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Should penalized least squares regression be

interpreted as Maximum A Posteriori estimation?
Rémi Gribonval

Abstract

Penalized least squares regression is often used for signal denoising and inverse problems, and is commonly

interpreted in a Bayesian framework as a Maximum A Posteriori (MAP) estimator, the penalty function being the

negative logarithm of the prior. For example, the widely used quadratic program (with an ℓ1 penalty) associated

to the LASSO / Basis Pursuit Denoising is very often considered as MAP estimation under a Laplacian prior in

the context of additive white Gaussian noise (AWGN) reduction. This paper highlights the fact that, while this

is one possible Bayesian interpretation, there can be other equally acceptable Bayesian interpretations. Therefore,

solving a penalized least squares regression problem with penalty φ(x) need not be interpreted as assuming a prior

C · exp(−φ(x)) and using the MAP estimator. In particular, it is shown that for any prior PX , the minimum mean

square error (MMSE) estimator is the solution of a penalized least square problem with some penalty φ(x), which

can be interpreted as the MAP estimator with the prior C · exp(−φ(x)). Vice-versa, for certain penalties φ(x), the

solution of the penalized least squares problem is indeed the MMSE estimator, with a certain prior PX . In general

dPX(x) 6= C · exp(−φ(x))dx.

I. INTRODUCTION

Consider the problem of estimating an unknown signal x ∈ R
n from a noisy observation y = x+ b, also known

as denoising. Given an arbitrary noisy observation y the goal is to estimate the noiseless signal x: in practice,

designing a denoising scheme amounts to choosing a function ψ : R
n → R

n which provides estimates of the form

x̂ = ψ(y). However, unless one specifies further what is meant by ”noise” and ”signal”, denoising is a completely

ill-posed problem since any pair x, b such that y = x + b can be replaced by a pair x′, b′ where x′ = x + z,

b′ = b − z. Practical denoising schemes hence have to rely on various types of prior information on x and b to

design an appropriate denoising function ψ.

A. Bayesian estimation

A standard statistical approach to the denoising problem consists in assuming that x and b are drawn independently

at random from known prior probability distributions PX and PB . Under this model, given a cost function C(x̂, x)
that measures the quality of an estimator x̂ in comparison to the true quantity to estimate x, the Bayes estimator

is defined as an estimator ψ with minimum expected cost:

arg min
ψ

E {C(ψ(X +B),X)} .

For a quadratic cost function C(x̂, x) := ‖x̂−x‖2
2 the Bayes estimator is the minimum mean square error (MMSE)

estimator [5], also called conditional mean, posterior mean, or conditional expectation:

ψMMSE(y) := E(X|Y = y). (I.1)
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Even though this estimator is ”optimal” in the above defined sense, its computation involves a high-dimensional

integral and cannot generally be done explicitly. In practice, Monte-Carlo simulations can be used to approximate

the integral.

Often more amenable to efficient numerical optimization is the popular Maximum A Posteriori (MAP) criterion,

which is the Bayes estimator associated to the 0 − 1 cost function (C(x̂, x) = 1, when x̂ 6= x; C(x̂, x) = 0, when

x̂ = x). Exploiting Bayes rule and assuming that both the noise and the unknown noiseless signal have probability

density functions (pdf), pX and pB(b), the MAP estimator reads:

ψMAP(y) := arg max
x∈Rn

p(x|y) = arg max
x∈Rn

p(y|x)p(x)
= arg min

x∈Rn
{− log pB(y − x) − log pX(x)} .

For white Gaussian noise b we have pB(b) ∝ exp(−‖b‖2
2/2), where ‖b‖2

2 =
∑n

i=1 b
2
i and the notation f(x) ∝ g(x)

means f(x) = C · g(x) for all x, with C 6= 0 some constant independent of x. Hence the MAP estimator under

the prior pX(x) can be expressed as

ψMAP(y) = arg min
x∈Rn

1

2
‖y − x‖2

2 + [− log pX(x)]. (I.2)

B. Regularization

Optimization problems of the type (I.2) have also been often considered in signal processing without explicit

reference to probabilities or priors, under the generic form

arg min
x∈Rn

1

2
‖y − x‖2

2 + φ(x). (I.3)

The deterministic objective is to achieve a tradeoff between the data-fidelity term ‖y − x‖2
2 and the penalty term

φ(x), which promotes solutions with certain properties. In particular, when the function φ is non-smooth at the

origin, such as φ(x) = ‖x‖pp :=
∑n

i=1 |xi|p, 0 < p ≤ 1, the optimum of the criterion (I.3) is known to have

few nonzero entries. Regularization with such penalty functions is at the basis of shrinkage techniques for signal

denoising (see e.g. [3] with p = 1, or [6] with 0 < p ≤ 1). More recently, these approaches have become a

very popular means of promoting sparse solutions to under-determined or ill-conditioned linear inverse problems

y = Ax+ b, and are now a key tool for compressed sensing [4].

