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Shot-Boundary Detection: Unraveled and Resolved?
Alan Hanjalic, Member, IEEE

Abstract—Partitioning a video sequence intoshots is the first
step toward video-content analysis and content-based video
browsing and retrieval. A video shot is defined as a series of inter-
related consecutive frames taken contiguously by a single camera
and representing a continuous action in time and space. As such,
shots are considered to be the primitives for higher level content
analysis, indexing, and classification. The objective of this paper
is twofold. First, we analyze the shot-boundary detection problem
in detail and identify major issues that need to be considered
in order to solve this problem successfully. Then, we present a
conceptual solution to the shot-boundary detection problem in
which all issues identified in the previous step are considered. This
solution is provided in the form of a statistical detector that is
based on minimization of the average detection-error probability.
We model the required statistical functions using a robust metric
for visual content discontinuities (based on motion compensation)
and take into account all (a priori) knowledge that we found
relevant to shot-boundary detection. This knowledge includes
the shot-length distribution, visual discontinuity patterns at shot
boundaries, and characteristic temporal changes of visual features
around a boundary. Major advantages of the proposed detector
are its robust and sequence-independent performance, while there
is also the possibility to detect different types of shot boundaries
simultaneously. We demonstrate the performance of our detector
regarding two most widely used types of shot boundaries: hard
cuts and dissolves.

Index Terms—Shot-boundary detection, video analysis, video
databases, video retrieval.

I. INTRODUCTION

T HE DEVELOPMENT of shot-boundary detection algo-
rithms has the longest and richest history in the area of

content-based video analysis and retrieval—longest, because
this area was actually initiated some decade ago by the attempts
to detect hard cuts in a video, and richest, because a vast
majority of all works published in this area so far address in one
way or another the problem of shot-boundary detection. This
is not surprising, since detection of shot boundaries provides
a base for nearly all video abstraction and high-level video
segmentation approaches. Therefore, solving the problem
of shot-boundary detection is one of the major prerequisites
for revealing higher level video content structure. Moreover,
other research areas can profit considerably from successful
automation of shot-boundary detection processes as well.
A good example is the area of video restoration. There, the
restoration efficiency can be improved by comparing each shot
with previous ones and—if a similar shot in terms of visual
characteristics is found in the past—by adopting the restoration
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settings already used before. Further, in the process of coloring
black-and-white movies, the knowledge about shot boundaries
provides time stamps where switch to a different gray-to-color
look-up table should take place.

However, despite countless proposed approaches and tech-
niques so far, robust algorithms for detecting various types of
shot boundaries have not been found yet. We relate here the at-
tribute “robust” to the following major criteria:

1) excellent detection performance for all types of shot
boundaries (hard cuts and gradual transitions);

2) constant quality of the detection performance for any ar-
bitrary sequence, with minimized need for manual fine-
tuning of detection parameters in different sequences.

Regarding the usage of shot-boundary detection algorithms in
the processes of video restoration and coloring, fulfilling the two
aforementioned criteria is the major prerequisite to a successful
automation of these processes. If the detection performance is
poor, substantial involvement of the operator is required in order
to correct wrong restoration settings or gray-to-color look-up
table. Moreover, if the detection performance is sequence de-
pendent, it can be difficult for the operator to find optimal de-
tector settings for each sequence to be restored or colored. For
the processes of high-level video content analysis, fulfilling of
the aforementioned criteria by the shot-boundary detector has
even a larger importance. First, bad detection performance may
negatively influence the performance of subsequent high-level
video analysis modules (e.g., movie segmentation into episodes,
movie abstraction, broadcast news segmentation into reports).
Second, if we cannot expect a video restoration/coloring oper-
ator (expert) to adjust the shot-boundary detector settings to dif-
ferent sequences, this can be expected even less from a nonpro-
fessional user of commercial video-retrieval equipment.

The objective of this paper is twofold. We first analyze the
problem of shot-boundary detection in detail and identify all is-
sues that need to be considered in order to solve this problem in
view of the two criteria listed above. Then we present a concep-
tual solution to the shot-boundary detection problem in which
all issues identified in the previous step are considered and using
which we aim at fulfilling the two aforementioned robustness
criteria. This solution is provided in the form of a statistical
detector that is based on minimization of the average detec-
tion-error probability.

The paper is structured as follows. Section II gives a detailed
analysis of the shot-change detection problem, while Section III
provides an extensive overview of the solutions to this problem,
proposed so far. The main purpose of Sections II and III is to
unravel the shot-boundary detection problem and so to explain
our motivation for developing our statistical detector in the first
place and also to justify the choices made in the process of de-
tector development. We present our statistical detector in detail
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Fig. 1. The problem of unseparated rangesR andR.

in Section IV, while in Section V we demonstrate its perfor-
mance for the two most widely used types of shot boundaries:
hard cuts and dissolves. We conclude this paper with a discus-
sion in Section VI.

II. SHOT-BOUNDARY DETECTION: A PROBLEM ANALYSIS

The basis of detecting shot boundaries in video sequences is
the fact that frames surrounding a boundary generally display a
significant change in their visual contents. The detection process
is then the recognition of considerablediscontinuitiesin the vi-
sual-content flow of a video sequence. In the first step of this
process,feature extractionis performed, where the features de-
pict various aspects of the visual content of a video. Then, a
metric is used to quantify the feature variation from frameto
frame , with being the inter-frame distance (skip) and

. The discontinuity value is the magnitude of
this variation and serves as an input into thedetector. There, it
is compared against athreshold . If the threshold is exceeded,
a shot boundary between framesand is detected.

To be able to draw reliable conclusions about the presence
or absence of a shot boundary between framesand , we
need to use the features and metrics for computing the discon-
tinuity values that are as discriminating as possible.
This means that a clear separation should exist between discon-
tinuity-value ranges for measurements performedwithin shots
andat shot boundaries. In the following, we will refer to these
ranges as and , respectively. The problem of having unsep-
arated ranges and is illustrated in Fig. 1, where some dis-
continuity values within shot 1 belong to the overlap area. Such
values make it difficult to decide about the pres-
ence or absence of a shot boundary between framesand
without avoiding detection mistakes, i.e.,missedor falsely de-
tectedboundaries.

We realistically assume that the visual-content differences
between consecutive frames within the same shot are mainly
caused by two factors:object/camera motionand lighting
changes. Depending on the magnitude of these factors, the
computed discontinuity values within shots vary and sometimes
lie in the overlap area, as shown in Fig. 1. Thus, the easiest
way of obtaining good discrimination between rangesand

is to use features and metrics that are insensitive to motion
and lighting changes. Even more, since different types of

sequences can globally be characterized by their average rates
and magnitudes of object/camera motion and lighting changes
(e.g., high-action movies versus stationary dramas), eliminating
these distinguishing factors also provides a high level ofcon-
sistencyof ranges and across different sequences. If the
ranges and are consistent, the parameters of the detection
system (e.g., the threshold) can first be optimized on a set
of training sequences to maximize the detection reliability,
and then the system can be used to detect shot boundaries in
an arbitrary sequence without any human supervision, while
retaining a high detection reliability. In this way, selecting
features and metrics as described above would automatically
lead to a shot-boundary detector conform to the criteria defined
in the introduction to this paper.

