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Shotgun sequencing of honey DNA 
can describe honey bee derived 
environmental signatures and the 
honey bee hologenome complexity
Samuele Bovo1, Valerio Joe Utzeri1, Anisa Ribani1, Riccardo Cabbri2 & Luca Fontanesi1 ✉

Honey bees are large-scale monitoring tools due to their extensive environmental exploration. In their 

activities and from the hive ecosystem complex, they get in close contact with many organisms whose 

traces can be transferred into the honey, which can represent an interesting reservoir of environmental 

DNA (eDNA) signatures and information useful to analyse the honey bee hologenome complexity. In 

this study, we tested a deep shotgun sequencing approach of honey DNA coupled with a specifically 
adapted bioinformatic pipeline. This methodology was applied to a few honey samples pointing 

out DNA sequences from 191 organisms spanning different kingdoms or phyla (viruses, bacteria, 
plants, fungi, protozoans, arthropods, mammals). Bacteria included the largest number of species. 

These multi-kingdom signatures listed common hive and honey bee gut microorganisms, honey bee 
pathogens, parasites and pests, which resembled a complex interplay that might provide a general 

picture of the honey bee pathosphere. Based on the Apis mellifera filamentous virus genome diversity 
(the most abundant detected DNA source) we obtained information that could define the origin of the 
honey at the apiary level. Mining Apis mellifera sequences made it possible to identify the honey bee 

subspecies both at the mitochondrial and nuclear genome levels.

Traditional biomonitoring approaches used to obtain information on living organisms for ecological and epide-
miological studies are based on appropriately designed sampling strategies that rely on the direct identi�cation 
and collection of biological specimens from the organisms under investigation in a de�ned area or context1. �ese 
approaches have several limits, including the di�culties of reaching remote locations and impervious places and 
the prohibitive sampling costs, particularly when many data points and complete inventories of the organisms are 
needed. �e analysis of environmental DNA (eDNA)2 coupled with high-throughput sequencing (HTS) technol-
ogies has revolutionized this �eld of investigation, overcoming these problems and limitations3,4 and increasing 
precision and detection sensitivity, compared to traditional approaches5,6.

Honey bees are unique large-scale monitoring tools due to their extensive foraging activities and environ-
mental exploration7,8. Honey bees get into direct contact with the environment in which they live and bring into 
their hives, and in turns into the honey, environmental contaminants and traces7,9. �erefore, honey bee activities 
de�ne several features of the honey they produce, making this hive product an interesting collector of eDNA 
signatures10. Honey contains eDNA traces that derive from the pollen, from insects (including the honey bees 
that produced it), viruses, fungi and bacteria that characterize the hive microbial environment and the honey bee 
hologenome11. �is information can be used for honey authentication, determining its entomological, botanical 
and geographical origin12–21. Moreover, this DNA can be used to obtain information related to the honey bee 
pathosphere22. �us far, honey eDNA has been studied using mainly PCR based metabarcoding approaches cou-
pled to HTS12,14–17. �ese approaches have as main disadvantage of studying only a targeted fraction of DNA, that 
might also be biased by uneven DNA ampli�cation across organisms23,24. Although multiple primer sets targeting 
di�erent genome regions could be used to overcome these problems14,25, shotgun sequencing of all DNA, without 
any preliminary selection, has the potential to better describe the taxonomic complexity26,27, being an untargeted 
and a PCR-free approach.
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Shotgun metagenomics or all DNA shotgun sequencing have been applied to describe viromes and bacteri-
omes communities for several di�erent applications28,29 or eukaryotic unicellular and multicellular complex com-
munities30–41. �ese studies faced the challenging interpretation of the sequencing data, considering that for many 
organisms the complete genome is not available. In addition, a full characterization of eDNA is possible only if 
sequencing e�orts (i.e. sequencing depth) saturate the whole spectrum of contributing organisms. Unfortunately, 
this issue represents an unsolved question as sample origin is not always available and metagenome complexity is 
not trivial to estimate. Moreover, high computational e�orts would be needed to process millions of sequencing 
reads against heterogeneous references. We recently tested the use of a sparse shotgun metagenomic sequenc-
ing approach to describe the multi-kingdom signature present in the honey DNA10. Computational e�ort was 
proportional to the limited number of sequenced reads (hundreds of thousands), that however were enough 
to detect interesting signatures from arthropods, plants, fungi, bacteria and viruses characterizing the analysed 
honey samples10.

In this methodological study, we applied for the �rst time a high depth shotgun sequencing approach of honey 
DNA, combined with a speci�cally designed bioinformatic pipeline, to describe in more detail the complex eco-
systems of the honey bee colony superorganism using its agroecological recovered DNA. Sequence data were 
mined at di�erent levels, taking advantage from the high sequencing depth that made it possible to recover and 
reconstruct information that would not be possible otherwise. Compared to our sparse sequencing approach10, 
deep sequencing highlighted three major advantages. First of all, the high depth allowed to strengthen the estima-
tion of taxa abundances. Second, it was possible to capture the within organism genetic diversity that opened the 
possibility to di�erentiate honey produced from di�erent apiaries, as in the case of the Apis mellifera Filamentous 
Virus. Last but not least, by capturing and analysing sequence information derived from the honey bee mitochon-
drial and nuclear genomes it made it possible to identify the Apis mellifera subspecies that produced the honey. 
�e obtained results provided new insights on the honey bee hologenome complexity that might be useful for 
many di�erent applications.

Methods
Honey samples, DNA extraction and sequencing. �ree poly�oral honey samples (herea�er referred 
to as HB9, HB12 and HB13) were collected in 2018 directly from three honeycombs, each from a di�erent appar-
ently healthy colony. HB9 was from an apiary in the province of Bologna (Emilia-Romagna, Italy). HB12 and 
HB13 were from another apiary in the province of Modena (Emilia-Romagna, Italy). Honeycombs were immedi-
ately frozen at −80 °C till DNA extraction. For DNA isolation, honeycombs were slowly defrosted at room tem-
perature. �en, honey was separated from the honeycomb using a gravimetric method at room temperature that 
included a �ltering step to eliminate residual materials. Honey was then immediately used for DNA extraction, 
following the protocol previously described15–17. Brie�y, honey samples have been pre-treated adding ultrapure 
water in 50 g of starting material divided in four aliquots of 12.5 g. A�er vortexing and incubating at 40 °C for 
1 minute in order to melt the sugars, the tubes were centrifuged at 5000 g at room temperature for 25 minutes. 
�e resulting supernatant was then discarded and 5 mL of ultrapure water were added in each tube and then the 
content of the four tubes was merged in a single 50 mL tube. A second centrifugation at 5000 g for 25 minutes at 
room temperature followed and the supernatant was discarded. �e resulting pellet was resuspended in 0.5 mL of 
ultrapure water and transferred in a 1.5 mL tube containing about 12 glass beads (500 µm) and vortexed for 3 min. 
�e sample was the transferred in a new 1.5 mL tube removing the beads and stored at 4 °C. DNA extraction was 
performed using 1 mL of CTAB bu�er [2% (w/v) cetyltrimethylammoniumbromide; 1.4 M NaCl; 100mMTris-
HCl; 20 mM EDTA; pH 8], with the addition of 5 µL of RNase A solution (10 mg/mL) and 30 µL of proteinase 
K solution (20 mg/mL). Tubes were then incubated at 65 °C for 90 minutes mixing gently, and centrifuged for 
10 minutes at 16000 g. A total of 700 µL of the obtained supernatant was transferred in a new tube containing 
500 µL of chloroform/isoamyl alcohol (24:1) solution, vortexed for 30 seconds and then centrifuged at 16000 g for 
15 minutes at room temperature. �e supernatant was transferred in a new 1.5 mL tube and the DNA was isolated 
and puri�ed in two steps, with isopropanol and then ethanol 70%. DNA was �nally resuspended with 30 µL of 
sterile H2O and stored at −20 °C.

