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ABSTRACT  19 

Aim The distributions of many organisms are spatially autocorrelated, but it is unclear whether 20 

including spatial terms in species distribution models (SDMs) improves projections of species 21 

distributions under climate change. We provide one of the first comparative evaluations of the 22 

ability of a purely spatial SDM, a purely non-spatial SDM, and a SDM that combines spatial and 23 

environmental information to project species distributions across eight millennia of climate 24 

change. 25 

Location Eastern North America. 26 

Methods To distinguish between the importance of climatic versus spatial explanatory variables, 27 

we fit three Bayesian SDMs to modern occurrence data for Fagus and Tsuga, two tree genera 28 

whose distributions can be reliably inferred from fossil pollen: a spatially-varying intercept 29 

model, a non-spatial model with climatic variables, and a spatially varying intercept plus climate 30 

model. Using high temporal resolution paleoclimate data, we hindcasted the SDMs in 1,000 year 31 

time steps for 8000 years, and compared model projections with palynological data for the same 32 

periods.  33 

Results For both genera, spatial SDMs provided better fits to the calibration data, more accurate 34 

predictions of a hold-out validation dataset of modern trees, and higher variance in current 35 

predictions and hindcasted projections than non-spatial SDMs. Performance of non-spatial and 36 

spatial SDMs according to the Area Under the Curve of the Receive Operating Curve varied by 37 

genus. For both genera, false negative rates between non-spatial and spatial models were similar, 38 

but spatial models had lower false positive rates than non-spatial models.  39 



Main conclusions The inclusion of computationally demanding spatial random effects in SDMs 40 

may be warranted when ecological or evolutionary processes prevent taxa from shifting their 41 

distributions or when the cost of false positives is high. 42 



INTRODUCTION 43 

The last decade has witnessed a marked increase in the application of models that project the 44 

potential geographic distributions of species by linking observations of species occurrences to 45 

environmental predictor variables. These models, commonly called bioclimatic envelope, 46 

ecological niche, or species distribution models (hereafter SDMs), are important tools for 47 

forecasting impacts of climatic change on biological diversity and for generating conservation 48 

plans and climate-change policy (Guisan & Thuiller, 2005). To project future distributions under 49 

different, plausible scenarios of climatic change, SDMs use statistical relationships between 50 

present-day distributions of species and climate (Elith et al., 2010). Although generally 51 

successful at explaining and predicting current distributions of species (Franklin & Miller, 2009), 52 

impact assessments derived from SDMs have been criticized for their reliance on a number of 53 

largely untested ecological assumptions, methodological issues, and statistical concerns (e.g., 54 

Pearson & Dawson, 2003; Dormann, 2007). 55 

 Chief among these issues is the failure of most SDMs to account for spatial dependence 56 

of occurrence data (Gelfand et al., 2006; Bahn and McGill, 2007; Dormann, 2007; Elith et al., 57 

2010). Spatial autocorrelation arises in ecological data because nearby points tend to be more 58 

similar, in physical characteristics and/or species occurrences or abundances, than are pairs of 59 

locations that are farther apart (Legendre, 1993). When model assumptions about independent 60 

and identically distributed residuals are violated, there could be a bias in the regression 61 

parameter estimates, potentially leading to poor inference. Studies illustrate that failure to 62 

account for spatial autocorrelation can lead to misidentification of important driving variables 63 

and overly optimistic error rates (e.g., Lichstein, et al., 2002; Segurado et al., 2006; Diez & 64 