However, while features and metrics can be found such that
the influence of motion on discontinuity values is strongly
reduced, the influence of strong and abrupt lighting changes on
discontinuity values and thus also on the detection performance
cannot be reduced that easily. For instance, one could try
working only with chromatic color components, since common
lighting changes can mostly be captured by luminance vari-
ations. But this is not an effective solution in extreme cases,
where all color components are changed. Strong and abrupt
lighting changes can result in a series of high discontinuity
values, which can be mistaken for the actual shot boundaries.
In the remainder of this paper, we refer to possible causes for
high discontinuity values within shots asextreme factors. These
factors basically include strong and abrupt lighting changes,
but also some extreme motion cases that cannot be captured
effectively by selecting features and metrics as mentioned
above.

An effective way to reduce the influence of extreme factors
on the detection performance is to embed additional informa-
tion in the shot-boundary detector. The main characteristic of
this information is that it is not based on the range of discon-
tinuity values but on some other measurements performed on
a video, that—each in its own way—indicate the presence or
absence of a shot boundary between framesand . As
a first example, we introduce the information resulting from a
comparison of a temporal pattern created by consecutive discon-
tinuity values (measured pattern) and known temporal patterns
that are specific for different types of shot boundaries (template
patterns). In general, we can distinguishhard cuts, which are
the most common boundaries and occur between two consecu-
tive frames, fromgradual transitions, such as fades, wipes, and
dissolves, which are spread over several frames. Then, the deci-
sion about the presence or absence of a shot boundary between
frames and made by the detector is not only based on
range information, that is, on the comparison of the disconti-
nuity value and the threshold , but also—as shown
in Fig. 2—on the match between the measured pattern formed
by discontinuity values surrounding and a template
pattern of a shot boundary.

Another type of additional information that can be useful in
supporting the decision process in the shot-boundary detector
results from observation of the characteristic behavior of some
visual features along frames surrounding a shot boundary for the
cases of gradual transitions. Let us for this purpose consider one
specific boundary type—a dissolve—and observe the temporal
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Fig. 2. Matching of the temporal pattern formed byN consecutive
discontinuity values and a temporal pattern characteristic for a shot boundary.
The quality of match between two patterns provides an indication for boundary
presence between framesk andk+ l that can be used as additional information
in the detector.

behavior of intensity variance that is measured for every frame
within a dissolve. Since a dissolve is the result of mixing the
visual material from two neighboring shots, it can be expected
that variance values measured per frame along a dissolve ideally
reveal a downwards-parabolic pattern [2], [15], [17]. Hence, the
decision about the presence of a dissolve can be supported by
investigating the behavior of the intensity variance in the “sus-
pected” series of frames (e.g., those where pattern matching
from Fig. 2 shows good results) and by checking how well this
behavior fits the downwards-parabolic pattern.

Further improvement of the detection performance can be ob-
tained by taking into accounta priori information about the
presence or absence of a shot boundary at a certain time stamp
along a video. We differentiate here between additional anda
priori information because the latter is not based on any mea-
surement performed on a video sequence. An example ofa
priori information is the dependence of the probability for shot
boundary occurrence on the number of elapsed frames since the
last detected shot boundary. While it can be assumed zero at
the beginning of a shot, this probability grows and converges to
the value 0.5 with increasing number of frames in the shot. The
main purpose of this probability is to make the detection of one
shot boundary immediately after another one practically impos-
sible and so to contribute to a reduction of false detection rate.
Therefore, by properly modelinga priori probability and by se-
curing its convergence to 0.5, the influence of this probability
on the detection performance should be minimized as soon as a
reasonable shot length is reached.

In view of the discussion in previous paragraphs, combining
motion compensating features and metrics for computing the
discontinuity values with additional information that can help
reducing the influence of extreme factors and witha priori in-
formation about the shot-boundary presence or absence at a cer-
tain time stamp, we are likely to provide a solid base for creating
a detector that is optimal with respect to the criteria defined in
Section I. Such a detector is illustrated in Fig. 3.

Variation of the detection threshold for each frameis a con-
sequence of embedding additional anda priori information into
the detector. This information regulates the detection process
by continuously adapting the threshold e.g., to the quality of
the boundary or variance pattern match for each new series of
consecutive discontinuity values and to the time elapsed since
the last detected shot boundary. The remaining task is to define
a detector where the above components are integrated such that

the resulting threshold function provides optimal detection
performance. We will proceed with the development of such de-
tector in Section IV after investigating the advantages and dis-
advantages of shot-boundary detection methods published in re-
cent literature.

III. PREVIOUSWORK ON SHOT-BOUNDARY DETECTION

Developing techniques for detecting shot boundaries in a
video has been the subject of substantial research over the last
decade. In this section, we give an overview of the relevant
literature. The overview concentrates, on the one hand, on the
capability of features and metrics to reduce the motion influ-
ence on discontinuity values. On the other hand, it investigates
existing approaches to shot-boundary detection, involving the
threshold specification, treatment of different boundary types,
and usage of additional anda priori information to improve the
detection performance.

A. From Features and Metrics to Discontinuity Values

Different methods exist for computing discontinuity values,
employing various features related to the visual content of a
video. For each selected feature, a number of suitable metrics
can be applied. Good comparisons of features and metrics used
for shot-boundary detection with respect to the quality of the
obtained discontinuity values can be found in [1], [6], [9], [13],
[15].

The simplest way of measuring the visual-content discon-
tinuity between two frames is to compute the mean absolute
change of intensity between the framesand for all
frame pixels, i.e., for and , where and

are the frame dimensions [12]. A modification of this tech-
nique is only counting the pixels that change considerably from
one frame to another [20]. Here, the absolute intensity change is
compared with the pre-specified threshold, and is only con-
siderable if it exceeds that threshold, that is

with
if
else.

(1)

An important problem of the two approaches presented above is
the sensitivity of discontinuity values to camera and
object motion. To reduce the motion influence, a modification
of the described techniques was presented in [30], where a 3
3 averaging filter was applied to frames before performing the
pixel comparison.

Much higher motion independence show the approaches
based on motion compensation. There, ablock matching
procedure is applied to find for each block in frame a
corresponding block in frame , such that it is
most similar to the block according to a chosen criterion
(difference formula) , that is

(2)
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Fig. 3. Shot-boundary detector where all issues are taken into account that are relevant for optimizing the detection performance.

Here, is the number of candidate blocks
considered in the procedure to find the best match for a block

. If and are neighboring frames of the same shot, the
values can generally be assumed low. This is because,
for a block , almost the identical block can be
found due to a global constancy of the visual content along con-
secutive frames of a shot. This is not the case if framesand
surround a shot boundary because, in general, the difference be-
tween corresponding blocks in the two frames will be large due
to a radical change in visual content across a boundary. Thus,
computing the discontinuity value as a function of
differences is likely to provide a reliable base for de-
tecting shot boundaries.

