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Should researchers use single indicators, best
indicators, or multiple indicators in structural
equation models?
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Abstract

Background: Structural equation modeling developed as a statistical melding of path analysis and factor analysis

that obscured a fundamental tension between a factor preference for multiple indicators and path modeling’s

openness to fewer indicators.

Discussion: Multiple indicators hamper theory by unnecessarily restricting the number of modeled latents. Using

the few best indicators – possibly even the single best indicator of each latent – encourages development of

theoretically sophisticated models. Additional latent variables permit stronger statistical control of potential

confounders, and encourage detailed investigation of mediating causal mechanisms.

Summary: We recommend the use of the few best indicators. One or two indicators are often sufficient,

but three indicators may occasionally be helpful. More than three indicators are rarely warranted because

additional redundant indicators provide less research benefit than single indicators of additional latent variables.

Scales created from multiple indicators can introduce additional problems, and are prone to being less desirable

than either single or multiple indicators.
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Background

Structural equation modeling melds path analysis and

factor analysis under a common statistical framework.

The multiple-indicator factor tradition includes works

by Thurstone [1], Harman [2], Lawley & Maxwell [3],

and Mulaik [4], while the single-indicator path tradi-

tion has roots in regression and includes Wright [5,6],

Blalock [7], Duncan [8], and Heise [9]. Recent structural

equation introductions range from having a heavy factor

focus (Byrne [10]), through works seemly oblivious to

path-factor tensions (Kline [11], Byrne [12,13], Bollen

[14]), to path oriented discussions (Hayduk [15,16]). The

path and factor approaches differ noticeably in regard to

procedure, testing, and indicators.

In arguing against Anderson & Gerbing’s [17,18] pro-

cedural suggestion to use a factor model before intro-

ducing latent paths, Fornell and Yi [19,20] implicitly

contrasted the path and factor approaches. Hayduk’s

[16] additional critiques of the factor-model-before-

path-model idea led to extensive SEMNET [21] dis-

cussions and a special issue of Structural Equation

Modeling where a target article challenging the use of

factor-models before latent path-models (Hayduk and

Glaser [22]) was followed by commentaries (Mulaik and

Millsap [23], Bollen [24], Bentler [25], Herting & Cost-

ner [26]), and a rejoinder (Hayduk and Glaser [27]). The

weaknesses of the factor-model-first idea became pain-

fully obvious, so subsequent SEMNET discussions

switched to the topic of model testing – which again

pitted the path-model inclined (who favored diagnostic

attention to significant evidence of model ill-fit) against

the factor-model inclined (who sought to replace model

testing with indexing). This led to a special issue of

Personality and Individual Differences in which Barrett’s

[28] target article called for reporting and respecting

the model χ2 test. Barrett’s call was neither strong nor

precise enough for some (Hayduk, Cummings, Boadu,

Pazderak-Robinson, & Boulianne [29], McIntosh [30])
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but was “challenging” to those having factor analytic

backgrounds (Millsap [31], Mulaik [32], Steiger [33]) –

though the disarray among the dissenting replies sig-

naled that careful model testing constitutes the new

norm, even for factor models.

One additional path-versus-factor battle awaited, namely

the matter of latents having single indicators (Hayduk &

Pazderka-Robinson [34], Hayduk [16]). SEMNET again

hosted multiple skirmishes, but it fell to the current article

to organize the arguments regarding latents having rela-

tively few indicators.

Organizing the issues

We begin with the Figure 1 model which has two indica-

tors per latent variable – not the multiple indicators

requested by factor models but also not single indi-

cators. This figure emulates LISREL notation (Joreskog

& Sorbom [35]) where η’s are true-score-like latent vari-

ables and y’s are indicator variables, but this model is

not complete – as indicated by the dots representing

"the rest of the model". The paired indicators report that

the author of Figure 1 attended to the measurement

methodology distinguishing each indicator pair from the

other pairs (e.g. questionnaire wordings). The indicator

pairings also signal that the researcher is not doing

exploratory factor analysis because exploratory factor

analysis is not likely to locate half as many latents as

indicators, or indicators clustered in tidy pairs.

This model contains a strange conceptual bifurcation.

The model claims considerable causal understanding in

one model segment (the latents’ effects on the indica-

tors) and complete causal ignorance in another segment

(the saturated non-directional relationships among the

latents). The researcher constructing this model did

not fear causation itself because the model requires

latent to indicator causal actions. It is more likely that

the causal-segmentation arose from the complexity and

difficulty of considering specific latent-to-latent causal

connections. It is common to not know the latent

level causal structure. But how should a structural equa-

tion modeler proceed when they don't know the latent

causal structure?

Researchers following factor analytic tradition were

trained to think it was OK to specify measurement struc-

tures before introducing latent effects and constraints.

The deficiencies of the measurement-before-latent-

structure idea were headlined in Hayduk & Glaser

[22,27], Hayduk [16], and Fornell & Yi [19,20], so we

need not revisit these details here. Let us instead pre-

sume the researcher encountered theory-encouraging

training that overcame their causal-segmentism, and pos-

tulated the latent causal structure depicted in Figure 2.

This particular battle has been won whether the postu-

lated structure is correct or not, because the battle was

to get the researcher to see, understand, and incorporate

some reasonable (to them) theoretical causal structuring,

to permit the indicator data to speak for or against

the researcher’s theory/thinking. There is an undeniable

preference for the data speaking approvingly, but theory

is furthered whatever the data’s verdict.

What is required to move from a model like Figure 1

toward a Figure 2 model? One obvious, and difficult,

concern is that any postulated latent-level effects should

have worldly counterparts, and postulated absences of

Figure 1 Two indicators per latent.
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effects should correspond to worldly lacuna. A less obvi-

ous but important concern is that each latent variable

participating in latent-to-latent causal effects must be

identical to the latent acting causally toward specific

indicators. This requirement actually provides substan-

tial assistance, as we see shortly. We address the fixed

measurement error variances depicted in Figure 2, later

in this article. When we refer to measurement error

variances, true scores, and the like, our concern is for

validity via models that match the relevant worldly

causal structures, rather than the mere reliability conno-

tations such terms can carry in the context of classical

test theory.

Consider a variable like η3 that is somewhere in the

midst of the effects among the latents. η3's value (for any

one case) is set by absorbing diversity (absorbing the

potentially very different styles and magnitudes of effects

arriving from η1, η2, and η3's error variable), and η3

emits the resultant value proportionately – namely in

proportion to the magnitudes of the effects η3 emits. To

specify such a causal nexus for η3 the researcher must

theorize or understand η3 as being capable of the rele-

vant absorptions and emissions – including η3's causal

effects on its indicators.

Consider the causal connection between η3 and y5.

The 1.0 effect depicted in Figure 2 does not make y5 a

perfect reflection of η3 – it merely asserts a scale for η3
by asserting that each "perfect and isolated unit increase"

(or decrease) in the true value of η3 (whether originat-

ing in η1, η2, or η3's error) would result in a corre-

sponding unit increase (or decrease) in the indicator’s

scaled value. This isolation and perfection is imaginary

because a real unit change in latent η3 would mix with

the measurement-error forces that also pummel the

observed value of y5. The measurement error effects

would nudge y5's value to be somewhat more or less

than the perfect unit change originating in η3.

Error variances and latent meanings

The variance of the error-5 variable connected to y5

helps determine the meaning of the latent variable η3.

If there were no causal variables influencing y5 other

than η3, there would be no variance in the error-5 vari-

able, and y5’s observed values would correspond exactly

to, and have the same variance as, the true values of η3.
Seeing y5’s values would directly report η3’s true values.

