
0018-9162/98/$10.00 ©  1998 IEEE32 Computer

D

Should Computer
Scientists Experiment
More?

o computer scientists need to experiment at all? Only

if we answer “yes”  does it make sense to ask whether

there is enough of it.

In his Allen N ewell Award lecture, Fred Brooks

suggests that computer science is “not a science, but

a synthetic, an engineering discipline.” 1 In an engi-

neering field, testing theories by experiments would

be misplaced. Brooks and others seem troubled by

the fact that the phenomena studied in computer sci-

ence appear manufactured. Computers and programs

are human creations, so we could conclude that com-

puter science is not a natural science in the traditional

sense.

The engineering view of computer science is too nar-

row, too computer-myopic. The primary subjects of

inquiry in computer science are not merely comput-

ers, but information structures and information

processes.2 Computers play a dominant role because

they make information processes easier to model and

observe. However, by no means are computers the

only place where information processes occur. In fact,

computer models compare poorly with information

processes found in nature, say, in nervous systems, in

immune systems, in genetic processes, or, if you will,

in the brains of programmers and computer users. The

phenomena studied in computer science are much

broader than those arising around computers.

Regarding the manufactured nature of computer

phenomena (its “ syntheticness” ), I prefer to think

about computers and programs as models. Modeling

is in the best tradition of science, because it helps us

study phenomena closely. For example, for studying

lasing, one needs to build a laser. Regardless of

whether lasers occur in nature, building a laser does

not make the phenomenon of massive stimulated

emission artificial. Superheavy elements must be syn-

thesized in the lab for study, because they are unsta-

ble and do not occur naturally, yet nobody assumes

that particle physics is synthetic.

Similarly, computers and software don’t occur nat-

urally, but they help us model and study information

processes. Using these devices does not render infor-

mation processes artificial.

A major difference from traditional sciences is that

information is neither energy nor matter. Could this

difference be the reason we see little experimentation

in computer science? To answer this questions, let’s

look at the purpose of experiments.

C
yb

e
rs

q
u

a
re

Computer scientists and practit ioners defend

their lack of experimentat ion w ith a w ide range

of arguments. Some arguments suggest that

experimentat ion is inappropriate, too difficult ,

useless, and even harmful. This art icle

discusses several such arguments to illustrate

the importance of experimentat ion for 

computer science.

Walter F. Tichy
University of Karlsruhe

.



May 1998 33

WHY SHOULD WE EXPERIMENT?
When I discuss the purpose of experiments with

mathematicians, they often exclaim that experiments

don’t prove a thing. It is true that no amount of exper-

imentation provides proof with absolute certainty.

What then are experiments good for? We use experi-

ments for theory testing and for exploration.

Experimentalists test theoretical predictions against

reality. A community gradually accepts a theory if all

known facts within its domain can be deduced from

the theory, if it has withstood numerous experimental

tests, and if it correctly predicts new phenomena.

Nevertheless, there is always an element of sus-

pense: To paraphrase Edsger Dijkstra, an experiment

can only show the presence of bugs in a theory, not

their absence. Scientists are keenly aware of this uncer-

tainty and are therefore ready to shoot down a theory

if contradicting evidence comes to light.

A good example of theory falsification in computer

science is the famous Knight and Leveson experiment,3

which analyzed the failure probabilities of multiver-

sion programs. Conventional theory predicted that

the failure probability of a multiversion program was

the product of the failure probabilities of the individ-

ual versions. However, John Knight and Nancy

Leveson observed that real multiversion programs had

significantly higher failure probabilities. In essence,

the experiment falsified the basic assumption of the

conventional theory, namely that faults in program

versions are statistically independent.

Experiments are also used where theory and deduc-

tive analysis do not reach. Experiments probe the

influence of assumptions, eliminate alternative expla-

nations of phenomena, and unearth new phenomena

in need of explanation. In this mode, experiments help

with induction: deriving theories from observation.

Artificial neural networks are a good example of

the explorative mode of experimentation. After hav-

ing been discarded on theoretical grounds, experi-

ments demonstrated properties better than predicted.

Researchers are now developing better theories to

account for these properties.