An example of computing the discontinuity values based
on the results of block-matching procedure is given in [23].
There, a frame is divided into nonoverlapping
blocks and the differences are computed
by comparing pixel-intensity values within blocks. Then, the
obtained differences are sorted and normalized
between 0 and 1 (where 0 indicates a perfect match), giving the
values . These values are multiplied with weighting
factors and summarized over the entire frame to give the
discontinuity values, that is

(3)

A popular alternative to pixel-based approaches is using
histograms as features. Consecutive frames within a shot con-
taining similar global visual material will show little difference
in their histograms, compared to frames on both sides of a
shot boundary. Although it can be argued that frames having
completely different visual contents can still have similar
histograms, the probability of such a case is small. Since
histograms ignore spatial changes within a frame, histogram
differences are considerably more insensitive toobjectmotion
with a constant background than pixel-wise comparisons are.
However, a histogram difference remains sensitive tocamera
motion, such as panning, tilting, or zooming.

If histograms are used as features, the discontinuity value
can be obtained by bin-wise computing the difference between
frame histograms. Both grey-level and color histograms are
used in literature, and their differences are computed by a
number of metrics. Some mostly used ones are the sum of ab-
solute differences of corresponding bins [29] and the so-called

-test [18]. Further, a metric involving histograms in the

color space [9] (Hue—color type,Value—intensity, luminance;
Chroma—saturation, the degree to which color is present)
exploits the advantage of the invariance of Hue under different
lighting conditions. This is useful in reducing the influence
of common (weak) lighting changes on discontinuity values.
Such an approach is proposed in [4], where only histograms
of and components are used. These 1-D histograms are
combined into a 2-D surface, serving as a feature. Based on
this, the discontinuity is computed as

(4)

where is the difference between the bins at coor-
dinates ( ) in -surfaces of frames and , and
and are the resolutions of Hue and Chroma compo-
nents used to form the 2-D histogram surface.

Also the histograms computed block-wise can be used for
shot-boundary detection, as shown in [18]. There, both the
images and are divided into 16 blocks, histograms
and are computed for blocks and and
the -test is used to compare corresponding block histograms.
When computing the discontinuity as a sum of region-his-
togram differences, eight largest differences were discarded
to efficiently reduce the influence of motion and noise. An
alternative to this approach can be found in [27], where first the
number of blocks is increased to 48, and then the discontinuity
value is computed as the total number of blocks within a
frame, for which the block-wise histogram difference exceeds
a pre-specified threshold , that is

(5)

with

if

else.

(6)

According to [19], the approach from [27] is much more sensi-
tive to hard cuts than the one proposed in [18]. However, since
emphasis is put on blocks, which change most from one frame
to another, the approach from [27] also becomes highly sensi-
tive to motion.



94 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 2, FEBRUARY 2002

Another characteristic feature that proved to be useful in de-
tecting shot boundaries is edges. As described in [16], first the
overall motion between frames is computed. Based on the mo-
tion information, two frames are registered and the number and
position of edges detected in both frames are compared. The
total difference is then expressed as the total edge change per-
centage, i.e., the percentage of edges that enter and exit from
one frame to another. Due to registration of frames prior to edge
comparison, this feature is robust against motion. However, the
complexity of computing the discontinuity values is also high.
Let be the percentage of edge pixels in framefor which the
distance to the closest edge pixel in frame is larger than
the pre-specified threshold . In the same way, let be the
percentage of edge pixels in frame , for which the distance
to the closest edge pixel in frameis larger than the pre-spec-
ified threshold . Then, the discontinuity value between these
frames is computed as

(7)

At last, we mention here the computation of the discontinuity
value using the analysis of the motion field measured
between two frames. An example for this is the approach pro-
posed in [3], where the discontinuity value between
two consecutive frames is computed as the inverse ofmotion
smoothness.

B. Detection Approaches

Threshold Specification for Detecting Hard Cuts:The
problem of choosing the right threshold for evaluating the com-
puted discontinuity values has not been addressed extensively
in literature. Most authors work with heuristically chosen
global thresholds [4], [18], [20]. An alternative is given in [30],
where first the statistical distribution of discontinuity values
within a shot is measured. Then the obtained distribution is
modeled by a Gaussian function with parametersand , and
the threshold value is computed as

(8)

Here, is the parameter related to the prespecified tolerated
probability for false detections. For instance, when , the
probability of having falsely detected shot boundaries is 0.1%.
The specification of the parametercan only explicitly control
the rate of false detections. The rate of missed detections is im-
plicit and cannot be regulated, since the distribution of disconti-
nuity values measured on boundaries is not taken into account.
However, even if they can be specified in a nonheuristic way,
the crucial problem related to the global threshold still remains,
as illustrated in Fig. 4. If the prespecified global threshold is too
low, many false detections will appear in the shot, where high
discontinuity values are caused by extreme factors, as defined
in Section II. If the threshold is made higher to avoid falsely
detected boundaries, then the high discontinuity value corre-
sponding to the shot boundary close to frame 500 (in Fig. 4)
will not be detected.

A much better alternative is to work with adaptive thresholds,
i.e., with thresholds computed locally. The improved detection

Fig. 4. Improved detection performance when using an adaptive threshold
functionT (k) instead of a global thresholdT .

performance that results from using adaptive threshold func-
tion instead of the global threshold is also illustrated
in Fig. 4. If the value of the function is computed at each
frame based on the extra information embedded in the detector
(Fig. 3), high discontinuity values computed within shots can be
distinguished from those computed at shot boundaries.

A method for detecting hard cuts using an adaptive threshold
is presented in [29]. There, the values are computed using
the information about the temporal pattern that is characteristic
for hard cuts. The authors compute the discontinuity values with
the inter-frame distance . As shown in Fig. 5, the
last computed consecutive discontinuity values are considered,
forming a sliding window. The presence of a shot boundary is
checked at each window position, in the middle of the window,
according to the following criterion:

if

abrupt shot boundary (9)

In other words, a hard cut is detected between framesand
if the discontinuity value is the window maximum
and times larger than the second largest discontinuity value

within the window. The parameter can be understood as
the shape parameterof the boundary pattern. This pattern is
characterized by an isolated sharp peak in a series of discon-
tinuity values. Applying (9) to such a series at each position of
a sliding window is nothing else than matching the ideal pat-
tern shape and the actual behavior of discontinuity values found
within the window. The major weakness of this approach is the
heuristically chosen and fixed parameter. Because is fixed,
the detection procedure is too coarse and too inflexible, and
because it is chosen heuristically, one cannot make statements
about the scope of its validity.

In order to make the threshold specification in [29] less
heuristic, a detection approach was proposed in [11], which
combines the sliding window methodology with the Gaussian
distribution of discontinuity values proposed in [30]. Instead
of choosing the form parameterheuristically, this parameter
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Fig. 5. Illustration of a sliding window approach from [29].

is determined indirectly, based on the pre-specified tolerable
probability for falsely detected boundaries. However, similar to
[30], the rate of missed detections cannot be regulated since the
distribution of discontinuity values measured on boundaries is
not taken into account.

