matrix. This 

simplifies the computations as the phonemes can then be treated as lying on a single 

perceptual dimension. The effectiveness of this procedure depends on whether the 

probabilities with which various phonemes are given in response to a particular target 

remain in the same ordinal relationship over changes in signal to noise ratio (variance). 
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For example, if listeners consistently misidentified a particular phoneme in the diphone 

experiment, increasing the signal to noise ratio will exaggerate the error rather than make 

identification more accurate. However, these technical limitations should be of little 

concern here as the procedure is simply being used to illustrate the general relationship 

between frequency and the reliability of perceptual information. 
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Appendix C 

Merge B parameters 

 

Parameter Value 

Sampling noise 0.5 

Lexical decision ‘Yes’ threshold 0.8 

Lexical decision ‘No’ threshold 0.01 

Phonetic categorization threshold 0.999 

Lexical decision dummy word probability 

(set to zero in phonetic categorization) 

0.15 

Lexical attenuation factor (not used in lexical decision) 0.8 

Samples per segment 100 
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Footnotes 

1. Furthermore, we know of no evidence suggesting that any combination of these 

cues is completely reliable. 

2. There is a long running philosophical debate among Bayesians concerning 

whether probabilities are subjective or objective. People must necessarily operate 

on the basis of subjective probabilities but, for the purposes of exposition, we also 

assume that the subjective probabilities approximate objective probabilities that 

could be calculated from empirical data. However, we acknowledge that in the 

context of natural language, it is unlikely to be possible to compute exact 

objective probabilities.  

3. For example, in the first simulation we report, increasing the number of 

candidates to 100, and the number of paths to 10000, does not change any of the 

calculated word probabilities by more than .02. Even reducing the number of 

word candidates (excluding dummy words) and paths both to 10 does not change 

the final probabilities of the critical words (plotted in Figure 3b) by more than 

.0001. 

4. The source code for running Shorlist B simulations (and Merge B simulations, see 

below) is available at http: http://www.mrc-cbu.cam.ac.uk/~dennis/ShortlistB 

 

 

http://www.mrc-cbu.cam.ac.uk/
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Table 1. The probabilities of identifying [b], [}] and [s] across the nine gates (three per 

phoneme) of the input [b}s]. There are no values for P(s) during the first three gates as 

the data there comes only from the diphone [b}]. 

 

Gate  P(b) P(}) P(s) 

1 0.53 0.12  

2 0.70 0.07  

3 0.94 0.19  

4 0.83 1.00 0.30 

5 0.94 0.92 0.08 

6 0.86 0.92 0.06 

7 0.86 0.92 0.94 

8 0.86 0.92 0.97 

9 0.86 0.97 0.97 
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 Table 2. Properties of the English materials from Luce & Pisoni (1998) and the matched 

Dutch materials used in Shortlist B simulations  

 

 English Dutch 

 Mean word 

frequency 

(per million) 

Mean 

density 

Mean 

neighborhood 

frequency 

(per million) 

Mean word 

frequency 

(per million) 

Mean 

density 

Mean 

neighborhood 

frequency  

(per million) 

High word frequency       

Density Neighborhood 

frequency 

      

High           254 22 370 48 24 7644 

Low 254 22 46 48 22 1597 

High 254 11 370 47 16 7304 

High 

 

Low 

Low 254 11 46 47 12 533 

Low word frequency       

Density Neighborhood 

frequency 

      

High 5 22 370 3 21 6328 

Low 5 22 46 3 21 2490 

High 5 11 370 2 15 6474 

High 

 

Low 

Low 5 11 46 2 13 2059 

 

Note. Luce and Pisoni (1998) provide only the means for each pair of conditions, not the 

individual cell means; here we are assuming that there was no variability among cells 

within conditions. 
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Table 3.  Mean Reaction Time (RT, in milliseconds, from word offset) and mean error 

rate (%) in auditory lexical decision, from Luce & Pisoni (1998).  