Pulliam, 2007; Dormann, 2007), especially when small-scale patterns of explanatory variables 65 



create instability in broad-scale regression parameter estimates (Hawkins et al., 2007). Further, 66 

models based solely on spatial interpolation can provide better fits to species range data than 67 

models based on explanatory environmental variables (Bahn & McGill, 2007), suggesting that 68 

spatial autocorrelation in unmeasured factors (e.g., population processes such as dispersal or 69 

underlying resources such as soil moisture) may account for most of the observed distributional 70 

patterns.  71 

Analysis of spatial SDMs primarily has focused on predicting current or simulated 72 

species’ distributions using a hold-out dataset for model validation (Gelfand et al., 2006; Wilson 73 

et al., 2010), but projections of spatial SDMs in changing climates over long time scales remain 74 

largely untested. Observed changes in species distributions as a result of past climatic dynamics 75 

provide a unique opportunity to compare projections of spatial and non-spatial SDMs 76 

parameterized with current conditions (Pearman, et al., 2008a; Nogués-Bravo, 2009; Dobrowski 77 

et al., 2011, Veloz et al., 2012).  78 

Projections to environmental conditions different from those used to calibrate SDMs are 79 

subject to error (Heikkinen et al., 2006) and may not be ecologically meaningful or statistically 80 

valid if there are changes in correlations between variables across time and space (Elith et al., 81 

2010) or if species-environment relationships are not conserved (e.g., Fitzpatrick et. al., 2007, 82 

Veloz et al., 2012). It also is not known whether it is desirable to project models with spatial 83 

random effects based on the partially observed spatial distribution of a species at one time point 84 

into a new temporal domain.  85 

In this study, we developed non-spatial and spatial SDMs for two genera of trees in 86 

eastern North America. We calibrated the models with current climate data and Forest Inventory 87 

and Analysis (FIA) data collected by the United States Forest Service. We then projected the 88 



models back in time using paleoclimate simulations and extensive pollen records as independent 89 

validation data. Our approach is similar to that of Pearman et al. (2008a), who used fossil pollen 90 

to validate SDMs of European trees projected back to a single time in the mid-Holocene (6,000 91 

years before present). However, the availability of new paleoclimate reconstructions, which 92 

provide millennial snapshots of historic climate for the last 21,000 years before present, allowed 93 

us to validate the models at a much finer temporal resolution.  94 

To assess the usefulness of adding a spatial term to SDMs we consider the following: 1) a 95 

spatially-varying intercept model with no climate variables; 2) a non-spatial model with climate 96 

variables; and 3) a spatially-varying intercept model with climate variables. As detailed in the 97 

Methods Section and Appendix S3, the spatially-varying intercept was introduced via spatial 98 

random effects. The rationale for choosing these candidate models is a follows. If climate 99 

variables describe a significant portion of the variability in the observed distribution and if these 100 

variables change over time, then projections from models with climatic variables will show a 101 

conservative shift away from the observed distribution. For the spatially varying intercept model 102 

with climate variables, any projected shifts in distributions are tempered by the spatial random 103 

effects. Depending on the amount of spatial autocorrelation, spatial random effects act to draw 104 

the projected distribution back toward the observed distribution used to calibrate the model. If 105 

climate variables do not describe a significant portion of the variability in the observed 106 

distribution, then the spatial random effects will keep projected distributions close to the 107 

observed distribution, i.e., the only learning for prediction will come from the observed 108 

distribution and hence projected probability of species occurrence will be similar to the observed 109 

probability of occurrence. With these three candidate models, we were able to tease apart 110 

differences due to the spatial random effects alone, the climate variables alone, and their additive 111 



effects. We parameterized and estimated model parameters following a Bayesian framework, 112 

which provided full posterior distributions for model parameters and allowed us to estimate the 113 

uncertainty in our statistical inferences. We focus on two tree genera, Fagus and Tsuga, whose 114 

distributions can be readily inferred from fossil pollen and which possess contrasting life 115 

histories. 116 

We address three questions. (1) Do non-spatial SDMs of current distributions of Fagus 117 

and Tsuga based on climate variables exhibit residual spatial autocorrelation? (2) Do SDMs with 118 

spatial random effects that include or exclude climate variables provide better fits to the observed 119 

distributions than non-spatial SDMs with climate variables only? (3) Do hindcasted spatial 120 