Tr adit ional scient if ic method isn’t  applicable

The fact that—in the field of computer science—the

subject of inquiry is information rather than energy

or matter makes no difference in the applicability of

the traditional scientific method. To understand the

nature of information processes, computer scientists

must observe phenomena, formulate explanations and

theories, and test them.

There are plenty of computer science theories that

haven’t been tested. For instance, functional pro-

gramming, object-oriented programming, and formal

methods are all thought to improve programmer pro-

ductivity, program quality, or both. It is surprising that

none of these obviously important claims have ever

been tested systematically, even though they are all 30

years old and a lot of effort has gone into developing

programming languages and formal techniques.

Traditional sciences use theory test and exploration

iteratively because observations help formulate new

theories that can be validated later. An important

requirement for any experiment, however, is repeata-

bility. Repeatability ensures that results can be checked

independently and thus raises confidence in the results.

It helps eliminate errors, hoaxes, and frauds.

The cur r ent  level of exper imentat ion is good enough

Suggesting that the current level of experimentation

doesn’t need to change is based on the assumption that

computer scientists, as a group, know what they are

doing. This argument maintains that if we need more

experiments, we’ll simply do them.

But this argument is tenuous; let’s look at the data.

In “Experimental Evaluation in Computer Science: A

Quantitative Study,” 4 my coauthors and I classified

400 papers. We then continued considering those

papers whose claims required empirical evaluation.

For example, we excluded papers that proved math-

ematical theorems, because mathematical theory can’t

be proven by experiment.

In a random sample of all the papers ACM pub-

lished in 1993, the study found that 40 percent of the

papers with claims that needed empirical support had

none at all. In software-related journals, this fraction

was 50 percent. The same study also analyzed a non-

computer-science journal, O ptical Engineering, and

found that the fraction of papers lacking quantitative

evaluation was merely 15 percent.

Fallacy 1.  Traditional scientific method
isn’t applicable.

Rebuttal: To understand information processes,  computer

scientists must observe phenomena,  formulate 

explanations,  and test them.  This is the scientific method.

.



34 Computer

The study by Marvin Zelkowitz and Dolores

Wallace (in this month’s Computer) found similar

results. When applying consistent classification

schemes, both studies report that between 40 and 50

percent of software engineering papers were unvali-

dated. Zelkowitz and Wallace also surveyed journals

in physics, psychology, and anthropology and again

found much smaller percentages of unvalidated papers

than in computer science.

Relative to other sciences, the data shows that com-

puter scientists validate a smaller percentage of their

claims. Some would argue that computer science at

age 50 is still young and hence comparing it to other

sciences is of limited value. I disagree, largely because

50 years seems like plenty of time for two to three gen-

erations of scientists to establish solid principles. But

even on an absolute scale, I think it is scary when half

of the nonmathematical papers make unvalidated

claims.

Assume that each idea published without valida-

tion would have to be followed by at least two vali-

dation studies (which is a very mild requirement). It

follows that no more than one-third of the papers pub-

lished could contain unvalidated claims. The data sug-

gests that computer scientists publish a lot of untested

ideas or that the ideas published are not worth 

testing.

I’m not advocating replacing theory and engineer-

ing with experiment, but I am advocating a better bal-

ance. I advocate balance not because it would be

desirable for computer science to appear more scien-

tific, but because of the following principal benefits:

• Experimentation can help build a reliable base of

knowledge and thus reduce uncertainty about

which theories, methods, and tools are adequate.

• Observation and experimentation can lead to

new, useful, and unexpected insights and open

whole new areas of investigation. Experimenta-

tion can push into unknown areas where engi-

neering progresses slowly, if at all.

• Experimentation can accelerate progress by

quickly eliminating fruitless approaches, erro-

neous assumptions, and fads. It also helps orient

engineering and theory in promising directions.

Conversely, when we ignore experimentation and

avoid contact with reality, we hamper progress.

Exper iments cost  t oo much

Experimentation clearly requires more resources

than theory does. The first line of defense against

experimentation is typically, “Doing an experiment

would be incredibly expensive”  or “To do this right,

I would need hundreds of subjects, work for years

without publishing, and spend an enormous amount

of money.” A hard-nosed scientist might respond, “So

what?”