C. Plurality of Bayesian interpretations of regularization

Given the identity of the optimization problems (I.2) and (I.3) when φ(x) = φMAP(x) := − log pX(x), the

regularization problem (I.3) is often interpreted 1 as ”solving the MAP under the prior pX(x) = exp(−φ(x))/Cφ”,

where

Cφ :=

∫

Rn

exp(−φ(x))dx. (I.4)

In particular, when φ(x) = ‖x‖1, a possible interpretation of (I.3) is MAP denoising under a Laplacian prior on

x and white Gaussian noise.

The main objective of this paper is to highlight the fact that while one Bayesian interpretation of the penalized

least-squares estimator (I.3) with penalty function φ(x) is the MAP estimator ψMAP(y) with prior pX(x) =
exp(−φ(x))/Cφ, there can be other admissible Bayesian interpretations.

We focus on white Gaussian denoising and show that for any prior PX and any noisy observation y ∈ R
n, the

MMSE estimate ψMMSE(y) under the prior PX is the solution of a penalized least-squares problem (I.3) with an

appropriate penalty function φMMSE(x). Thus, the problem (I.3) with penalty φMMSE(x) can equally be interpreted

as: a) the MAP estimator ψ̃MAP (y) with a prior associated to the pdf p̃X(x) = exp(−φMMSE(x))/CφMMSE ; or b) the

MMSE estimator with prior PX . In general dPX(x) 6= p̃X(x)dx.

1This interpretation only makes sense if Cφ <∞ is integrable. Otherwise some authors refer to a ”non-informative prior”.
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II. MAIN RESULTS

From now on we focus on Gaussian denoising: B ∈ R
n is a centered normal Gaussian variable with law

PB = N (0, In) and pdf pB(b) ∝ exp(−‖b‖2
2/2). We let X ∈ R

n be a random variable independent of B, with law

PX . The probability distribution of the noisy observation Y = X +B has a pdf

pY (y) := pB ⋆ PX(y) =

∫

Rn

pB(y − x)dPX(x) (II.1)

which is sometimes refered to as the evidence of the observation y. When PX is associated to a pdf pX(x), the

evidence is given by a standard convolution between pdfs pY = pB ⋆ pX . Even when PX is not associated to a

pdf, pY infinitely differentiable, i.e., pY ∈ C∞(Rn).
In this setting, using techniques going back to Stein’s unbiased risk estimator [9], [1], one can express the MMSE

estimator as [8]

ψMMSE(y) = y +
1

pY (y)

[

∂

∂yi
pY (y)

]n

i=1

= y + ∇ log pY (y). (II.2)

All vectors u ∈ R
n, such as the gradient ∇ log pY (y) ∈ R

n, are in column form. Their transpose uT is in row

form.

Next we study whether ψMMSE can also be written as the optimum of an optimization problem of the MAP

type (I.3), with an appropriate choice of φ. Namely, we investigate when ψMMSE can be identified with the proximity

operator [2] of a function φ, where we recall the definition

proxφ(y) := arg min
z∈Rn

{

1

2
‖y − z‖2

2 + φ(z)

}

. (II.3)

Rereading Equation (I.2) the MAP estimator (with prior pX(x)) can be written as ψMAP = proxφMAP where

φMAP(x) := − log pX(x). (II.4)

For smooth φ we have the implicit characterization [2]

proxφ(y) := y −∇φ[proxφ(y)], ∀y ∈ R
n. (II.5)

Comparing (II.2) with (II.5), we see that if ψMMSE = proxφ then

∇φ[ψMMSE(y)] = −∇ log pY (y), ∀y ∈ R
n. (II.6)

Indeed, the relation (II.6) characterizes all functions φ such that ψMMSE = proxφ, thanks to the following lemma.