Extracted DNA was quality checked with a TBE 1% agarose gel and the concentration was measured using 
Qubit 2.0 �uorimeter (�ermo Fisher Scienti�c, Waltham, MA USA). �is quality control analysis evidenced 
that the extracted DNA from all honey samples was degraded, as expected, con�rming previous evaluations10,15.

�ree genomic libraries were constructed and sequenced on a BGISeq500 machine, following the provider’s 
protocol, obtaining paired-end reads of 100 bp in length with an inner distance of 170 bp. Data were quality 
checked using FASTQC v.0.11.7 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). No other �lter-
ing procedures were adopted.

Metagenome assembly and taxonomic assignment of sequenced reads. Reads were assembled 
with MEGAHIT v.1.1.342 with default parameters except the “meta-large” option that forced the usage of a k-mer 
list equal to 27,37,47,57,67,77,87. A three-metagenome co-assembly was generated.

Three different annotation resources were used for taxonomic assignment: (i) the National Center for 
Biotechnology Information nucleotide database (NCBI nt43, downloaded from �p://�p.ncbi.nlm.nih.gov/blast/
db/FASTA/nt.gz; ~50 million entries; August, 2019), (ii) the HoloBee database v2016.1, section HoloBee-MOP (69 
entries), comprising mostly of chromosomal, mitochondrial and plasmid genome assemblies and aggregating as 
much honey bee holobiont genomic sequence information as possible (HB_Mop_v2016.144; https://data.nal.usda.
gov/dataset/holobee-database-v20161) and (iii) a custom database that comprised the A. mellifera Amel_HAv3.1 
reference genome (GCF_003254395.2) and the latest version of the genome of several honey bee enemies, para-
sites and pathogens as retrieved from the NCBI Genome database [Aethina tumida (GCF_001937115.1), Galleria 
mellonella (GCF_003640425.1), Varroa desctructor (GCF_002443255.1), Ascosphaera apis (GCA_001636715.1), 
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Nosema apis (GCA_000447185.1), N. ceranae (GCF_000988165.1), Crithidia melli�cae (GCA_002216565.1), 
Lotmaria passim (GCA_000635995.1), Melissococcus plutonius (GCF_004001225.1), Paenibacillus larvae 
(GCF_002951935.1) and Apis mellifera Filamentous Virus (GCF_001308775.1)]. BLAST + v.2.7.145 (algorithm 
blastn, default parameters) was used to align assembled DNA sequences (commonly called contigs) on the 
sequence databases. For each assembled contig, we retained all the alignments presenting an E-value ≤ 0.01, 
sequence coverage ≥ 50% and a sequence identity ≥ 75%. �ese settings followed our previous work10 as a grid 
search here performed did not point out any optimal threshold in sequence coverage and identity. Moreover, 
coverage was lowered to 50% to account for assembly errors and database incompleteness. For contigs present-
ing more than one alignment over di�erent entries, we considered the whole set of hits presenting statistics (i.e. 
sequence coverage, sequence identity and E-value) equal to the top one (lowest E-value). Taxonomic assign-
ment followed then the Lowest Common Ancestor (LCA) approach considering the organismal division pro-
vided by GenBank (i.e. Bacteria, Primates, Rodents, Other mammals, Other vertebrates, Invertebrates, Plant and 
Fungi, Viruses, Phages, Structural RNA sequences, Synthetic and chimeric sequences, Unannotated sequences)46. 
�e LCA procedure was implemented in Python 2.7 by using the graph library NetworkX v.2.0 (https://net-
workx.github.io/). Lastly, we considered as reasonably annotated contigs presenting the above reported statistics 
(E-value ≤ 0.01, coverage ≥ 50% and identity ≥ 75%) while interrogating the databases in the following order: 
NCBI nt, HB_Mop_v2016.1 and our custom database.

Reads were mapped back on the assembled contigs with BWA-MEM tool v.0.7.1747 (default parameters) to 
quantify the abundance of each detected taxon. �e number of mapped reads and the depth of sequencing of each 
contig was computed for each sample, separately. Figure 1 describes the �owchart of the bioinformatic pipeline 
used to characterize sequencing data obtained from the analysed honey samples, with information from the sub-
sequent speci�c bioinformatic descriptions and statistical analyses.

Assessing genetic diversity of Apis mellifera Filamentous virus populations. As Apis mellifera 
Filamentous Virus (AmFV) had the genome with the highest depth of sequencing in all three honey samples, 
sequence data for this virus were further analysed. Reads were re-mapped on the AmFV genome with BWA, 
discarding reads presenting a mapping quality lower than 20. SAMtools v.1.748 (default parameters) was used to 
call biallelic single nucleotide polymorphisms (SNPs). Only SNPs having at least three reads for the alternative 
allele were retained for further analyses. �is approach is commonly accepted to discard sequencing errors and as 
a quality control approach48. For each honey sample and for each polymorphic site, alternative nucleotide (allele) 
frequencies were estimated by counting the number of reads having the two alternative forms. Genetic distance 
between pairs of AmFV populations (i.e. obtained from two di�erent honey samples in pairwise analysis) was 
estimated by computing Fixation index (FST) values for each detected SNP, as described by Karlsson et al.49. For 
each comparison, the FST values were computed and averaged over the interrogated SNPs. Pipelines were devel-
oped in Python 2.7.

Figure 1. Flowchart of the bioinformatic pipeline used to characterize the hologenome and environmental 
signature of the honey bee colony superorganism detected from honey DNA. Steps are as follows: (1) assembly 
of sequenced reads via MEGAHIT; (2) taxonomical assignment via BLASTN; (3) remapping of sequenced reads 
over the assembled contigs in order to (4) quantify the detected organisms; (5) mapping of sequenced reads via 
BWA over the Apis mellifera reference genome; (6) detection of genome variants; (7) subspecies identi�cation 
through inspection of the mitochondrial DNA (mtDNA; method described by Utzeri et al.15; (8) subspecies 
identi�cation via inspection of nuclear single nucleotide polymorphisms (SNPs; panel proposed by Muñoz 
et al.60); (9) mapping of sequenced reads via BWA over the Apis mellifera �lamentous virus; (10) detection of 
genome variants; (11) estimation of virus diversity (Fixation index computation).
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Comparative taxonomic analyses of sequencing data. Sequencing e�orts were evaluated by means 
of rarefaction curves. Brie�y, for each honey sample the average number of taxa was plotted as a function of the 
percentage of remapped reads, randomly sampled without replacement. Ten di�erent sets of randomly sampled 
reads were used to compute the average number of the detected taxa.

To take in to account the compositional nature of the data (reads counts have an arbitrary total imposed by the 
instrument), the centered log-ratio (clr) transformation was applied to each pro�le as = = …x yclr y y( ) ( , , )
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Equally abundant organisms were detected by computing the signed version of the coe�cient of variation as 
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, where, for the ith organism, σi and |µi| represent the standard deviation and the absolute value 

of the mean. Organisms having a CV% < 10 were considered equally abundant.
Similarity analysis and coe�cients of variation were computed in R 3.6.054.

Mining metagenomic data to extract information on the subspecies of Apis mellifera. To fur-
ther test the usefulness of the sequencing data, obtained reads were evaluated to extract information that could be 
used to assign organisms at the subspecies level. Within the A. mellifera species, lineages have been �rst de�ned 
at the morphological level; followed DNA based classi�cation schemas that relied on mitochondrial DNA and 
more recently on nuclear DNA. �ese approaches were then combined to de�ne sub-species features55–61. �e 
A. mellifera mitochondrial lineage was initially detected in silico by analysing the mitochondrial DNA (mtDNA) 
informative region used in the PCR based assay developed by Utzeri et al.15. Brie�y, the mtDNA haplotype varia-
bility of the mitochondrial genome region NC_0015661:3363–3447 was inspected to discriminate the A, C and M 
honey bee lineages. �e in silico read-based analysis was followed by the PCR analysis carried out using an aliquot 
of the same DNA extracted from the three honey samples used as template. �is in vitro analysis was carried out 
by applying the protocol described by Utzeri et al.15.