One way in which the additional anda priori information
embedded in the detector can influence the process of shot-
boundary detection much more effectively is using thestatis-
tical detection theory. One of the first applications of the sta-
tistical detection theory to signal analysis can be traced back to
the work of Curran and Ross in [8]. A characteristic example of
recent works in this area can be found in [28]. There, the pro-
posed statistical method for detecting hard cuts includesa priori
information based on shot-length distributions, which can be as-
sumed consistent for a wide range of sequences. Besides, the
detection rule based on comparing the likelihoods of two hy-
potheses (“boundary,” “no boundary”) is obtained as a result of
statistical minimization of the detection error, which makes the
resulting threshold function statistically optimal for given
likelihoods anda priori probability function. In view of this,
the method proposed by [28] has come closest to the optimal
solution of the shot-boundary detection problem so far, in view
of the discussion in Section II. However, there are three major
imperfections in this method, which negatively influence its de-
tection performance. First, the authors use motion-sensitive fea-
tures and metrics, which makes the detection performance se-
quence dependent and vulnerable by extreme factors. Second,
no mechanism is present in the detector that can reduce the influ-
ence of the extreme factors on the detection performance. Third,
it is not clear how the detector can be extended to deal with other
types of shot boundaries.

Detection of Gradual Transitions:Different boundary types
were considered in most of the approaches presented in recent
literature, although the emphasis was mostly put on the detec-
tion of hard cuts. This preference can be explained by the fact
that there is no strictly defined behavior of discontinuity values
around and within gradual transitions. While hard cuts are al-
ways represented by an isolated high discontinuity value, the
behavior of these values around and within a gradual transition
is not unique, not even for one and the same type of transition.
In the following, we will present some recent approaches to de-
tecting gradual transitions.

One of the first attempts for detecting gradual transitions can
be found in [30], where a so-called twin-comparison approach
is described. The method requires two thresholds: a higher one,

, for detecting hard cuts, and a lower one,, for detecting

gradual transitions. First the threshold is used to detect high
discontinuity values corresponding to hard cuts, and then the
threshold is applied to the rest of the discontinuity values.
If a discontinuity value is higher than , it is considered to be
the start of a gradual transition. At that point, the summation
of consecutive discontinuity values starts and goes on until the
cumulative sum exceeds the threshold. Then, the end of the
gradual transition is set at the last discontinuity value included
in the sum.

In [10], a model-driven approach to shot-boundary detection
can be found. There, different types of shot boundaries are con-
sidered to be editing effects, and are modeled based on the video
production process. Especially for dissolves and fades, different
chromatic scaling models are defined. Based on these models
feature detectors are designed and used in a feature-based classi-
fication approach to segment the video. The described approach
takes into account all types of shot boundaries defined by the
models.

One further method for detecting one specific class of gradual
transitions, dissolves, investigates the temporal behavior of the
intensity variance of the frame pixels. This variance-based ap-
proach was first proposed by Alattar in [2], but has been used
and modified by other authors as well (e.g., [17]). Since, within
a dissolve, different visual material is mixed, a characteristic
downwards-parabolic pattern revealed by variance values mea-
sured along frames of a dissolve is reported. The intensity vari-
ance starts to decrease at the beginning of the transition, reaches
its minimum in the middle of the transition and then starts to
increase again. The detection of the transition is then reduced
to detecting the parabolic curve pattern in a series of measured
variances. In order to be recognized as a dissolve, the poten-
tial pattern has to have a width and the depth that exceeds the
pre-specified thresholds.

One of the major problems in the above approach is that the
two large negative spikes of the parabolic pattern are not suf-
ficiently pronounced due to noise and motion in a video. This
has been addressed by Truonget al., who proposed an improved
version of the variance-based detector of Alattar [2]. Truonget
al. proposed to exploit the facts: 1) that the first derivative of the
pattern should be monotonically increasing from a negative to a
positive value; 2) that intensity variances of both shots involved
should be larger than a given threshold; and 3) that the dissolve
duration usually falls between two well-defined thresholds [25],
[26].

In [24], a chromatic video edit model for gradual transitions
is built based on the assumption that discontinuity values be-
longing to such a transition form a pattern consisting of two
piece-wise linear functions of time, one decreasing and one in-
creasing. Such linearity does not apply outside the transition
area. Therefore, the authors search for close-to-linear segments
in the series of discontinuity values by investigating the first and
the second derivative of the slope in time. A close-to-linear seg-
ment is found if the second derivative is less than a pre-specified
percentage of the first derivative.

Although each of the described models is reported to perform
well in most cases, strong assumptions are made about the be-
havior of discontinuity values within a transition. Furthermore,
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several (threshold) parameters need to be set heuristically. The
fact that patterns which are formed by consecutive discontinuity
values and correspond to a gradual transition can strongly vary
over different sequences has moved Lienhart [14] to propose a
conceptually different approach to detecting gradual transitions,
in this case dissolves. The approach is less concerned about ac-
tual features used for dissolve detection, but more with a gen-
eral framework for recognizing gradual transitions. First, a huge
number of dissolve examples are created from a given video
database using a dissolve synthesizer. Then these examples are
used to train a “heuristically optimal” classifier which is then
employed in a multi-resolution search for dissolves of various
durations.

Although relatively good results are reported in [14], [25],
and [26], these results are still far from those obtained for hard
cuts. As will be shown in the following sections, further im-
provements in detecting gradual transitions are possible.

IV. A ROBUSTSTATISTICAL SHOT-BOUNDARY DETECTOR

In this section, we develop a statistical shot-boundary de-
tector which is required as a last component in the optimized
shot-boundary detection scheme in Fig. 3. This detector should
integrate the range information as well as the additional and
a priori information, resulting in an adaptive threshold
that provides optimal detection performance. Since we employ
statistical detection theory for this purpose, our approach can
best be compared with the one of Vasconcelos and Lippman in
[28]. Statistical detection theory provides tools to integrate all
information relevant to the detection process and to obtain the
threshold function based on the criterion that the average
probability for detection mistakes is minimized. In other words,
the detection performance can be made statistically optimal for
given input information.

In order to provide optimal input information for the detection
process, we introduce three major modifications in the approach
from [28], inspired by the problem analysis in Section II. First,
in order to provide a high level of discrimination between ranges

and , as well as sequence independence of these ranges, we
compute the discontinuity values using motion compensating
features and metrics. Second, we embed the additional informa-
tion on temporal boundary patterns and on the behavior of the
intensity variance into our detector in order to minimize the ef-
fect of extreme factors on the detection performance. Finally, in
the development of our detector, we take into account all types
of shot boundaries, and not only hard cuts.

A. Detector Development

In terms of the statistical detection theory, shot-boundary de-
tection can be formulated as the problem of deciding between
the following two hypotheses.

1) Hypothesis : Boundary present between framesand
.

2) Hypothesis : No boundary present between framesand
.