 

 Mean RT Mean  error 

High word frequency   

Neighborhood 

density 

Neighborhood 

frequency 

  

High 409 7 

Low 392 5 

High 382 7 

High 

 

Low 

Low 377 6 

Low word frequency   

Neighborhood 

density 

Neighborhood 

frequency 

  

High 451 11 

Low 445 10 

High 463 18 

High 

 

Low 

Low 421 16 
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Table 4. Design, example stimuli and data (mean RTs in ms, and mean percentage error 

rates in brackets) from McQueen and Cutler (1998). 

 

 Context 

 Consonant Bisyllable Strong syllable Weak syllable 

Verb targets dwonen dukewonen  kewonen 

(wonen = to live) 739 (16%) 432 (8%)  413 (5%) 

Noun targets  blepel  kulepel selepel 

(lepel = spoon) 667 (9%)  435 (5%) 380 (4%) 
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Table 5. Design, example stimuli and data (mean RTs in ms) from Vroomen and de 

Gelder (1995). 

 

Condition Spoken prime Visual target RT 

Control  lastem MELK 621 

SS-many melkaam MELK 602 

SS-few melkeum MELK 589 

SW melkem MELK 578 

 

Note. Conditions are defined in the text; melk means “milk”, and last means “load”.
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Table 6.  Design and example stimuli from the subcategorical mismatch studies 

(Marslen-Wilson & Warren, 1994; McQueen, Norris & Cutler, 1999). 

 

Item type Notation Example 

Word   job 

 1. Word 1 + Word 1 W1W1 job + job 

 2. Word 2 + Word 1 W2W1 jog + job 

 3. Nonword 3 + Word 1 N3W1 jod + job 

Nonword   smob 

 1. Nonword 1 + Nonword 1 N1N1 smob + smob 

 2. Word 2 + Nonword 1 W2N1 smog + smob 

 3 Nonword 3 + Nonword 1 N3N1 smod + smob 
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Table 7.  Merge B subcategorical mismatch simulation latencies (in samples), for 

phonetic categorization and lexical decision, compared to the results (in milliseconds) 

from Marslen-Wilson & Warren (1994, MWW) and McQueen, Norris & Cutler (1999, 

MNC) 

 

Phonetic categorization Merge B MWW MNC 
   Expt. 3 Expt. 4 
Word     
 W1W1 263 497 668 
 W2W1 366 610 804 
 N3W1 364 588 802 
Nonword     
 N1N1 338 521 706 
 W2N1 443 654 821 
 N3N1 403 590 794 
     
Lexical decision Merge B MWW MNC 
   Expt. 1 Expt. 3 
Word     
 W1W1 373 487 340 
 W2W1 447 609 478 
 N3W1 433 610 470 
Nonword     
 N1N1 389 537 425 
 W2N1 495 625 476 
 N3N1 442 553 451 

 

Note. The model latencies have not been adjusted to account for any non-decision 

component of the human responses.  

 



Norris & McQueen 132

Figure Captions 

Figure 1. Recognition of the phrase “The catalogue in a library”, as spoken by speaker of 

British English: [ðәkætәlɒɡɪnәlaɪbrɪ]. The upper panel shows the competitive inhibition 

process that occurs among activated candidate words in an interactive-activation model 

such as Shortlist A.  Words that compete for the same stretch of input inhibit each other 

via direct, bidirectional inhibitory connections.  Only a subset of the best-matching 

candidates is shown.  The lower panel illustrates the path-based search through a word 

lattice used in automatic speech recognition and Shortlist B.  Paths connect sequences of 

lexical hypotheses from a root note (R) to a terminal node (T); not all paths or words are 

shown.  The dashed and dotted arrows are examples of connections between non-

contiguous words (see text for details). 

Figure 2. Illustration of possible probability density functions of two phonemes on a 

perceptual dimension I. 

Figure 3. Patterns of lexical activation in Shortlist A (3a) compared with patterns of word 

probabilities in Shortlist B (3b and 3c) given the input kar personen (“kArp}rson}”, 

ending with two silent segments “[[“). 3c shows probabilities from Shortlist B with 

sensitivity to word frequency disabled (by setting all word priors to the same value). Note 

that there is one input time slice per segment in Shortlist A, but three per segment in 

Shortlist B. 