�en, we attempted the mining of A. mellifera subspeci�c nuclear DNA information extracted from the 
metagenome. In this approach, we made use of: (i) a set of 144 ancestry-informative marker SNPs proposed by 
Muñoz et al.60 and (ii) allele frequencies (AF) for 117 of these SNPs provided for di�erent A. mellifera subspecies 
and populations (A. m. carnica, A. m. ligustica, A. m. mellifera, Buckfast, di�erent hybrids and arti�cial DNA pools 
of DNA from di�erent subspecies) by the works of Muñoz et al.60 and Henriques et al.62. BLAST+ was used to 
locate SNPs on the latest version of the A. mellifera reference genome (Amel_HAv3.1; downloaded from the NCBI 
resource) by mapping the related DNA probes. We considered properly mapped nucleotide probes presenting a 
sequence identity >97% and an E-value <0.01. DNA probes mapping on two or more genome positions were 
discarded (no. = 0). Transversions (GC ↔ CG and AT ↔ TA) were further discarded (no. = 11)63. We obtained 
a dataset of 106 SNPs and AFs available for the 22 honey bee populations/pools reported in Muñoz et al.60  
and Henriques et al.62 (Supplementary Table S1). SNPs were further evaluated mining the sequenced reads as 
follows: (i) reads were mapped with BWA-MEM (default parameters) on the Amel_HAv3.1 genome, (ii) dupli-
cated reads were removed with Picard v.2.1.1 (https://broadinstitute.github.io/picard/) and (iii) properly paired 
reads presenting a mapping quality Q > 20 were used for SNP calling with SAMtools. In each sample, AFs were 
estimated counting the number of reads presenting the reference and the alternative allele.

Identi�cation of the A. mellifera subspecies was carried out measuring the genetic distance between the ana-
lysed samples and the di�erent populations/pools used as references and retrieved from the study of Muñoz  
et al.60. Brie�y, vectors of AFs were used to compute a dissimilarity matrix D in which each value represents the 
Euclidean distance d between two populations, computed as = ∑ −=p qd q p( , ) ( )i

n
i i1

2 , where p and q are vec-
tors of AFs of dimension n = 106. Allele frequencies were studied with a heatmap, in which the D matrix was 
exploited to perform hierarchical clustering (Ward’s distance was used) and multidimensional scaling (MDS). �e 
subspecies attributed to the A. mellifera DNA retrieved from the honey metagenome was the one presenting the 
lowest Euclidean distance. In a second approach, in order to deal with uncertainty in frequency estimation, we 
shrank to AF = 0.5 those AFs presenting a value di�erent from zero or one. Reliability of these two approaches 
was assessed by measuring the trend to endow random samples (no. = 10,000) with a speci�c A. mellifera subspe-
cies. In each random sample, the AF of the ith SNP was sampled (with replacement) from the related AF distribu-
tion based on the 22 populations/pools of Muñoz et al.60 and Henriques et al.62.

Analyses were carried out in R by using the function dist, heatmap.2 and cmdscale, for distance, heatmap/
clustering and MDS computation, respectively.

Results
Sequencing data, metagenome assembly and taxonomic assignments. �e number of reads that 
has been obtained and then considered for this shotgun DNA sequencing analysis of the investigated honey sam-
ples is reported in Table 1. We produced a total of 90,941,469 of 100-bp length read pairs, with an average number 
per sample of ~30.3 million of read pairs.

Reads were assembled with MEGAHIT into 341,370 contigs, for a total 417,127,619 assembled DNA bases. 
Contig size ranged from 200 bp to 251,782 bp, with an average size of 1,222 bp. �e N50 parameter (length of the 
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median contig, representing the length of the smallest contig at which half of the assembly is represented64) was 
equal to 3,156 bp. Figure 2A reports the distribution of assembled contig length.

We taxonomically annotated a total of 94,179 contigs (28%) as following: (i) 6,451 considering the NCBI 
nt resource, (ii) 25,630 based on the HoloBee-MOP resource and (iii) the remaining 62,098 through the cus-
tomized database containing the sequence of several relevant genomes, as described in Materials and methods. 
Figure 2B shows the percentage of annotated contigs using the di�erent database resources. �e LCA algorithm 
was applied to solve taxa assignment of 1,537 contigs (1.6%). Annotated sequences ranged from 200 up to 180,460 
nucleotides.

Re-mapping reads on assembled contigs. A total of 172,548,370 single reads, representing ~95% of the 
whole set of sequenced reads, was mapped back to the assembled contigs (Table 1). �is percentage decreased to 
49–67% for the three samples (no. of reads = 106,603,300) when considering only annotated contigs (Table 1). 
Rarefaction curves reached the plateau for all the three analysed samples (Supplementary Fig. S1).

�e average read depth of the 341,370 assembled contigs was in the range 0.08× – 144,366× (median = 
4×). Reads were not mapped back for 8 contigs. Considering only the 94,179 annotated contigs (Supplementary 
Table S2), read depth ranged from 2× to 1,865×, for Crithidia melli�cae (a trypanosomatid parasite of A. mellif-
era) and Apis mellifera Filamentous Virus (an almost ubiquitous virus with mild or not yet completely de�ned 
pathogenetic e�ects on honey bees65,66), respectively.

Identification of the most represented organisms. Contigs were assigned to a total of 191 organisms 
spanning di�erent classes of the GenBank organismal division46 (Table 2; Supplementary Table S2). About 55% of 
them presented at least one contig with sequence identity (SI) > 90%, ~42% had at least one contig with SI ≥ 95% 
whereas ~20% was annotated only with contigs having SI < 80% (Supplementary Table S2).

Considering the number of di�erent organisms representing each organismal division46, the most represented 
taxonomical class was Bacteria (no. = 142; 74%) followed by Plants and Fungi (no. = 26; 14%) and Invertebrates 
(no. = 17; 9%). �e remaining 6 organisms (3%) encompassed other taxonomical groups (Environmental sam-
ples, Phages, Rodents, non-Rodent Mammals and Viruses). Based on the number of remapped reads, Bacteria 
represented 47% of all annotated reads, followed by Viruses (29%) and Invertebrates (23%, see also below). For 
about 72% of cases, organisms were assigned at least at the level of species (~37% of them presented at least one 
contig with SI ≥ 95%) whereas for 19% of the taxonomical assigned elements, a lower taxonomical rank was not 
indicated (Supplementary Table S2). Relative abundance of the di�erent groups at the family levels(is presented 
in Fig. 3.

IDa

No. of reads

Sequenced Mapped (%)b Annotated (%)c

HB9 60,882,286 57,852,111 (95%) 40,547,256 (67%)

HB12 60,247,576 56,323,607 (93%) 29,737,907 (49%)

HB13 60,753,076 583,72,652 (96%) 36,318,137 (60%)

Table 1. Sequenced, aligned and annotated reads from the analysed honey samples. aHoney sample internal 
identi�cation number. bNo. of reads mapped back on the assembled contigs. Percentage is given in relation to 
sequenced reads. cNo. of reads mapped back on the annotated assembled contigs. Percentage is given in relation 
to sequenced reads.

