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Shotgun proteomics aids discovery of novel
protein-coding genes, alternative splicing, and
‘‘resurrected’’ pseudogenes in the mouse genome
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Recent advances in proteomic mass spectrometry (MS) offer the chance to marry high-throughput peptide sequencing to

transcript models, allowing the validation, refinement, and identification of new protein-coding loci. We present a novel

pipeline that integrates highly sensitive and statistically robust peptide spectrum matching with genome-wide protein-

coding predictions to perform large-scale gene validation and discovery in the mouse genome for the first time. In

searching an excess of 10 million spectra, we have been able to validate 32%, 17%, and 7% of all protein-coding genes,

exons, and splice boundaries, respectively. Moreover, we present strong evidence for the identification of multiple al-

ternatively spliced translations from 53 genes and have uncovered 10 entirely novel protein-coding genes, which are not

covered in any mouse annotation data sources. One such novel protein-coding gene is a fusion protein that spans the Ins2

and Igf2 loci to produce a transcript encoding the insulin II and the insulin-like growth factor 2–derived peptides. We also

report nine processed pseudogenes that have unique peptide hits, demonstrating, for the first time, that they are not just

transcribed but are translated and are therefore resurrected into new coding loci. This work not only highlights an

important utility for MS data in genome annotation but also provides unique insights into the gene structure and

propagation in the mouse genome. All these data have been subsequently used to improve the publicly available mouse

annotation available in both the Vega and Ensembl genome browsers (http://vega.sanger.ac.uk).

[Supplemental material is available for this article. Peptide identifications are available at http://www.sanger.ac.uk/

research/publications/supp-info/ms-data/.]

The human genome sequence has been publicly available for 10 yr

(Lander et al. 2001), but the exact protein-coding gene number is

still under debate (Clamp et al. 2007). Automatic annotation sys-

tems such as Ensembl (Hubbard et al. 2002; Curwen et al. 2004)

have been developed to generate gene sets by exploiting the power

of integrating data from various sources, such as ab initio gene

predictors (Kulp et al. 1996; Burge and Karlin 1997; Parra et al.

2000; Stanke and Waack 2003), comparative genomics (Roest

Crollius et al. 2000; Korf et al. 2001;Miller 2001;Wiehe et al. 2001;

Parra et al. 2003), and mapping of transcriptional (cDNA, EST) or

translational evidence (protein sequence) to the DNA sequence

(Gelfand et al. 1996; Birney and Durbin 1997).

However, manual annotation efforts, such as the Vertebrate

Genome Annotation (VEGA) project (Ashurst et al. 2005;Wilming

et al. 2008) or RefSeq (Pruitt et al. 2000; Pruitt and Maglott 2001),

as well as quality assessment efforts (Guigo et al. 2006) still play a

significant role in the validation and refinement of predicted gene

models. The downside of manual investigation is that it its ex-

pensive and time consuming. Widespread use of DNA sequencing

technologies will further accelerate the availability of new raw

genomic sequences, all of which will require annotation.

New initiatives such as the International Mouse Phenotyping

Consortiumhave themammoth task of identifying the function of

every mouse gene by gene knockout (Abbott 2010). However, the

identification of protein-coding genes and the determination of

their exact gene structure are not trivial tasks (Guigo et al. 2006).

The recently completed clone-based assembly of the mouse strain

C57BL/6J was reported to have 20,210 protein-coding genes,

which was over 1000 more than human genes predicted at that

time (Church et al. 2009). A high-throughput method, providing

orthogonal data for validation and confirmation that accentuate

the protein-coding potential, is required to complement these

annotation efforts. A data source ideally suited for this purpose can

be obtained from proteomics data in the form of peptides that

can serve as translational evidence. State of the art tandem mass

spectrometry (MS/MS) is themethod of choice to identify peptides

and proteins with high sensitivity and specificity in a high-

throughput manner (Domon and Aebersold 2006). Efforts to

combine genome annotation with protein MS led to the estab-

lishment of a new field, ‘‘proteogenomics,’’ a term first coined by

Jaffe et al. (2004),which has subsequently been applied to other

model organisms such as Drosophila melanogaster (Brunner et al.

2007; Tress et al. 2008) and Arabidopsis thaliana (Castellana et al.

2008).

In order to effectively use proteomic data for genome anno-

tation, it is essential that peptide identification methods and sig-

nificance measures are both sensitive and accurate. We have pre-

viously evaluated (Brosch et al. 2008) the standard database search

engine Mascot (Perkins et al. 1999) and extended it with an im-

proved semi-supervised machine learning algorithm, Percolator

(Käll et al. 2007), to develop Mascot Percolator, which provides

highly accurate significance measures and results in much im-

proved sensitivity (Brosch et al. 2009). Moreover, Percolator pro-

vides two significancemeasures, the q-value (Storey and Tibshirani
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2003; Käll et al. 2008a; 2008b) and the posterior error probability

(PEP) (Käll et al. 2008b; 2008c). The former is an advanced notion

of the false discovery rate (FDR) (Benjamini and Hochberg 1995;

Chi et al. 2007) used in large-scale transcriptomics and proteomics

studies as a standard metric to report the expected rate of wrong

identifications among all accepted identifications. However, we

believe that for genome annotation purposes, where the signifi-

cance of each individual peptide should be known, the q-value or

FDR as a global measure should be complemented with a peptide-

level significance measure such as the PEP or the peptide proba-

bility as available through PeptideProphet (Keller et al. 2002; Ding

et al. 2008).

MS data can be searched directly against a six-frame trans-

lation of the genome with the purpose of validating and refining

existing gene annotation as well as the identification of novel

genes (Yates et al. 1995; Choudhary et al. 2001; Kuster et al. 2001).