An opposite extreme occurs if the causal variables col-

lectively referred to as y5’s error variable produce most

of the variability in y5's values. Each real unit change in

η3 still produces a corresponding unit for unit change in

y5, but if the causal actions of the variables cumulated

as y5’s error variable knock y5's values hither and yon,

what is the identity of the η3 variable? η3 becomes any

one of the many potential things that produces a minor

amount of variation in y5's values. η3's identity is thrown

into doubt because it becomes one (an unknown one) of

the variables capable of producing some of y5’s variance.

Let us consider the more realistic case where η3 is nei-

ther perfectly reflected in y5's values, nor so minimally

contributing to y5 that the researcher should consider

discarding y5. The researcher presumably scaled η3 via

the 1.0 effect to y5 because y5 was the best available in-

dicator. For example, if y5 came from questionnaire

data: the question providing y5 presumably was clear,

precise and appropriately worded, there were few miss-

ing values, no recoding difficulties, no socially-desirable

response, a reasonable distribution across multiple evenly-

spaced response options, and so on. Being the best of the

available indicators makes y5 unlikely to be almost all

error, but it is also unlikely to be error-free.

Figure 2 Incorporating latent causal structuring.
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The questionnaire or measuring instrument is insuffi-

cient to dictate what constitutes measurement error in a

variable like y5 because the latent-effect portion of the

model contributes importantly to η3’s identity or mean-

ing. Only causes of y5 other than η3 constitute error.

Figure 3 illustrates three options for what η3 might be,

namely: η3A, η3B or η3C. Any of these three latent vari-

ables could be the η3 latent measured by y5 in Figure 2

because all three of these latents cause y5. Momentarily

ignore the dashed effect leading to y6, and notice that if

η3C was the intended identity of η3 only the real causal

variables summarized as error-5 would provide measure-

ment error. The causal features subsumed within error-

C would produce variations in the true values of η3C and

subsequently true-score (not error) variance in y5. But if

η3B was the intended identity of η3, the error on y5 in

Figure 2 would be the sum of error-5 and error-C from

Figure 3. The variables whose causal impacts constitute

the “errors” entering at both η3C and y5 in Figure 3

would tend to obscure how the true values of η3B would

make themselves apparent in y5's values. The error on

y5 in Figure 2 is the cumulated, or net, effect of all the

causal impacts entering anywhere along the causal chain

leading from the intended latent variable, here η3B, to

y5, and not just effects impinging directly onto y5.

Similarly, if η3A was the intended meaning for η3 in

Figure 2, then all the “error” sources impinging upon the

chain of indirect effects between η3A and y5 would con-

stitute disruptive causal forces obscuring the true value

of η3A. Hence, the error on y5 in Figure 2 would be the

sum or accumulation of the causal features labeled

error-B, error-C, and error-5 in Figure 3. While it is

common to label disruptive causal forces connected to

latents as residuals or structural-disturbances, and as

measurement-errors if connected to indicators, we label

all these as “errors” in Figure 3 because which specific

disruptive causal forces constitute measurement-errors

and which “residuals” remains open and requires careful

researcher assessment.

The chain of effects leading through the three optional

η3's to y5 warrants the use of y5 as an indicator of any

one of η3A, η3B, or η3C, and the choice of which of these

the researcher intends to incorporate in the latent level

of the model dictates which causal actions constitute

disruptions that should be accumulated into y5's error

variable in Figure 2. The more extensive the disruptive

forces, the larger the proportion of y5’s variance that is

error but it is important to remember that the funda-

mental issue concerns the validity of the latent’s specifi-

cation and not mere reliability.

Now we reverse the statements about error accumula-

tion. By specifying the appropriate error-accumulation

(the appropriate portion of y5’s variance) as fixed, the re-

searcher could select whether the Figure 2 model con-

tains η3C or η3B or η3A. To use η3C (in Figure 2) fix the

variance of the error on y5 in Figure 2 to be the variance

provided by only error-5. To select η3B, the variance on

y5's error in Figure 2 should include variance produced

by both error-5 and error-C in Figure 3. And if η3A is

the appropriate η3 for inclusion in Figure 2, the error

on y5 would arise from error-5, error-C, and error-B in

Figure 3. Specifying the portion of the variance of y5

that arises from "error disruption" selects whether η3A

or η3B or η3C is the variable the researcher views as
Figure 3 Clarifying η3.
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contributing the complementary true-score portion of

y5's variance.

The mathematical foundation for distinguishing be-

tween η3A, η3B, and η3C on the basis of the proportion

of y5’s variance that is error is straight forward. For the

Figure 3 model

y5 ¼ η3C þ error5 ð1Þ

Assuming the independence of the error variables

from one another and from the causally preceding η’s,

this implies.

Var y5ð Þ ¼ Var η3C

� �

þ Var error5ð Þf g ð2Þ

In Figure 3 η3C = η3B + errorC and inserting this into

Equation-1 says

y5 ¼ η3B þ errorC þ error5 ð3Þ

which implies

Var y5ð Þ ¼ Var η3B

� �

þ Var errorCð Þ þ Var error5ð Þf g ð4Þ

And similarly, inserting η3B = η3A + errorB into

Equation-3 provides

y5 ¼ η3A þ errorBþ errorC þ error5 ð5Þ

which implies

Var y5ð Þ ¼ Var η3A

� �

þ Var errorBð Þ þ Var errorCð Þ þ Var error5ð Þf g

ð6Þ

The variance of indicator y5 is partitioned by the

Figure 3 causal world, and Equations 2, 4, and 6 illus-

trate how any one of the latent variables η3C, η3B, or η3A
could be validly introduced as η3 in Figure 2 by fixing

y5’s error variance at the sum of the appropriate error

variances presented within braces above.

A second indicator and potential incompatibility

To determine whether η3A, η3B, or η3C is validly used in

the Figure 2 model, the researcher must consider more

than just the identity and causal termini of disruptive

“error” variables. They must also consider any additional

available indicators such as y6. Figure 3 depicts η3A

as an indirect cause of y6, η3B as a direct cause of y6,

and η3C as not causing y6. Consider what would go

wrong "statistically" (actually model implicationally) if η3
in Figure 2 was called, or given a “meaning,” corre-

sponding to either η3A or η3C when in fact η3B was

the direct causal source of y6. That is, consider the

model implications, or model claims, that go awry if η3
(in Figure 2) were mis-identified as η3A or η3C because

y6 was directly caused by η3B (as in Figure 3).