Figure 2. (A) Contig length distribution (data are presented in Log10 scale). (B) Contigs annotated with the 
di�erent reference databases.
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�e taxonomic similarity among samples was assessed using the centered log-ratio transformed read counts. 
�e Aitchison’s distance was equal to 14.3, 14.8 and 9.2 for HB9 vs HB12, HB9 vs HB13 and HB12 vs HB13 
comparisons respectively, denoting a marked similarity between the samples HB12 and HB13. �is similarity 
was also con�rmed by means of the proportionality coe�cient ρ, which ranges from −1 (perfect reciprocality) 
to +1 (perfect proportionality)50. Values were equal to 0.71, 0.63 and 0.87 for HB9 vs HB12, HB9 vs HB13 and 
HB12 vs HB13 comparisons, respectively. �e relationship of read counts between honey samples is shown in 
Supplementary Fig. S2.

Invertebrates. �e group Invertebrates de�ned in the GenBank classi�cation includes two main taxonomic 
groups (Arthropoda and Euglenozoa). Within the Invertebrates group (Supplementary Table S2), the genus 
Apis had the largest number of mapped reads. �is genus accounted for about 23% of the total sequenced reads 
and 98% of all reads assigned to arthropods. A. mellifera contigs, with an average sequence identity (SIM) to the 
Amel_HAv3.1 reference genome greater than 98.5%, accounted for 99.5% of all reads assigned to the genus Apis. 
�e remaining 0.5% included reads matching A. cerana, A. dorsata, A. �orea, A. cerana cerana and A. m. carnica 
sequences. Other species of the Apoidea superfamily were captured by this shotgun analysis, such as Habropoda 
laboriosa, Bombus impatiens, B. terrestris and Megachile rotundata. However, those organisms were probably 
identi�ed due the high homology of their genome with parts of the A. mellifera genome (SIM < 98%).

IDa

No. of reads

Bacteria
(no. = 142)b

Plants and Fungi
(no. = 26)

Invertebratesc

(no. = 17)
Viruses
(no. = 1)

Phages
(no. = 2)

Mammalsd

(no. = 1)
Rodents
(no. = 1)

Other5

(no. = 1)

HB9 16,410,099 23,251 22,579,998 1,533,252 166 18 262 210

HB12 19,049,125 62,172 1,684,216 8,939,626 582 111 2,004 71

HB13 14,830,345 22,008 543,139 20,911,867 9,996 356 261 165

Total 50,289,569 107,431 24,807,353 31,384,745 10,744 485 2,527 446

Table 2. Number of reads obtained for the analysed honey samples belonging to the di�erent taxonomical 
levels (de�ned following the organismal division provided by GenBank). aHoney sample internal identi�cation 
number. bNo. of detected organisms. cGenBank group that also includes arthropods and protozoan species46. 
dNon rodent mammals46. eEnvironmental samples46.

Figure 3. Heatmap of the relative abundance (centered log-ratio transformed read counts) of the di�erent 
families recovered from the metagenome sequencing of the three analysed honeys. Data are strati�ed by 
organismal class and ordered using the reference values of honey sample HB9.
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Sequencing reads identi�ed also other arthropods and a few trypanosomatids (Euglenozoa) presenting a SIM 
value in the range of 85–95% and including honey bee parasites and pests such as Varroa destructor (the most 
important honey bee parasite), Aethina tumida (the small hive beetle, which is a free-living predator and scav-
enger a�ecting bee populations) and Galleria mellonella (the greater wax moth or honeycomb moth), among the 
Arthropoda, and Lotmaria passim and Crithidia melli�cae, among the Euglenozoa.

Plants and Fungi. Betula pendula was the plant species presenting the largest number of mapped reads (4.5% 
of the total realigned reads; SIM > 97.5%). Several other plant species belonging to di�erent plant families were 
identi�ed with a certain degree of sequence identity (Supplementary Table S2). Among the most represented fam-
ilies, we had Fabaceae with several species of the genus Medicago (SIM in the range 90–98%), Malvaceae with the 
Bombax ceibe species (SIM > 92%), Rhamnaceae with the Ziziphus jujube (SIM > 92%) and Rosaceae represented 
by several species of the genus Prunus (SIM in the range 95.5–99.6%).

Six different species of fungi (Aspergillus flavus, Sclerotinia sclerotiorum, Rhynchosporium orthosporum, 
Aspergillus japonicus; Penicillium sp. ShG4C and Ascosphaera apis; Supplementary Table S2), classi�ed as patho-
gens for either honey bees or for plants or humans, were detected. Penicillium species might play also a bene�cial 
role due to their potential antimicrobial productions. �eir degree of SIM ranged from 84% to 98%. Ascosphaera 
apis, the agent of the chalkbrood disease, accounted for the largest number of assembled contigs (no. = 48) and 
mapped reads (about 40,000) among all fungi. Aspergillus �avus, the agent of the stonebrood disease, was the 
second most represented fungus species (Supplementary Table S2).

Bacteria. A total of 142 taxa were identi�ed within the Bacteria (Supplementary Table S2), representing 24 
di�erent bacterial families. For sake of clarity, we will now present the most represented bacterial organisms by 
dividing them into three di�erent categories: honey bee non-pathogenic cobiont bacteria, honey bee pathogenic 
cobiont bacteria and other bacteria that are part of the honey bee hologenome complex11.

Honey bee non-pathogenic cobiont bacteria. Lactobacillus represented the most abundant genus among 
the detected bacteria (88% of the bacterial reads), with the largest part of reads assigned to the environmen-
tal non-pathogenic cobiont species Lactobacillus kunkeei). Followed the genus Gilliamella (2% of the bacterial 
reads), with the largest part of reads assigned to G. apicola, another gut symbiont of honey bees. Several other 
non-pathogenic bacterial cobionts included Frischella perrara, Snodgrassella alvi, Bi�dobacterium asteroids, 
Parasaccharibacter apium, Leuconostoc mesenteroides and Rahella aquatilis.

Honey bee pathogenic cobiont bacteria. Several other bacteria, recognized as honey bee pathogens, were detected 
in all honey samples. �ese included Melissococcus plutonius (the aetiological agent of the European foulbrood 
disease), Paenibacillus larvae (determining the American foulbrood disease), Hafnia alvei (one of the most fre-
quently recovered members of the family Enterobacteriaceae in the gastrointestinal tract, component of the nor-
mal fecal honey bee microbiota and in some cases shown to have pathogenetic roles in infections), Spiroplasma 
melliferum and S. apis (two pathogenic spiroplasmas detected in honey bee colonies showing di�erent disease 
symptoms, including “May disease” for S. apis67).

Other bacteria. �e genus Acinetobacter accounted 29 di�erent species (15.0% of the bacterial reads), even if 
their identi�cation seems not so reliable since the SIM was in the range 75.0–87.0%. �e genus Spiroplama (SIM 
in the range 76.0–99.8%) accounted for the 1.4% of the bacterial reads. Within this genus we detected the above 
mentioned honey bee pathogens S. melliferum and S. apis and several plant pathogens including S. citri, S. phoe-
niceum and S. kunkelii, and S. diminutum. Arsenophonus nasoniae, the son-killer bacterium of the parasitic wasp 
Nasonia vitripennis, was the third most represented bacteria detected in this study (SIM.= 93%). As fourth most 
abundant bacteria (4.8% of the bacterial reads), we detected Serratia symbiotica (SIM = 98.81%), a symbiont of 
aphids. Other bacteria including potential human pathogens were detected with SIM > 96%, such as the genus 
Cedecea and Klebsiella.

