手性膦烯配体在铑催化的芳基硼酸对 β-芳基-α,β-不饱和 磺酸酯不对称共轭加成反应中的应用

于月娜 徐明华*

(中国科学院上海药物研究所 上海 201203)

摘要 报道了手性膦烯配体在金属铑催化的芳基硼酸对 β-芳基-*α*,β-不饱和磺酸酯不对称共轭加成中的应用. 经过系统 的反应条件筛选和配体结构优化,发现含手性 1,1'-联-2-萘酚骨架的膦烯配体 L7 与 Rh(I)形成的催化剂可以高对映选择 性地实现 β-芳基-*α*,β-不饱和磺酸酯化合物的不对称 1,4-加成反应. 此反应体系条件温和,底物普适性广,并取得了较高 的收率(up to 95%)和优秀的对映选择性(up to 99% *ee*),为合成手性偕二芳基取代的磺酸酯类化合物提供了一种新方法. **关键词** 不对称催化; 膦烯配体; *α*,β-不饱和磺酸酯; 1,4-加成; 手性偕二芳基化合物

Chiral Phosphite-Olefin Ligands: Application in Rh-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to β -Aryl- α , β -unsaturated Sulfonates

Yu, Yue-Na Xu, Ming-Hua*

(Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203)

Abstract Chiral sulforyl compounds have great versatility in organic synthesis, and they are also important as biologically active substances in medicinal chemistry. Among various methods developed for their synthesis, rhodium-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β -unsaturated sulforyl compounds represents one of the most practical methods due to the stability and availability of the boronic acid used as a nucleophile. Although several Rh(I) complexes of bidentate ligands have been discovered for asymmetric conjugation addition of α_{β} -unsaturated sulforyl compounds, some challenging issues still remain in terms of efficiency, enantioselectivity and substrate scope. Therefore, the development of an efficient catalytic system for the synthesis of chiral sulfonyl compounds is an important goal in extending the current methodology. Here, a general and mild method for the rhodium-catalyzed enantioselective catalytic conjugate addition of arylboronic acids to β -aryl- $\alpha_{\beta}\beta$ -unsaturated sulfonate is described. The success of the process relies on the use of extraordinary simple chiral phosphite-olefin ligands as bidentate ligands which offer notable synthetic and economic advantages. Optimum reaction condition was determined to run the reaction at 50 °C using dioxane as the solvent, in the presence of 2.5 mol% of [Rh(coe)₂Cl]₂ and 5 mol% of chiral P/olefin ligand L7. This Rh(I) catalyst containing chiral P/olefin ligand has a broad substrate scope, a wide range of arylboronic acids with varying electronic and steric demands were successfully examined with α , β -unsaturated sulfonate (1). Notably, all transformations proceed efficiently to give the desired products in good yields (84%~95%) and excellent selectivities (92%~99% ee). The electronic properties of the arylboronic acids did not appear to affect the reactivity of the reaction. Besides, α,β -unsaturated sulfonate 1 with either an electron-donating or electron-withdrawing group on any aromatic carbon readily underwent the asymmetric arylation with arylboronic acids, affording chiral sulfonates in high yields and enantioselectivities. The current reaction provides a practical approach to the synthesis of diverse highly enantioenriched gem-diaryl substituted sulfonates.

Keywords asymmetric catalysis; P/olefin ligand; α , β -unsaturated sulfonate; 1,4-addition; chiral gem-diaryl compound

1 引言

共轭加成反应是一种能够非常有效地构建碳一碳 键的有机合成方法^[1]. 近些年,不对称共轭加成反应在 一些重要化合物如天然产物和生物活性化合物的合成 中发挥关键作用从而得到了广泛的关注和探索^[2],在该 领域中,过渡金属铑催化的有机硼试剂对 *α,β*-不饱和化 合物的不对称 1,4-加成反应是一个十分活跃的研究热 点^[3]. 1998年, Hayashi 小组^[4]首次报道了使用 BINAP 为 手性配体的铑催化的硼酸对环己烯酮的不对称加成反 应;随着进一步的研究,人们发现除了不饱和酮类化合 物^[5],其他一些含贫电子烯烃的化合物,如 α,β-不饱和 羧酸酯、酰胺、醛、磷酸酯以及硝基烯,芳基烯烃等都

^{*} E-mail: xumh@simm.ac.cn

Received June 4, 2014; published June 26, 2014.