This requires that we attend to how a common-cause

implies, or causally produces, a spurious covariance or

correlation between two variables. If the value of a com-

mon cause increases, the values of both the effected

variables increase (presuming positive effects). If the

value of the common cause decreases, the values of both

effected variables decrease. Hence the values of the

effected variables become coordinated (both tending to

rise or fall together). The extent of the coordination or

covariation depends on the strengths of the two causal

effects, and on the variability in the values of the com-

mon cause. Considering Bollen ([14] page 22), Duncan

([8] page 14), or Hayduk ([15] page 31; [16] pages

xvi,10) will convince you that the covariance between

two variables effected by a common cause must equal

the product of the two effects and the variance of that

common cause. Specifically, for a common cause of y5

and y6, this requires that

Cov y5; y6ð Þ ¼ effect leading to y5ð Þ effect leading to y6ð Þ

variance of the common causeð Þ ð7Þ

Consider what this equation implies if y6 (in Figure 2)

was thought of as having common cause η3A, or η3B (as

diagramed in Figure 3), or η3C. In all three instances, the

effect leading to y5 would be 1.0 – whether a 1.0 direct

effect, or an indirect effect of 1.0 obtained from the

product of several 1.0 effects. This constitutes a way of

providing the latent variable (whether η3A, η3B, or η3C) a

scale that corresponds to y5’s scale units. If η3C was the

common cause in Figure 2, the model-required covari-

ance between the y5 and y6 indicators (from Equation 7)

would be

Cov y5; y6ð Þ ¼ 1:0ð Þ theeffect of η3C on y6
� �

variance of η3C
� �

ð8Þ

And if η3B was the common cause (as depicted in

Figure 3) the model-implied covariance between the

indicators would be

Cov y5; y6ð Þ ¼ 1:0ð Þ theeffect of η3B on y6
� �

variance of η3B
� �

ð9Þ

and if η3A was the common cause in Figure 2 the model-

implied or model-required covariance would be

Cov y5; y6ð Þ ¼ 1:0ð Þ theeffect of η3A on y6
� �

variance of η3A
� �

ð10Þ

The covariance on the left of these equations is what

the Figure 2 model, with its common-cause structure

and effect magnitudes, implies should be observed as

the covariance between y5 and y6 for the three optional

meanings for η3. Naturally, since we are seeking a valid
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model, we hope the model’s implication matches the

observed data covariance between y5 and y6.

Now return to Figure 3 and notice that the variances

of variables η3A, η3B and η3C differ; with η3A having the

smallest variance and η3C the largest variance because

the variance-producing causal actions of additional

“error” variables impinge on the chain of latent variables

in moving from η3A toward η3C. Any of these different

latent variances, when placed on the right sides of Equa-

tions 8, 9, or 10, could imply a covariance (on the left of

the equation) that matches the observed y5 y6 covari-

ance by making a compensating adjustment to the

“estimated” magnitude of the effect leading from each

latent-option to y6. The latent with the largest variance

(η3C), could be given the weakest estimated effect lead-

ing to y6 to make the product of the entries on the right

of Equation 8 correspond to the observed Cov(y5,y6),

and so forth.

Hence, altering whether we choose η3A, η3B, or η3C to

be the η3 to use in the Figure 2 model would control the

magnitude of the “estimated” effect leading to y6 that

would match the data covariance between y5 and y6.

But only one of the causal connections would be valid in

the sense of matching the world's causal structure (η3B if

Figure 3 depicts the true causal structure) even though

the other optional latents (η3A and η3C) could be made

to match the covariance between the y5 and y6 indica-

tors via compensating (but incorrect or “biased”) esti-

mates of the effect leading from the selected latent to y6.

No estimate bias would arise if Figure 2 presented

y6’s proper causal source, and we specified y5’s error

variance as the sum of the error-5 and error-C (from

Figure 3) because that selects η3B and implies use of

Equation 9, which in turn results in an appropriate esti-

mate for η3B’s effect on y6. But selecting either η3A or

η3C to appear in Figure 2 (via accumulation of more or

fewer errors in Figure 3) would result in an incorrect

(biased) estimate of the effect of η3 on y6. η3A has too

little variance to match the data Cov(y5,y6) with the

proper size of effect, and η3C has too much variance to

match Cov(y5,y6) with a proper size of effect. In fact, if

Figure 3 constitutes the proper causal structure, η3C has

no causal effect on y6, and any estimate other than zero

is a biased estimate.

Latent theory and potential incompatibility

The effect leading from η3 to y6 contributes to produ-

cing and accounting for many additional data covar-

iances. A zero η3 to y6 effect would causally

disconnected y6 from all the other model indicators in

Figure 2, and hence y6 would display zero covariance

with all those indicators. A stronger η3 to y6 effect

would imply stronger y6 covariances with the indicators

of all the causes and effects of η3, not just with y5.

The latent-level effects leading to and from η3 in

the Figure 2 model also depend upon η3 having a spe-

cific identity – whether η3A, η3B, or η3C. According to

Figure 3, η3B is the appropriate version of η3 for match-

ing the covariance between y5 and y6, but we have

not yet confirmed that η3B is also the version of η3

required to engage in causal actions at the latent level of

the Figure 2 model – where η3 receives effects from η1

and η2, and sends effects to η4 and beyond. In Figure 2,

η3A might be required as the causal mechanism carrying

effects from η1 and η2 toward the causally down-stream

latents (and their indicators), and η3A might also be the

version of η3 required to act as a common cause coord-

inating causally down-stream latents (and their indica-

tors). Thus the latent level causal actions might call for

η3A (in Figure 2) with its lower variance and (biasedly)

stronger effect to y6 (via Equation 10), while the covari-

ance between y5 and y6 calls for latent η3B with its

higher variance and weaker effect leading to y6 (via

Equation 9). Such inconsistencies constitute model mis-

specification and result in invalid models, biased esti-

mates, and model ill fit. Hence both the latent-to-latent

effects (as in Figure 2) and the single/multiple indicator

options (as in Figure 3) must be assessed simultaneously

in deciding which meaning of a latent (like η3) is appro-

priate for inclusion in the model. Similarly detailed

assessments should accompany each fixed measurement

error variance in the model (e.g. for y1, y3, etc. in

Figure 2).

Figure 4 presents hypothetical examples illustrating

the kinds of substantive issues a researcher must attend

to in the context of difficult attitudinal indicators. In

Figure 4A, the causal forces differentiating between the

reported y5 from the true score η3C are things like mis-

taken recording of a respondent’s verbal response, or the

rounding-error implicit when a truly continuous variable

is tapped by categoric Likert responses. In contrast,

the differences between η3A, η3B, or η3C reflect substan-

tively different concepts that are progressively causally

removed from the specific y5 question wording. The y5

question in Figure 4A neither selects nor forbids any of

the three latent meaning/identity options, so the selec-

tion from among these depends on the latent-level the-

ory in which the Figure 4A latent is to be embedded.

Figures 4B and 4C are similarly structured to display

optional latent-variable identities corresponding to spe-

cific indicators, where dashed arrows indicate the kinds

of latent-to-latent causal actions a researcher should

consider in differentiating between the latent-identities

η3A, η3B, and η3C. The selected latent identity might

reflect a common disciplinary perspective (e.g, η3C in

Figure 4B) but the selection should express the research-

er’s theoretical preference and the availability of indica-

tors of the other postulated latent causes/effects, rather
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than consensus. For example, if the Figure 4C data set

had no indicator of “minimum duration for prayer” (or

other variables influencing η3C), and if the researcher

believed no effects led from η3C to downstream latent

variables, the researcher would be pushed toward using

η3B – namely toward a latent-identity assigning the vari-

ance in y5 produced by “minimum duration” (or other

η3C causes) as error variance, not true latent variance.

That is, attaining a valid model specification might

require specifying y5 as containing a greater proportion

of “error”.

Now back to Figure 3. If η3A is required to appropri-

ately model the covariances of both y5 and y6 with the

indicators of the other modeled latents, while η3B is

required to model the covariance between y5 and y6, the

estimation process will attempt to locate compromise

estimates for η3’s effect on y6, and the effects connecting

η3 to the other latents. Those compromise estimates can

nonetheless result in noticeable inconsistencies between

the covariance data and the model’s covariance implica-

tions. Such potential inconsistencies render the model

testable, but before we turn to testing, let us reconsider

the latent level of the model.