However, searching a six-frame translation in higher eukaryotes is

problematic; e.g., only 1%–2% of the human genome encodes for

proteins (Claverie 2005; Birney et al. 2007), and therefore, most of

the search space consists of translated noncoding sequence. The

inflated search space increases the likelihood of false-positive iden-

tifications, and therefore, sensitivity decreases at a constant FDR.

Moreover, thismethod does not account for splicing, which affects

the majority of genes (Wang et al. 2008); nor does it account for

the 20%–28% of tryptic peptides, depending on the number of

allowed missed cleavages, whose coding regions span a splice site.

The use of ab initio gene prediction algorithms, such as Augustus

(Stanke and Waack 2003) or GeneID (Parra et al. 2000), offer a po-

tential solution to this problem, since these algorithms report

complete gene structures. A compact representation of the pre-

dicted proteome that removes redundancy of alternatively spliced

transcripts can be achieved by an in silico digestion of the pro-

teome into a peptide centric database that can be filtered and

indexed to remove redundancy from alternatively spliced variants

(Martens et al. 2005). Alternative approaches, such as the use of

an exon splice graph database, have been developed to limit the

search space (Tanner et al. 2007).

In this work, we build upon these efforts and apply a two-

stage search strategy, aiming to validate and refine mouse genome

annotation and to identify novel loci based on experimental trans-

lational evidence. First, MS data obtained from the PeptideAtlas

project (Desiere et al. 2006) and data sets generated in-house were

searched against a peptide-centric nonredundant superset of

Ensembl, Vega, and IPI (Kersey et al. 2004) proteins.We expect that

these databases comprise most of the proteome, and peptide iden-

tification sensitivity ismaintained at a high level due to this limited

search space. In a second stage, we incorporated protein predictions

from Augustus that significantly inflate search space but enable

refinement of existing gene annotations and the identification of

novel protein-coding loci.

Results

Generation of high-confidence PSMs for genome annotation

We analyzed 10.5 million tandemmass spectra (downloaded from

PeptideAtlas and from in-house experiments) using the genome

annotation pipeline (Fig. 1; Methods). In total, 1,491,410 and

1,772,159 peptides were identified at a q-value (a more advanced

notion of the FDR) of 1% and 5%, respectively. Application of a

maximumallowedprobability (PEP) of 1% and 5%of an individual

peptide match to be incorrect reduced the number of identified

peptides to 1,124,724 and 1,358,323, corresponding to a q-value of

less than 0.14% and 0.59%, respectively.

When data were searched against the database that was sup-

plemented with the Augustus predictions (see Methods), 16%

fewer identifications (1,253,074 and 1,490,020 at a q-value of 1%

and 5%) weremade due to the search space inflation of almost one

order of magnitude (Fig. 2B). At a maximum PEP of 1% and 5%,

we identified 967,131 and 1,171,060 peptides corresponding to

q-values of 0.12% and 0.57%, respectively. It is interesting to note

that Augustus predictions comprised 81% of all Ensembl peptides.

This suggests good sensitivity for an ab initio gene predictor, but it

should be noted that this is afforded by parameter settings that are

tweaked to allow maximum sensitivity (see Methods).

For subsequent analyses, only the best PEP and q-value score

for each peptide sequence were considered, resulting in 95,606

distinct peptide identifications, 3260 of which matched common

contaminants. Since isobaric amino acids, such as leucine/iso-

leucine as well as lysine/glutamine, cannot be discriminated in low

energy collision induced dissociation data (Roepstorff and Fohlman

1984; Biemann 1988), all isoforms attributed to any of these resi-

dueswere filtered out (1159 cases). Of the remaining peptides, 83%

(76,029) mapped unambiguously to one genomic locus. Since

Figure 1. Genome annotation pipeline. The database at the core of the
system, GenoMS-DB, is built by integrating all peptides that are derived
from an in silico digestion of available data sources (Ensembl, Vega,
Augustus). Each peptide derived from these data sources is associated
with its genomic locus and context (such as gene, transcript, exon, or
splice site information). Peptides from FASTA protein databases can op-
tionally be integrated but would lack genome mapping. A set of non-
redundant in silico digested peptides is exported from GenoMS-DB to
create the Mascot search database. TandemMS spectra are searched with
Mascot and post-processed with Mascot Percolator to derive accurate
probabilities on a per PSM basis. A series of steps removes common
contaminant sequences and low-scoring PSMs from the results, prior to
storing the remaining identifications into the GenoMS-DB database. This
integration of peptide-genome mapping together with peptide identifi-
cations enables streamlined analysis with standard SQL or visualization as
a track in a genome browser via a DAS feature server. This is a flexible
pipeline where alternative gene prediction tools could be used to provide
source peptides, and alternative search engines and probability assess-
ment algorithms could be integrated.
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only fully tryptic peptides were considered, it was further tested

whether a semi-tryptic form of the peptide sequence mapped

elsewhere in the genome (758 cases). As a last measure, the possi-

bility that peptides with one residue substitution, insertion, or

deletion could be identified elsewhere in the genome was tested,

since coding SNPs were not considered in this study (6685 cases,

mainly short peptide identifications). The total of 68,586 remaining

distinct peptides formed the basis for subsequent genome annota-

tion. However, PSMs with a PEP between 1%–5% were exclusively

used as supplementing peptides, and only peptide identifications

with a PEP of 1% or better (58,574 cases) were used as a primary

annotation data source; meaning that the chance of a wrong pep-

tide identification would be 1% in the worst-case scenario, which

corresponds to a FDR of less than 0.14%. Most proteogenomics

research studies to date have used a FDR of 1%–5% (Castellana et al.

2008; Tress et al. 2008), but we have adopted this conservative ap-

proach to avoid the propagation of erroneous identifications into

genome annotation pipelines.