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.

Project supported by the National Natural Science Foundation of China (No. 21325209), the Shanghai Municipal Committee of Science and Technology (No. 14XD1404400).

项目受国家自然科学基金(No. 21325209)、上海市科委(No. 14XD1404400)资助.

可以作为 Michael 底物用于这类反应中^[6~9].

含手性中心的磺酰类化合物不仅在有机合成中发 挥重要作用,同时也是药物活性分子的重要结构单 元^[10],因此关于此类化合物合成方法的研究受到广泛 的关注^[11~13]. 在各种合成方法中, 铑催化的硼酸对 α.β-不饱和磺酰类化合物的不对称共轭加成是一种较为直 接、高效的方法. 2004 年, Carretero 小组^[14]首次成功地 将 Rh/双膦配体催化体系应用到芳基硼酸对 2-吡啶基烯 基砜类化合物的不对称共轭加成反应中,他们提出反应 能够发生的关键在于底物中的 2-吡啶基团和金属 Rh 配 位形成分子内五元环中间体,这也使得反应底物仅能局 限于含有 2-吡啶基的砜类化合物. 2012 年, Havashi 小 组^[15]报道了第一例 Rh/双烯配体催化的芳基硼酸对 α,β-不饱和磺酸酯类化合物的不对称共轭加成反应,克服了 此类反应对底物结构的依赖性. 虽然他们在此领域取得 了较大的突破,但其用到的手性双烯配体(二茂铁取代 的四氟苯并桶烯)结构相对复杂,合成步骤冗长,从而 一定程度上限制了这种方法的实际应用. 鉴于含手性中 心的磺酰类化合物在有机合成和药物化学领域都具有 广泛的应用前景,因此探索并发展适用于 α . β -不饱和磺 酸酯的不对称加成反应的简单高效的催化体系仍然很 有必要.本文将介绍一类结构简单、合成方便的全新手 性膦烯配体在 β-芳基- α , β -不饱和磺酸酯化合物的不对 称共轭加成反应中的成功应用.

2 结果与讨论

2.1 手性配体类型的初步考察

我们小组主要致力于 Rh(I)催化的不对称加成反应的研究,成功发展了一系列结构简单,合成方便,与金属铑络合能够高效催化不对称加成反应的手性硫烯配体^[16]和膦烯配体^[17].结合这些工作,期望将已经发展的催化体系拓展到芳基硼酸对 *α*,β-不饱和磺酸酯的不对称共轭加成反应中,以获得各种高光学纯的磺酸酯类化合物.

首先以苯乙烯基磺酸苯酯(1a)为底物,考察了手性 硫烯和膦烯作为配体在铑催化条件下的反应可行性,结 果如 Scheme 1 所示.最开始选择链状硫烯配体 L1 为手 性配体,以[Rh(coe)₂Cl]₂ (1.5 mol%)为铑源,用 1.5 mol/L磷酸钾水溶液做碱,二氧六环作为溶剂,50 ℃条 件下反应1h后 TLC检测没有新点生成,延长反应至12 h,依旧没有新的产物点生成;接下来考察了含支链双 键的硫烯配体 L2,反应依旧没有发生.叔丁基亚磺酰胺 类硫烯配体未能催化以上 1,4-加成反应,于是又尝试了 叔丁基亚砜类硫烯配体 L3 在此类反应中的催化性能, 同样反应条件下,仍旧没有得到目标产物.鉴于以上各 种类型的含硫配体都未能获得成功,于是将研究方向转 向我们最近发展的一类膦烯配体,这类配体在铑催化的 有机硼酸试剂对碳杂双键(C=O, C=N)的不对称加成