Lemma II.1. Let X PX , B ∼ PBN (0, I) be independent random variables in R
n. Assume that there is no pair

v ∈ R
n, c ∈ R such that 〈X, v〉 = c with probability one. Then the MMSE estimator y 7→ ψMMSE(y) has the

following properties:

1) it is one-to-one from R
n onto ImψMMSE ⊂ R

n: for any pair y, y′ ∈ R
n, if ψMMSE(y) = ψMMSE(y

′) then y = y′.
2) it is C∞(Rn); so is its inverse ψ−1

MMSE : ImψMMSE → R
n.

3) when n = 1 we further have that ψMMSE is increasing.

The proof is in Appendix A. Note that the probability distribution PX in Lemma II.1 can be almost arbitrary,

provided that there is no lower-dimensional affine space of R
n to which X belongs almost surely. In particular,

PX need not be separable. In light of this lemma, (II.6) is equivalent to

∇φ(z) = −∇ log pY [ψ−1
MMSE(z)], ∀z ∈ ImψMMSE.

As shown by our main theorem (the proof is in Appendix B), this equation is satisfied by the function φMMSE :
R
n → R ∪ {+∞} defined as:

φMMSE(x) :=







−1
2‖ψ−1

MMSE(x) − x‖2
2 − log pY [ψ−1

MMSE(x)];
for x ∈ ImψMMSE;

+∞, for x /∈ ImψMMSE.
(II.7)
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Theorem II.2. Let X PX , B ∼ PB = N (0, I) be independent random variables in R
n. Assume that there is no

lower-dimensional affine space of R
n to which X belongs almost surely. Then proxφMMSE = ψMMSE and:

1) the function φMMSE is C∞ on its domain ImψMMSE;

2) for every y ∈ R
n, the vector ψMMSE(y) = proxφMMSE(y) is the unique global minimum, as well as the unique

stationary point of the function x 7→ 1
2‖y − x‖2 + φMMSE(x);

3) for every y ∈ R
n, we have φMMSE(y) ≥ − log pY (y);

4) we have CφMMSE =
∫

Rn exp(−φMMSE(x))dx <∞.

Therefore, the MMSE estimator with prior PX and white Gaussian noise is also the MAP estimator with the prior

which pdf is p̃X(x) = exp(−φMMSE(x))/CφMMSE .

Remark II.1. Note that ψ(y) is not only the unique global minimum of x 7→ 1
2‖y − x‖2 + φMMSE(x): it is also its

unique stationary point. This is much stronger: this means that descent algorithms used to solve the optimization

problem (I.3) with φ = φMMSE cannot be trapped in a spurious local minimum.

Remark II.2. When X belongs with probability one to a lower-dimensional affine space V ⊂ R
n, we have

ImψMMSE ⊂ V . Letting V be the smallest such affine space, the restriction of ψMMSE to V still has a well defined

C∞ inverse ψ−1
MMSE : ImψMMSE → V which can be used to define φMMSE as in (II.7) and to generalize Theorem II.2

to an arbitrary prior PX .

III. WORKED EXAMPLE

Let us illustrate Theorem II.2 with a simple example: we consider the one-dimensional (n = 1) mixture of two

Gaussians prior on the unknown noiseless data x,

pX(x) := p · e
−

x2

2σ2
0√

2πσ2
0

+ (1 − p) · e
−

x2

2σ2
1√

2πσ2
1

, (III.1)

where p ∈ (0, 1) and 0 < σ0 < σ1. The evidence of the observed noisy data Y = X +B with B ∼ N (0, 1) is then

pY (y) = p · e
−

y2

2(σ2
0
+1)√

2π(σ2
0+1)

+ (1 − p) · e
−

y2

2(σ2
1
+1)√

2π(σ2
1+1)

,

hence

p′Y (y) = −y ·
{

p · e
−

y2

2(σ2
0
+1)√

2π(σ2
0+1)3

+ (1 − p) · e
−

y2

2(σ2
1
+1)√

2π(σ2
1+1)3

.

}

By straightforward computations, we obtain

ψMMSE(y) = y ·
σ2

0

σ2
0+1 + σ2

1

σ2
1+1 · aeby2

1 + aeby
2 with

a :=
1 − p

p

√

σ2
0 + 1

σ2
1 + 1

, b =
1

σ2
0 + 1

− 1

σ2
1 + 1

∈ (0, 1).