Instead of being paralyzed by cost considerations,

such a scientist would first probe the importance of

the research question. When convinced that the

research addresses a fundamental problem, an expe-

rienced experimentalist would then plan an appro-

priate research program, actively looking for

affordable experimental techniques and suggesting

intermediate steps with partial results along the way. 

Fallacy 2.  The current level of 
experimentation is good enough.

Fallacy 3.  Experiments cost too much.

Rebuttal: Relative to other sciences,  the data shows that

computer scientists validate a smaller percentage of their

claims.

Rebuttal: Meaningful experiments can fit into small 

budgets; expensive experiments can be worth more than

their cost.

.



programming language research. They may save not

only industry money, but also research effort.

Interestingly, the software industry is beginning to

value experiments, because results may give a com-

pany a three- to five-year lead over the competition.

For instance, according to Larry Votta in a personal

communication, Lucent Technologies estimates that it

is presently benefiting from a five-year lead in software

inspections based on a series of in-house experiments.

It is useful to check what scientists in other disci-

plines spend on experimentation. Testing pharma-

ceuticals is extremely expensive, but only desperate

patients accept poorly tested drugs and therapies. In

aeronautics, engineers test airfoils extensively and

build expensive wind tunnels to do so. Numerical sim-

ulation has reduced the number of such tests, but it

hasn’t eliminated them.

In many sciences, simulation has become a useful

form of experimentation; computer science might also

benefit from good simulation techniques. In biology,

for example, Edward Wilson calls the Forest Fragmen-

tation Project in Brasil the most expensive biological

experiment ever.5 While clearing a large tract of the

Amazon jungle, the researchers left standing isolated

patches of various sizes (1 to 1,000 hectares). The pur-

pose was to test hypotheses regarding the relationship

between habitat size and number of species remaining.

Experimentation is widely used in physics, chem-

istry, ecology, geology, climatology, and on and on.

Scientific American publishes experiments in every

issue. Computer scientists need not be afraid or

ashamed of conducting large experiments to explore

important questions.

May 1998 35

For a scientist, funding potential should not be the

only or primary criterion in deciding what questions

to ask. In the traditional sciences, there is a complex

social process in which important questions crystal-

lize. These become the focuses of research, the break-

through goals that open new areas.

For instance, the first experimental validation of

general relativity—performed by Issac Eddington in

1919—was tremendously expensive and barely

showed the effect. Eddington used a total solar eclipse

to check Einstein’s theory that gravity bends light

when it passes near a massive star. This was a truly

expensive experiment because it involved an expedi-

tion to Principe Island, West Africa, and also because

the experiment pushed the limits of photographic

emulsion technology. But it was important to test

whether Einstein was correct.

Not many investigations are of a scope comparable

to that for general relativity, but there are many

smaller, still-important questions to answer.

Experiments can indeed be expensive, but not all are

prohibitively expensive. Meaningful experiments can

fit in the budget of small laboratories. On the other

hand, expensive experiments can be worth much more

than their cost.

When human subjects are involved in an experi-

ment, the cost often rises dramatically while the sig-

nificance drops. When are expensive experiments

justified? When the implications of the gained insights

outweigh the costs.

A significant segment of the software industry con-

verted from C to C++ at a substantial cost in retrain-

ing. We might ask how solidly grounded the decision

to switch to C++ was. Other than case studies (which

are questionable because they don’t generalize easily

and may be under pressure to demonstrate desired

outcomes), I’m not aware of any solid evidence show-

ing that C++ is superior to C with respect to pro-

grammer productivity or software quality.

Nor am I aware of any independent confirmation of

such evidence. However, while training students in

improving their personal software processes, my

research group has recently observed that C++ pro-

grammers appear to make many more mistakes and take

much longer than C programmers of comparable train-

ing—both during initial development and maintenance.

Suppose this observation is not a fluke. (Just as this

article went to press, we learned that a paper by Les

Hatton, “Does OO Really Match the Way We Think?”

will appear in the May issue of IEEE Software, report-

ing strong evidence about the negative effects of C++.)

Then running experiments to test the fundamental

tenets of object-oriented programming would be truly

valuable. These experiments might save resources far

in excess of their cost. The experiments might also

have a lasting and positive effect on the direction of

Fallacy 4.  Demonstrations will suffice.