ó′ B(OH)₂ [Rh(coe)₂Cl]₂ (1.5 mol%) OPh L* (3 mol%) MeO 50 °C, dioxane, K₃PO₄ 1a OMe C . OPh 2a QMe 0 MeC MeO **L1**: $R^1 = Ph, R^2 = H$ L3 **L2**: $R^1 = H$, $R^2 = 1$ -Naph-CH₂

Scheme 1

反应中表现出较好的催化活性和立体选择性^[17,18]. 在这 部分工作基础上,尝试将膦烯配体 L4 作为手性配体应 用到苯乙烯基磺酸苯酯(1a)的不对称加成反应中.反应 在与硫烯配体相同的条件下进行了 15 h,令人高兴的 是,反应顺利发生,以 45%的收率给出了光学纯度为 92%的目标加成产物.虽然收率较低,但反应的对映选 择性比较理想,说明此类配体在铑催化的芳基硼酸对 *a*,*β*-不饱和磺酸酯的不对称反应中具有独特的催化活 性,值得进一步的研究探索.

2.2 反应条件对反应收率影响考察

基于上述结果,我们开始对反应条件进行系统的考察以达到提高反应转化率的目的(表 1). 首先尝试用四 芳基硼钠替代苯硼酸做为硼源,很遗憾反应没有发生 (表 1, Entry 2);接着对温度进行考察,升温至 90 ℃反 而导致收率大幅度下降(表 1, Entry 3),分析原因可能是 由于温度过高导致催化剂分解所致,所以尝试降低温度 到室温,发现收率与 50 ℃条件下相比较有所降低(表 1, Entry 4 vs 1),因此确定 50 ℃为最佳反应温度.反应时 间方面,当延长至 20 h,收率可由 45%提高到 61%,但 继续延长反应时间到 30 h,收率再没有明显的改善(表 1, Entry 6).于是尝试将催化剂的用量由 3 mol%提高到 5 mol%,反应不仅给出了 83%的收率,对映选择性也 有近 4%的提高,达到 96% ee.因为反应在只有 [Rh(coe)₂Cl]₂的条件下不能发生,我们认为表 1, Entry 5, 7 在 ee 值上的差异应该不是由背景反应引起的,可能是

化学学报

催化剂用量加大使得反应速度加快而更有利于对映选 择性加成所致.接下来对磺酸酯底物中的酯基进行改 造,期待能够得到更好的反应结果.为了考察酯基位阻 效应对反应的影响,合成了苯乙烯基磺酸 2,6-二甲基苯 酯(表 1, Entry 8)和苯乙烯基磺酸乙酯(表 1, Entry 9),将 这些化合物用于 Rh 催化的不对称共轭加成反应中,所 得结果与表 1, Entry 7 对照,可以发现将苯酯换为位阻 更大的 2,6-二甲基苯酯时,反应的 ee 值得以保持,但是 收率却由 83%降至 69%;使用乙酯时,收率下降更为明 显,表 1, Entry 8,9的结果说明大位阻芳基磺酸酯和脂 肪族磺酸酯类底物的反应活性较差.综合考虑反应催化 效率、对映选择性以及反应操作可行性,初步确定表 1, Entry 8 的反应条件为最优反应条件.

表1 反应条件的优化

Table 1 Optimization of reaction conditions

Entry ^a	[Rh/L]/%	Temp/°C	Time/h	R	Yield ^b /%	<i>ee^c/%</i>
1	3	50	15	Ph	45	92
2^d	3	50	15	Ph	Trace	—
3	3	90	15	Ph	Trace	—
4	3	r.t.	15	Ph	35	_
5	3	50	20	Ph	61	92
6	3	50	30	Ph	65	92
7	5	50	20	Ph	83	96
8	5	50	20	2,6-Dimethylphenyl	69	96
9	5	50	20	Et	57	—

^{*a*} The reaction was carried out with 0.25 mmol of 1 using 4-MeOPhB(OH)₂ as organoborane reagent in the presence of 3 or 5 mol% [Rh/L], unless otherwise noted. ^{*b*} Yield of isolated product. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} [4-MeOPh]₄BNa instead of 4-MeOPhB(OH)₂ was employed as organoborane reagent.