Viruses. Analysis of sequenced reads detected only one virus and one phage: (i) the Apis mellifera Filamentous 
Virus (AmFV)65 whose genome was highly covered and with the highest depth of sequencing among all organ-
isms detected in this study and (ii) the Spiroplasma phage SVTS2, an SpV1-like plectrovirus of Spiroplasma mel-
liferum, with rods with single-stranded circular DNA68. AmFV represented the second most abundant detected 
organism (about 29% of annotated reads). Its genome was almost fully covered (>99.6%) with an average 
sequence depth equal to 302×, 1740× and 4120× for the honey samples HB9, HB12 and HB13, respectively. 
�e AmFV genome was characterized by the presence of 9,679 biallelic polymorphisms (~1.9% of the genome). 
Genetic diversity between pairs of AmFV populations (derived by the di�erent honey samples) was investigated 
using the FST index (Supplementary Table S3). �is analysis highlighted high similarity between the two honey 
samples collected from the same apiary (HB12 and HB13; FST = 0.007) and diverged largely for the HB9 sample 
(FST = 0.028 in the comparison with HB12; FST = 0.062 in the comparison with HB13). Figure 4 summarizes the 
selection signature regions identi�ed in the three pairwise comparisons further describing the similarity/diversity 
reported above. In each comparison a total of ten SNPs was detected as outliers (considering the 99.9th percentile). 
�ese SNPs were mainly located in intergenic regions (genic regions: AmFV_004, AmFV_0044, AmFV_106, 
AmFV_0111, AmFV_0158).

Identification of equally abundant organisms across honey samples. To further characterize the 
honey DNA metagenomic data of the analysed samples, we identi�ed which organisms could be considered 
equally abundant across samples. A total of ten organisms were detected to be equally abundant (CV% < 10.0) 
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(Table 3), all belonged to Bacteria. Among them, the pathogen M. plutonius had the lowest CV% (4.7%). �e top 
10 list contained several honey bee gut symbionts and common microorganisms of the honey bee gut microbi-
ota69. �ese bacteria included: (i) the Actinobacterium Bi�dobacterium asteroides, commonly found in the gut 
of adult workers37,70, even if not at a very high level as other symbionts as also shown by the low number of 
assigned reads (Table 3), (ii) the gammaproteobacterium Frischella perrara, which causes strong activation of the 
host immune system71, (iii) the obligate fructophilic lactic acid bacterium Lactobacillus kunkeei, which has been 
shown to decrease the infection by Paenibacillus larvae and Nosema ceranae72, (iv) Gilliamella apicola, which was 
suggested to confer protective functions against intestinal parasites of the genus Crithidia and to improve dietary 
tolerance by the catabolic action against toxic carbohydrates69,73, (v) Acinetobacter spp., which is a common com-
ponent of the workers gut microbiota74 and (vi) Parasaccharibacter apium, which seems to increase resistance to 
Nosema infection75. In addition to these microbiota components, a match with the bacteria Erwinia gerundensis 

Figure 4. Manhattan plots of the genome-wide Fixation index (FST) analyses between pair of honey samples. 
Each dot represents a single nucleotide polymorphism. (A) HB9 vs HB12; (B) HB9 vs HB13; (C) HB12 vs HB13.

Class Ranka Organism

No. of annotated reads

Read counts clr-transformed read counts

HB9 HB12 HB13 HB9 HB12 HB13 CV%b

Bacteria species Melissococcus plutonius 105,867 100,269 159,306 2.3 2.5 2.3 4.7

Bacteria NA Bi�dobacterium asteroides 
DSM 20089 6 3 12 −2.0 −2.1 −1.9 5.4

Bacteria species Frischella perrara 161,403 128,103 169,719 2.5 2.6 2.3 5.6

Bacteria species Lactobacillus kunkeei 13,121,714 15,232,526 11,376,580 4.4 4.6 4.1 5.9

Bacteria species Gilliamella apicola 370,547 174,546 260,828 2.8 2.7 2.5 6.3

Bacteria species Acinetobacter sp. SWBY1 44 24 87 −1.1 −1.2 −1.0 7.9

Bacteria species Parasaccharibacter apium 14,090 10,745 16033 1.4 1.5 1.3 7.9

Bacteria species Erwinia gerundensis 32 12 34 −1.2 −1.5 −1.4 8.0

Bacteria NA Lactobacillus kunkeei EFB6 927,869 1,160,989 755,840 3.2 3.5 2.9 9.0

Bacteria genus Lactobacillus 565,536 674,736 447,486 3.0 3.3 2.7 9.5

Table 3. Equally abundant organisms (Coe�cient of Variation, CV% < 10) in the analysed honey samples 
(HB9, HB12 and HB13). aLevel in the taxonomic hierarchy. NA indicates that the rank was not de�ned. bSigned 
coe�cient of variation based on the centered log-ratio (clr) transformed read counts. Data are sorted by CV%.
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was identi�ed across all honey samples. �is microorganism belongs to a genus that is usually associated with 
plant pathogens76. It is an epiphyte originally isolated from pome fruit trees but that has been subsequently recov-
ered from di�erent plant hosts in di�erent continents, revealing its cosmopolitan nature76.

Identification of the Apis mellifera subspecies from honey shotgun sequencing data. Two dif-
ferent approaches were used to identify information that, based on shotgun sequencing data generated for each 
honey sample, could be useful to identify the A. mellifera subspecies that produced the investigated honey sam-
ples55. �e �rst approach was based on the analysis of honey bee mitochondrial DNA (mtDNA) information to 
assign the mtDNA lineage of the honey bees55–59. �e second approach relied on the analysis of nuclear genome 
informative regions containing polymorphisms that were already indicated to discriminate di�erent honey bee 
subspecies and hybrid populations60,61.

�e mining of the honey bee mtDNA-assigned sequences followed what was proposed by Utzeri et al.15,  
who developed a simple method based on the length of the amplified mitochondrial genome region 
NC_0015661:3363–3447, which discriminates di�erent honey bee lineages (i.e. A, C and M branches). All the 
three investigated honey samples showed a mtDNA breadth of coverage ≥ 99.7%, with sequencing read depth in 
the range of 24× to 831×. �e inspection of the mtDNA aligned reads from all the three samples detected only 
reads that could be compatible with the A. mellifera C lineage. None of the matching could be compatible with 
the A and M mtDNA lineages. �ese in silico results were also con�rmed by PCR analysis of the honey extracted 
DNA from all three samples using the method described by Utzeri et al.15. �is in vitro method assigned the 
honey samples to the C mitotype, that is the original lineage of the A. m. ligustica subspecies55,56,59.

�e A. mellifera nuclear genome showed more variability in terms of breadth of coverage and sequencing read 
depth derived by the whole DNA shotgun sequencing datasets. �e HB9, HB12 and HB13 honey samples had 
A. mellifera genome coverage and read depth of 98% and 10×, 22% and 0.6×, 8% and 0.4×, respectively. Only 
for the honey sample HB9 it was possible to obtain information for all 106 highly discriminant SNPs of the A. 
mellifera nuclear genome (a �ltered subset of SNPs of the 144 ancestry-informative markers proposed by Muñoz 
et al.60; Supplementary Table S1). For honey samples HB12 and HB13 only 23 and 8 SNP positions could be con-
sidered, respectively (Supplementary Table S1). �erefore, these two latter samples were not further investigated 
for this purpose as the low number of SNPs could not provide enough information for the honey bee subspecies 
allocation of these samples.