The limiting case σ2
0 → 0 corresponds to the so called Bernoulli-Gaussian prior (see, e.g., [11]): the value x = 0

is drawn with probability p > 0, hence vectors with i.i.d. entries distributed according to pX are typically sparse.

The MMSE estimator takes a simplified form [10] when σ2
0 → 0

ψMMSE(y) = y · σ2
1

σ2
1 + 1

· aeby
2

1 + aeby2 .

We illustrate in Figure 1 the case p = 0.9, σ2
0 → 0, σ2

1 = 10. Figure 1(a) shows ψMMSE (solid line) and

its inverse ψ−1
MMSE (dashed line). The latter does not seem to have an analytic expression. Figure 1(b) shows

φMAP(x) = − log pX(x) (dotted line), − log pY (x) (dashed line) and the penalty function φMMSE(x) (solid line).

While the penalty function φMMSE(x) does not seem to admit an analytic expression, one can obtain an an-

alytic expression for φMMSE[ψMMSE(y)] = −1
2‖y − ψMMSE(y)‖2

2 − log pY (y). The explicit analytic expression –

which is long and rather uninteresting– was used to plot φMMSE(x) on Figure 1(a) using the parameterized curve
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Fig. 1. Left: MMSE estimator ψMMSE(y) (solid line) and its inverse ψ−1

MMSE(y) (dashed line),, in the Bernoulli-Gaussian case, p = 0.9,

σ2

0 → 0, σ2

1 = 10. Right: MAP penalty φMAP(x) = − log pX(x) (dotted line), negative log-evidence (− log pY (x)) (dashed line) and MMSE

penalty φMMSE(x) (solid line).

y 7→ (ψMMSE(y), φMMSE[ψMMSE(y)]). Observing on Figure 1(b) the plot of φMMSE(x) for the above Bernoulli-Gaussian

prior yields a number of observations.

1) For small x, the penalty φMMSE(x) is approximately shaped as the absolute value: φMMSE(x) ≈ c|x| for some constant c.
This is tempered by the fact that φMMSE(x) is C∞, thus, unlike |x|, it must be smooth at zero.

2) The penalty φMMSE(x) is unimodal (it is decreasing until its global minimum, then increasing) but it is not

convex.

The second observation could seem surprising given that Theorem II.2 guarantees the uniqueness of the global

minimizer / stationary point of x 7→ 1
2‖y−x‖2 +φMMSE(x). However, this property is not a characteristic of convex

penalties. As a matter of fact, a function f : R → R (i.e., in the case n = 1) can be written f = proxg with g a

proper lower semi-continuous convex function from R to R ∪ {+∞} if, and only if, the function f is increasing

and non-expansive [2, Proposition 2.4]:

Definition III.1. A function f : R → R is non-expansive if |f(y′) − f(y)| ≤ |y′ − y| for all y, y′. When f is

differentiable, it is non-expansive if and only if |f ′(y)| ≤ 1 for all y.

By Lemma II.1, in dimension n = 1, the MMSE estimator ψMMSE is increasing for any prior PX . However, for

certain priors PX , it can indeed be proved to be expansive (see the proof in Appendix C):

Proposition III.2. Assume that X has a symmetric pdf [∀x ∈ R, pX(−x) = pX(x)] and that there exists ε > 0
such that pX(x) = 0 for all x with |x| < 1 + ε. Then the penalty φMMSE cannot be convex.

IV. DISCUSSION

Theorem II.2 shows that for general priors PX we have ψMMSE = proxφMMSE . Similarly, when X has a pdf, we

have ψMAP = proxφMAP , where for a given prior the MAP penalty φMAP(x) has the simple expression (II.4) while the

MMSE penalty φMMSE(x) has the much more intricate definition (II.7).

For Gaussian priors PX = N (0,Σ), the MMSE estimator is the Wiener filter, which is also the MAP and the

minimum mean square linear estimator [5], so φMMSE = φMAP (up to a constant additive term).

However, for most priors with a pdf pX(x), the MMSE estimator does not coincide with the MAP estimator (i.e.,

ψMMSE 6= ψMAP), hence φMMSE 6= φMAP (even up to a constant additive term). Indeed, by Theorem II.2, the penalty

φMMSE(x) defined in (II.7) has a number of specific properties. Therefore, if φMAP(x) = − log pX(x) fails to satisfy

one of these properties, then the identity φMMSE(x) = φMAP(x)+ c (for some constant c ∈ R and all x ∈ R
n) cannot

be satisfied.
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For example, generalized Gaussian priors pX(x) ∝ exp(−α‖x‖pp) with 0 < p ≤ 1 are not smooth at x = 0, hence

they are not C∞: as a result for such priors there is not even any pair a, b ∈ R such that φMMSE(x) = a+ b ·φMAP(x)
for all x.