Validation of Ensembl/Vega gene annotation

We found that 98.1%of all identified peptides (PEP of 1%or better)

matched the Ensembl/Vega database with only 1.9% attributed

solely to IPI and Augustus (Fig. 2A). This is despite 88.6% of the

candidate tryptic peptides in the search database originating solely

from Augustus predictions (Fig. 2B). We therefore focus first on

confirming Ensembl/Vega annotation at the level of gene trans-

lation and structure.

Verification of gene translation

Figure 3 shows the cumulative percentage of genes that could be

validated theoretically by tryptic peptides that map uniquely to

a genomic locus and comprise between eight and 30 amino acids

(Supplemental Fig. 1). Note that these are the default peptide pa-

rameters for all theoretical considerations in the remainder of this

article. Interestingly, when zero, one, and twomissed cleavages were

allowed, only 5.0%, 3.8%, and3.5%of protein-coding Ensembl gene

products lack tryptic peptides, respectively. However, a large pro-

portion of transcripts containonly a few tryptic peptides; e.g., 43.0%

of transcripts comprise fewer than 10 peptides (no missed cleavages

allowed), thereby potentially limiting the chances of validation.

We report translational validation of 7221 (4463) protein-

coding Ensembl (Vega) genes, corresponding to 31.6% (36.7%) of

all protein-coding genes. However, peptide coverage was limited,

with only 7.9% (9.0%) of the genes being validated by more than

10 peptides and 0.08% (0.09%) by more than 100 peptides (Fig.

3C). In order to further study the relationship between identified

and potentially identifiable peptides, we tested whether a linear

model could be fitted (Fig. 4). A perfect fit wouldmean that theMS

instrument would sample more peptides from gene products with

more potential peptides. However, we found that there is no cor-

relation (R2
= 0.10), and this is consistent with studies that show

that peptide sampling is mainly determined by relative protein

abundance (Ishihama et al. 2005; Lu et al. 2007). Furthermore,

genes that are only expressed in specific tissues would not be

identified if the tissue of interest was not analyzed. For example,

obscurin (ENSMUSG00000061462) is among the top 10 geneswith

most potentially identifiable peptides (1192), and yet none of the

peptides were identified (see also http://tinyurl.com/Obscurin). In

contrast, plectin (ENSMUSG00000022565), a cytoskeletal protein

that is more widely expressed, has a similar number of potential

peptides (1447) but has the highest number of identified peptides

in this study (280).

It is important to note that the consideration of missed

cleavagesmakes a significant difference to this analysis; even though

trypsin is a very specific enzyme, it is not always 100% efficient. In

fact, 31.7% of all peptides identified in this study had one missed

cleavage site, 9.9% had two missed, and only 58.4% had none.

Therefore more than 90% of the peptides have none or one missed

tryptic cleavage site.

Gene structure validation

Theoretical calculations, using the same peptide properties as de-

scribed previously, revealed that, when zero, one, or two missed

cleavages are allowed, 15.1%, 10.0%, and 9.0% of all Ensembl

protein-coding exons do not contain detectable peptides, re-

spectively. In addition, 93.6%, 47.8%, and 30.4% of the protein-

coding Ensembl exons contained five or fewer peptides (Fig. 3C).

The lower peptide coverage of exons compared with complete

genes can be explained by the fact that the average protein-coding

exon count per gene in mouse is around 9.7. Nevertheless, a total

of 16.7% of the total 222,378 Ensembl protein-coding exons could

be validated by peptide identifications. We validated 8.0% and

1.4% of Ensembl exons by at least two and five peptides (Fig. 3D).

Amore difficult challenge is to validate annotation of introns,

since this requires a fully tryptic, and unique, peptide spanning

splice boundaries. Defining splice donor and acceptor sites is not

Figure 2. Four-way Venn diagram showing distribution of origin of all
identified peptides (A) andof all candidatepeptides in the searchdatabase (B).
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trivial, and a peptide spanning these sites not only validates them

but also implicitly validates the joined exons and thereby signifi-

cantly contributes to gene structure validation. Of the 202,205

(131,336) introns in Ensembl (Vega) that span a protein-coding

splice boundary, up to 70.9% and 86.2% could theoretically be

confirmed by peptides, allowing for one or two missed cleavages,

respectively. However, when zero missed cleavages are considered,

the theoretical validation rate drops to 46%. Using the subset of

identified peptides that span a splice site, a total of 14,426 (9347)

Ensembl (Vega) introns could be confirmed, corresponding to 7.1%

of all splice sites that join protein-coding exons, 1.3% of which

were validated with two or more distinct peptides.

Clearly, the translational evidence is valuable for independent

gene structure validation. Up to 91.0% of all protein-coding exons

and 86.2% of all introns could theoretically be confirmed with

peptides obtained in typical proteomics experiments. Applying the

peptides identified in this study, 16.7% of all exons and 7.1% of

all introns could be confirmed, highlighting that with relatively

moderate efforts a significant proportion of gene structures can be

validated.

Validating evidence for alternative translation

Until recently, only limited evidence of expression of alternatively

spliced transcripts was available at the protein level (Tress et al.