Estimated allele frequencies (based on the ratio on the number of reads carrying the two alternative alleles) 
obtained for the 106 selected SNPs were used to cluster the honey sample HB9 with the data available from 
Muñoz et al.60 and Henriques et al.62 obtained from a total of 22 di�erent subspecies or hybrid/synthetic groups 
of A. mellifera (and derived from populations of individually genotyped honey bees or from honey bee DNA 
pools of di�erent subspecies). Based on allele frequency estimates, hierarchical clustering of the whole dataset 
evidenced two groups of honey bee populations (Fig. 5A): the �rst group included A. m. carnica, A. m. ligustica 
and Buckfast bees whereas the second group encompassed the subspecies A. m. mellifera and hybrids/DNA pools 
of honey bees with A. m. mellifera. Dissimilarities among populations were also demonstrated via multidimen-
sional scaling (MDS) (Fig. 5B). Clustering analysis placed the honey sample HB9 close to A. m. carnica and A. 
m. ligustica. However, the inspection of the dissimilarity matrix showed closeness of the honey sample HB9 to 
A. m. ligustica (Supplementary Table S4). Clustering and MDS based on recoded allele frequencies (shrank allele 
frequency method; only three classes were here considered: AF = 0, AF = 0.5 and AF =1) classi�ed the honey 
sample HB9 as A. m. ligustica (Fig. 5C,D). Reliability of these two approaches was assessed by measuring the 
bias of classi�cation by means of random samples. Analyses were run on the whole dataset (22 populations) and 
on a subset comprising only A. m. carnica, A. m. ligustica, A. m. mellifera and Buckfast. Results are reported in 
Supplementary Table S5. In the �rst dataset, classi�cation was biased exclusively toward the admixed/pooled 
populations (using both regular and shrank AFs). Removal of hybrids and DNA pools from the dataset led to 
classify random samples either as A. m. carnica (22.83%, regular AFs; 0.03%, shrank AFs) or as Buckfast (99.97%, 
AFs; 0.03%, shrank AFs).

Discussion
Honey bees have proven to be useful bioindicators to detect, measure and track the source and origin of pollut-
ants in agricultural and urban landscapes8,77. During their foraging and explorations activities, honey bees get 
exposed not only to chemicals but also to the biological components of an environment, whose traces can be 
transferred into the hives and then can be retrieved from the honey, the main hive product7,9,78,79. Honey also con-
tains traces from the hive micro-environmental biological systems, making it an interesting matrix to disclose the 
complex ecological relationships among the external and internal hive environments, the hive pathosphere and, 
at least in part, the honey bee hologenome directly from their related footprints encoded in the honey eDNA10,80. 
Deep sequencing can describe this hologenome, represented by the collective genomes of the holobiont, which 
implicates organismality and mutual interactions with symbiotic relationships11.

A few metagenomic studies have been already focused on honey bees and their ecological biosystems with 
the main aim to characterize the honey bee gut microbiota and the honey bee virome36–41. Our previous study10 
demonstrated that a sparse shotgun metagenomic sequencing approach focused on the honey can disclose a 
multi-kingdom signature that could be used for di�erent applications, including authentication of this product, 
detection of the botanical origin of the honey and description of the pathosphere, among several others10. Deeper 
sequencing analyses in shotgun metagenomic investigations of honey eDNA might have the potential to estimate 
pathogenic indicators of honey bee colonies and this approach could become a standard evaluation tool to be 
applied for this purpose81.

As our previous sparse shotgun approach generated a few hundreds of thousands of reads, it was computation-
ally convenient to design a strategy that relied on supervised binning based on sequence homology to annotate 
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DNA sequences by aligning them to the NCBI nucleotide collection via BLAST82. �is relatively simple approach 
could not be computationally feasible to analyse millions of reads generated by a high sequencing depth. As con-
sequence, the current study adopted a strategy that aimed to reduce the amount of generated data to speed up 
sequence classi�cation. �e approach largely reduced the read set size by assembling them in longer contigs via 
MEGAHIT, an ultra-fast single-node assembler that overcomes the read set size problem via succinct de Bruijn 
graph42. Based on a dual 6-core processor, equipped with 42 GB of virtual memory (RAM), we assembled in less 

Figure 5. Hierarchical clustering (HCLUST) and multidimensional scaling (MDS; C1, component 1; C2, 
component 2) based on regular allele frequencies of the analysed honey bee populations and samples. (A) 
HCLUST and (B) MDS based on regular allele; (C) HCLUST and (D) MDS based on allele frequencies coded 
as 0/0.5/1. Names are as follows: Amm, Apis mellifera mellifera; Amc, Apis mellifera carnica; Aml, Apis mellifera 
ligustica. �e star symbols indicate hybrids populations and DNA pools (P), with related dilution ratio, as 
reported in the original paper by Muñoz et al.60. �e honey sample HB9 is highlighted in red.
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than 24 hours a total of 341,370 contigs, which represented about 95% of the sequenced reads. Contigs were then 
mapped to the reference databases.

However, one of the main drawbacks of the supervised binning approach is that it may rely on the incomplete-
ness of a reference sequence database. �e availability of di�erent sources of annotation increases the probability 
to assign randomly sequenced metagenomic fragments, derived by the honey DNA, to regions of the genome of 
di�erent organisms. Here, to maximize taxonomical classi�cation, we used three di�erent databases. As in our 
previous work10, one was the NCBI nt collection, populated by more than 50 million of DNA sequences encom-
passing all kingdoms of life. Despite this broad coverage, using this database we were able to annotate only ~7% of 
the assembled contigs, encompassing a total of ~5% of all sequenced reads (and ~8% of all mapped reads). �ese 
numbers are much lower than the 66% of sequenced reads that this resource was able to annotate in the previous 
work10. However, this comparison should be carefully handled as di�erent samples were sequenced and di�erent 
computational methods were applied. �e sparse approach investigated mono�oral honeys whereas the current 
study analysed poly�oral honeys. �is further complicates the interpretation of the results as the reads obtained 
in this deep sequencing could be related to many more organisms (plants and they holobionts) that might not be 
represented in the reference database. Moreover, at present, we do not know the variability in sequence annota-
tion for shotgun metagenomics in honey. �en, as di�erent computational approaches were applied, discrepancy 
in number of annotated reads might be explained in part by the fact that we imposed mapping coverage of the 
contigs >50%, a threshold that for longer contigs cannot be achieved when relying only on the partial genome 
information deposited in this database for many organisms. At present the NCBI nt resource does not include 
the complete genome sequence for all organisms that are listed in this database. Moreover, assembly of genome 
sequences is prone to errors (chimerism) that in turn could a�ect mapping statistics.

To overcome at least in part this problem, we relied on the HoloBee database44, a curated database of DNA/
RNA sequences from the honey bee holobiont community. �is resource has been also previously used to char-
acterize the British honey bee metagenome37. �e HoloBee-Mop section of the database helped in the annotation 
of 27% of the assembled contigs, thanks to the availability of full genomes related to one protozoan, two viruses, 
�ve fungi, six metazoan and 55 bacteria44. In addition, through our customized database (that included the ref-
erence genome of several other organisms), we were able to annotate 66% of assembled contigs, that were mainly 
attributed to the A. mellifera and AmFV genomes. However, the genome of most eukaryotic and prokaryotic 
species has not been completely sequenced yet, resulting in a large fraction of reconstructed contigs that could 
not be mapped to a reference genome. Both these honey bee related databases were however used a�er the NCBI 
nt resource was interrogated, to avoid statistical biases that could be derived by the BLAST E-values that largely 
depend by the database size (the size of the HoloBee-MOP database and that of our customized database is much 
lower than the NCBI nt size). We preferred to have false negative calls and abundancy underestimation rather 
than over-estimation of holobionts.

About 26% of our assembled contigs were annotated, leading to a taxonomic pro�le representing 191 organ-
isms which encompassed di�erent groups (kingdoms or phyla): arthropods, plants, fungi, bacteria and viruses. A 
bias might be evident from the limited number of contigs assigned to organisms with complex and large genomes 
(particularly plants and fungi) that were not speci�cally targeted (their reference genomes were not included 
among the sources of annotation of our bioinformatic pipelines; for most species they are not publicly available, 
yet).

Data mining led us to interpret sequence information at di�erent levels of taxonomic classi�cation, obtaining 
details useful to identify similarities between samples, to characterize potential honey bee health indicators and 
to detect organism related markers within the multi-kingdom signatures that can be used to inform on the origin 
of the honey.