2.3 膦烯配体结构对反应的对映选择性影响考察

解决了膦烯作为配体的催化条件下反应收率不理 想的问题后,我们对配体结构进行改造,探讨了一系列 不同膦烯配体在苯乙烯基磺酸苯酯的不对称芳基加成 反应中的应用,如 Scheme 2 所示.研究发现,烯烃双键 末端没有其他取代基的膦烯配体 L5 用于催化反应时, 虽然收率得以保持,但给出的目标产物几乎为消旋体; 在双键内侧同一端引入另一个取代基后(L6)可能是由 于位阻原因,导致反应不能顺利进行,仅有微量产物生 成;配体 L4, L5 和 L6 的实验结果说明链状双键结构可 能是取得好的催化活性和选择性不可缺少的.考虑到配 体双键末端取代基的重要性,于是将 1-萘基和 2-萘基引 入双键末端得到配体 L7 和 L8 并用于加成反应中,产物 立体选择性没有明显改善,但是反应收率较 L4 稍有提 高.我们还考察了配体中 BINOL 骨架的 3,3'位的取代基 效应(L9),令人失望的是联萘 3,3'位引入苯基后反应收 率和 ee 值都明显下降.在配体苯酚部位的邻位引入甲 基(L10),虽然收率由 83%升高至 95%,但是反应的立体 选择性有所降低.综合这些结果,我们确定 L7 作为最 优配体用于 α,β-不饱和磺酸酯的不对称芳基加成反应. 接下来,我们基于 L7 对反应条件进行进一步的优化.

L10 95% yield, 92% ee

Scheme 2

对溶剂包括 1,4-二氧六环、四氢呋喃、乙醚等进行 考察,结果表明 1,4-二氧六环为最佳溶剂. 接下来考察 了碱,使用有机碱三乙胺时仅有微量产物生成;当使用 强碱 KOH (1.5 mol/L, 0.5 equiv.)时,反应收率下降至 61%,发现催化剂有部分分解;而直接使用固体三水合 磷酸钾为碱,反应也不理想,仅有少量产物生成. 通过 对磷酸钾水溶液的浓度和物质的量进行细致的筛选,最 终发现 K₃PO₄ (2.5 mol/L, 0.83 equiv.)为最优选择,在此 条件下能以 92%的收率得到光学纯度为 97%的目标产物.

2.4 底物的普适性考察

确定了最优的反应条件以后,我们对反应的底物适 用性进行考察,结果如表 2 所示.首先将不同类型的芳 基硼酸和底物 1a 进行反应,无论是含给电子基还是吸 电子基的芳基硼酸都可以给出较为理想的结果(表 2, Enries 1~6);需要指出的是间位有取代基的硼酸和吸 电子硼酸(表 2, Entries 4, 6)会使得反应对映选择性略微

表2 底物的普适性考察

 Table 2
 Evaluation of substrate scope

降低. 接下来考察了 *α*,*β*-不饱和磺酸酯双键末端苯环上的取代基效应, 芳环上引入具有不同电子效应和位阻效应的取代基对反应结果基本没有影响, 都能够以非常优秀的收率得到对映选择性为 92%~99% 的目标产物(表 2, Entries 7~20). 有意思的是通过简单互换磺酸酯底物与硼酸上的芳基 Ar¹ 和 Ar², 就能分别以优秀的产率与对映选择性获得绝对构型相反的两个对映异构体(表 2, Entries 6, 7).

3 结论

本文报道了一类新型手性膦烯配体在金属铑催化 的芳基硼酸对 β-芳基-α,β-不饱和磺酸酯的不对称共轭 加成中的应用. 该类手性膦烯配体结构简单, 合成方便, 其与 Rh(I)形成的配合物可以在温和的反应条件下高效 地催化以上不对称 1,4-加成反应, 成功实现了一系列其 它方法难以合成的高光学纯的偕二芳基取代的磺酸酯 类化合物的制备(up to 99% ee), 为构建含磺酰基的手性 有机合成中间体与药物活性化合物提供了一个新方法.