Rebuttal: Demos can provide incentives to study a question

further.  Too often,  however,  these demos merely illustrate

a potential.

.



36 Computer

Demonst r at ions w ill suff ice

In his 1994 Turing Award lecture, Juris Hartmanis

argues that computer science differs sufficiently from

other sciences to permit different standards in exper-

imentation, and that demonstrations can take the

place of experiments.6 I couldn’t disagree more. Demos

can provide proof of concepts (in the engineering

sense) or incentives to study a question further. Too

often, however, these demos merely illustrate a poten-

tial. Demonstrations critically depend on the observers’

imagination and their willingness to extrapolate; they

do not normally produce solid evidence. To obtain

such evidence, we need careful analysis involving

experiments, data, and replication.

For example, because the programming process is

poorly understood, computer scientists could intro-

duce different theories about how to build programs

from requirements. These theories could then be tested

experimentally. We could do the same for perception,

human-machine interfaces, or human-computer inter-

action in general.

Also, computer science cannot accurately predict

the behavior of algorithms on typical problems or on

computers with storage hierarchies. We need better

algorithm theories, and we need to test them in the

lab. Research in parallel systems can generate

machine models, but their relative merits can only be

explored experimentally. The examples I’ve men-

tioned are certainly not exhaustive, but they all

involve experiments in the traditional sense. They

require a clear question, an experimental apparatus to

test the question, data collection, interpretation, and

sharing of the results.

Ther e’s t oo much noise in t he w ay

Another line of defense against experimentation is:

“There are too many variables to control and the

results would be meaningless because the effects I’m

looking for are swamped by noise.”  Researchers

invoking this excuse are looking for an easy way out.

An effective way to simplify repeated experiments

is by benchmarking. Fortunately, benchmarking can

be used to answer many questions in computer sci-

ence. The most subjective and therefore weakest part

of a benchmark test is the benchmark’s composition.

Everything else, if properly documented, can be

checked by the skeptic. Hence, benchmark composi-

tion is always hotly debated.

Though often criticized, benchmarks are an effec-

tive and affordable way of conducting experiments.

Essentially, a benchmark is a task domain sample exe-

cuted by a computer or by a human and computer.

During execution, the human or computer records

well-defined performance measurements.

Benchmarks have been used successfully in widely

differing areas, including speech understanding, infor-

mation retrieval, pattern recognition, software reuse,

computer architecture, performance evaluation,

applied numerical analysis, algorithms, data com-

pression, logic synthesis, and robotics. A benchmark

provides a level playing field for competing ideas, and

(assuming the benchmark is sufficiently representa-

tive) allows repeatable and objective comparisons. At

the very least, a benchmark can quickly eliminate

unpromising approaches and exaggerated claims.

Constructing a benchmark is usually intense work,

but several laboratories can share the burden. Once

defined, a benchmark can be executed repeatedly at

moderate cost. In practice, it is necessary to evolve

benchmarks to prevent overfitting. 

Regarding benchmark tests in speech recognition,

Raj Reddy writes, “Using common databases, com-

peting models are evaluated within operational sys-

tems. The successful ideas then seem to appear

magically in other systems within a few months, lead-

ing to a validation or refutation of specific mechanisms

for modeling speech.” 7 In many of the examples I cited

earlier, benchmarks cause an area to blossom suddenly

because they make it easy to identify promising

approaches and to discard poor ones. I agree with

Reddy that “all of experimental computer science

could benefit from such disciplined experiments.”

Experiments with human subjects involve addi-

tional challenges. Several fields, notably medicine and

psychology, have found techniques for dealing with

human variability. We’ve all heard about control

groups, random assignments, placebos, pre- and post-

testing, balancing, blocking, blind and double-blind

studies, and batteries of statistical tests. The fact that

a drug influences different people in different ways

doesn’t stop medical researchers from testing.

When control is impossible, researchers will use case

studies, observational studies, and other investigative

techniques. Indeed, medicine offers many important

Fallacy 5.  There’s too much noise in 
the way.

Rebuttal: Fortunately, benchmarking can be used to simplify

variables and answer questions.

.