2008). The detection of these variants by standard MS proteomics

experiments is hindered by the fact that the majority of protein

sequence is shared between the variant transcripts, differing only

in small parts of the translation products. Validation of alternative

translation requires identification of at least one ‘‘signature’’ peptide

for eachprotein isoform.While 8877 (40%)protein-coding Ensembl

genes code for alternative products, only 16,664 transcripts from

Figure 3. (A) Cumulative gene identification rate as a function of the number of potential identifiable (hypothetical) peptides per protein-coding gene.
(B) As before, but analysis for protein-coding exons. Note that considered peptides were fully tryptic, ranged from eight to 30 residues and were unique to
a genomic locus. (C ) Inverse cumulative validation rate of all protein-coding genes as a function of the number of peptides identified per gene. (D) As
before, but for protein-coding exons.
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1542 genes could theoretically be discriminated by 168,726 ‘‘sig-

nature’’ peptides. For example, Catenin (cadherin associated pro-

tein), delta-1 (ENSMUSG00000034101), has 25 alternative tran-

scripts annotated as coding, but only nine ‘‘signature’’ peptides

could theoretically distinguish the alternative translation of three

protein isoforms.

Nevertheless, protein evidence for alternatively translated

genes from tryptic digests was shown recently; Tanner et al. (2007)

found evidence for 16 human genes, Castellana et al. (2008) found

evidence for 47 A. thaliana genes, and Tress et al. (2008) identified

130D.melanogaster genes that express at least two protein isoforms.

Here, a total of 370 peptides enableddiscriminationof 112 Ensembl

transcripts in 53 genes, corresponding to 3.4% of all protein-coding

genes with annotated multiple protein-coding isoforms that can

be discriminated by a peptide. The UDP-glucuronosyltransferase

family, polypeptide A6A (ENSMUSG00000054545), which has

12 alternative coding transcripts within one locus, is unusual as

all variants have an alternative 59 exon spliced to a common set

of downstream constant exons. These variable first exons confer

diverse functional mRNAs with different, tissue specific expres-

sion profiles (Zhang et al. 2004). Figure 5 shows the overview

of this complex locus with evidence

for expression of five alternative pro-

tein isoforms from 27 ‘‘signature’’ pep-

tides. Other examples with evidence

for three alternative gene products in-

clude the following: ankyrin 2 brain

isoform 2 (ENSMUSG00000032826), syn-

aptotagminVII (ENSMUSG00000024743),

and H2A histone family member Y

(ENSMUSG00000015937). Two alterna-

tive isoforms were validated for each of

the remaining 49 genes.

Furthermore, we have identified an

additional 31 novel alternative splice

isoforms of known mouse genes based on single high-stringency

peptides (Supplemental Table 1). Of these, 29 putatively represent

splice variants, of which eight are variants with extensions to the

N terminus of the CDS, resulting from the use of an ATG upstream

of that currently annotated, and one utilizes a novel termination

codon. Both remaining transcripts represent translated upstream

open reading frames (upORFs) lying in the 59 UTR sequence of

annotated splice variants. Although each of these alternatively

spliced isoforms is supported by only oneMS peptide, validation is

shown as 23 of the 31 supporting peptides were recorded in more

than one data set and none were recorded once in only one data set

(Supplemental Table 2). However, these putative objects have been

tagged for the addition of experimental validation before they be-

comepersistent annotations included in the Ensembl/Vega gene sets.

Manual identification of protein-coding novel loci

and alternative splice variants

We used the gene finding algorithm Augustus to over-predict

protein-coding genes on the genome ab initio and to populate the

search database (see Methods). Assuming that the Ensembl gene

list is close to complete, the Augustus database contains 90% pre-

viously unannotated sequence (Fig. 2B). Therefore, reliable and

stringent peptide scoring, together with subsequent filtering to

exclude ambiguous matches, is crucial to minimize any false-pos-

itive identifications. To reiterate, the least significant peptide

match considered in this study had a 1% probability to be in-

correct, corresponding to a FDR of less than 0.14%. For subsequent

analysis, where peptides were not supported by any existing an-

notation, this was further constrained in that at least two peptides

(one of which with a PEP of less than 0.01; the second, less than

0.05) had to be identified prior to investigation. We found that

1.9% of all peptide identifications matched neither Ensembl

nor Vega but were present in either the IPI database or Augustus

gene predictions. These peptides represent a significant number of

identifications that contribute to refinements of gene structure or

annotation of novel genes (Fig. 2A). Using this approach, 36 MS

PSMs were identified that provide clear support for the translation

of 10 novel protein-coding loci. Transcripts at each of these loci

were manually curated using current HAVANA annotation guide-

lines (http://www.sanger.ac.uk/research/projects/vertebrategenome/

havana/assets/guidelines.pdf), and the details of such (and the ad-

ditional supporting evidence for each) are given in Table 1. These 10

loci fall into four categories.

Single-exon loci

Three of these 10 novel objects have a single exon. Such objects are

known to exist withinmammalian genomes and, as in these cases,

Figure 4. Correlation analysis between the number of identified pep-
tides and the number of potential identifiable peptides per gene. Since
many data points have the same x–y-values, the number of overlaying data
points (genes) is encodedwith the color gradient available from the legend.

Figure 5. MS PSMs confirm the protein-coding potential of five alternatively translated products of
the UDP-glucuronosyltransferase 1 family, polypeptide A6 (highlighted in bold). Ambiguous PSMs are
shown for the two alternatively spliced transcripts of the Ugt1a6a and Ugt1a6b genes, respectively; and
as clusters for each of the 39 exons.
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are often difficult to identify due to a paucity of nonsplicing

transcriptional support. Paralogous gene family members are often

used as annotation aids for such genes (e.g., defensin genes) (Amid

et al. 2009). However, orphan genes, which lack sufficient paralo-

gous evidence to be annotated as protein-coding loci, remain a sig-

nificant annotation problem ( J. Mudge, pers. comm.). MS proteo-

mic support is of obvious benefit in the annotation of these genes.