SDMs better predict historic distributions than non-spatial SDMs?  121 

Methods 122 

Study genera 123 

We studied two tree genera, Fagus and Tsuga. In eastern North America, Fagus is represented by 124 

only one species, F. grandifolia (Ehrh.) (American Beech), and Tsuga by only two, the 125 

widespread T. canadensis (L.) Carr. (Eastern Hemlock), and the narrow endemic T. caroliniana 126 

Engelm.) (Carolina Hemlock). For both Fagus and Tsuga, the relationship between local 127 

abundance of trees and relative abundance of pollen in sediment cores has already been derived 128 

(Davis, 1981). Tsuga is a conifer with passively-dispersed cones, whereas Fagus is deciduous 129 

with animal-dispersed seeds.  130 

Occurrence data 131 

We used FIA data to describe the current distribution of Fagus and Tsuga. In every 2428 ha of 132 

land in the United States classified “forested”, there is one permanent FIA plot, each containing 133 

four 7.2 m fixed-radius subplots (Woudenberg et al., 2010). In each subplot, all trees >12.7 cm 134 



diameter at breast height have been measured periodically since the 1940s; consistent nationwide 135 

annual inventories were initiated in 2001. We used data from the most recent full plot inventory 136 

(2003 – 2008) to calibrate our models.  137 

Historic distributions of Fagus and Tsuga were derived from fossil pollen data in the 138 

Neotoma Paleoecology Database (<www.neotomadb.org>). Paleoclimate data (described below) 139 

were available at 1 kiloannum before present (kaBP) intervals from 0–21 kaBP, so we focused on 140 

millennial historic distributions of Fagus and Tsuga. Given the variation in temporal scale and 141 

spatial resolution across study sites and uncertainties associated with radiocarbon aging of pollen 142 

from sediment cores (Blauw et al., 2007), we compiled pollen datasets in which Fagus and 143 

Tsuga were counted as present at a site if their pollen percentages reached threshold levels at any 144 

time within 500 years centered on each historic millennium (Appendix S1). We chose a 500 year 145 

window because cross-validation analyses of biostratigraphic ages from recently revised age 146 

models for all pollen sites suggested that 500 years is a conservative estimate of temporal 147 

uncertainty for sites in the Neotoma database (Blois et al., 2011). To determine the sensitivity of 148 

historic tree distributions to the pollen percentage thresholds used to define a genera’s presence 149 

or absence at a site, we specified low and high thresholds for each genus (Pearman et al., 2008a): 150 

0.5%  or 1% for Fagus and 1% or 2% for Tsuga (Davis, 1981). 151 

Extent and resolution 152 

The extent of the study area was the portion of eastern North America with the highest density of 153 

pollen data (Fig. 1). This region contained 75,251 FIA sites and up to 379 Neotoma locations, 154 

depending on time period considered. Paciorek & McLachlan (2009) found that spatial patterns 155 

relating current and past climates to abundances of pollen and trees were unreliable at resolutions 156 

below ~50 km, so the climatic predictors for our model (see below) were downscaled to a 157 



resolution of 0.5-degrees (~50-80 km depending on latitude). We upscaled the current tree 158 

occurrence data for each grid cell in the climate spatial data layers, keeping track of the number 159 

of FIA sites per 0.5-degree cell to be used as weights in the models (Appendix S2). Following 160 

this aggregation there were a total of 1,419 FIA observations with presence/absence ratios for 161 

Fagus and Tsuga of 706/713 and 380/1,039, respectively. The number of aggregated pollen 162 

observations varied for each 1 kaBP time period (Fig. 2). Although both paleoclimatic and pollen 163 

data extended back 21 kaBP, the total sample size and the number of pollen grains of each genus 164 

declined rapidly beyond 8 kaBP (Fig. 2). Thus, our hindcast projections extend only from 1 to 8 165 

kaBP, which allowed us to validate the models using a minimum of 200 grid cells containing 166 

observations, and at least 50 of which contain presences for each genus. 167 

Climate data  168 

Modern climate data came from the observed dataset of the Climate Research Unit (CRU), 169 