May 1998 37

How to Experiment

For the reader eager to learn about the

role of experimentation in general, I sug-

gest the following literature:

Chalmers, A.F., W hat Is This Thing Called Sci-

ence? The Open University Press, Buck-

ingham, England, 1988. Addresses the

philosophical underpinnings of the scien-

tific process, including inductivism, Pop-

per’s falsificationism, Kuhn’s paradigms,

objectivism, and the theory dependence of

observation.

Latour, B., Science in Action: How to Follow

Scientists and Engineers through Society,

Harvard University Press, Cambridge,

Mass., 1987. Describes the social processes

of science-in-the-making as opposed to

ready-made science. Latour illustrates the

fact-building and convincing power of lab-

oratories with fascinating examples.

Basili, V.R., “The Role of Experimentation in

Software Engineering: Past, Current, and

Future.”   Proc. 18th Int. Conf. Software

Eng., IEEE Computer Soc. Press, Los

Alamitos, Calif., March 1996. 

Frankl, P.G., and S.N. Weiss, “An Experimen-

tal Comparison of the Effectiveness of

Branch Testing and Data Flow Testing,”

IEEE Trans. Software Eng., Aug. 1993,

pp. 774-787.

Brett, B., “Comments on The Cost of Selec-

tive Recompilation and Environment

Processing,”  ACM Trans. Software Eng.

and Methodology, 1995, pp. 214-216. A

good example of a repeated experiment

in compiling.

Denning, P.J., “ Performance Evaluation:

Experimental Computer Science at Its

Best,”  A CM  Perform ance Evaluation

R eview , ACM  Press, N ew York, 1981,

pp. 106-109. Argues that performance

evaluation is an excellent form of exper-

imentation in computer science.

Hennessy, J.L., and D.A. Patterson, Computer

Architecture: A  Q uantitative Approach,

M organ Kaufmann, San M ateo, Calif.,

1990. A landmark in making computer

architecture research quantitative.

Cohen, P.R., Em pirical M ethods for A rtifi-

cial Intelligence, MIT Press, Cambridge,

Mass., 1995. Covers empirical methods

in AI, but a large part applies to all of

computer science.

Fenton, N.E., and S.L. Pfleeger. Software Met-

rics: A  Rigorous and Practical Approach

(2nd edition), Thomson Computer Press,

New York, 1997. Excellent discussion of

experimental designs as well as a wealth

of material on experimentation with soft-

ware.

Christensen, L.B., Ex perimental Methodol-

ogy, Allyn and Bacon, New York, 1994.

Judd, C.M ., E.R. Smith, and L.H . Kid-

der, R esearch M ethods in Social R ela-

tions, H olt, Rinehart, and Winston,

1991. General experimental methods.

M oore, D.S., and G.P. M cCabe, Introduc-

tion to the Practice of Statistics, W.H .

Freeman and Co., N ew York, 1993.

Excellent introductory text on statistics.

Venables, W.N. and B.D. Ripley, Modern

Applied Statistics with S-PLUS, Springer

Verlag, New York, 1997. One of the best

statistical packages available today is S-

Plus. Venables and Ripley’s book is both a

guide to using S-Plus and a course in mod-

ern statistical methods. Keep in mind,

however, that sophisticated statistical

analysis is no substitute for good experi-

mental design.

Fallacy 6.  Experimentation will slow
progress.

erating progress. Questionable ideas would be

weeded out more quickly, and scientists would

concentrate their energies on more promising

approaches.

Rebuttal: Increasing the ratio of papers with meaningful 

validation has a good chance of actually accelerating

progress.

lessons on experimental design, such as how to con-

trol variables and minimize errors. Eschewing exper-

imentation because of difficulties is not acceptable.

In so-called soft science, experimental results can-

not be reproduced. The fear is that computer science

will fall into this trap, especially with human subject

testing. But experiments with human subjects are not

necessarily soft. There are stacks of books on how to

conduct experiments with humans. Experimental

computer scientists can learn the relevant techniques

or ask for help. The “How to Experiment”  sidebar

provides some starting points.

Pr ogr ess w ill s low

Some argue that if everything must be experimen-

tally supported before publication, then the flow of

ideas would be throttled and progress would slow.

This is not an argument to be taken lightly. In a

fast-paced field like computer science, the number of

ideas under discussion is obviously important.