Figure 6A shows one such example of a single-exon protein-

coding transcript (OTTMUST00000090068). Interestingly, the CDS

region of this model is well conserved across a number of mam-

malian genomes (Fig. 6B), although it has no identifiable protein

domains. This conservation allows us to speculate that this locus is

likely to be functional. Further validation for the translation of this

novel gene is found in the tissues that the supporting MS PSMs

were detected. Each of the six peptides that validate the protein-

coding potential of this locus was detected from brain tissue data

sets (data not shown). In addition, three of these six matches were

recorded from within the same data set. This correlation in tissue

expression adds validation to our claim that this locus represents

a novel translated gene from the mouse genome.

Confirmation of ab initio predicted protein-coding loci

Three of our 10 novel protein-coding objects confirm the anno-

tation of ab initio coding gene predictions. None of these genes are

supported by species-specific transcriptional support; however, the

Table 1. Summary of novel protein-coding objects identified by PSMs

Transcript stable ID Chromosome
Genomic
clone Mass spec tags aligning Description

Additional
Evidence

OTTMUST00000090068 6 AC165974.4 IVAAQQELLAQR Uni-exon novel orphan CDS Strong mammalian
conservationRPDPGPSPLGAIPELGCRR

RPDPGPSPLGAIPELGCR
ENAGLLER
IVAAQQELLAQRR
LSRENAGLLER

OTTMUST00000090127 14 AC165148.2 AAEDEEVPAFFK Uni-exon novel orphan CDS Mouse-specific
transcriptional
evidence

DVAHLGPDPHR

OTTMUST00000090128 7 AC113298.14 ASSAAAAAALSR Uni-exon novel orphan CDS Rodent-specific
transcriptional
evidence

AGAPGPASSPALLVLR

OTTMUST00000090124 15 AC164597.11 FAKPPPPLLTSSESSTVEPPHMAR CDS highly similar to de novo
prediction EDL29334

Rodent-specific
transcriptional
evidence

FGLHTEDLYER

OTTMUST00000090118 7 AC108827.10 SFVSHSHLQSHGR CDS highly similar to de novo
prediction EDL12440

Paralogous gene
transcriptional
evidence

AFTHPSTVVLHK

OTTMUST00000090119 7 AC108827.10 AFAQSSSLQYHK CDS highly similar to de novo
prediction EDL12440

Paralogous gene
transcriptional
evidence

NPPASAFQVVGLKACTTTAWPG

OTTMUST00000090503 13 AC154437.2 IITITGTQDQIQNAQYLLQNRR Hnrnpk-2210016F16Rik fusion
object

Mouse-specific
transcriptional
evidence

SLHELNPR

OTTMUST00000090122 7 AC013548.13 ILGTSDSPVLFIHRPGTSGTTK Ins2-Igf2 fusion object Mouse-specific
transcriptional
evidence

APPALEGAANIDPASGSSSGQFRK
LLVQPELQKPK

OTTMUST00000089966 5 AC162528.5 MDATPQDPDADFQELAK 59 Extension of novel protein
(2900026A02Rik) CDS

Strong mammalian
conservationVATEQSTAEHQGPER

AHSVENPAGQAPEAKPQPK
FDQEAYAQTER
EAPQSDSVGQQAGR
ATQVSLLSARPEVATKPAVPAR
GVASGHGSAVVSK
HDLDAAPATK
YDIVHASGER
SGTEDMLEPSR

OTTMUST00000090346 X AL450395.7 VKQEEQLQSVPAKEK Gm14569 locus Strong mammalian
conservationYSLQPWQSTPFEQVSVTPDHDPA

AAAASWSPPIDPPTSR
SGLPVPSTSISSATAEDDVSPK
SSEGQLPSTQPSQAFDVAK
DIGQPTTTEAEVTTVQK

Annotated spectrum and additional information for each of these 36 peptide identifications are given in Supplemental Files 1 and 2.
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proteomics data support their annotation. Each of these three

transcripts is supported by two MS peptides, with expression of

eachdetected in the liver (OTTMUST00000090124), liver andbrain

(OTTMUST00000090118), and brain (OTTMUST00000090119),

respectively. The putative translations from each of these loci

contain no detectable domains. However, each peptide supporting

each transcript was recorded at least five times in two different data

sets, adding considerable validation to each model. Again, these

gene transcripts will be experimentally validated to test their

transcription and confirm gene models prior to their being made

available as part of the Vega data set.

Protein-coding fusion loci

An increasing number of locus-spanning transcripts have been

identified in EST and cDNA sequence databases in recent years

(Gingeras 2009). The advent of new sequencing technologies has

expanded this transcript category in terms of both numbers and

transcript complexity (Ruan et al. 2007; Gingeras 2009). However,

there remains considerable uncertainty over the function of such

transcripts, and very little evidence for their ability to encode sta-

ble proteins exists (Gingeras 2009).

Two of our 10 novel protein-coding objects support the an-

notation of coding splice variants that contain exons from more

than one coding locus. Object OTTMUST00000090122 is evi-

dence of a protein-coding fusion transcript linking the mouse

Igf2 (insulin-like growth factor 2) and Ins2 (insulin II) loci (Fig.

7A). Our proteomic data support the annotation of this read-

through transcript as a coding variant. Comparative genomic

analysis of the orthologous human loci shows the existence of an

equivalent fusion transcript. However, the human transcript

(OTTHUMT00000026061) is likely to be a target for the nonsense-

mediated decay (NMD)pathwaydue to the presence of a premature

STOP codon in the putatively translated sequence (Fig. 7B). This

STOP is absent from the mouse fusion transcript, allowing this

object to be annotated as fully protein-coding. The PSMs that

support the annotationof both of these fusion lociwere detected in

multiple tissues (data not shown). There-

fore, although the Ins2-Igf2 and Hnrnpk-

2210016F16Rik fusion transcripts are

supported by only two and three peptides,

respectively, the fact that each were de-

tected multiple times across a number of

tissues gives supporting validation to the

annotation of these protein-coding fu-

sion transcripts.