When making the above decision, two types of errors can occur.
A false detectionoccurs if hypothesis is selected while the
hypothesis is the right one. Analogously, if the hypothesis

is selected while is the right one, the error corresponding to
a missed detectionoccurs. If we assume that all detection er-
rors (e.g., both missed and false detections) are treated equally,
the quality of a statistical detector is determined by the average
probability that any of the errors occurs. Before we express

analytically, we first define the probability for the occur-
rence of each error type separately. The probability for a
missed detection and the probability for a false detection
can be computed using (10) and (11), respectively

(10)

(11)

We call and thediscontinuity-value rangesbelonging to
the hypothesis and , respectively. The range contains all
discontinuity values , for which the detector chooses
for the hypothesis , and vice-versa. Thelikelihood functions

and are precomputed using training data, and
represent the likelihood that an arbitrary discontinuity value

is obtained at time stamps where a shot boundary
occurs and where no shot boundary occurs, respectively. Like-
lihood functions can be considered analogous to previously
used ranges of discontinuity values and . Consequently,
the requirements for a good discrimination between ranges
can now be transferred to the likelihood functions and

.
Average probability for a detection error can now be formu-

lated as follows:

(12)

Here, and are the probabilities for the validity
of the hypothesis and , respectively, between framesand

. Since we have only two hypotheses to choose from, we
can eliminate using the expression

(13)

Now we can further concentrate on the probability only.
We define as the product ofa priori probability for
the hypothesis and the conditional probability for
the same hypothesis between framesand that depends
on additional information collected from a video, that is

(14)

As already explained in Section II, we differentiate between
and , sincea priori probability is in-

dependent on any results obtained by analyzing a video. On
the one hand, we base the computation of solely on the
number of frames elapsed since the last detected shot boundary.
On the other hand, we make dependent on a spe-
cific boundary type and, therefore, on measurements performed
on a video that are indicative for the presence of that boundary
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type between frames and . In standard literature on sta-
tistical detection theory, the probability is mostly con-
sidered equal toa priori probability . In view of this,
the conditional probability can be understood as a
modifier fora priori probability. This modification becomes ap-
parent in situations where botha priori probability and the like-
lihood functions are in favor of the hypothesis, whereby is
the proper hypothesis (e.g., when a large discontinuity value ap-
pears long after the last detected boundary). In this way, bound-
aries detected falsely due to extreme factors can be prevented
using the additional information that is embedded in and
that can normally not be considered in another way during the
detection process:a priori probability takes into account only
the shot length information while probability density functions
consider only the range in which the observed discontinuity
value falls.

In order to maximize the quality of our detector, the devel-
opment of the detector should be based on minimization of the
average error probability . A simple analysis of relations be-
tween likelihood and probability functions in (12) for which
is minimized leads to the following decision rule at the value

:

(15)
In view of the above development steps, it can be said for the
detector (15) that it is statistically optimal given the knowledge
embedded in the function and given the probabilistic re-
lation between discontinuity values and the two hy-
potheses, embedded in likelihood functions and .
The last expression can be transformed into

(16)

which corresponds to the detector in Fig. 3.
Since the conditional probability is computed

differently for each boundary type, we need first to develop
separate detectors (15), each being in charge for one specific
boundary type. So we proceed in this section with completing
the development of the detector (15) for two most widely used
boundary types, hard cuts, and dissolves. Later, however, we
show in Section IV-F how detectors developed for various
boundary types can be combined for the purpose of detecting
all boundaries simultaneously.

The specificity of the detectors regarding different boundary
types can be seen only in the way the additional information
relevant for the detection is embedded in the function .
We show in Section IV-E how this function is computed for
hard cuts and dissolves. While we consider the basic analytical
model for the conditional probability the same for
all boundary types, certain parameters of the model change per
boundary type. In Section IV-E, we also introduce the model for

and give optimal parameter settings for hard cuts
and dissolves. All other components of the detector (15), that is,
the likelihood functions and (Section IV-C), and
a priori probability for shot boundary (Section IV-D),
we consider independent of boundary type. While this is under-

standable fora priori probability, we explain in Section IV-C
why we consider likelihood functions constant as well. Since
modeling of likelihood functions is based on the way the discon-
tinuity values are computed along a sequence, we
first select in the following section suitable features and metrics
for computing the discontinuity values.

B. Discontinuity Values

As discussed in Section II, we aim at measuring the disconti-
nuity values in a way that the discrimination between ranges
and , and the sequence independence of these ranges are maxi-
mized. For this purpose we compute the discontinuity values by
compensating the motion between video frames using a block-
matching procedure similar to the one proposed in [23].

We divide frame into nonoverlapping blocks
and search for their corresponding blocks in frame

. The block-matching criterion used here is the sum of ab-
solute differences of block-wise average values of all three color
components and of blocks and ,
that is

(17)

After the corresponding blocks have been found
using the formula (2), we obtain the discontinuity value

by summarizing the differences (17) between blocks
and over all blocks; that is

(18)

In view of the fact that most of the video resources are avail-
able in the MPEG compressed format, we assume that the input
into a video analysis system will most likely be a partially de-
coded sequence, also called a DC sequence [29]. We consider
in this paper the sequences compressed using MPEG-1 stan-
dard. Due to small frame dimensions in the resulting DC se-
quence, we selected the dimensions of the blocks used in the
block-matching procedure as 44 pixels. Maximum block dis-
placement (the size of the search area) is set to 4 pixels, i.e., 1
block length/width.

To detect both hard cuts and gradual transitions, two parallel
computations of discontinuity values are needed. A hard cut is
found between two consecutive frames of a sequence. To detect
such boundary, it is handy to work with discontinuity values that
are computed using inter-frame distance . Opposed to this,
a gradual transition is stretched along several frames so that a
distinction between two shots separated by a gradual transition
is possible only by comparing the frames from the beginning
and from the end of a boundary. For this reason, it is also neces-
sary to compute the second discontinuity value curve by com-
paring distant frames using inter-frame distance . The skip

should ideally be large enough to capture any gradual transi-
tion appearing in a video. However, ifis larger than the min-
imum shot length, the skip between frames being compared will
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(a) (b)

Fig. 6. Normalized distribution of intra-shot discontinuity values obtained for: (a)l = 1 and (b)l = 22.

in many cases stretch over three or more shots, which could re-
sult in missed shot boundaries [29]. Therefore, we set the value
of close to the minimum shot length. Although this minimum
is not strictly defined, it can realistically be assumed that no shot
lasts for less than a second. Then, the orientation value for the
minimum shot length can simply be taken as a number of frames
per second. In our approach we selectedas equal to 22 frames.

Larger skip between frames when computing the second
discontinuity curve requires a larger search area in the block-
matching procedure. In this case we allow a maximum displace-
ment of three blocks in each direction.

C. Likelihood Functions

We now perform a parametric estimation of likelihood func-
tions and which will be used in the detection
rule (15). In order to get an idea about the most suitable ana-
lytical functions used for such estimation, the normalized dis-
tributions of discontinuity values computed within
shots and at shot boundaries (inter- and intra-shot values) are
obtained first, using several representative training sequences.
We used four training sequences in the total length of about
10 000 frames. These sequences were excerpts from the movie
“Jurassic Park,” the “Seinfeld” television comedy, and two doc-
umentaries. These excerpts were selected such that they do not
contain any strong motion or strong lighting changes. This is
because we wanted to obtain reliable likelihood functions for
both hypotheses. This reliability would be reduced if the dis-
continuity values are included that are out of their proper range
due to the effects of some extreme factors.

In general, when (18) is used to measure inter- and intra-shot
values for two different values of inter-frame skip, four dif-
ferent distributions can be expected—two for each hypothesis.
We, however, choose to use only one distribution per hypothesis.
Namely, since (18) measures correspondences of pixel blocks in
terms of average colors, well matched within a search area ad-
justed according to the skip, the skip between frames has very
little influence on the distribution of discontinuity values for
the intra-shot case. Therefore, the two intra-shot distributions

can be considered similar, as also indicated by experimental re-
sults shown in Fig. 6(a) and (b). The first diagram [Fig. 6(a)]
is obtained using the aforementioned training material and by
computing the values (18) between consecutive frames. For the
second diagram, the values (18) were computed for frame pairs
with frames in-between. For the purpose of obtaining
the parametric model for the likelihood function for the “no
boundary” hypothesis we combine the two distributions from
Fig. 6(a) and (b) in order to base our model on as much test data
as possible. Resulting normalized distribution of intra-shot dis-
continuity values is shown in Fig. 8(a).