	$Ar^{1} \begin{array}{c} 0 \\ 1 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} \text{.5 mol\%} \\ \text{\underline{dioxane}} \\ \text{50 °C} \\ \text{.0.83 equiv.} \end{array} \xrightarrow{\text{Ar}^2 O O}_{\text{Ar}^1} \xrightarrow{\text{S}}_{\text{OPh}} \\ \begin{array}{c} \text{Ar}^2 O O \\ \text{Ar}^2 \\ \text{Ar}^2 \\ \text{S} O $		2-Naph	
Entry ^a	Ar^1	Ar^{2}	2	Yield ^b /%	<i>ee^c/</i> %
1	Ph (1a)	4-MeOC ₆ H ₄	2a	92	97
2	Ph (1a)	4-MeC ₆ H ₄	2b	92	96
3	Ph (1a)	4-t-BuC ₆ H ₄	2c	92	99
4	Ph (1a)	$3-MeC_6H_4$	2d	93	92
5	Ph (1a)	2-Naphthyl	2e	91	96
6	Ph (1a)	$4-ClC_6H_4$	2f	91	94
7	$4-{\rm ClC}_{6}{\rm H}_{4}\left({\bf 1b}\right)$	Ph	2g	85	-92
8	4-ClC ₆ H ₄ (1b)	4-t-BuC ₆ H ₄	2h	86	99
9	$4-\text{ClC}_6\text{H}_4(\mathbf{1b})$	2-Naphthyl	2i	92	97
10	$4-BrC_6H_4(1c)$	Ph	2j	90	97
11	$4-BrC_{6}H_{4}(1c)$	4-t-BuC ₆ H ₄	2k	91	99
12	$4-BrC_{6}H_{4}(1c)$	2-Naphthyl	21	95	98
13	$3-\mathrm{ClC}_6\mathrm{H}_4\left(\mathbf{1d}\right)$	Ph	2m	93	97
14	$3-ClC_6H_4(1d)$	4-t-BuC ₆ H ₄	2n	95	97
15	$3-\mathrm{ClC}_6\mathrm{H}_4(\mathbf{1d})$	2-Naphthyl	20	91	98
16	$2-MeOC_{6}H_{4}$ (1e)	Ph	2p	87	96
17	$2-MeOC_{6}H_{4}$ (1e)	4-t-BuC ₆ H ₄	2q	90	93
18	2-MeOC ₆ H ₄ (1e)	2-Naphthyl	2r	89	98
19	1-Naphthyl (1f)	Ph	2s	84	97
20	1-Naphthyl (1f)	4-MeC ₆ H ₄	2t	89	96

^{*a*} The reaction was carried out with 1 (0.25 mmol) and 2 equiv. of arylboronic acid, in the presence of 2.5 mol% of [Rh(coe)₂Cl]₂, 5 mol% of L7, and 2.5 mol/L aq. K₃PO₄ (0.83 equiv.) in 1.0 mL of dioxane. ^{*b*} Yield of isolated product. ^{*c*} Determined by chiral HPLC analysis and the absolute configuration of **2b** was determined to be *R* by comparing the optical rotation [α]_D with known data^[15].