However, experimentation need not have an adverse

effect:

•  Increasing the ratio of papers with meaningful

validation has a good chance of actually accel-

.



38 Computer

•  I’m confident that readers would continue to value

good conceptual papers and papers formulating

new hypotheses, so such papers would still be pub-

lished. Experimental testing would come later.

It is a matter of balance. Presently, nontheory

research rarely moves beyond the assertive state, char-

acterized by such weak justification as “ it seems intu-

itively obvious,”  or “ it looks like a good idea,”  or “ I

tried it on a small example and it worked.”  We need

to reach a ground firmer than assertion.

Technology changes t oo fast

Concerns about technology changing too rapidly

frequently arise in computer architecture. Trevor

Mudge summarizes it nicely: “The rate of change in

computing is so great that by the time results are con-

firmed they may no longer be of any relevance.” 8 We

can say the same about software. What good is an

experiment when its duration exceeds the useful life of

the experimental subject—a software product or tool?

If a question becomes irrelevant quickly, it is per-

haps too narrowly defined and not worth spending a

lot of effort on. But behind many questions with a

short lifetime lurks a fundamental problem with a long

lifetime; scientists should probe for the fundamental

and not the ephemeral, learning to tell the difference.

Also, technological change often shifts or eliminates

assumptions that were once taken for granted.

Scientists should therefore anticipate changes in

assumptions and proactively employ experiments to

explore the consequences of such changes. This type

of work is much more demanding and can have much

higher long-term value than merely comparing soft-

ware products.

You’ll never  get  it  published

Some established computer science journals have dif-

ficulty finding editors and reviewers capable of evalu-

ating empirical work. Theorists may dominate their

editorial boards, and  experimenters are often con-

fronted with reviewers who expect perfection and

absolute certainty. However, experiments are conducted

in the real world and are therefore always flawed in

some way. Even so, I’ve seen publications demand that

experiments be conducted with hundreds of subjects

over a span of many years and several industrial pro-

jects before publication. We need to realize that smaller

steps are still worth publishing because they improve

our understanding and raise new questions.

In my experience, publishing experimental results

is not difficult if one chooses the right outlet. I’m on

the editorial board of three journals. I review for sev-

eral additional journals and have served on numerous

conference committees. All nontheoretical journals

and conferences that I know of would greatly wel-

come papers describing solid experimentation. The

occasional rejection of high-quality papers notwith-

standing, I’m convinced that the low number of good

experimental papers is a supply problem.

I fear, however, that the systems researcher of old

will face difficulties. Just building systems is not enough

unless the system demonstrates some kind of a first, a

breakthrough. Computer science continues to be

favored with such breakthroughs, and we should con-

tinue to strive for them. The majority of systems

researchers, however, work on incremental improve-

ments of existing ideas. These researchers should try

to become respectable experimentalists, and they must

articulate how their systems contribute to our knowl-

edge. Systems come and go. We need insights about

the concepts and phenomena underlying such systems.

Fallacy 7.  Technology changes too fast.

Fallacy 8.  You’ll never get it published.

Rebuttal: If a question becomes irrelevant quickly,  it is

too narrowly defined and not worth spending a lot of

effort on.

Rebuttal: Smaller steps are still worth publishing because

they improve our understanding and raise new questions.

.



May 1998 39

WHY SUBSTITUTES WON’T WORK
Can we get by with forms of validation that are

weaker than experimentation? It depends on what

question we’re asking. A conventional model for a sci-

entific paper includes the following elements:

•  The work describes a new idea, prototyped per-

haps in a small system.

•  The work claims its place in “science” by making

feature comparisons. That is, the report sets out

a list of features and qualitatively compares older

approaches with the new one, feature by feature.

I find this method satisfactory when someone pre-

sents a radically new idea or a significant break-

through, such as when researchers presented the first

compiler for a block-structured language, time-shar-

ing system, object-oriented language, or Web browser.

Unfortunately, the majority of papers published take

much smaller steps forward. As computer science

becomes a harder science, mere discussions of advan-

tages and disadvantages or long feature comparisons

will no longer suffice; any PC magazine can provide

those. Science, on the other hand, cannot live off such

weak inferences in the long run. Instead, scientists

should create models, formulate hypotheses, and test

them using experiments.