Interestingly, the Igf2 and Ins2 genes

are functionally linked and are co-regu-

lated (Buchanan et al. 2001). Ins2 codes

for a protein that is processed to give rise

to two active peptides (insulin 2A and 2B)

that form heterodimers that regulate

blood glucose concentration. Igf2 also

codes for a protein that is processed to

give rise to an active peptide, preptin,

which is an insulin-like growth factor

(Buchanan et al. 2001). Preptin is co-se-

creted with insulin and is regulated by

glucose levels and in turn stimulates fur-

ther insulin secretion, thereby amplify-

ing the effect of increased glucose levels

(Buchanan et al. 2001). The Ins2-Igf2 fu-

sion protein that we have validated contains the insulin 2B and

preptin but not the insulin 2A peptide. Whether this fusion pro-

tein is functional and can actually be processed to produce insulin

2B and preptin remains to be determined, but it raises the possi-

bility of an ultimate form of co-regulation of these two products

expressed in a single protein precursor.

Merging of annotated noncoding transcript objects

Incomplete transcriptional support can lead to protein-coding

genes being annotated as fragments (i.e., as multiple noncoding

transcripts due to uncertainty over the complete gene model and/

or frame of translation). In such cases, the addition of proteomic

data is of obvious benefit. Two of our 10 novel protein-coding

objects support the merging of previously annotated transcripts.

An example of such a locus in the mouse genome is that of

Gm14569 (Supplemental Fig. 2). This locus was represented as two

noncontiguous noncoding transcripts based on the available spe-

cies-specific EST support. Our filteredMS data aligned five peptides

to this locus that, in conjunction with the annotated human locus

(KIAA1210, OTTHUMT00000058020), provide sufficient support

to build a full-length protein-coding gene model. A second ex-

ample is that of model OTTMUST0000008966 (Fig. 8). We have

typed this object as a novel protein-coding locus as, although the

proteomic evidence lies close to model OTTMUST00000063646,

our data allow the annotation of an object which more than

doubles the CDS region of this locus.

Interestingly, both of these newly annotated objects con-

tain a large (>2 kb) coding exon. Such exons are notoriously dif-

ficult for transcript-based computational or manual annotation

methods to identify. However our proteomic data have been of

considerable benefit where limitations of transcriptional evi-

dence are found.

Resurrected pseudogenes

While some duplicated pseudogenes have been shown to gain

novel function despite a loss of protein-coding potential (e.g.,

Figure 6. (A) Species-specific EST and peptide evidence supports the annotation of a protein-coding
object at this locus. (B) Clustal alignment of the polypeptide sequences of this novel single-exon object
with the orthologous objects from the rat and human genomes, respectively. There is no transcriptional
support for either the rat or human model; however, the CDS frame is highly conserved and intact. The
residues of the mouse translation that are covered by PSMs are colored yellow.
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XIST) (Duret et al. 2006); retrotransposed or processed pseudo-

genes have generally been considered as ‘‘dead on arrival’’; i.e.,

they lose functional activity as a corollary of their creation (Zheng

et al. 2007).While there is increasing evidence for the transcription

of retrotransposed pseudogenes (Khachane and Harrison 2009),

there is very little evidence for gain of novel function at the tran-

script level. Mouse makorin (Hirotsune et al. 2003; Kaneko et al.

2006) was identified as encoding a transcript that regulated the

expression of the parent locus in trans (however these findings

have been contradicted by Gray et al. 2006), and a NOS pseudo-

gene performs a similar function in the snail Lymnaea stagnalis

(Korneev et al. 1999). At the level of protein-coding function,

retrotransposition has been identified as a minor but important

mechanism for the creation of novel combinations of functional

domains (Babushok et al. 2007) and has also been identified

as having the potential to create protein-coding loci de novo

(Kaessmann et al. 2009). However, while it has been estimated

that more than 100 human protein-coding loci might have

arisen by this route (Vinckenbosch et al. 2006), very few retro-

transposed loci have evidence of function at the protein level;

notable exceptions include human GLUD2 (Shashidharan

et al. 1994) andDrosophila Prat (Malmanche et al. 2003).While the

increasing number of transcribed retrotransposed genes creates

additional candidate protein-coding loci (Baertsch et al. 2008),

there is no evidence that proteins originate from such loci.

Our MS data provide support for the translation of nine pro-

cessed pseudogenes in the reference mouse genome. Each pseudo-

gene is supported by at least two peptides,

and all aligning PSMs are locus specific,

showing exact similarity to only one

translated locus of the mouse genome.

More specifically, each PSM shows at least

two amino acid substitutions compared

with the translated parent protein se-

quence. As an additional validation step,

each supporting PSM for each translated

pseudogene needed to be detected in at

least two different tissue data sets. Great

care was taken in assigning parents to

each of these pseudogenes to ensure high

confidence that these MS PSMs do indeed

represent translations of these pseudo-

genic loci and not polymorphisms of the

parent locus; therefore, we require that:

1. The residues substituted in our PSMs

in comparison with the parent poly-

peptide are conserved in the amino

acid sequences of the 1:1 rat and hu-

man orthologs; and

2. There is no evidence of single nucleo-

tide polymorphism/deletion-insertion

polymorphism (SNP/DIP) at these co-

donpositions of theparentmouse locus

within the available sequence data of

44 mouse strains undergoing genome

sequencing (http://www.ensembl.org/

Mus_musculus).