Comparison of the obtained taxa pro�les among honey samples was done considering the compositional 
nature of the data: read counts for a sample is constrained by the capacity of the applied sequencing runs and 
therefore only relative abundance could be meaningful51–53. �us, read counts were centered log-ratio trans-
formed, capturing the relationships over the di�erent components. Similarity between pairs of honey pro�les 
obtained with the Aitchison’s distance53 and the proportionality index ρ50 indicated that the composition of honey 
samples HB12 and HB13 were more similar than that of these two between sample HB9. �is result might derive 
by the same origin of the honey samples HB12 and HB13, that were both collected from the same apiary and in 
the same period. �erefore, these two samples have shared common environmental factors and related eDNA sig-
natures that were then captured by the shotgun metagenomic analysis. Analysis of the Apis mellifera Filamentosus 
Virus (AmFV) genome further strengthened similarity between HB12 and HB13 samples. Spread all over the 
world65,83,84, this virus presents a large genome (~0.5 Mbp) that resulted highly variable. �is feature was used 
to measure the closeness between pairs of honey samples by computing the FST parameter. �e diversity of the 
AmFV genome was uncovered by taking advantage from the high sequencing depth over the whole virus genome 
(reported for all three samples) that could capture information about polymorphisms. FST analysis carried out on 
the AmFV genome con�rmed the closeness between HB12 and HB13, providing a potential useful indicator to 
de�ne the origin of the honey at the apiary level. AmFV is considered a weakly pathogenetic virus of honey bees 
which might occasionally induce colony-level symptoms when it acts with other pathogens65,66. However, it is not 
known yet if variants of this virus could have di�erent pathogenetic e�ects. It would be interesting to evaluate 
this aspect considering also the variability we described in di�erent regions of the reference genome of this virus 
(Fig. 4). Further studies are also needed to better evaluate the impact of this virus on colony health considering 
the relevant number of sequences that we detected that might be an indicator of high viral concentration. �is 
virus also contributed with the largest number of reads in our previous sparse metagenomic analysis10 that inves-
tigated other honey samples than those analysed in this study. Adding the results from our previous study and 
the current one, it seems that the AmFV might constitute an important component of the honey bee holobiont 
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community and it could be more ubiquitous than previously reported by other studies that speci�cally were 
focused on the epidemiological distribution of this virus83–85.

�e picture derived by reads assigned to microorganisms (i.e. bacteria, fungi and protozoans) resembled a 
general and complex interplay and interaction between potentially honey bee pathogenic and bene�cial organ-
isms that might be present in the hive in a de�ned balance to prevent the manifestation of di�erent diseases. 
Other microorganisms are considered disease causing agents of plant and might be useful to evaluate plant path-
ogenic states in the hive surrounding areas. Potential human pathogens and bene�cial microorganisms were also 
identi�ed.

�e large number of bacterial species identi�ed in all honey samples (bacteria accounted for 75% of all dif-
ferent detected species) described the complexity of the eDNA signature for this organism kingdom. Among 
the bacteria, the family Lactobacillaceae was the most represented in terms of number of reads and detected 
species. Lactobacillus taxa Firm-4 and Firm-5 are common and abundant honey bee gut microorganisms. Among 
the Firm-4 group, we identi�ed reads from L. mellis and L. mellifer and among the Firm-5 group we identi�ed 
sequences of L. helsingborgensis, L. melliventris, L. kimbladii and L. kullabergensis36,86,87. �e largest number of 
bacteria reads were assigned to L. kunkeei, a fructophilic bee symbiont88, which was also the most represented 
bacteria in our previous study10. L. kunkeei is thought to be of environmental origin, since it is mainly found 
within the hive and on hive materials37,89,90. It has been indicated to have bene�cial and protective properties 
on hive stability and health and might cooperate to decrease the infection by Paenibacillus larvae and Nosema 
ceranae72.

Sequence data indicated the presence of several other non-pathogenic cobiont bacteria (e.g. Gilliamella api-
cola, Frischella perrara, Snodgrassella alvi, Bi�dobacterium asteroids, Parasaccharibacter apium), that are common 
components of the honey bee gut microbiota and that, on the whole, consistently contribute to more than 90% 
of the bacteria present in the workers’ gut36,37,91,92. Some of them were present in equal abundance across honey 
samples (i.e. L. kunkeei, F. perrara and P. apium) and might constitute a signature of the health condition of a 
colony despite the presence of other honey bee pathogenic bacteria. In addition to M. plutonius, S. apis and P. 
larvae, that were also identi�ed in our previous metagenomic study10, a few other potentially pathogenic bacteria 
were identi�ed in this deeper metagenomic analysis (S. melliferum, which together with S. apis, might cause a 
neurological disease known as “spiroplasmosis” or “May disease67”; Hafnia alvei, considered an opportunistic 
pathogen93). Surprisingly, M. plutonius was found to be equally abundant across the three honey samples, sug-
gesting a widespread occurrence of this bacterium in a latent state, since colonies were healthy and did not show 
any symptoms of European foul brood, the disease caused by this aetiological agent. Target PCR analysis (Ribani, 
Utzeri, Fontanesi, in preparation) con�rmed sequencing data, further supporting the ubiquitous presence of this 
bacterium in honey samples.

It was also interesting to note the presence of another bacterium, Arsenophonus nasoniae (sequence similarity 
around 93%). �e genus Arsenophonus is characterized by facultative endosymbionts species with a broad host 
range, including several arthropods (wasps, honey bees and their parasite V. destructor94,95).

�e picture related to bacteria was also enriched by the identi�cation of a large number of reads from Serratia 
symbiotica (a total of about 0.5 millions of reads for the three honey samples, mapped on 43 contigs and SIM ~ 
99%; Supplementary Table S2) that is a secondary endosymbiont present in many aphids (Hemiptera: Aphididae). 
Some strains of S. symbiotica harbored by aphids of the Aphidinae subfamily are of facultative nature whereas 
other strains hosted by aphids of the Lachninae subfamily have established co-obligate associations with both the 
aphids and its primary obligate endosymbiont, Buchnera96,97. �e source and origin of S. symbiotica in the honey 
is worth of further investigation. Its presence could be derived by the honeydew (that is produced by aphids) that 
is commonly fed by honey bees and that is used to produce honey by the workers. Honeydew signatures can be 
recovered in all types of honey, including blossom honey, as we recently demonstrated using a targeted metabar-
coding approach that detected plant-sucking insect DNA accumulated in the honey17. �erefore, in this case, 
S. symbiotica could be derived by the aphid gut microbiota which might contaminate the honeydew. Another 
suggestive hypothesis could argue that S. symbiotica would be transferred directly to the honey bees through 
their close relationships and interdependence with aphids (via their honeydew production) derived by the feed-
ing behaviour of the honey bees on honeydew. A high occurrence of S. symbiotica infection in ant populations, 
especially when having tended infected aphid colonies, has been recently demonstrated by Renoz et al.98. It will 
be interesting to evaluate if a similar transferring process of this endosymbiotic microorganism could also occur 
in A. mellifera.

�e co-existence of honey bee pathogenic and bene�cial fungi mirrored, to some extent, what was described 
for the bacteria. Among the honey bee pathogens, two fungi that infect the brood (Ascosphaera apis and 
Aspergillus �avus) accounted for the largest number of annotated contigs and mapped reads. However, the sam-
pled colonies did not show any symptoms of these diseases even over the last two years (the period from which 
we could obtain information from the beekeepers). We also detected two unspecialized plant pathogenic fungi 
(Sclerotinia sclerotiorum, the causal agent of white mold, which has a wide host range of plants; Rhynchosporium 
orthosporum, one of the causing agent of the leaf spot disease, which mainly infects bentgrass, fescue, orchard-
grass, ryegrass, and bluegrass) even if with relatively low sequence similarity (less than 90%; Supplementary 
Table S2). �erefore, these results could be eventually also attributed to divergent strains of these molds or to other 
close species. �e general bias we observed against fungi species, mainly derived by the reference sequence anno-
tation platforms (the HoloBee-MOP database included only �ve fungi), could be evidenced by the un-detection 
of several honey specialized yeasts that were not assembled in any contigs. Yeasts might be expected to be present, 
as we previously demonstrated by the sparse shotgun metagenomic approach10. Despite the NCBI nt database 
covers 168,908 taxa, little is known about fungal diversity that it is estimated to count 2.2–3.8 million of species99.