A new beginning: single indicators as encouraging precision

in latent theory

Presuming Figure 3 depicts the true causal structure

connecting y5 and y6, we could include both η3B and

η3C as latents with single indicators in the model. We do

not have to choose just one of η3A, η3B, or η3C. We could

use y5 as an indicator of η3C, and y6 as an indicator of

η3B, and add precision to the latent level of the model by

assessing whether the latent-level effects connected to η3

in Figure 2 enter into, or emerge from, specifically η3B,

or η3C, or both. For example, the effect from η1 might

enter at η3B while the effect from η2 enters at η3C, and

effects might emerge from either η3B or η3C or both on

their way to causally-downstream latent variables. Care-

ful consideration of the relevant latent-to-latent effects

would be required, and error-C and error-B constitute

important parts of the consideration. The variables com-

prising error-C will have no impact on any latents (other

than η3C) unless η3C causes some other latent(s) in the

model. In contrast, the real variables constituting error-

B would influence whatever other latents were caused by

either η3B or η3C.

If Figure 3 provides the proper causal specification for

y5 and y6, using both y5 and y6 as single indicators

would not permit incorporating both η3A and η3B in the

latent level of the model. Either y5 or y6 alone could be

used as a valid single indicator of η3A because η3A causes

both, and the “intervening” error variables are presumed

to be statistically independent, so there is an appropriate

style of error accumulation that could be used. But

the "other" indicator (whether y6 or y5) could not be

used simultaneously as a direct indicator of η3B without

misspecifying the causal actions of the variables consti-

tuting error-B. For y5 to be an indicator of η3A, the

real causal actions constituting error-B would have to be

part of what is cumulated into y5's error. For y6 to

simultaneously be an indicator of η3B, those same real

error-B sources would have to contribute true variance

Figure 4 Hypothetical examples differentiating between η3A, η3B, and η3C.
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in η3B – which is contradictory because these real error-

B sources cannot be both sequestered as measurement

errors dead-ending in y5 and simultaneously be variables

causing true-score variance in latent η3B and any vari-

ables causally down-stream from η3B.

y5 by itself would permit incorporating any one of η3A,

η3B, or η3C in the latent level of the model (with error

independence and the appropriate accumulation of

errors as discussed above), and y6 by itself would permit

inclusion of η3A or η3B in the model (with appropriate

error accumulation). Using y5 and y6 as two single-

indicators would permit use of both η3B and η3C in the

model but not η3A and η3B. Using both y5 and y6

as multiple indicators of a single latent would permit

only η3B in the latent level model (not η3A or η3C). y6

could never be justifiably used as an indicator of η3C in

any model (even though y6 correlates with η3C due to

common cause η3B) because the variables constituting

error-C do not cause y6. With the causal structuring

in Figure 3, using y5 and y6 as multiple indicators of

a latent would demand use of η3B at the latent level in

Figure 2, whereas use of a single indicator, or a pair of

single indicators, would permit the latent level of the

model to contain η3A alone, or η3B alone, or η3C alone,

or both η3B and η3C.

Just as η3B is demanded by modeling y5 and y6 as two

indicators of a single latent, multiple indicators in factor

analysis demand indicator-controlled latent identities

with minimal attention to whether or not the selected

latent is capable of appropriate latent-to-latent causal

actions. Factor analysis, and scales created from factor-

based analyses, force a data-controlled identity onto

latents like η3B while disregarding, or even disrespecting,

theoretical concern for whether η3A, η3B, or η3C is, or

are, required for appropriate latent level effects. The spe-

cification of η3 (in Figure 2) as η3A, η3B, or η3C should

not be thought of as being under the exclusive control

of η3's indicators. η3's identity is also tied to its latent

effects (and absences of effects). The researcher should

acknowledge the potential conflict between the latent-

level and indicator-level identifications/meanings for η3

and preemptively attend to this by holistically assessing

both η3's latent level effects and the indicators’ method-

ology (instrumentation, wordings, scaling, etc.). These

observations illustrate why it is preferable to estimate a

single full structural equation model rather than

attempting to do measurement prior to incorporating

latent level effects (as discussed in the 7(1) issue of

Structural Equation Modeling). The detailed latent

considerations prompted by consideration of single indi-

cators should enhance the precision and research contri-

bution provided by structural equation models.

A fixed 1.0 “loading” and a fixed measurement error

variance are sufficient to statistically-identify the latent

but the larger the fixed measurement error variance the

less precise the meaningful-identity provided by a lone

indicator. As the specified measurement error variance

increases, the latent’s identity is loosened because the

latent could be any latent capable of accounting for a

decreased proportion of the indicator’s variance. Conse-

quently, latent-level model constraints take stronger

control of the latent’s identify with larger measurement

error variance specifications. The saturated latent covar-

iances for η3 in Figure 1 hamper specification of a con-

sistent latent-and-indicator based identity for η3 because

the absence of specific required and forbidden latent-

level causal connections impedes meaningful differenti-

ation between η3A, η3B and η3C. A factor analytic claim

that η3 displays unspecified correlations with other

latent factors is too imprecise (too unconstraining) to

contribute substantively to identifying η3.

As the researcher attends to η3's required (hopefully

few) and forbidden (usefully many) latent causes and

effects, η3's identity solidifies in the researcher's under-

standing. That clarified understanding contributes im-

portantly to assessing the strengths and weaknesses of

whatever indicators are vying for designation as the “best

indicator” because this focuses attention on the specific

variables constituting the errors like error-5, error-C,

and error-B. Some causes of the optional latent identities

might be slated to appear in the model (like η1 and η2 in

Figure 2), and that contributes importantly to deciding

whether the required latent is η3A, η3B, or η3C. Assessing

which variables’ causal impacts do, or do not, enter

between the η3 true scores and the indicators’ values

clarifies what constitutes measurement error. Research-

ers may end up disagreeing over the latent’s preferred

identity but this constitutes research advancement

because it clarifies disagreements previously obscured by

conceptual imprecision.

Once the meaning or identity of each latent corre-

sponds to the researcher’s current theoretical under-

standings, the researcher faces the challenge of getting

the model to comply with those understandings so

that when data speak about the model they also speak

directly about the researcher’s understandings. Most

researchers are comfortable incorporating theory asser-

tions about latent effects and absences of effects (as in

Figure 2) but researchers should be equally comfortable

making measurement error variance assertions because

measurement assertions are a type of theory assertion.

An effective procedure for maintaining intended theor-

etical latent meanings was developed decades ago (e.g.

Entwisle, Hayduk & Reilly [36]), and was illustrated in

Hayduk [15], and summarized in Hayduk [16]. Hayduk’s

procedure, as it was dubbed on SEMNET, requires spe-

cifying a fixed non-zero measurement error variance

for each indicator receiving a 1.0 effect/loading. Fixed
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measurement error variances are thus provided for all

single-indicators, and for the best indicator within each

set of multiple indicators. (The other indicators in

multiple indicator sets are typically given free loadings

and measurement error variances.) The fixed 1.0 pro-

vides a scale for the latent and the fixed measurement

error variance selects from alternative latent meanings,

as in Figures 3 and 4. But before we consider the prac-

tical details of fixing measurement error variances,

we should consider the statistical identification of the

model, and model testing. The fixed measurement error

variance procedure we recommend constitutes neither

the minimum requirement for model identification nor

excessive measurement assertiveness.

Identification, testing, and what is tested

If, as in Figure 1, there were four latents and hence eight

indicators in the model, there would be 8(8+1)/2 = 36

indicator variances and covariances as data points. The

estimated model coefficients would include: 4(4+1)/2 or

10 variances and covariances of the latents, four "load-

ings" (the other four being fixed 1.0’s scaling the latents),

and eight measurement error variances – for a total

of 22 estimates. Barring empirical underidentification

(which presumes there are no entirely redundant indica-

tors, no entirely disconnected latents or indicators, or

indicators having zero variance) these 22 model coeffi-

cients should be estimable, and the Figure 1 model

should provide a mode χ
2 test having 36 - 22 = 14

degrees of freedom.