One may also wonder whether a reciprocal to Theorem II.2 is possible: given a penalty function φ(x), does there

exist a prior PX such that the MMSE estimator ψMMSE with this prior is associated to the penalty φMMSE(x) = φ(x)
(up to a constant additive term) ? When this prior exists, can we characterize it in terms of the penalty function

φ ? Even though one can always define the tentatively associated ”MMSE estimator” ψ(y) = proxφ(y), the main

difficulty is to understand when there exists a probability measure PX such that ψ(y) − y = ∇ log(pB ⋆ PX)(y).
This combined integration and Gaussian deconvolution problem often does not admit a solution, for example: when

ψ is not one to one; when φ(x) is not sufficiently smooth.

V. CONCLUSION AND PERSPECTIVES

We proved that the MMSE estimator for Gaussian denoising with any prior can be written as the MAP estimator

with a possibly different prior (and that the MAP estimator with certain priors can be interpreted as a MMSE

estimator with a possibly different prior). These results, in conjunction with Nikolova’s highlighting of model

distortions brought by MAP estimation [7], indicate that one should be cautious when interpreting penalized least

squares regression schemes in terms of priors:

• If the unknown noiseless data x follows a prior with pdf pX(x) ∝ exp(−φ(x)) and if we choose the MAP as a

criterion for estimating it, then the resulting denoising scheme leads to penalized least squares regression with

penalty φ(x). This MAP estimator may however have poor denoising performance2 for this type of data [7].

• In practice, the choice of penalized least squares regression with penalty φ(x) is seldomly associated to the

belief that the unknown noiseless data follows a prior with pdf pX(x) ∝ exp(−φ(x)). Instead, it rather

stems from the need for numerical efficiency and the empirical observation that it achieves good denoising

performance for the considered class of data.

By definition, optimum denoising (as measured by the mean squares error) is achieved by the MMSE estimator.

As shown in this paper, the latter is indeed always associated to a penalized least squares scheme3. This sheds

a new light on the popularity of such schemes for Gaussian denoising.

Quite obviously, the denoising performance of penalized least squares regression with a given penalty φ(x)
heavily depends on the prior PX underlying the unknown noiseless data. We focused in this paper on the case

where the penalized least squares regression estimator ψ(y) = proxφ(y) coincides with the MMSE estimator: its

denoising performance E(‖proxφ(Y )−X‖2
2) is optimum. An interesting open problem related to the results of this

paper would be to understand for which priors PX we obtain ”good” denoising performance with ψ(y) = proxφ(y),
i.e., when the denoising performance is bounded by a constant C > 1 times the optimum performance.

One can imagine concrete applications of the results presented here for certain priors: in general the MMSE

estimator ψMMSE(y) is a priori expressed as an intractable high-dimensional integral; however, if the penalty function

φMMSE(x) admits a simple expression amenable to efficient numerical optimization (e.g., convex optimization),

then the MMSE estimator can be computed efficiently. Developping such approaches requires a more in-depth

understanding of the properties of penalty functions φMMSE(x) obtained through Theorem II.2. Of particular interest

would be the construction of explicit examples where φMMSE(x) is ”simple” while pY (y) involves an intractable

integral.

Another interesting perspective is to obtain alternate statistical interpretations of a larger class of penalized least

squares regression estimators (e.g., with non-smooth φ(x) such as those leading to sparse estimates). As remarked

above, the lack of smoothness makes it impossible to interpret such estimators in terms of a MMSE estimator,

however one may seek interpretations that leave the strict Bayesian framework: for example, one may wish to

obtain an interpretation as the optimum of a hybrid Bayesian cost function minψ {EC(ψ(X +B),X) + K(ψ)}
where the term K(·) forces the function ψ to be in some function class. Eventually, one may also wish to extend

theses results to ill-posed linear inverse problems of the type y = Ax+ b, and to deal with non-Gaussian noise.