Among the honey bee health threatening agents, trypanosome infections are the least understood. Moreover, 
trypanosome interactions with other honey bee pathogens and consequences on host physiology and honey bee 
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health still remain largely to be explored and disclosed. Two trypasomatids (L. passim and C. melli�cae) were 
identi�ed in all honey samples, with a prevalence of L. passim sequences and contigs than those assigned to C. 
melli�cae. L. passim is considered the predominant trypasomatid of A. mellifera in Asia, Europe, North and South 
America and Oceania (e.g.100) but no epidemiological studies and distribution analyses have been carried out 
so far in Italy for these two protozoan parasites. It will be important to further investigate the relevance and the 
impact of L. passim and C. melli�cae co-infection on health risks for honey bee colonies.

�e description of the honey bee pathosphere was completed by the identi�cation of other arthropods that are 
pests or parasites of A. mellifera. As expected, among this group, Varroa destructor contigs and sequences were 
the second most numerous ones a�er those of A. mellifera. Methods that so far have been developed to measure 
the colony infestation rate from varroa mites rely on direct count of collected mites over the counted or estimated 
number of workers and/or broods101. It would be interesting to evaluate if a ratio between V. destructor reads and 
A. mellifera reads obtained from honey DNA could be a reliable estimator of mite infestation of a colony. It is 
clear that an in silico determined measure is only a blind observation that should be further evaluated and inter-
preted considering the critical elements, biases and computational constrains. Moreover, detection and correct 
abundance estimation of a pathogen/parasite from a single honey sample could take into consideration potential 
interferences derived by di�erent levels of pathogen loads and contamination events. However, if validated and 
standardized using direct measurements of mite infestation and de�ned with speci�c protocols for honey sam-
pling, a ratio between V. destructor and A. mellifera reads could provide an interesting retrospective evaluation of 
mite infestation, useful to complete the pathosphere analysis from honey eDNA.

�e identi�cation of reads annotated as being derived from Aethina tumida from all three honey samples was 
quite surprising. Both adult and larvae of A. tumida are extremely damaging and their actions may lead to a com-
plete structural collapse of the nest and also of the whole colony. �us far, the small hive beetle has been reported 
in Italy only in two regions of the South (Calabria and Sicilia102). �e honey samples we collected were from two 
apiaries of the North of Italy (Emilia Romagna region) where no reports have identi�ed colonies infested by A. 
tumida so far. �e SIM of contigs assigned to this coleopter species was equal to ~87% (Supplementary Table S2). 
�is value could leave some doubts about their correct assignment to the small hive beetle genome. However, 
contigs assigned to Galleria mellonella (a lepidopter species that is well known to be usually present in the hives 
without causing, in most cases, highly negative disturbance to the colony) had the same SIM value of ~87%. 
Sequences that were assigned to the small hive beetle genome could actually belong to other beetle species that 
might not severely impact the honey bee colonies or that might be in close contact, in some way, with honey bees 
or their hives. �is potential bias might be also derived by spurious matches of reads to the A. tumida genome 
because we did not include, among the compared genomes, reference sequences of all possible coleopters. A tar-
geted analysis speci�cally designed to detect A. tumida should be able to con�rm these results.

�e botanical signature of the three honey samples did not indicate a high prevalence of one plant species. 
�erefore, they were not of mono�oral origin. According to the botanical pro�le, these honey samples could 
have a poly�oral origin and might be accumulated in the honeycomb over the summer period by the practise 
of the nomadism, as also con�rmed by the beekeepers. Nomadism is a beekeeping practise of moving apiaries 
to follow seasonal �owerings. Silver birch is an anemophilous species with a blooming period close or partially 
overlapped with many other nectarifer plants; in this situation, it is typical to have a quaternary pollen enrich-
ment of silver birch into the hives. A�er the summer period, the hives were moved to hay meadows rich of 
alfalfa plants (Medicago sp.) for the winter con�nement. �e highest number of Medicago contigs (no. = 20), 
normally under-represented in pollens103, con�rms the nomadic practice. Other species for which contigs have 
been obtained showed a low level of average similarity (SIM < 93%), suggesting that in some cases only the family 
of the annotated species might be reliable.

�e honey bee subspecies signature le� into the honey was detected by recovering sequence information of the 
mtDNA and of the nuclear genome of A. mellifera. �e mtDNA was fully covered by reads in all three honey sam-
ples (from 24× to 831× read depth). Inspection of the aligned reads detected the presence of only the C-mitotype, 
that is typical of the A. m. ligustica subspecies. �erefore, the in silico analysis of metagenomic data was able to 
con�rm for all three honey samples what was determined in vitro, applying the protocol described by Utzeri et 
al.15. �e mining of A. mellifera nuclear genome information was more complex and relied on the breadth of 
coverage and sequencing read depth on the A. mellifera reference nuclear genome that, in turn, resulted in the 
possibility to recover genotyping by sequencing data of informative SNPs. Muñoz et al.60 and Henriques et al.62  
already tested the ability of a small SNP panel to allocate honey bees to a corresponding subspecies among a 
few that were considered, together with hybrids, Buckfast and DNA pools constituted varying concentration of 
DNA derived from di�erent subspecies. In addition, these authors used this SNP panel to evaluate the level of 
introgression of the C-lineage within the A. m. mellifera subspecies. We took advantage from their results and 
published datasets and using two di�erent approaches to encode SNP allele frequencies from honey DNA, cou-
pled with two methods to measure or establish distances among datapoints, we were able to con�rm the mtDNA 
assignment of the honey sample from which read depth was enough to obtain reliable genotyping data for most 
SNPs of the informative panel. �e identi�cation of the honey bee lineage and subspecies from honey has several 
practical applications. Conservation programmes and initiatives aiming to support locally adapted honey bee 
subspecies are underway in multiple European countries with the �nal objective to maintain A. mellifera biodi-
versity59,104,105. For these purposes, cost-e�ective molecular methods to identify purebred colonies or evaluate 
the level of introgression of di�erent lineages in a population are needed to support breeding programmes and 
conservation actions60,62. �e method we developed that can analyse the honey bee nuclear genome even from 
the honey might become an interesting alternative monitoring tool that do not need to sample the insects for 
these purposes. In addition, if supported by high sequencing depth, the methods we developed that identify the 
subspecies from the honey they produce could be useful to authenticate the entomological origin and establish 
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marketing di�erentiation of hive products obtained by locally adapted honey bee genetic resources which might 
assure additional economic incomes to the beekeepers, as part of sustainable conservation strategies15,105.

�e analysis of sequencing data obtained at high sequencing depth from honey DNA opened new insights into 
the complexity of the honey bee derived multi-kingdom signature captured by this hive product. DNA sequence 
information might be useful to describe the honey bee hologenome and the interplay between the honey bee 
superorganism and the agro-ecological environments, with several useful applications. Our methodological study 
demonstrated that shotgun sequencing data of honey eDNA data could be useful to de�ne honey bee health 
monitoring approaches, to establish protocols to measure environmental biodiversity, to obtain information on 
the botanical and entomological origin of the honey that can help to de�ne sustainable conservation programmes 
of the honey bee genetic resources and develop new authentication strategies of honey bee productions to defend 
beekeeper activities.

Data availability
�e sequencing datasets generated and analysed during the current study are available in the EMBL-EBI European 
Nucleotide Archive (ENA) repository (http://www.ebi.ac.uk/ena), under the study accession PRJEB36075.
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