The Figure 2 model would be more assuredly identi-

fied than the Figure 1 model, again barring empirical

underidentification, which now also presumes no new

identification concerns for reciprocal latent effects,

loops, excessive latent error covariances, and the like. If

there are two fewer effects between the latents than

there are covariances among the Figure 1 latents, the

Figure 2 model has two more degrees of freedom than

the Figure 1 model. And if a fixed measurement error

variance is specified for the best of each pair of indica-

tors, this contributes four additional degrees of freedom,

making a total of 20 degrees of freedom for the Figure 2

model χ2 test. Fixed measurement error variances may

be needed to statistically identify some models, but that

is not why we need them in the current context, or rec-

ommend them in general. The fundamental justification

is that fixed measurement error variances clarify the

modeled theory, and hence improve the investigation

and testing of theory.

Unfortunately, there is no thorough, accurate, and easy

specification of what either the Figure 1 or Figure 2

model tests test. It is not as simple as saying Figure 1

tests whether there is a latent underlying each pair of

indicators, while a χ
2
–difference test (created as the dif-

ference in χ
2 values and difference in degrees of freedom

between the Figure 1 and Figure 2 models) tests whether

the postulated latent effects and asserted measurement

error variances are correct. These claims are stifled by

the possibility that the absence of latent level and meas-

urement error variance constraints permit the Figure 1

model to contain inappropriate compromise latents. Re-

member that with y5 and y6 as multiple indicators it is

impossible to have either η3A or η3C as the η3 latent in

Figure 1. The absence of specified latent causal con-

straints on η3 in Figure 1 makes it comparatively easy

for the Figure 1 model to estimate η3 as being η3B (to

match the y5- y6 covariance) even if latent η3A was

required to match η3’s latent-level causal actions. The

more stringent latent-level causal requirements on η3

in the Figure 2 model make it more difficult for the esti-

mation process to match the data covariances with an

inconsistent η3 identity. A model requiring η3A will tend

to fail even if the appropriate latent-level causal con-

nections for η3A are specified in the Figure 2 model

because the covariance between y5 and y6 requires η3B.

The presence of both y5 and y6 as multiple-indicators

pushes for use of η3B in both the Figure 1 and Figure 2

models, but the inconsistency of this forced use of

η3B (when η3A is required) is less detectable in Figure 1.

The more specific and more demanding latent causal

constraints on η3 in Figure 2 make it easier to detect

the inconsistency between one part of the model (the la-

tent level) requiring η3A with its smaller variance, while

another part of the model (the latent common cause

of y5 and y6) requires η3B with its larger variance. The

Figure 1 model has sufficient degrees of freedom to

detect many mis-identifications of latents, but the

Figure 2 model has even more degrees of freedom, and

its restrictive latent causal claims assist detection of add-

itional inconsistencies.

We caution against thinking the nesting of the Figure 2

model within the Figure 1 model permits confident use

of a χ
2-difference test as testing just the constraints

added (the coefficients given fixed values) in moving

to the Figure 2 model. An ill-fitting Figure 1 model

clearly reports evidence of problems beyond or without

the added constraints – so a fitting Figure 1 model is a

precondition for any such claim. If the less-restricted

Figure 1 model is properly causally specified (despite

containing some unnecessarily free latent covariances),

then the χ
2-difference test does indeed test the added

constraints, but notice that the fit of the Figure 1 model

does not assure us that the Figure 1 model actually is

causally proper. The model may have managed to fit by

choosing an incorrect compromise identity for a variable

like η3, or incorrect identities for several latent variables.
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Hence the failure of the more restricted (Figure 2) model

may, or may not, be signaling the improperness of even

a fitting Figure 1 style model. The failure of a Figure 2

model might result from incorrect placement of null

causal connections between some latent effects (so re-

arrangement of the latent effects could render the model

proper) but the failure of the more restricted model

might instead be reporting that some latent variables

in the Figure 1 model were problematic, even if initially

undetectably so.

Adding indicators clustered under specific latents, while

retaining a saturated latent-level model like Figure 1,

provides additional testing but it is testing that fails to

cogently test whether the latents can be appropriately

coordinated by latent-to-latent causal actions. A fitting

Figure 1 style model with additional clustered indicators,

provides evidence that only one latent underlies the clus-

tered items, but this can be a Trojan horse surreptitiously

sneaking in a latent like η3B rather than a proper causally-

connectable η3A or η3C. More indicators (even in fitting

Figure 1 style models) do not necessarily mean better

latents, they mean more entrenched latents – where the

entrenchment is provided by the indicators, with the pos-

sible sacrifice of appropriate latent-level causal connectivity.

Researchers locating latents via factor analysis have

statistically/procedurally avoided stringent examination

of whether the located latent factors are capable of en-

gaging in causal actions at the latent level – and hence

these researchers are prone to being rudely surprised

when their “meaningful” latent factors fail to behave ap-

propriately as latent causes and effects. Cross-over load-

ings leading from one latent to indicators of another

latent exacerbate the problem of factor models morph-

ing (via biased estimates) into χ
2-fitting but causally-

problematic models (see Hayduk & Glaser [27]). And

using scales created by adding or averaging the values of

multiple indicators make it more difficult to distinguish

between latents such as η3A, η3B, and η3C because only

the scale’s covariances appear in the data covariance

matrix rather than the multiple indicators’ covariances.

That makes the model less able to detect the type of in-

consistency discussed above.

Collectively, these observations preclude making sim-

ple statements about what structural equation model

tests test, even without enumerating the many additional

features potentially leading to significant model ill fit –

features such as violation of the presumed causal homo-

geneity of the cases, non-normality, or non-linearity.

What remains undeniable is that any model with a fixed

measurement error variance for either a single indicator,

or best of multiple indicators, is more assuredly identi-

fied than the same model with a free (and potentially

identification-disrupting) measurement error variance.

Specifying measurement error variances for single

indicators and the best of multiple indicators

How then is a researcher to proceed? Our advice is to

begin with a model that seems reasonable to you as re-

searcher, and that is theoretically precise – a model like

Figure 2 with constraints on the latent-level effects and

constraints on the latent-to-indicator effects (whether

this means using y5 as a single indicator of η3A, or y5

and y6 as multiple indicators of η3B, or y5 and y6 as

single-indicators of both η3C and η3B). This model

should contain a fixed (usually nonzero) measurement

error variance for each indicator having a 1.0 loading

that specifies a scale for a latent – namely for the best

(possibly the only) available indicator of each latent.

To obtain a fixed numerical measurement error vari-

ance, the researcher begins by carefully considering the

latent level causal structure, to gain a clear sense of how

each latent is expected to causally function with respect

to the other modeled latents and with respect to specific

imagined error variables like error-A, error-B, error-C

and error-5 in Figure 3. The researcher explicitly consid-

ers how far the causal consequences of each specific

imagined error would spread through the model. The

researcher then seeks the best, or few best, indicators for

each latent. “Best” here refers to the indicator most

clearly reflecting the researcher’s desired meaning for

each latent. For indicators obtained from questionnaires,

the researcher should consider whether the respondents

know themselves in ways that permit even truthful and

uninhibited responses to causally originate in the values

of the intended latent. The question wording, the con-

text provided by other questions, and the available

response options are all relevant to this assessment. The

researcher should filter out questions having confusing

or inappropriate wordings, likely misinterpretations,

insufficient or unclear response options, and restricted

or skewed response ranges.