We can also assume a high similarity of the two measured
inter-shot distributions if the size of the search area remains
constant for both values of the inter-frame skip. This can be
observed from the diagrams in Fig. 7(a) and (b). The first di-
agram [Fig. 7(a)] is obtained by using a variable search area,
as selected in Section IV-B (1 block for , 3 blocks for

). It can be seen that while intra-shot values in both curves
remain in the same range, the inter-shot values are smaller in the
curve obtained for the skip : the larger the search area,
the higher the probability for each block of finding a “good”
match in a frame of another shot. For the diagram in Fig. 7(b) we
used the constant (smaller) search area for computing disconti-
nuity values with different skip factors. Compared to the case in
Fig. 7(a), the discontinuity values measured at shot boundaries
(both hard cuts and gradual transitions) now remain in the same
range in both curves, while there is an increase in intra-shot dis-
continuity values in the curve with the larger skip value. The
latter is understandable since the search area is too small to find
appropriate block matches.

Thus, if we adjust the search area to the skipin order
to obtain constant ranges for intra-shot discontinuity values
[Fig. 7(a)], there is a possibility that the ranges of intra-shot
discontinuity values are different. This means that, in principle,
we should use two different likelihood functions for the
hypothesis in the detectors (15) for hard cuts and gradual
transitions. This would not be a problem if the distribution of
inter-shot values obtained for the skip can be obtained
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(a) (b)

Fig. 7. Inter-shot and intra-shot discontinuity values computed using: (a) different search areas and (b) one and the same search area.

(a) (b)

Fig. 8. (a) Normalized distribution of valuesz(k; k + l) computed within shots forl = 1 (discrete bins) and its analytic estimate (continuous curve). (b)
Normalized distribution of valuesz(k; k + l) computed at shot boundaries forl = 1 (discrete bins) and its analytic estimate (continuous curve).

in a reliable way. Finding good block matches in a sufficiently
large search area is, namely, in many cases so successful that
inter-shot discontinuity values sometimes fall into the range of
intra-shot values. For this reason, no clear distinction between
ranges and exists, which negatively influences the detec-
tion performance regarding gradual transitions. We, therefore,
work only with inter-shot distribution of peaks corresponding
to hard cuts, measured for the skip . As can be seen
from Figs. 7(a) and 8(b), the normalized inter-shot distribution
obtained for the skip can be considered wide enough to
include also the inter-shot values measured for the skip .

The shape of the distribution in Fig. 8(a) indicates that a good
analytic estimate for this distribution and so for the likelihood
function can be found in the family of functions given as

(19)

Using the similar principle of global shape matching, the dis-
tribution in Fig. 8(b) and so the likelihood function can
best be modeled using a Gaussian function

(20)

The most suitable parameter combinations and
are then found experimentally, such that the rate of de-

tection mistakes for the training sequences is minimized. In
other words, we applied the models (19) and (20) in the detec-
tion rule (15) for various parameter combinations and selected
those combinations for which the detection performance on our
training sequences was optimal. The optimal parameter triplet
found for the model (19) is (1.33, 4, 2) and the optimal param-
eter pair for the model (20) was found as (42, 10). The resulting
analytic functions serving as parametric estimate of the likeli-
hood function and are also shown in Fig. 8(a) and
(b), respectively.

D. A Priori Probability Function

In this section we derive an analytical expression fora priori
probability for the presence of a shot boundary between
frames and . As explained before, we make this proba-
bility dependent on the number of frames elapsed since the last
detected shot boundary. In order to fulfill its purpose, the prob-
ability function has to satisfy the following two criteria.

1) must be a monotonously increasing function of
time, that is, of frame index.
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2) While starting at the value 0 immediately after the last
detected shot boundary, that is, for ,
the function will converge toward the value 0.5
for . The value 0.5 indicates that for a sufficiently
large number of elapsed frames the function
should have no influence on the detection performance
any more.

The first item indicates that can best be modeled as cu-
mulative probability. In order to do so, suitable probability dis-
tribution needs to be found first. Studies reported in [22] and
[7], involving statistical measurements of shot lengths for a large
number of motion pictures, have shown that the distribution of
shot lengths for all the films considered matches the Poisson
function well [21]. Therefore, we adopt the Poisson function as
the base for computing the cumulative probability . Since
the second item requires that the function converges to-
ward the value 0.5, cumulative probability values need to be
halved in order to ensure proper convergence, that is

(21)

The parameter of the Poisson distribution in (21) represents
the average shot length of a video sequence,is the frame
counter, which is reset each time a shot boundary is detected,
and is the current shot length at the frame.

The Poisson function was obtained in [7] and [22] as most
suitable for motion pictures. However, we assume that the con-
clusions on shot-length distributions made by Salt and Coll can
be extended further to all other types of video programs. Al-
though it is expected that the parametershould be adapted to
different program types (movies, documentaries, music video
clips, etc.) and possibly also to sub-types (e.g., an action movie
vs. drama) in order to compensate for possible variations in
program characteristics, our experiments have shown that the

value can be set constant for a broad scope of different pro-
gram types. For instance, when detecting shot boundaries in our
training sequences, we let the value ofchange in the entire
range between 50 and 150. However, there was no considerable
change in detection results. Wide validity and flexibility of the
parameter becomes understandable if one recalls that the in-
fluence of the function in the detector (15) is high only
in the beginning of a shot (e.g., for relatively small values of the
frame index ) and has the task to prevent the appearance of un-
realistically short shots. An adjustment of this value is required
only in some extreme cases, such as music TV clips or commer-
cials, where shots are generally much shorter than in “usual”
programs and where, therefore, a higher rate of shot changes
needs to be taken into accounta priori.

In general, a suitable range forper program type can be ob-
tained by analyzing the distributions of shot lengths of various
genres in large video collections. Once this range information
is available, the adjustment of thevalue can be performed
fully automatically if the program type (genre) information is
available in the shot-boundary detection system. An example of
such a system is the one operating directly on DVB [31] streams.
Here, each transmitted program compliant to DVB standard also
contains a header (so-called DVB Service Information), which

Fig. 9. Discontinuity values in a sliding window of the lengthN with expected
behavior: (a) at a hard cut and (b) within a dissolve.

also contains the information on program type (movie, docu-
mentary, music TV clip, etc.). Then,can be set easily by means
of a simple look-up table.

E. Conditional Probability for Boundary Presence

Function for Hard Cuts: As discussed in Section II,
the information on the pattern created by several consecutive
discontinuity values surrounding the value can be
highly valuable for detecting the presence of a shot boundary
between frames and . This information is especially im-
portant for detecting boundary types characterized by very dis-
tinct patterns. One such boundary type is the abrupt boundary
or hard cut. Yeo and Liu showed in [29] that the presence of an
isolated sharp peak surrounded by low discontinuity values—as
illustrated in Fig. 9(a)—is a reliable indication for the presence
of a hard cut at the position of the peak. According to the pro-
cedure presented in [29], the presence of a sharp peak between
frames and can be detected by investigating the series
of discontinuity values computed for the inter-frame skip
by finding the ratio between and the second largest
discontinuity value in the close surrounding of
and comparing the obtained result with a given threshold. If the
threshold is exceeded, a hard cut is found. However, we saw
from the discussion in Section III that the above process is far
too threshold dependent.