University of East Anglia (Brohan et al., 2006). Paleoclimate data for this study came from a 170 

recent transient simulation of the CCSM3 global circulation model (GCM) (Liu et al., 2009). 171 

The standard change-factor approach was employed to statistically downscale and reduce bias in 172 

the climate data (Wilby et al., 2004). For each climate variable at each millennial interval, the 173 

difference between modeled paleoclimate and modeled modern climate was calculated and then 174 

resampled to a 0.5 × 0.5-degrees grid to match the resolution of the CRU observed climate 175 

dataset (Mitchell & Jones, 2005).   176 

Decadal averages of seasonal variables were the highest temporal resolution data 177 

available from the archived CCSM3 simulations. To get a ‘snapshot’ of climatic conditions at 178 

each millennial time point, decadal averages of seasonal climate variables from the CRU or 179 

CCSM3 simulations were calculated for the first 100 years of each millennium (e.g., 8.0 to 7.9 180 



kaBP). Because summaries of modern observed climate are available at centennial scales, these 181 

same centennial summaries of paleoclimate were derived to aid comparisons between paleo and 182 

modern SDMs. Bioclimatic variables that captured precipitation and temperature averages and 183 

seasonalities were used because response surface analyses for Fagus and Tsuga have shown that 184 

climatic annual averages, annual ranges, and seasonality were important factors controlling the 185 

Holocene migrations of these genera (Bartlein et al., 1986). Specifically, we calculated six 186 

bioclimatic variables (Hijmans et al., 2005): annual mean temperature (BIO1), mean diurnal 187 

range (BIO2), temperature seasonality (BIO4), temperature annual range (BIO7), annual 188 

precipitation (BIO12), and precipitation seasonality (BIO15).  189 

Two of the six calculated bioclimatic variables, temperature seasonality and temperature 190 

annual range, had within-time correlations with the other bioclimatic variables ≥0.7, so they were 191 

not included as explanatory variables in the models that included environmental predictors (see 192 

Appendix S3).  The correlations between mean diurnal range and annual precipitation varied 193 

between modern and historic times (see Appendix S3), and such changing correlation structures 194 

between times could be problematic when projecting models beyond the present (Elith et al., 195 

2010). To determine if sufficient variance in the current distribution was explained by the two 196 

remaining variables with stable correlation structures over time (i.e., annual mean temperature 197 

and precipitation seasonality), we compared a model with annual mean temperature, 198 

precipitation seasonality, mean diurnal range, and annual precipitation with another that included 199 

only annual mean temperature and precipitation seasonality.  200 

Model calibration 201 

We used Bayesian generalized linear models (GLMs) to model genera occurrence. While 202 

approaches such as neural networks and genetic algorithms have been used for SDMs and 203 



although model projections can be sensitive to the type of statistical model employed (Elith et 204 

al., 2010), classical approaches do not provide the statistical inferences we sought. Even though 205 

GLMs describe a central tendency and not a limiting effect (e.g., of temperature or precipitation 206 

extremes), Bayesian spatial GLMs provide exact inference for the random model parameters, 207 

including spatial random effects, by estimating entire posterior distributions at both observed and 208 

unobserved geographic locations (Gelfand et al., 2006). Because our goal was to compare 209 

consistently SDMs with three different specifications (i.e., spatially- varying intercept only 210 