There is no good reason to shade one’s measurement

error variance assessment to be artificially small. Such

a preference constitutes a bias against a latent like η3A

because using y5 as an indicator of η3A requires cumu-

lating more errors. But notice that the measurement

error variance specification for y5 might justifiably use a

smaller error variance specification than suggested by

y5’s loading or reliability from prior factor analyses.

Other researchers may have used y5 to locate η3B via

factor analysis (with additional indicators like y6) but

that does not forbid the current researcher from using

η3C as their latent, which would require a smaller error

variance on y5 than was observed in factor analysis.

Measurement error is not something vaguely "out there",

and it is not something reported exclusively by an item’s

methodology. What is modeled as measurement error
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also depends crucially on the researcher’s theory asser-

tions and theory postulations. What counts as measure-

ment error is intimately tied to the current researcher’s

theory requirements and intentions. (Does η3A, η3B,

or η3C belong in the theory?) Error variance specifi-

cations attend to theory consistency, not merely to indi-

cator correlations.

For example, if η3A, η3B, and η3C in Figure 3 each

directly caused the severity of one medical symptom,

the resultant correlated-symptoms would not warrant

claiming there was only a single underlying latent cause.

Diagnostic symptom-sets address a variety of clinical

exigencies but may or may not be properly specified as

multiple indicators having one common cause. Struc-

tural equation researchers must learn to beware admin-

istratively routine variables whose causal foundations are

imprecise or even misconceived. Similarly, beware the

term “breadth”. All latent variables, including factors,

have no “breadth” (they only have a magnitude or value

on a skinny number line) no matter how many indica-

tors or effects they have. Adding indicators does not add

breadth to the latent – it adds additional concern for the

properness of the model’s causal specification. The qual-

ity of coefficient estimation will decline if indicators are

causally misspecified as multiple indicators.

Both the measurement error variance assessments and

the model’s latent structure should reflect any methodo-

logical concerns with the indicators, including methodo-

logical mess-ups. If a methodological mess-up causally

influenced the data, appropriately including that mess-up

as part of the latent-level causal model adds explained, not

error, variance and would result in unbiased estimates of

the other model coefficients [16:31, xix]. Consider how a

researcher might address the causal consequences of hav-

ing several indicators obtained by the same method. We

hesitate to say the concern is for a “specific factor” or

“method factor” because some people would presume the

only reasonable way to address this would be by adopting

a traditional factor approach. A superior procedure might

be to obtain the best indicator for a method-latent by

selecting an indicator using the method but whose sub-

stance was disconnected from the other modeled latents.

That best method-indicator should scale the method-

latent with a fixed 1.0 loading and be given a fixed

measurement error variance (the variance arising from

everything except the method’s variance). The effects of

the method-latent on all the other relevant indicators

should be constrained to be equal unless theory justifies

why some indicators should display more method’s re-

sponse than others. This results in only two coefficients

to estimate – the variance of the method latent and the

effect magnitude connecting the method-latent to all

the relevant indicators – and adds model degrees of

freedom due to the new indicator’s numerous new data

covariances. Selecting the “best indicator” of the

method latent, specifying a fixed measurement error

variance for that best indicator, and considering pos-

sible causal connections between the method latent and

the other modeled latents would do more to clarify the

nature of the measurement-method’s causal nexus than

would a knee-jerk reaction pretending that calling

something a “methods factor” requires use of an ordin-

ary “factor”.

Indeed, it may sometimes be possible to model two

latents (one being the latent of interest, the other being

a specific or “method-factor” latent) with only a single

indicator if the two latents are clearly and substantially

differentially embedded at the latent level of the

model. Unfortunately, the required and forbidden latent

level causal relationships of “methods-factors” seem

insufficiently specified in existing theories, though we

hope awareness of this modeling possibility encourages

appropriate theory developments. Other methodological

concerns might involve violation of the presumed inde-

pendence of the latent-level errors in Figure 3, or an

unmeasured cause of an intended latent also causing an

indicator via mechanisms not currently in the model.

These kinds of concerns can be addressed but require

modeling tricks beyond what we can discuss here (see

Chapter 7 of [15], or [16]).

Obtaining the specific numerical value to use as a

fixed measurement error variance is often assisted by

the researcher making their assessments as percents of

the indicator’s variance that are likely to originate in the

various potential causal sources of the indicator (the

things paralleling error-5, or error-C, etc. in Figure 3).

The researcher then obtains their specific asserted

numerical value for the indicator’s fixed measurement

error variance by multiplying the actual variance of the

indicator by the sum of the percents assigned the fea-

tures the researcher claims as error sources (all the

things comprising error-5, or perhaps the things com-

prising both error-5 and error-C, and so on). Notice that

the indicator's measurement error variance specification

does not depend on how well the researcher expects the

corresponding latent to be explained, or how well it

explains other latents. An indicator that contains much

measurement error, can correspond to a latent that

explains much or little, or that is explained well or

poorly by other latents – depending on the model and

the operative real-world forces.

Those unaccustomed to making error variance assess-

ments might familiarize themselves with the sensitivity

of variance to the placement of extreme cases in a vari-

able’s distribution by duplicating a variable from a data

set (so the real data remains pristine) and using their

favorite program to plot the variable’s distribution and

calculate the variable’s variance when some cases’ values
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are changed, for example by: moving some values from

below the mean to above the mean, taking central values

and making them extreme, taking extreme values and

making them central, moving many or all the cases’

values up, or randomly moving some cases’ values up

and others down. Observing the distributional changes,

and percentage changes in variance, that result from

such artificial causal interventions assist in making more

realistic error variance assessments. For example, if a

variable has a skinny-tailed distribution, only a very few

cases are likely to have obtained extreme values “in

error” because only a portion of the already-few extreme

cases are likely to have obtained those values errone-

ously. Assessments of error variances must respect the

observed variable’s distribution.

Some researchers experience an urge to estimate as

many measurement error variances as possible – thereby

avoiding fixed measurement error variances. We recom-

mend researchers curb this urge for the sake of theory

precision. Being able to estimate a measurement error

variance does not mean one should do this. Specifying a

fixed measurement error variance for the best available

indicator assists model identification (or over-identification),

but this is not done because the researcher must do this

for model identification. The fixed measurement error

variance contributes to theoretical precision. Freeing

the measurement error variance on the best available indi-

cator amounts to succumbing to an estimation-invitation

to theoretical imprecision. (The measurement error vari-

ance on a second indicator is typically left free because

once the latent’s identity has been controlled by the best

indicator’s specification, the second indicator’s free loading

and measurement error variance provide an assessment of

how good or poor that second-best indicator is at reflect-

ing the latent specified via the best-indicator.) Even single

indicators can have identified measurement error var-

iances (for example, if the single-indicated latent also

causes several other latents) but here also the researcher

should demonstrate their commitment to theory by

resisting estimation of the single-indicator’s measurement

error variance.

Others feel an urge to estimate as many error var-

iances as possible, to avoid those specifications poten-

tially contributing to model failure. This inclines the

researcher toward theory-imprecision merely to reduce

the possibility that the data will speak against their

theory. Making a theory imprecise does indeed make

it more difficult for the data to detect problems in the

theory – but that same imprecision makes it easier for

the discipline to disregard the researcher’s work!