Instead of coarsely comparing the ratio between
and with a fixed threshold, we choose to interpret this ratio
as a measure for matching between the measured and the tem-
plate pattern. The larger the ratio, the better is the match; that
is, the larger is the probability of a hard cut presence. In view of
this, the ratio between and could serve as func-
tion which is the argument of the conditional probability

in the detector (15) for hard cuts.
We, however, found that computing the relative distance be-

tween and performs much better in practice than
the simple ratio between and . The reason for this
is that the ratio is dependent on the range of values
and while the relative distance is not. Finally, we formu-
late the function for the detector (15) of hard cuts as in
(22), shown at the bottom of the next page. The value indi-
cates the degree of pattern matching in the middle of the sliding
window of the length and centered at the discontinuity value

. Since the necessary condition for the presence of
the hard cut between framesand is that a sharp, isolated
peak is found at , no boundary can be found there if
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is not the maximum of the window. The length
of the window should be as large as possible in order to obtain
reliable pattern matching results. However, based on the same
argumentation as the one for selecting the inter-frame skip, a
maximum value of is rather limited. We therefore choose to
link the value of to the value of . However, since an uneven
value for is more practical due to symmetry of the sliding
window with respect to its center , we choose
equal to 21.

Function for Dissolves: Defining the function for
the detector of gradual transitions is considerably more diffi-
cult. Considering the quality of pattern matching only, as for
the case of hard cuts, is here not likely to lead to a good detec-
tion performance. This is mainly due to the fact that the pattern
of consecutive discontinuity values at places of gradual transi-
tions may vary in both shape and length. Also, it is dependent
on the features and metrics used to compute the discontinuity
values as well as on the type of gradual transition. For instance,
if motion-compensating features and metrics are selected as de-
scribed in Section IV-B, and if we concentrate on detecting
the dissolves only, the pattern observed in the series of con-
secutive discontinuity values computed with inter-frame skip

is expected to have a close-to-triangular shape as shown in
Fig. 9(b). The problem is, however, that, first, the triangle width
will change from one dissolve to another due to varying dis-
solve length. Second, the sides of the triangle will not be that
pronounced due to noise and extreme factors. Therefore, the
boundary pattern of a gradual transition is not as unique as the
sharp, isolated peak of a hard cut. Consequently, patterns cre-
ated by consecutive discontinuity values that are due to extreme
factors may be falsely classified as those belonging to gradual
transitions. For this reason, the function for the detector
of gradual transitions needs to be based not only on pattern
matching but also on other information that can help improve
the detection robustness. This information is strongly related to
the specific boundary type considered in the detector: the more
exclusive the information for the boundary type considered, the
better performance of the detector (15) for that boundary type
can be expected. This is simply because this exclusive informa-
tion can best distinguish the boundary from any other effect in a
video. We demonstrate here how the function can be com-
puted for a dissolve detector.

We consider the triangular pattern of a dissolve, that is cre-
ated by consecutive discontinuity values belonging to the sliding
window of the length and centered in with .
Similarly as in the case of hard cuts, we select the value of
equal to 21. Since the triangular pattern changes from one dis-
solve to another, there is little sense in trying to model the pat-
tern precisely and measure the degree of pattern matching based
on that model. We, therefore, formulate the criterion for pattern
matching based only on two basic characteristics of this pattern:

1) the middle window value is the maximum
value of the window;

2) window’s maxima on each side of have to be
as close to the middle of the window as possible.

As can be concluded from these characteristics, we require that
pattern created by discontinuity values matches the “ideal” pat-
tern of a dissolve only regarding the “top” of the triangular shape
in Fig. 9(b) and do not consider the shape of triangle sides. We
now introduce the function as

if

else.

(23)

Here, and are the distances of maximum disconti-
nuity values to the left and to the right of from the
window middle point. As can be recognized from the condition
in (23), the value of is set equal to 1 at the frameif the
pattern created by discontinuity values of the sliding window
centered at fulfills the two matching criteria listed
above. Otherwise, is set to 0. So, each series of consec-
utive discontinuity values for which is set equal to 1 is
further considered as a dissolve candidate.

We now investigate each dissolve candidate more thoroughly
by analyzing the behavior of intensity variance along the
corresponding series of frames. This analysis concentrates on
matching the variance behavior with the downwards-parabolic
pattern that is characteristic for a dissolve. However, since
this parabolic pattern is never perfect, we choose to match
only some of its characteristic global properties. Namely, if
the sliding window captures a dissolve, the variance measured
for frames in the middle of the window will be considerably
lower than the variance of frames positioned near window’s
edges. Opposite to this, if no dissolve occurs in a sliding
window, variance is expected to remain close to one stable
value; that is, its rate of change in the window will be very
small. Therefore, we compute the function as the relative
change of frame variance in the middle of the sliding window,
i.e., at the frame compared to frames close to window
edges. Analytically, this can be written as in (24), shown at
the bottom of the next page. Here, is the variance of the
frame in the middle of the window with , while

and are the variances of frames at
both window edges. The third option in (24), where is by
definition equal to 0, corresponds to the case where variance in
the middle of the window is larger than those at window edges.
Since this cannot occur in a downwards parabolic pattern, such

if

else

(22)
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a relation among three variances cannot reveal a dissolve. The
obtained value for is, therefore, a reliable indication for
the presence of a dissolve in a candidate series of discontinuity
values selected using function . Multiplying and

provides therefore the function which can be used
in the detector (15) for dissolves; that is

(25)

Modeling the Conditional Probability Function:The value
of the function serves as the argument of the conditional
probability function the main task of which is to
project onto a corresponding probability that the sliding
window captures a shot boundary. Since is a non-
decreasing function of , and the range of is [0, 100],
the function has to fulfill the following basic cri-
teria:

1) ;
2) .
Besides, our analysis has shown that should not

be too sensitive to the values of being close to borders
of the interval [0, 100]. For these values of the value of

should be very close to 0 or 1, respectively. The
actual transition from 0 to 1 should take place in the middle
range of the interval [0, 100], that is, for values of for
which the boundary characteristics become sufficiently recog-
nizable. This transition should, however, not be abrupt but flex-
ible enough in order not to reject any reasonable boundary can-
didate. After experimenting with different functions that fulfill
the aforementioned criteria, we find the optimal shape of the
function as illustrated in Fig. 10.

The function from Fig. 10 can be formulated analytically as
follows:

(26)

(27)

The parameters and are the “delay” from the origin and
the spreading factor determining the steepness of the middle
curve segment, respectively. In a way similar to the parameter

Fig. 10. Conditional probability functionP (Sj (k)).

sets in Section IV-C, the optimal parameter combination
is found experimentally such that the detection

performance for the training sequences is optimized. Since
is computed differently for each boundary type, the

parameter combination also needs to be determined
for each boundary type separately. For hard cuts and dissolves
we found the optimal pairs of parameters as (60, 2) and (21, 2),
respectively.