(SVI), climate only, and spatially-varying intercept plus climate), we adopted a Bayesian 211 

approach in fitting all of the models. Model structure is detailed in Appendix S2; model code is 212 

provided in Appendix S4. 213 

Including the SVI has a potential for overfitting as it allows variable intercepts for every 214 

location and thus a very flexible spatial fit to the FIA data.  As a null model, we also fit a 215 

multilevel B-Spline to the FIA data (Lee et al., 1997) using the 'MBA' package of 'R' statistical 216 

software to determine whether our hindcasting test for the inclusion of a SVI in the Bayesian 217 

models was sufficient. As an exploratory analysis into the strength of the residual spatial 218 

dependence in the FIA data, we calculated Moran’s I from the residuals of the non-spatial GLMs. 219 

This latter analysis was conducted using the Spatial Analyst Tool in ArcMap10 (ESRI, 2011). 220 

Model fit to calibration data 221 

We fit the Bayesian models to 90% of the FIA data (N = 1,277) and randomly selected a 222 

10% holdout dataset (N = 142) to assess predictive performance. We also used DIC to rank the 223 

Bayesian models fit to the calibration data (Spiegelhalter et al., 2002). DIC is the sum of the 224 

Bayesian deviance (a measure of model fit) and the effective number of parameters (a penalty for 225 



model complexity). Lower DIC values indicate better model fit. Models are compared using 226 

ΔDIC: 227 

    ΔDICi = DICi – min(DIC),     (3) 228 

where min(DIC) is the DIC value for the model with the best fit (i.e., lowest DIC value). In 229 

general, ΔDIC < 2 indicates weak evidence; 5 < ΔDIC < 10 indicates strong evidence, and ΔDIC 230 

>10 indicates very strong evidence that one model is preferred over another (Spiegelhalter et al., 231 

2002). 232 

FIA hold-out dataset and pollen validations 233 

When projecting the spatial models back in time for the pollen validation, the random effects 234 

serve to draw the projected distributions for each genus back toward that of the observed 235 

distribution used for model calibration (i.e., the FIA data) in the new time period (Appendix S2). 236 

To compare the performance of the models in predicting current and projecting past distributions, 237 

three measures were calculated using the 'ROCR' package of 'R' statistical software: the Area 238 

Under the Curve (AUC) of a Receiver Operating Curve (ROC), false negative rates (FNR), and 239 

false positive rates (FPR).  The calculation of FNRs and FPRs requires converting the continuous 240 

outputs to a binary form using a threshold, in this case the value that maximizes the sum of 241 

sensitivity and specificity (Liu et al., 2005; Lobo et al., 2008). 242 

 Differences in AUC, FNR, and FPR between models, genera, pollen percentage 243 

thresholds, time, and the model × genus interaction were tested with three GLMs. To normalize 244 

residuals and reduce heteroskedasticity, AUC, FNR, and FPR were all arcsin transformed. 245 

Model, genera, pollen percentage threshold, and the model × genus interaction entered the GLM 246 

as fixed factors, and time entered as a covariate. The model × genus interaction was of particular 247 

interest as it tested whether or not different models performed better or worse in hindcasting the 248 



presence-absence of the two genera. The data were analyzed with separate GLMs for AUC, FNR, 249 

and FPR to facilitate the interpretation of Tukey’s Honest Significant Differences post-hoc 250 

comparisons at the expense of increasing Type II error rates. Bonferroni corrections of the P-251 

values from the tests did not alter the significance of any of the effects.    252 

Results 253 

Parameter estimates and model fit to calibration data 254 

In non-spatial models with two climatic variables (i.e., annual mean temperature and 255 

precipitation seasonality) or four climatic variables (i.e., annual mean temperature, mean diurnal 256 

range, annual precipitation, and precipitation seasonality), all climatic variables were significant 257 

predictors of presence/absence: none of the 95% credible intervals of the parameter estimates 258 

included zero (Tables 1, 2). In contrast, in the spatial models some of the climatic explanatory 259 

variables were not significant predictors of presence/absence (e.g., annual mean temperature in 260 

the Tsuga models with two climatic variables and mean diurnal range in the Fagus model with 261 

four climatic variables; Tables 1 & 2). Changes in the magnitude and sign of parameter estimates 262 

between non-spatial and spatial models suggested that non-spatial models violated the 263 

assumption of independent identically distributed residuals. The residuals of the non-spatial 264 

models for both Fagus and Tsuga also exhibited significant positive spatial autocorrelation 265 