Researchers using “lack of certainty” as an excuse to esti-

mate the best indicator’s measurement error variance

should be heard as theory bashing, theory belittling, or

theory deficient – depending on whether their statement

is made brutishly, snidely, or as an honest expression

of incapacity as theorist. From the factor-analytic

perspective, a fixed measurement error variance is non-

conventional, though the extra theory-precision clearly

supersedes factor-analytic tradition.

What if the theory-laden model fails to fit?

If a Figure 2 style model fails to fit the data according to

χ
2, this provides evidence that something has gone wrong.

Unfortunately there is no generally-applicable procedure

that can assuredly identify specifically which of the many

potentially problematic things has gone awry. The best

the researcher can do is report and respect the evidence

of problems, and seek diagnostic signs pointing toward or

away from specific possible problems.

The modification indices might suggest improving the

fit by freeing the fixed measurement error variance on

y5 (putatively the best available indicator), but this

should not be done without a thorough reconsideration

of the features discussed above. The corresponding

"expected parameter change" statistic might suggest

increasing or decreasing y5's fixed measurement error

variance, where increases or decreases should be thought

of as moving up or down among latents like η3A, η3B,

and η3C. But remember that latents like η3A might never

be modelable if both y5 and y6 are used as multiple indi-

cators in the model. Instead of freeing y5's measurement

error variance at the behest of the modification index,

the researcher might decide to drop y6 and thereby per-

mit changing the fixed error variance on y5 to locate

η3A. Or the researcher might decide to make y5 an indi-

cator of η3C and y6 an indicator of η3B so that both y5

and y6 receive fixed measurement error variances, and

the model contains two similar yet distinct η3 latents

(η3B and η3C). With y5 and y6 as single indicators of sep-

arate latents, the complex but theory-beneficial reconsi-

derations would focus on how theory could incorporate

two slightly different versions of what previously had

been incorrectly thought of as a single latent η3.

Or suppose a substantial modification index appeared

for the covariance between the errors on y5 and y6. This

might signal need for coordination between these errors,

but error covariances are frequently inserted without

sufficient consideration. Measurement error variables

are routinely assumed to be independent of the latents

in the model, and that renders the causal foundations of

measurement error covariances entirely disconnected

from the original latent theory. Consequently, freed

measurement error covariances tend to become fudge-

factors that provide fit without any theory justification.

It is preferable to view a substantial modification index

for an error covariance on indicators like y5 and y6 as

indicating the constraints in some portion of the model

are incompatible with the constraints specifying y5 and
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y6 as originating in the common cause η3B. Thus

the researcher’s thought process returns to considering

Figures 3 and 4 and the various ways of responding

to possibilities like η3A and η3C. This keeps any subse-

quent model modifications intimately connected to the

researcher’s original theory. The researcher should

report whatever model modifications are made at the

behest of the modification indices because these are

theory-focused model revisions.

Notice that modification indices are unable to directly

call for inclusion of new latent variables, or for removal

of improper even if biasedly-significant effects. Also

notice that if the researcher had used a scale (created

from y5 and y6) as the indicator for η3 that would fur-

ther impair the ability of the modification indices and

other diagnostics to prod consideration of y5 and y6 as

indicators of separate latents. A substantial modification

index connected to a scale should initiate substantive

reconsideration of all the items comprising that scale.

In short, the diagnostic investigation should be

oriented toward theory reconsideration and theory revi-

sion, with fit or fail as secondary to the theory legacy.

The researcher should report any incorporated changes

as theory modifications – and maybe even theory

advances – but this is getting uncomfortably close to

indirect data snooping that biases model testing. Fortu-

nately, entertaining the possibility of new and differen-

tially causally embedded latents is not as statistically

odious as directly following large modification indices.

The retheorizing provides a research contribution

whether or not it results in a fitting model.

The only way a fixed measurement error variance on a

single-indicator contributes to model ill fit, or has a sub-

stantial modification index, is if that measurement error

variance would be "identified if freed". The modification

index and expected parameter change statistics could

clearly point to this style of problematic coefficient. In

contrast, a fixed measurement error variance that would

be underidentified (un-estimable) if freed does not con-

tribute to model ill fit and will have a zero modification

index even if the current fixed measurement error vari-

ance value is too small or too large. For example, if y5

was a single indicator and its error variance was not

rendered identified by the latent level of the model, the

fit and modification indices would be unable to signal a

problematic error variance specification, or warn of the

biases in the latent effect estimates that might arise from

this. The amount of bias introduced by undetectable

measurement error misspecification depends on many

things, the most important being the magnitude of

the misspecification. For example, if y5’s underidentified-

if-freed measurement error variance was fixed at zero

(thereby claiming no measurement error), the extent of

the bias this introduces would depend on whether the

true latent was η3A, η3B , or η3C. If the true latent was

η3A, the fixed zero value would be most-misspecified and

the coefficient estimates most biased – even if undetect-

ably biased.

This style of problem commonly appears when demo-

graphic variables like sex or age are assigned zero

measurement error variance. There is clearly some

measurement error variance in age – because age accu-

mulates progressively even if measured in years. Meas-

urement error in reported sex becomes more obvious if

one considers some respondents as “reporting a wrong

sex just for the fun of it,” or models where the latent

effects of sex arise from the number of Y chromosomes

rather than self-labeling or from genital appearance

(which may have been “surgically assigned” just after

birth, or reassigned later in life). The estimated effects of

age and sex will be biased unless the appropriate meas-

urement error is entered into the model – whether or

not the omitted measurement error variance on age or

sex results in noticeable ill fit or modification indices.

Specifying a small non-zero measurement error variance

for any single indicator (for age, sex, or whatever) is

likely to provide less-biased estimates than an obviously-

wrong specification of zero measurement error variance,

but to consider this carefully one must again consider

the causal forces preventing the indicator from precisely

tracking the values of the intended latent variable. We

empathize with those struggling to determine the

amount of measurement error to specify, but we will

rebuke anyone who pretends the difficulty justifies speci-

fying zero measurement error variance – because that

pretends the difficulty of the task justifies using an

extreme and unjustified value (zero).

Fortunately, there is a relatively simple way to assess

the consequences of specific fixed measurement error

variances on single indicators whether or not they would

be underidentified if freed. The strategy has been

dubbed the “half and double” procedure, and was popu-

larized by Hayduk ([15], page 125; [16], page 28). The

consequences of an incorrect measurement error vari-

ance assessment can be assessed by running a series of

models, each altering one fixed error variance to first

"half” and then “double" the original fixed value. Half the

researcher’s best assessment of the measurement error

variance makes the measurement error variance about

as low as it might reasonably be (it is half way to the

unreasonable value of zero), and double makes this

about as high as it might reasonably be. For each run

the researcher monitors the other coefficient estimates

(especially those directly connected to the latent whose

measurement quality is being tickled) to see how sensi-

tive those estimates are to the alternative measurement

error variance specifications. Any substantial variation

in estimates warrants careful consideration and report
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because these particular coefficient estimates are espe-

cially sensitive to the researcher’s corresponding meas-

urement error variance specification.

Real examples

Models employing single indicators with fixed measure-

ment error variances emphasize theory, and precise the-

ory does not lend itself to brief exposition, but we will

try. The example in Figure 5 comes from Hayduk [37]

and was chosen because it illustrates helpful-theory with

minimal complexity among the indicators. The indica-

tors are 10 measurements of subjects’ personal space

preferences made as baseline (or control) measurements

in an experiment whose treatments need not concern

us. The indicator variables are distance measurements

obtained by the stop-distance procedure in which the

subject stops an approaching experimenter when the

subject just becomes uncomfortable about the approa-

cher’s closeness. The procedural similarity and clarity of

the measurements, as well as multiple experimentally-

controlled features [38] resulted in each indicator being

given 3% measurement error variance.