We like to emphasize that the basic shape of the conditional
probability , as defined in (26), can be considered
the same for all boundary types. What remains boundary de-
pendent are the function and the parameter set .

F. Detecting Different Boundary Types Simultaneously

In the first part of Section IV, we introduced general prin-
ciples for developing a statistically optimal shot-boundary de-
tector and explained that, due to specific characteristics of dif-
ferent boundary types, this detector needs to be developed for
each boundary type separately. However, by linking all separate
detectors in a cascade, as shown in Fig. 11, it is also possible to
detect all different boundaries simultaneously.

Each block in the cascade corresponds to one detector (15).
The first block of the cascade is responsible for detecting hard
cuts. As such, it takes as input the discontinuity values measured
between consecutive video frames; i.e., for . All other
blocks detect various types of gradual transitions and therefore
take as input the discontinuity values that are obtained with
inter-frame skip .

if

if

if

(24)
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Fig. 11. Detector cascade for simultaneously detecting various shot
boundaries.

Linking the detectors as described above can also be benefi-
ciary for improving the total detection performance of the cas-
cade. We explain this on the example of two series of discon-
tinuity values measured for and and aligned
in time as shown in Fig. 7. Due to “plateaus” circumventing
each of the hard-cut peaks, a falsely detected gradual transi-
tion can be reported at a certain plateau point, before or after
a hard cut is detected. This is because some very high plateau
values appearing before or after the actual boundary peak can
“confuse” one or more detectors of gradual transitions. For this
reason, all detected gradual transitions detected within the in-
terval ( ) of a hard cut can be assumed a con-
sequence of a plateau and can therefore be eliminateda pos-
teriori. The probability to eliminate a valid gradual transition
hereby is almost neglectable since, on the one hand, the detec-
tion of hard cuts using detector (15) is very reliable and, on the
other hand, the presence of a hard cut and a gradual transition
on a distance of only a fraction of a second is highly improb-
able. Consequently, proper detection of hard cuts can reduce the
number of falsely detected gradual transitions.

V. PERFORMANCEEVALUATION

In this section, we evaluate our detector in view of the criteria
posed in the introduction to this paper. These criteria were orig-
inally formulated as:

1) excellent detection performance for all types of shot
boundaries;

2) constant quality of the detection performance for any ar-
bitrary sequence, with minimized need for fine tuning of
detector parameters per sequence.

Since we concentrate here on two types of shot bound-
aries—hard cuts and dissolves—we tested the performance
of the cascade in Fig. 11 consisting of two first blocks only.
In our tests we used five test sequences that belong to four
different program categories: movies, soccer game, news,
and commercial documentary. It is important to note that
these sequences were carefully selected as those containing
many effects that are known to often cause detection errors.
For instance, the commercial documentary used in our tests
was made to promote a high-tech company. There, several
editing tricks are applied, many of which can “confuse” a
shot boundary detector. Also, many parts of a sequence show
fireworks, launching of Space Shuttle, explosions, strong
zoom-ins, zoom-outs, and camera panning. Many editing
effects other than gradual transitions were also present in the
Dutch news sequence that was included in our test set. Our
soccer sequences are live broadcasts with many segments

TABLE I
DETECTIONRESULTS FORHARD CUTS (A) AND DISSOLVES(G)

characterized by highly complex motion activity, strong zooms,
and fast object motion. Similar effects were also present in the
part of the movie “Saving Private Ryan” which was included in
our test set. None of these sequences were previously employed
for training the detection procedure, that is, for obtaining the
likelihood functions and detector parameters, as explained in
Section IV.

The results presented in Table I illustrate a high precision and
recall obtained using our proposed detector. While being 100%
for hard cuts, precision and recall for dissolve detection were
obtained as 79% and 83%, respectively. Formulated differently,
for dissolve detection we reached a detection rate of 83% and
a false alarm rate of 22%. In order to provide an idea about the
quality of these results, we refer to the survey on methods for
shot-boundary detection published by Lienhart in [15]. Best re-
sults in dissolve detection were reached using the method of
[25], [26] that is based on measuring intensity variance in the
dissolve region, and the method of Lienhart proposed in [14]
that uses a large dissolve training set created by a dissolve syn-
thesizer. Truonget al. report the precision of 75.1% and recall
of 82.2%. Lienhart reaches a precision of 82.4% and recall of
75%. Although our test set was not as large as in the two afore-
mentioned approaches, the results in Table I can be considered
fully reliable due to a careful selection of test sequences.

Although the rates of proper and false detections are not pre-
cisely the same for all sequences, there are no extreme outliers
in the performance. In this sense, we feel free to claim that the
performance of our detector remains relatively consistent over
all sequences. This claim is also supported by the fact that all
sequences were tested using the same parameter settings, that
is, those introduced in the process of detector development in
Section IV. In addition to this, one and the same value of the
parameter (equal to 70) was used for all sequences.

VI. DISCUSSION

Most existing approaches for shot-boundary detection are
based on explicitly given thresholds or relevant threshold
parameters, which directly determine the detection perfor-
mance. Due to such a direct mutual dependence, the detection
performance is highly sensitive to specified parameter values.
For instance, a threshold set to 2.3 will interpret a discontinuity
value 2.31 as a shot boundary, and a value 2.29 as a regular
value within a shot. Beside the sensitivity, the problem of spec-
ifying such a precise threshold remains. And, consequently,
the scope of the validity of such a precise threshold is highly
questionable.
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Manual parameter specification clearly cannot be avoided in
any of the detection approaches. However, the influence of these
parameters on the detection performance can be diminished and
the detection can be made more robust if the parameters are
used at lower levels of the detector system hierarchy, so only
for the purpose of globally defining the detector components.
Each component then provides the detector with nothing more
than an indication of the presence of a boundary based on a spe-
cific criterion. The decision making about the presence of a shot
boundary is then left solely to the parameter-free detector, where
all the indications coming from different sources are evaluated
and combined. In this way, the importance of a single manu-
ally specified parameter is not as great as when that parameter
is directly a threshold. This parameter can therefore be assumed
valid in a considerably broader scope of sequences. In the statis-
tical detector presented in this paper, this is the case with param-
eter sets and , which are used to define the
likelihood functions (19) and (20), as well as with parameters d
and used to formulate the conditional probability function
(26). The only parameter requiring an adjustment is, which
is used in (21) to definea priori probability for shot-boundary
presence. The adjustment of the parameteris, however, easy
and can be performed automatically, if the ranges forare avail-
able for different program types (e.g., by performing statistical
measurements) and if the program type is known at the input
into the video analysis system, e.g., when working with DVB
signals.

Since the parameters used in our detector can either be as-
sumed generally valid or be adjusted automatically, no human
supervision is required during the detection procedure. At the
same time, since the parameters are optimized for a general
case, similar high detection performance can be expected for
any input sequence. Both of these aspects make the developed
detector suitable for an implementation in a fully automated se-
quence analysis system. The facts that the detection method pre-
sented in this paper can operate on a wide range of video se-
quences without human supervision, and keep the constant high
detection quality for each of them, are the major advantages the
proposed detector has over the methods from recent literature.
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