Figure 9 shows one example where

proteomic data have allowed the annota-

tion of two protein-coding variants of a

mouse peptidylprolyl isomerase A (Ppia)

pseudogene (OTTMUST00000018507). Both peptides aligning to

this locus identify exons 59 to the main body of this pseudogene

object. Each PSM commences with a methionine residue, sug-

gesting that we have captured the translational start sites of

both of these CDS objects within our proteomic data set. Fur-

thermore, both peptides possess canonical sites in splicing to the

main body of this Ppia processed pseudogene. The translated se-

quence of these 59 exons of both CDS objects could not be found

within 300 kb upstream of the 59 end of the parental Ppia locus

(OTTMUSG00000000783), confirming that they do not represent

unannotated splice variants of the parent locus.

The Ppia parent gene of this translated pseudogene is known

to be involved in the acceleration in the folding of proteins (Colgan

et al. 2000). As to be expected from this ubiquitous role, expression

of this gene has been detected in a number of diverse tissues, in-

cluding the kidney, lung, heart, and 11-d-old embryo (http://www.

informatics.jax.org/searches/estclone_report.cgi?_Marker_key=

12618&sort=Tissue). The MS PSMs supporting both isoforms of

this translated pseudogenewere both recorded in these same tissues.

In addition, we have been able to confirm both of these translated

pseudogene isoforms by RT-PCR in using template extracted from

11-d-old embryo (Supplemental Text 2). Homozygous ‘‘knock-out’’

mutation analysis of the parent Ppia gene has been associated with

a variety of effects to the cardiovascular, endocrine, hematopoietic,

immune, renal, and optic systems (http://www.informatics.jax.

org/javawi2/servlet/WIFetch?page=alleleDetail&key=33820).Wehave

added the translated Ppia pseudogene to our internal pipeline for

Figure 7. (A) Mouse Ins2-Igf2 fusion object contains a valid CDS, supported by human cDNA and
species-specific peptide evidence. (B) Clustal alignment of the translation of the mouse and human fusion
transcripts. This human translationwould be a target for theNMDpathway due to a frame-shiftmutation,
caused by the inclusion of an additional exon not present in themouse transcript. The residues of the Ins2
and Igf2polypeptides are colored blue and pink; with the knowndomains within each highlighted in gray.
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similar ‘‘knock-out’’ analysis in order to investigate the potential

function of this locus.

Interestingly, of these nine translated pseudogenes, only two

show a syntentic ortholog in the reference rat genome, and none

possess human orthologs. This is in spite of the genes surrounding

each translated mouse pseudogene showing strong syntentic

conservation with the equivalent rat and human genomic loci

(data not shown). This suggests that seven of these pseudogenes

have arisen since the divergence of the rat and mouse lineages

some 25–30 Myr ago (Church et al. 2009). We propose two hy-

potheses to explain the detection of translated polypeptide se-

quences from these nine mouse loci:

1. The polypeptides detected from these pseudogenic loci are

simply relics of translation being generated until the locus has

accrued sufficient mutations that allow all translations gener-

ated to be targets for the NMD pathway.

2. Of all retrotransposition events that change a genome, only

a fraction will insert at a position that is permissive of trans-

lation. It is likely that of these processed pseudogenes, again

only a fraction result in translations that provide a selective

advantage to the organism and are therefore positively selected

for across generations, and it is therefore translation from such

loci that we have detected.

It is unlikely that only one of these hypotheses are able to

fully explain the translated polypeptide sequences that we

have detected from all nine pseudogenic loci. We plan to in-

vestigate these translations further through knock-out muta-

tion analysis.

Discussion

Wehave described the construction of a novel genome annotation

pipeline for tandemMS data, which provides highly sensitive and

accurate peptide identification, efficient

peptide-genome mapping, and auto-

mated data analysis for gene structure

validation and correction. We have

evaluated the implications and limita-

tions of this approach and have shown

that, theoretically, peptide evidence

could validate up to 97% of all protein-

coding genes, 91% of all protein-coding

exons, and 86% of all protein-coding

exon–exon junctions of the reference

mouse genome if all tryptic peptides

could be detected. However, the mouse

proteome is far from being saturated by

MS-based peptide identifications. Even

if every organ with all its regions, cell

types, and organelles could be isolated

and analyzed, there would probably be

a significant set of genes that would be

missed because expression occurs only

under specific and transient cellular and

developmental conditions. There have

not been systematic analyses at these

levels of complexity, but if we compare

studies from 10 yr ago with today, it is

clear that MS data have become a richer

and more valuable resource for genome

annotation. By applying our proteoge-

nomics pipeline, we report the first systematic validation of the

mouse genome annotation with tandem MS data. Analysis of a

collection of 10 million tandem MS spectra, available from the

PeptideAtlas and our own data, provides translational evidence

for a third of all protein-coding genes, over a sixth of all exons

and in excess of 14,000 splice boundaries. In addition, we have

uncovered strong evidence for 53 genes with alternative trans-

lations.

Moreover, using ab initio gene predictions to populate the

search database, our approach can also be used for refining and

discovery of new genes. We highlight the value of proteoge-

nomics to refine gene structures in reporting experimental vali-

dation for the translation of nine processed pseudogenes from

the reference mouse genome. Although locus-specific evidence

of transcription is available for a number of mouse pseudogenes,

these nine loci are the first examples of putatively translated

pseudogenes from the mouse genome. It remains unclear

whether these loci are able to produce functional proteins, and

further experimental validation is required to identify their

functional roles. In addition, we have been able to identify 10

novel protein-coding loci at high confidence. Interestingly, al-

though orthologous protein-coding loci for eight of these 10 can

be found in the reference human genome, these mouse loci

were not identified by either the RefSeq or Ensembl annotation

pipelines. Instead, the identification of these loci has been me-

diated only by the application of our proteomic data and manual

investigation.