2Even though, as shown in this paper, this MAP scheme can sometimes be interpreted as an MMSE estimator with a different prior, this

re-interpretation does not alter the denoising scheme nor its denoising performance.
3Yet, the associated penalized least squares problem may not be more computationally tractable than the original MMSE.
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APPENDIX

A. Proof of Lemma II.1

Lemma A.1. Denote ψMMSE(y) =
(

ψiMMSE(y)
)n

i=1
where ψiMMSE : R

n → R is scalar valued. Under the assumptions

of Lemma II.1, the n× n Jacobian matrix J [ψMMSE](y) :=
(

∂
∂yj
ψiMMSE(y)

)

ij
satisfies the identity

J [ψMMSE](y) =

(

δij +
∂2 log pY (y)

∂yi∂yj

)

ij

= I + ∇2 log pY (y) (A.1)

and is symmetric positive definite:

〈v, J [ψMMSE](y) · v〉 > 0, ∀y ∈ R
n, v 6= 0. (A.2)

Proof: Without loss of generality we consider a unit norm vector ‖v‖2 = 1. For brevity we omit the dependency

in the variable y when possible. First, by (I.2) we have

ψMMSE(y) = y + ∇ log pY (y) = y + ∇pY (y)/pY (y)

hence

J [ψMMSE] = I + ∇2 log pY = I +
∇2pY
pY

− ∇pY · (∇pY )T

[pY ]2

and

〈J [ψMMSE] · v, v〉 =
p2
Y + pY 〈∇2pY · v, v〉 − 〈∇pY , v〉2

p2
Y

. (A.3)

We will now prove that the numerator in (A.3) is positive for all y. Since pB(b) ∝ e−‖b‖2
2/2, we have

∇pB(b) = (−b) · pB(b),

∇2pB(b) = (bbT − I) · pB(b).

Since pY = pB ⋆ PX , ∇pY = ∇pB ⋆ PX , ∇2pY = ∇2pB ⋆ PX this yields

pY =

∫

pB(y − x) dPX(x)

〈∇pY , v〉 =

∫

(−〈y − x, v〉) · pB(y − x)dPX(x)

〈∇2pY · v, v〉 =

∫

(

〈y − x, v〉2 − 1
)

· pB(y − x)dPX(x)

hence

pY 〈∇2pY · v, v〉 =

∫∫

(

〈y − x, v〉2 − 1
)

· pB(y − x)pB(y − x′)dPX (x)dPX(x′)
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The above expression is also valid is we exchange the role of the integration variables b and b′, hence by taking

the average of these two equal expressions we obtain

pY 〈∇2pY · v, v〉 =

∫∫

[

〈y−x,v〉2+〈y−x′,v〉2

2 − 1
]

· pB(y − x)pB(y − x′)dPX (x)dPX(x′)

Similarly we can write

p2
Y =

∫∫

pB(y − x)pB(y − x′)dPX(x)dPX (x′)

〈∇pY , v〉2 =

∫∫

〈y − x, v〉〈y − x′, v〉

· pB(y − x)pB(y − x′)dPX(x)dPX (x′)

Overall, the numerator of the right hand side in (A.3) becomes

∫∫ 〈x′ − x, v〉2
2

pB(y − x)pB(y − x′)dPX(x)dPX (x′). (A.4)

Now, since there is no c such that 〈X, v〉 = c with probability one, there exists x1, x2 ∈ R
n, d = 〈x2 − x1, v〉 6= 0,

such that the Euclidean balls Bi = B(xi, d/3) ⊂ R
n, have positive probability PX(Bi) > 0. For (x, x′) ∈ B1 ×B2

the function g(x, x′) := 〈x′−x,v〉2

2 pB(y − x)pB(y − x′) is bounded from below by some constant η > 0, hence the

integral in (A.4) is bounded from below by
∫∫

B1×B2

g(x, x′)dPX(x)dPX (x′) ≥ η · PX(B1)PX(B2) > 0.

We conclude that 〈J [ψMMSE] · v, v〉 > 0.

We are now equipped to prove Lemma II.1.

Proof of Lemma II.1: We let the reader check that pY cannot vanish. Since it is C∞, ψMMSE is also C∞. To

prove that ψMMSE is one-to-one, we proceed by contradiction, assuming that ψMMSE(y) = ψMMSE(y
′) while y′ 6= y.

We define v := (y′−y)/‖y′−y‖2 and the function f : t 7→ f(t) := 〈v, ψMMSE(y+ tv)〉 ∈ R. Since the function f is

smooth and f(0) = f(‖y′ − y‖2), by Rolle’s theorem the derivative of f must vanish for some 0 < t < ‖y′ − y‖2.