References

- (a) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Tetrahedron Organic Chemistry Series 9, Pergamon Press, Oxford, U. K., 1992. (b) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771. (c) Zhang, Z.; Xie, F.; Yang, B.; Yu, H.; Zhang, W. Chin. J. Org. Chem. 2011, 31, 429. (张振锋,谢芳, 杨波, 余焓, 张万斌, 有机化学, 2011, 31, 429.) (d) Ying, A.; Wu, C.; Fu, Y.; Ren, S.; Liang, H. Chin. J. Org. Chem. 2012, 32, 1587. (应安国, 武承林, 付永前, 任世斌, 梁华定, 有机化学, 2012, 32, 1587.)
- [2] For reviews, see: (a) Tomioka, K.; Nagaoka, Y. Comprehensive Asymmetric Catalysis, Eds.: Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Springer, New York, 1999, p. 1105 (b) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346. (c) Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 2, 171. (d) Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. In Modern Organocopper Chemistry, Ed.: Krause, N., VCH, Weinheim, Germany, 2002, p. 224. (e) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 67, 3221. (f) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (g) Woodward, S. Angew. Chem., Int. Ed. 2005, 44, 5560. (h) López, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem. Res. 2007, 40, 179. (i) López, F.; Minnaard, A. J.; Feringa, B. L. In The Chemistry of Organomagnesium Compounds, Eds.: Rappoport, Z.; Marek, I., Wiley, Chichester, U. K., 2008; Part 2, Chapter 17. (j) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minaard, A. J.; Feringa, B. L. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
- [3] For reviews, see: (a) Tian, P.; Dong, H.-Q.; Lin, G.-Q. ACS Catal.
 2012, 2, 95. (b) Partyka, D. V. Chem. Rev. 2011, 111, 1529. (c) Berthon, G.; Hayashi, T. In Catalytic Asymmetric Conjugate Reactions, Ed.: Córdova, A., Wiley-VCH, Weinheim, Germany, 2010, Chapter 1, p. 1. (d) Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093. (e) Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840. (f) Darses, S.; Genet, J.-P. Eur. J. Org. Chem. 2003, 4313. (g) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (h) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. (i) Bolm, C.; Hildebrand, J. P.; Muñiz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284. (j) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007, 1279. (k) Enders, D.; Lüttgen, K.; Narine, A. A. Synthesis 2007, 959. (l) Hayashi, T. Synlett 2001, 879. (m) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (n) Shintani, R.; Tokunaga, N.; Doi, H.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 6240.
- [4] Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579.
- [5] Early studies of α,β-unsaturated ketones, see: (a) Reetz, M. T.; Moulin, D.; Gosberb, A. Org. Lett. 2001, 3, 4083. (b) Kuriyama, M.; Nagai, K.; Yamada, K.-i.; Miwa, Y.; Taga, T.; Tomioka, K. J. Am. Chem. Soc. 2002, 124, 8932. (c) Boiteau, J. G.; Imbos, R.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 681. (d) Iguchi, Y.; Itooka, R.; Miyaura, N. Synlett 2003, 1040. (e) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873.
- [6] α,β-Unsaturated Esters, Amides, and Aldehydes: (a) Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi, T. *Tetrahedron:* Asymmetry **1999**, 10, 4047. (b) Sakuma, S.; Sakai, M.; Itooka, R.; Miyaura, N. J. Org. Chem. **2000**, 65, 5951. (c) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. **2001**, 66, 6852. (d) Sakuma, S.; Miyaura, N. J. Org. Chem. **2001**, 66, 8944. (e) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. **2005**, 127, 10850.
- [7] Alkenylphosphonates: Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 1999, 121, 11591.
- [8] Nitroalkenes: Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc. 2000, 122, 10716.
- [9] Alkenylheteroarenes and alkenylarenes: (a) Pattison, G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132, 14373. (b) Saxena, A.;

Lam, H. W. Chem. Sci. 2011, 2, 2326.