Overall, we demonstrate that translational evidence in the

form of proteomic data, available through tandem MS, could

significantly enhance genome validation and annotation

efforts. Coverage of proteogenomics data is set to increase as

continually improving methods and instrumentation allow for

deeper proteome sequencing, offering the validation and discov-

ery of more genes and splice isoforms.

Figure 8. (A) MS PSMs allow the annotation of OTTMUST00000089966, for which there is no full-
length transcriptional support. (B) Focus on the 2664-bp exon of this transcript. Exons of this length are
uncommon and are problematic for manual annotation. Translation of this exon is shown, with the
positions of four PSMs that cover this exon highlighted in yellow.
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Methods

MS/MS data

This study is based on 10,465,149 tandem MS spectra, where

729,583 spectra were obtained from in-house experiments on nu-

clear protein extracts of murine embryonic stem cells and murine

brain membrane fractions. These data sets have been submitted to

the PRIDE database with accession numbers 15297, 15298, and

15299.We obtained 9,735,566 spectra from the PeptideAtlas project

(Mus musculus, Feb. 2009 data snapshot, http://www.peptideatlas.

org/repository/). Data were not associated with any publication re-

cords, but associated metadata show the sampling of various tissues

of themouse such as the brain, liver, lung, heart, kidney, testes, and

placenta (Supplemental Table 2).

GenoMS-DB database construction

Details of search database construction are given in Figure 1 and

Supplemental Text 1. Briefly, gene products from Ensembl, Vega,

and IPI were digested in silico, stored into the GenoMS-DB data-

base, and exported for Mascot analysis. The Ensembl Perl API was

utilized to capture the peptide-genomemapping into the database

during this process to enable subsequent analysis. Additionally,

gene product predictions from Augustus predictions were simi-

larly processed through the database to provide a second Mascot

database for use in this two-stage search strategy.

Data processing and database searching

with Mascot and Mascot Percolator

In-house LTQ-FT- and LTQ-FT Ultra

(Thermo Fisher Scientific)–generated MS

raw data files were processed to peak lists

with BioWorks (version 3.2 and 3.3;

Thermo Fisher Scientific). Processing pa-

rameters were identical to those used by

Brosch et al. (2009).

All MS peaklist data (in-house and

PeptideAltas) were searched with Mascot

and post-processed with Mascot Percola-

tor (1.09, default settings) using Percola-

tor version 1.12. For this, each peaklist file

was searched against both target and de-

coy databases using an enzyme setting

that is compatible with the custom-made

peptide-centric search databases; there-

fore, the artificial amino acid J was in-

troduced under the Mascot config file

that defines the amino acid masses. J was

set to amass that does not correspond to a

naturally occurring amino acid, e.g., 300

Da. The enzyme was set to cut at the

N- and C-terminal of the peptide, thereby

only fully tryptic peptides that were sep-

arated by ‘‘J’’ were searched with Mascot.

Distributed Annotation System

Using the Perl-based Proserver (Finn et al.

2007), a Distributed Annotation System

(Dowell et al. 2001) (DAS) feature server

was implemented that allows the identi-

fied peptides stored in the GenoMS-DB

database (Fig. 1) to be visualized as tracks

in various genome browsers and curation

tools. Meta-information for each peptide

is provided in the form of, not exhaustively, scoring statistics

(q-value, log transformed PEP value), uniqueness of the peptide

within the genome, experiment, Mascot search log ID, etc. The

uniqueness, together with the PEP value, is color-coded, so it is very

easy to visually validate whether a peptide is unique to a genomic

location and is also significant. TheDASdata source canbe accessed at

http://www.sanger.ac.uk/research/publications/supp-info/ms-data/.

Manual annotation

MS PSMs overlapping annotated loci were annotated based on

current HAVANA annotation guidelines (http://www.sanger.ac.

uk/research/projects/vertebrategenome/havana/assets/guidelines.

pdf ). For loci unsupported by existing annotation, an annotation

hierarchy of RT-PCR > species-specific transcriptional support >

rodent specific transcriptional support > strong mammalian con-

servation > paralogous gene transcriptional evidence was used for

aiding annotation (Table 1).

Translated pseudogenes

The parent of each mouse translated pseudogene identified was

selected in a two-step process. First, parents were assigned by ho-

mology scoring of the putative translation of the processed pseu-

dogene object against the SWISS-PROT data set using the current

HAVANA annotation guidelines. Second, as an additional check,

Figure 9. (A) Two canonically splicingMS PSMs support the annotation of coding isoforms of amouse
Ppia processed pseudogene locus (OTTMUST00000018507). (B) Clustal alignment of parent PPIA
protein (SWISS-PROT P17742), translations of both coding isoforms of the mouse Ppia processed
pseudogene, and the putative translation of the pseudogene object. Residues of the coding isoforms
that are covered byMS evidence are highlighted yellow. Residues of the parent polypeptide that are part
of known domains are shown by colored boxes above the alignment.
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each of the PSMs aligning to the pseudogenic loci were individ-

ually assigned to a parent mouse protein by aligning to the com-

plete UniProt database using the hidden Markov model–based

program HMMER. In all cases, the same parent mouse protein was

assigned to each of our translated pseudogene loci using both

strategies.

Genes orthologous to these parent mouse proteins were

identified using the orthologous gene identifying application of

the Ensembl website (http://www.ensembl.org/Mus_musculus/

Gene/Compara_Ortholog?g=). Parent proteins were aligned with

the putative translations of the translated pseudogene loci using

the online ClustalW2 application available at the website of the

European Bioinformatics Institute (EBI; http://www.ebi.ac.uk/

Tools/clustalw2/index.html). The identification of domains within

these translations andparent proteinswas aidedby the InterProScan

application, another tool of the EBI website (http://www.ebi.ac.uk/

Tools/InterProScan/).
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