Tr ust  your  int uit ion

In a March 1996 column, Al Davis, the editor-in-chief

of IEEE Software, suggested that gut feeling is enough

when adopting new software technology; experimen-

tation and data are superfluous. He even suggested

ignoring evidence that contradicts one’s intuition.9

Instinct and personal experience occasionally lead

down the wrong path, and computer science is no

exception to this truism, as several examples illustrate:

• For about 20 years, it was thought that meetings

were essential for software reviews. Recently,

however, Porter and Johnson found that reviews

without meetings are substantially no more or

less effective than those with meetings.10 Meeting-

less reviews also cost less and cause fewer delays,

which can lead to a more effective inspection

process overall.

• Another example is when small software com-

ponents are proportionally less reliable than

larger ones. This observation was first reported

by Victor R. Basili11 and confirmed by several dis-

parate sources. (Les Hatton offers summaries and

an explanatory theory.12)

• As mentioned, the failure probabilities of multi-

version programs were incorrectly believed to be

the product of the failure probabilities of the

component versions. 

• Type checking is thought to reveal programming 

errors, but there are contexts in which it does

not help.13

What we can learn from these examples is

that intuition may provide a starting point, but

must be backed up by empirical evidence.

Without proper grounding, intuition is ques-

tionable. Shari Lawrence Pfleeger provides fur-

ther discussion of the pitfalls of intuition.14

Tr ust  t he exper t s

During a recent talk at a US university, I was

about to present my data when a colleague inter-

rupted and suggested that I skip that part and go

on to the conclusions. “We trust you” was the

explanation. Flattering as this was, it demonstrates a dis-

turbing misunderstanding of the scientific process (or

indicates someone in a hurry). Any scientific claim is ini-

tially suspect and must be examined closely. Imagine

what would have happened if physicists hadn’t been

skeptical about the claims by Stanley Ponds and Martin

Fleischman regarding cold fusion.

Frankly, I’m continually surprised by how much the

computer industry and sometimes even university teach-

ing relies on so-called experts who fail to support their

assertions with evidence. Science, on the other hand, is

built on healthy skepticism. It is a good system to check

results carefully and to accept them only provisionally

until they have been independently confirmed.

PROBLEMS DO EXIST
There are always problems with experimentation.

Experiments may be based on unrealistic assumptions,

researchers may manipulate the data, or it might be

impossible to quantify the variable of interest. There

are plenty of potential flaws. Good examples of solid

experimentation in computer science are rare, but we

should not discard the concept of experimentation

because of this. Other scientific fields have been faced

with bad experiments, even frauds, but—on the

whole—the scientific process has been self-correcting.

Compet ing t heor ies

A science is most exciting when there are two or more

strong, competing theories. There are a few competing

theories in computer science, none of them earth-shak-

ing. The physical symbol system theory and the knowl-

edge processing theory in AI are two competing theories

that attempt to explain intelligence. The weak reason-

ing methods of the first theory have gradually given way

or have coupled with knowledge bases.15

Another important example is algorithm theory.

The present theory has many drawbacks. In particu-

lar, it does not account for the behavior of algorithms

on typical problems.16 A theory that more accurately

The fact that the

subject of inquiry in

computer science is

information rather

than energy or 

matter makes no 

difference in the

applicability of the

traditional scientific

method.

.



40 Computer

applies to modern computers would be valuable.

A prerequisite for competition among theories,

however, is falsifiability. Unfortunately, computer sci-

ence theorists rarely produce falsifiable theories. They

tend to pursue mathematical theories that are discon-

nected from the real world. While computer science

is perhaps too young to have brought forth grand the-

ories, my greatest fear is that the lack of such theories

might be caused by a lack of experimentation. If sci-

entists neglect experiment and observation, they’ll

have difficulties discovering new and interesting phe-

nomena worthy of better theories.

Unbiased r esult s

Another argument against experimentation takes

the following direction: “Give the managers or fund-

ing agencies a single figure of merit, and they will use

it blindly to promote or eliminate the wrong research.”

This argument is a red herring. Good managers, sci-

entists, and engineers all know better than to rely on

a single figure of merit. Also, there is a much greater

danger in relying on intuition and expert assertion

alone. Keeping decision-makers in the dark has an

overwhelmingly higher damage potential than inform-

ing them to the best of one’s abilities.