Figure 4. Mean word probabilities in Shortlist B for Dutch materials based on the Luce 

and Pisoni (1998) study. The upper panel shows the average results for four sets of 34 

high-frequency CVC words: those with high density and high frequency neighborhoods, 

those with high density but low frequency neighborhoods, those in low denisty but high 
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frequency neighborhoods, and those in low density and low frequency neighborhoods. 

The lower panel shows the average results for four sets of 34 low-frequency CVC words 

in the same four conditions. 

Figure 5. Mean word probabilities in Shortlist B for Dutch high and low frequency 

materials based on the Luce and Pisoni (1998) study, averaged over the neighborhood 

density and frequency conditions. The upper panel shows the mean word probabilities for 

these two sets of words using the model’s default parameters (as in Figure 4), that is, 

using the confusion probabilities derived from Smits et al. (2003), with no changes to 

phoneme likelihoods (empirical probabilities), and also where the estimated variance of 

the probability density functions (pdfs) for the empirically-determined phoneme 

likelihoods was halved and the likelihoods recomputed (improved probabilities), 

simulating the effect of perceptually clearer input (see Appendix B). The lower panel 

shows the mean probability difference between the two sets of words for the same two 

simulation runs. 

Figure 6. Fixation probabilities for the English materials in Dahan et al. (2001), aligned 

with those from Shortlist B on analogous Dutch materials.  Fixation probabilities for the 

data and the model are shown for target words (e.g., bench), high-frequency phonological 

competitors (e.g., bed), low-frequency phonological competitors (e.g., bell), and 

unrelated objects (e.g., lobster).    

Figure 7. Differences in fixation probabilities between high- and low-frequency 

competitors: the Dahan et al. (2001) data, Shortlist B simulations, and connection-weight 

simulations in TRACE. 
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Figure 8. Mean word probabilities in Shortlist B for the materials from McQueen and 

Cutler (1998).  The upper panel shows the average results for 24 verbs in consonant, 

bisyllable and weak-syllable contexts. The lower panel shows the average results for 24 

nouns in consonant, strong-syllable and weak-syllable contexts. 

Figure 9. Mean word probabilities in Shortlist B for the materials from Vroomen and de 

Gelder (1995).  Average results are shown for 44 CVCC prime words in three conditions: 

where the strong-syllable prime was followed by a strong syllable consistent with many 

lexical candidates (SS-many), where it was followed by a strong syllable consistent with 

few lexical candidates (SS-few), and where it was followed by a weak syllable (SW). 

Figure 10. Patterns of word probabilities in Shortlist B given the mispronunciations 

pianti (pijAnti[[; upper panel) and shigaret (SixarEt[[; lower panel), with the minimum 

probability parameter set to zero or to a non-zero value (10-18). The word chianti, chianti, 

is recognized in both cases, but sigaret, cigarette, is recognized only when mimumum 

phoneme probability is greater than zero.  

Figure 11. The architecture of the Merge model (Norris et al., 2000a). Information is fed 

forward (lines with arrows) from input nodes to lexical and phoneme decision nodes, and 

from the lexical nodes to the decision nodes. Inhibitory competition (lines with closed 

circles) operates at the lexical and decision levels, but not at the input level. 



Norris & McQueen 135

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

The cat a log in a lie 

cattle 

catalogue inner 

library 

eye 

login 

The cat a log in a lie 

cattle 

catalogue inner 

library 

eye 

login 

TR



Norris & McQueen 136

 

lik
el

ih
oo

d

phoneme A phoneme B

Ixperceptual input: 

 

 

 

 

 

 

 

 

 

 

Figure 2 



Norris & McQueen 137

Shortlist A

-0.4

-0.2

0

0.2

0.4

0.6

0.8

k A r p } r s o n } [ [

Ac
tiv

at
io

n kAr
kArp}r
p}rson
p}rson}

 

 

 

 

 

 

 

 

 

 

Figure 3a



Norris & McQueen 138

 

Shortlist B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k A r p } r s o n } [ [

W
or

d 
pr

ob
ab

ili
tie

s

kAr
kArp}r
p}rson
p}rson}

 

 

 

 

 

 

 

 

 

 

Figure 3b 

 



Norris & McQueen 139

Shortlist B - no frequency
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Figure 3c
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