(Moran’s I = 0.604, P < 1 × 10
-7

 for Fagus; Moran’s I = 0.761, P < 1 × 10
-7

 for Tsuga), 266 

supporting the conclusion that non-spatial models were inappropriate for these data. 267 

For Fagus, the SVI plus climate model with annual mean temperature and precipitation 268 

seasonality had the lowest DIC value and ∆DIC > 10 relative to all other Fagus models (Table 3, 269 

Fig. 3). In contrast, for Tsuga, the SVI model with no bioclimatic predictors had the lowest DIC 270 

value and ∆DIC > 10 relative to all other Tsuga models (Table 3, Fig. 4). 271 



The non-spatial SDMs for both Fagus and Tsuga that included only annual mean 272 

temperature and precipitation seasonality had ∆DIC values >10 relative to the non-spatial models 273 

that included annual mean temperature, precipitation seasonality, mean diurnal range, and annual 274 

precipitation (Table 3). Given that the correlative relationship between mean diurnal range and 275 

annual precipitation was unstable between modern and historic times (see Appendix S3) and that 276 

the inclusion of them did not provide a large decrease in the ΔDIC, these two climatic variables 277 

were excluded from the models used for prediction that were validated with the 10% holdout FIA 278 

dataset and fossil pollen record.  279 

FIA hold-out dataset and pollen validations 280 

For the contemporary 10% hold-out FIA dataset for both genera, the non-spatial model 281 

performed worse than the SVI, SVI plus climate, or multilevel B-Spline models in terms of 282 

AUC, FNR, and FPR (Table 4; Appendix S5). However, the same was not true when models 283 

were hindcasted. Based on AUC, there were significant main effects of model type (non-spatial, 284 

SVI, SVI plus climate, FIA B-Spline; F3,118 = 32.4, P = 2.4 × 10
-15

), and a significant genus × 285 

model interaction (F3,118 = 13.8, P = 8.8 × 10
-8

) (Table 4, Appendix S5) on model performance. 286 

For the Fagus hindcasts, on average the non-spatial model had higher AUC values than the 287 

spatial models (i.e., SVI and SVI plus climate) and FIA multilevel B-spline models, but the 288 

opposite was true for Tsuga.  The FNRs in the hindcasting validation varied by model (F3,118 = 289 

8.1, P = 6.2 × 10
-5

). The FIA data multilevel B-spline model had the highest FNR and post-hoc 290 

comparisons showed that there were no significant differences between the non-spatial and 291 

spatial models in FNRs (Table 4, Appendix S5). Similar to the FNRs, the FPRs also varied by 292 

model (F3,118 = 9.0, P = 1.95 × 10
-5

) (Table 4, Appendix S5). The FIA data multilevel B-spline 293 

and the non-spatial models had higher FPRs than the spatial models. There were no significant 294 



genus × model interactions for FNRs (F3,118 = 2.3, P = 0.08) and FPRs (F3,118 = 1.7, P = 0.18). 295 

Overall for the three measures, model performance worsened as models were projected further 296 

back in time (AUC: F1,118 = 118, P = 2.0 × 10
-6

; FNR: F1,118 = 98.7, P = 2.0 × 10
-16

; FPR: F1, 118 = 297 

109, P = 2.0 × 10
-16

). Also, model performance was better (i.e., higher AUC and lower FNR and 298 

FPR) for Tsuga than for Fagus (AUC: F1,118 = 10.0, P = 0.002; FNR: F1,118 = 65.5, P = 5.8 × 10
-299 