E
xperimentation is central to the scientific

process. Only experiments test theories. Only

experiments can explore critical factors and

bring new phenomena to light so that theories can be

formulated and corrected. Without experiments, com-

puter science is in danger of drying up and becoming

an auxiliary discipline. The current pressure to con-

centrate on application is the writing on the wall.

I don’t doubt that computer science is a fundamen-

tal science of great intellectual depth and importance.

Much has already been achieved. Computer technol-

ogy has changed society, and computer science is in

the process of deeply affecting the world view of the

general public. There is also much evidence suggesting

that the scientific method does apply. As computer sci-

ence leaves adolescence behind, I hope to see the

experimental branch of this discipline flourish. ❖

Acknowledgments

I’m grateful for thought-provoking comments from

Les Hatton, Ernst Heinz, James Hunt, Paul Lukowicz,

Anneliese von Mayrhauser, David Notkin, Shari L.

Pfleeger, Adam Porter, Lutz Prechelt, and Larry Votta.

References

1. F.P. Brooks, “Toolsmith,”  Comm. ACM , Mar. 1996, pp.

61-68.

2. A. Ralston and E.D. Reilly, Encyclopedia of Computer

Science, Third Edition, Van Nostrand Reinhold, 1993.

3. J.C. Knight and N.G. Leveson, “An Experimental Evalu-

ation of the Assumption of Independence in Multiversion

Programming,” IEEE Trans. Software Eng., Jan. 1986,

pp. 96-109.

4. W.F. Tichy et al., “Experimental Evaluation in Computer

Science: A Quantitative Study,” J. Systems and Software,

Jan. 1995, pp. 1-18.

5. E.O. Wilson, The Diversity of Life, Harvard Univ. Press,

Cambridge, Mass., 1992.

6. J. Hartmanis, “Turing Award Lecture: On Computa-

tional Complexity and the Nature of Computer Sci-

ence,”  Comm. ACM , Oct. 1994, pp. 37-43.

7. R. Reddy, “To Dream the Possible Dream,”  Comm.

ACM , May 1996, pp. 105-112.

8. T. Mudge, “Report on the Panel: How Can Computer

Architecture Researchers Avoid Becoming the Society

for Irreproducible Results?”  Computer Architecture

N ews, Mar. 1996, pp. 1-5.

9. A. Davis, “From the Editor,” IEEE Software, Mar. 1996,

pp. 4-7.

10. A.A. Porter and P.M. Johnson, “Assessing Software

Review Meetings: Results of a Comparative Analysis of

Two Experimental Studies,”  IEEE Trans. Software Eng.,

Mar. 1997, pp. 129-145.

11. V.R. Basili and B.T. Perricone, “Software Errors and

Complexity: An Empirical Investigation,” Comm. ACM ,

Jan. 1984, pp. 42-52.

12. L. Hatton. “Reexamining the Fault Density: Component

Size Connection,” IEEE Software, Apr. 1997, pp. 89-97.

13. L. Prechelt and W.F. Tichy, “An Experiment to Assess

the Benefits of Inter-Module Type Checking,”  IEEE

Trans. Software Eng., Apr. 1998.

14. S.L. Pfleeger et al., “Rebuttal to March 96 editorial,”

IEEE Software, July 1996.

15. E.A. Feigenbaum, “How the What becomes the How,”

Comm. ACM , May 1996, pp. 97-104.

16. J.N. Hooker, “Needed: An Empirical Science of Algo-

rithms,”  O perations Research, Mar. 1994, pp. 201-212.

Walter F. Tichy is professor of computer science at the

University Karlsruhe, Germany. Previously, he was

senior scientist at the Carnegie Group in Pittsburgh,

Pennsylvania, and on the faculty of computer science

at Purdue University in West Lafayette, Indiana. His

research interests include software engineering and

parallelism, specifically software architecture, design

patterns, configuration management, workstation

clusters, optoelectronic interconnects for parallel com-

puters, and program optimization tools for parallel

computers. He received an MS and a PhD in computer

science from Carnegie Mellon University.

Contact Tichy at tichy@ira.uka.de or http://wwwipd.

ira.uka.de/~tichy

.