The background for the Figure 5 model is that back in

1985 a common factor model for the repeat personal

space measurements failed convincingly. The measure-

ments all used the same methodology, with the same

participants, in the same baseline/control context, but

the repeated measurements did NOT measure the same

thing! A simplex model (a straight line of causal effects)

fit via χ
2, but that ordinary simplex model did not cor-

respond to a comfortable or causally-understandable

theory for these data. Nearly a decade passed before the

fitting, understandable, and theory-helpful, loop-simplex

model in Figure 5 was developed (Hayduk [37]). The 1.0

values connecting the latents in this model indicate that

each subject’s spatial preference would have persisted

perfectly from one measurement occasion to the next

were it not for the structural disturbance terms and

causal feedbacks modeled as self-causative loops at each

successive measurement. This model illustrates a nearly-

identical set of single indicators supporting a theoretic-

ally complex and somewhat unusual model structure – a

model structure matching how the subjects’ brains acted

causally in determining the subjects’ momentary spatial

preferences. Additional single-indicator models permit-

ted even closer parallels to causal neurological activity

but this is not the place to discuss how the brain func-

tions, or to explicate the statistical details of how causal-

loops function, so we must be satisfied with referring the

reader to Hayduk ([37], [16] Chapter 3) for further dis-

cussion of the theory in the Figure 5 model.

The example in Figure 6 was chosen because the latent

level of the model is moderately complex – it has two

touching reciprocal effects – that are cleanly estimated

with single indicators assigned between 5 and 10% meas-

urement error variance. This fitting (via χ
2) model

comes from an anonymous survey of Catholic seminary

students, and the estimates tell some interesting stories,

but we again refer the reader to the original publication

for the details (Hayduk, Stratkotter & Rovers [39]). One

especially relevant point is that a planned alternative

model similar to Figure 6 was estimated in which two

indicators (the indictors of Supreme and JC-God-

Humbled) were modeled as arising from a single latent

rather than two separate latents – much like trying to

model y5 and y6 in Figure 3 as arising from η3B rather

than coming from separate latents – because it was un-

clear whether or not the seminarians’ responses arose

from latents acting differently with respect to the other

modeled latents. This common-cause model fit but

showed clear diagnostic signs of model misspecification.

That is, the seminarians’ agreement/disagreement with

“I think of Jesus Christ as the God who humbled himself

by becoming man and dying for my sins.” and “I think

Figure 5 A real example.
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of God primarily as the Supreme Being, immutable, all

powerful and the Creator of the universe.” were not tap-

ping a single belief but were tapping two distinct latents

that functioned somewhat causally-differently with

respect to the other latents in the model. We chose this

example because we expect some readers will find it

surprising that indicators having such abstract yet

seemingly-similar content could be clearly differentiated

by a rather complex and difficult-to-estimate latent

model – despite all the other latents also having only sin-

gle indicators. This illustrates how latent level theory – in

this case aided by planned diagnostics – can call for single

indicators that differentiate between similar yet undeni-

ably abstract latents.

Summary and discussion

The gist of the above is that each single indicator of a

latent, and the best indicator from each set of mul-

tiple indicators, should be provided a fixed 1.0 “loading”

and a fixed measurement error variance based on the

researcher’s assessment of both the indicator’s method-

ology and the focal latent’s causal connections to the

other latents. The fixed 1.0 loading scales the latent and

the fixed measurement error variance assigns a theory-

dictated identity or meaning to the latent. This is not

done on the basis of what the researcher unerringly

knows, but on the basis of what the researcher thinks

s/he knows, so that the data via the estimates, testing,

and diagnostics, speak to what the researcher thinks s/he

knows. Any additional indicators believed to originate in

the latent are given free loadings and free measurement

error variances. While this description and our discus-

sion focuses on reflective indicators, it should be

clear that similar observations apply to both formative

and reactive [40] indicators. The fundamental concern is

for valid and precise latent-indicator representations no

matter what style of measurement structure is involved.

Understanding that the latent variable absorbing and

emitting latent-level effects must match the latent vari-

able influencing that latent’s indicators reveals why mul-

tiple indicators located by factor analysis tend to fail

when incorporated in structural equation models. Free

factor correlations place no latent level constraints

on the factors, and hence latent factors are permitted

to become variables that are unable to function causally

appropriately with respect to other latents. Even fitting

Figure 6 Another real example.
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factor models provide no assurance that the latent

common factor causes of the indicators will function

causally-appropriately with respect to other latents. Con-

sequently, introducing latent level theoretical constraints

often challenge the causal appropriateness of factors

connected to multiple indicators. Researchers should

hear saturated factor correlations and entirely free

measurement error variances as shouting THEORY

IMPRECISION regarding the latent-level causal structure.

The existence of multiple similarly worded indicators

is no longer a license to squelch theory by saturating the

latent level of the model with factor correlations, or by

failing to assert a latent’s meaning with a fixed measure-

ment error variance for the best of the multiple indica-

tors. Focusing on single indicators, and designating

the best of multiple indicators, encourages attention to

each latent and indicator, and constitutes a call to theor-

ize carefully. The identity of latents is not resolved by

appealing to just the data – this unavoidably involves

the researcher’s understandings and causal theory [41]. It

is dubious to attempt “measurement” prior to “theory”, or

factor analysis prior to full structural equation modeling,

because there is no routine assurance that latents func-

tioning as common causes of the indicators will assuredly

function appropriately as causally-coordinateable latents.

If a full structural equation model fails and provides

diagnostics questioning some second or weaker indica-

tor, the researcher might drop that indicator but it

would be preferable to retain the indicator by making

it a single indicator of a similar yet theoretically distinct

latent whose causal coordinations deserve explication.

Much is also gained by using single indicators to incorp-

orate multiple-regression-like control for potentially

confounded variables. If the model requires control for

sex, age, disease severity, number of friends, happiness,

or belief in an after-life, the relevant control variables

are latents because they likely contain measurement

error. There seems little reason to require more than a

single even if error-containing indicator for sex or age,

but it is important to realize that the researcher could

also statistically control for the other listed variables

with single indicators. The researcher must decide

whether a stronger research contribution would arise

from using an additional indicator as a redundant mul-

tiple indicator of some currently-modeled latent, or by

using that additional indicator to control for some causal

mechanism currently omitted from the model. One does

not need multiple indicators to locate a mechanism car-

rying a postulated effect, to extend a theory’s reach, or

defend a theory’s claims by controlling some confounder.

Hence the choice will often favor a single indicator con-

trolling for some theory-relevant feature rather than

multiply entrenching a particular latent.

Single indicators forcefully remind us that measure-

ment is not separate from theory. Theoryphobes may

consider single indicators too theory demanding, but

researchers should think of single indicators as theory-

encouraging and theory-invigorating. Single indicators

challenge people to join the community of researchers,

where one's constant environ is imperfect-knowing, and

where detailed attention to theory and methodology are

one's most trustworthy guides. Careful consideration

of single indicators encourages a close coordination

between the researcher’s thinking and their structural

model, whether any specific latent ends up with one,

two, more, or even no [16], direct indicators. When

researchers place their understandings in their models,

they hear their data speaking to them because it is their

understandings that are being revised if the data urges

model modification. Conscientious use of single, or the

few best, indicators contributes to theory/model pre-

cision but it remains for the world to dictate whether

the precise theory/model is valid or precisely wrong.
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