- [10] For reviews, see: (a) Simpkins, N. S. Tetrahedron 1990, 46, 6951.
 (b) Rayner, C. M. Contemp. Org. Synth. 1996, 3, 499. (c) Nájera, C.; Yus, M. Tetrahedron 1999, 55, 10547. (d) Nájera, C.; Yus, M. Tetrahedron 1999, 55, 10547. (e) Bäckvall, J.-E.; Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev. 1998, 98, 2291. (f) Meadows, D. C.; Gervay-Hague, J. Med. Res. Rev. 2006, 26, 793. (j) Tozer, M. J.; Harper, E. A.; Kalindjian, S. B.; Pether, M. J.; Shankley, N. P.; Watt, G. F. Bioorg. Med. Chem. Lett. 1999, 9, 1825. (h) Tamamura, H.; Koh, Y.; Ueda, S.; Sasaki, Y.; Yamasaki, T.; Aoki, M.; Maeda, K.; Watai, Y.; Arikuni, H.; Otaka, A.; Mitsuya, H.; Fujii, N. J. Med. Chem. 2003, 46, 1764. (i) Hanessian, S.; Sailes, H.; Therrien, E. Tetrahedron 2003, 59, 7047. (j) Zajac, M.; Peters, R. Chem. Eur. J. 2009, 15, 8204.
- [11] For recent examples, see: (a) Enders, D.; Müller, S. F.; Raabe, G. Angew. Chem., Int. Ed. 1999, 38, 195. (b) Grimaud, L.; Rotulo, D.; Ros-Perez, R.; Guitry-Azam, L.; Prunet, J. Tetrahedron Lett. 2002, 43, 7477. (c) Luis, L. A.; Krische, M. J. Synthesis 2004, 2579. (d) Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2010, 49, 8938. (e) García Ruano, J. L.; Schöpping, C.; Alvarado, C.; Alemán, J. Chem. Eur. J. 2010, 16, 8968. (f) So, C. M.; Kume, S.; Hayashi, T. J. Am. Chem. Soc. 2013, 135, 10990. (g) Lu, J.; Ye, J.; Duan, W. Chem. Commun. 2014, 50, 698.
- [12] For examples of copper-catalyzed asymmetric transformations, see:
 (a) Llamas, T.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2007, 46, 3329. (b) Desrosiers, J.-N.; Charette, A. B. Angew. Chem., Int. Ed. 2007, 46, 5955. (c) Bechara, W. S.; Charette, A. B. Org. Lett. 2008, 10, 2315. (d) Bos, P. H.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2008, 10, 4219. (e) Bos, P. H.; Maciá, B.; Fernández-Ibáñez, M. A.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2010, 8, 47.
- [13] For a review of organocatalytic asymmetric addition to alkenyl sulfones, see: Nielsen, M.; Jacobsen, C. B.; Holub, N.; Paixão, M. W.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2010, 49, 2668.
- [14] (a) Mauleón, P.; Carretero, J. C. Org. Lett. 2004, 6, 3195. (b) Mauleón, P.; Carretero, J. C. Chem. Commun. 2005, 41, 4961. (c) Mauleón, P.; Alonso, I.; Rivero, M. R.; Carretero, J. C. J. Org. Chem. 2007, 72, 9924.
- [15] Nishimura, T.; Takiguchi, Y.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 9086.
- [16] (a) Jin, S.-S.; Wang, H.; Xu, M.-H. Chem. Commun. 2011, 47, 7230.
 (b) Qi, W.-Y.; Zhu, T.-S.; Xu, M.-H. Org. Lett. 2011, 13, 3410. (c) Jin, S.-S.; Wang, H.; Zhu, T.-S.; Xu, M.-H. Org. Biomol. Chem. 2012, 10, 1764. (d) Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem., Int. Ed. 2012, 51, 780. (e) Wang, H.; Zhu, T.-S.; Xu, M.-H. Org. Biomol. Chem. 2012, 10, 9158. (f) Zhu, T.-S.; Chen, J.-P.; Xu, M.-H. Chem. Eur. J. 2013, 19, 865. (g) Wang, H.; Jiang, T.; Xu, M.-H. J. Am. Chem. Soc. 2013, 135, 971. (h) Wang, H.; Xu, M.-H. Synthesis 2013, 45, 2125. (i) Li, Y.; Zhu, D.-X.; Xu, M.-H. Chem. Commun. 2013, 49, 11659. (j) Li, Y.; Xu, M.-H. Chem. Commun. 2014, 50, 3771.
- [17] Yu, Y.-N.; Xu, M.-H. Org. Chem. Front. 2014, DOI: 10. 1039/c4qo00135d.
- [18] Selected early examples of the use of chiral phosphorus-based olefin ligands: (a) Maire, P.; Deblon, S.; Breher, F.; Geier, J.; Böhler, C.; Rügger, H.; Schönberg, H.; Grtrümacher, H. Chem. Eur. J. 2004, 10, 4198. (b) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Grützmacher, T. Angew. Chem., Int. Ed. 2005, 44, 4611. (c) Defiber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem. Int. Ed. 2007, 46, 3139. (d) Mariz, R.; Briceño, A.; Dorta, R.; Dorta, R. Organometallics 2008, 27, 6605. (e) Liu, Z.; Du, H. Org. Lett. 2010, 12, 3054.

(Qin, X.)