However by Lemma A.1 we have f ′(t) = 〈v, J [ψMMSE](y+ tv) · v〉 > 0 which yields a contradiction. Therefore, the

inverse function ψ−1
MMSE exists as claimed. The fact that it is also C∞ follows from the positivity of the Jacobian of

ψMMSE and the inverse function theorem.

B. Proof of Theorem II.2

The fact that φMMSE is C∞ on ImψMMSE is a straightforward consequence of its definition (II.7) and of the fact

that pY as well as ψ−1
MMSE are C∞ (Lemma II.1). We wish to check that the proximity operator of φMMSE defined

by (II.7) is indeed ψMMSE. The definition of φMMSE(x) for x /∈ ImψMMSE ensures that proxφMMSE takes its values in

ImψMMSE. We let the reader check that a consequence of Lemma A.1 is that the set ImψMMSE is open. For brevity

we denote q(y) = log pY (y) and

g(u) :=
1

2
‖y − ψMMSE(u)‖2

2 + φMMSE[ψMMSE(u)]

=
1

2
‖ψMMSE(u) − y‖2

2 −
1

2
‖∇q(u)‖2

2 − q(u).

Since J [ψMMSE](u) = I + ∇2q(u) (Lemma A.1) and ψMMSE(u) = u+ ∇q(u) (Equation (II.2)), we obtain

∇g(u) =J [ψMMSE](u) ·
[

ψMMSE(u) − y
]

−∇2q(u) · ∇q(u) −∇q(u)
=J [ψMMSE](u) ·

[

ψMMSE(u) − y −∇q(u)
]
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=J [ψMMSE](u) ·
[

u− y
]

Now consider fv(t) := g(y + tv) with v 6= 0 an arbitrary vector. Its derivative is

f ′v(t) = 〈∇g(y + tv), v〉 = 〈J [ψMMSE](y + tv) · tv, v〉
= t · 〈J [ψMMSE](y + tv).v, v〉

which, by Lemma A.1, has the sign of t, showing that fv admits its strict global minimum at t = 0. Since this is

true for any choice of v it follows that g has no stationary point other that u = y, and that g(u) > g(y) whenever

u 6= v, that is to say x 7→ 1
2‖y − x‖2

2 + φMMSE(x) admits a unique global minimum at x = ψMMSE(y). To conclude,

since ψMMSE(y) = proxφMMSE(y), we have for any y

φMMSE(y) =
1

2
‖y − y‖2

2 + φMMSE(y)

≥ 1

2
‖y − ψMMSE(y)‖2

2 + φMMSE[ψMMSE(y)]

= − log pY (y).

As a result 0 ≤ exp(−φMMSE(y)) ≤ pY (y), and since pY (y) is integrable so is exp(−φMMSE(y)).

C. Proof of Lemma III.2

Thanks to (A.4), and since both pB and pX are symmetric, the numerator of (A.3) for y = 0 reads
∫∫

(x′ − x)2

2
· pB(−x)pB(−x′)pX(x)pX(x′)dxdx′

=

∫

x2

2
· pB(x)pX(x)dx ·

∫

pB(x′)pX(x′)dx′

+

∫

(x′)2

2
· pB(x′)pX(x′)dx′ ·

∫

pB(x)pX(x)dx

−
∫

x′ · pB(x′)pX(x′)dx′ ·
∫

x · pB(x)pX(x)dx

=

∫

x2 · pB(x)pX(x)dx ·
∫

pB(x′)pX(x′)dx′

Since pY (y) =
∫

pB(x)pX(x)dx, inserting the above expression in (A.3) for y = 0 and using that pX(x) = 0 for

|x| < 1 + ε we obtain

ψ′
MMSE(0) =

∫

x2 · pB(x)pX(x)dx
∫

pB(x)pX(x)dx

=

∫

|x|≥1+ε x
2 · pB(x)pX(x)dx

∫

|x|≥1+ε pB(x)pX(x)dx
≥ (1 + ε)2 > 1.

Therefore, ψMMSE is expansive. Since it is also increasing, the associated φMMSE is C∞ (Theorem II.2) hence it is

proper and continuous. As a result of [2, Proposition 2.4], since ψMMSE = proxφMMSE , the penalty φMMSE cannot be

convex. Similar examples can be built in higher dimensions.
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