13
; FPR: F1,118 = 88, P = 6.3 × 10

-16
) and for the low pollen percentage thresholds than for the 300 

high pollen percentage thresholds (AUC: F1,118 = 14.0, P = 2.8 × 10
-4

; FNR: F1,118 = 15.3, P = 1.5 301 

× 10
-4

; FPR: F1,118 = 24.9, 2.13 × 10
-16

). For all three test metrics (i.e., AUC, FNR, FPR), the 302 

multilevel B-spline fit to the FIA data, which we used as a ‘perfectly fit’ model to assess whether 303 

or not the spatial models were overfit to the calibration data, performed the worst. This assured 304 

us that the pollen validation test was stringent enough.   305 

Discussion 306 

A key question regarding the application of SDMs to predicting the response of species to 307 

climate change is whether the failure to include ecological and evolutionary processes (e.g., 308 

dispersal, biotic interactions, readjustment lags) will prove to be problematic (reviewed by 309 

Pearson & Dawson, 2003). Depending on the species and its life history, ecological and 310 

evolutionary processes may (or may not) lead to its inability to track changes in climate. While 311 

there is evidence that vagile organisms (e.g., butterflies) can track rapid climate change (Warren 312 

et al., 2001), sessile organisms (e.g., trees) may not readily disperse to newly suitable habitat 313 

resulting in limited niche space filling (Svenning & Skov, 2004; Meier et al., 2012). Species 314 

undergoing climate driven range expansions coupled with enemy release are hypothesized to be 315 

more capable of realizing their potential niche (Hellman, et al., 2012), whereas species limited 316 

by a particular resource (e.g., host availability) can be constrained to the spatial distribution of 317 



the resource (Merrill et al., 2007). There is evidence that shorter-lived taxa (e.g., insects and 318 

herbaceous plants; Woodward, 1990; Thomas et al., 2001) can evolve in response to rapid 319 

climate change, but longer-lived taxa that cannot evolve as quickly may experience readjustment 320 

lags (Pearson & Dawson, 2003).  321 

For those taxa whose distributions do not shift over time as a result of ecological and 322 

evolutionary processes, the inclusion of spatial random effects in SDMs could improve 323 

projections by providing a more conservative prediction of distributional shifts, especially when 324 

climatic variables do not explain much variability in their observed distributions. Alternatively, 325 

when climatic variables explain most of the variability in a taxon’s observed distribution and the 326 

taxon is capable of tracking climate, then accounting for spatial autocorrelation in SDMs won’t 327 

provide better projections. In other words, the spatial random effects keep the projected 328 

distribution similar to the data used for model calibration, unless the covariates (e.g., climatic 329 

variables) suggest otherwise. Further, if the climate variables do not explain much of the 330 

variability in the observed distribution and the genera’s distribution shifts far from the observed 331 

distribution over time, then none of the models defined here will perform well. The predictive 332 

abilities of non-spatial and spatial SDMs have rarely been compared with temporally varying 333 

validation datasets to test these assertions (Gelfand et al., 2006).  334 

In this study we tested the predictive abilities of non-spatial and spatial SDMs across 335 

eight millennia using data from the pollen record (Appendix S1). We found that spatial SDMs 336 

had better fits to the calibration data, higher predictive accuracy for a modern hold-out validation 337 

dataset, and greater variance in their outputs than non-spatial SDMs (see also Gelfand et al., 338 

2006; Bahn & McGill, 2007). For Fagus, the SVI plus climate model provided a better fit to the 339 

calibration data than the SVI model, but the opposite was true for Tsuga. Also for the two 340 



climatic variable models, for Fagus there was no change in the sign of the climatic regression 341 

coefficients between the non-spatial and spatial models (Table 1), but with Tsuga there was a 342 

sign change in the regression coefficient for annual mean temperature between the non-spatial 343 

and SVI plus climate models (Table 2). This result suggests that for Tsuga the spatial random 344 

effect could be accounting for dependence in the model’s residuals across space as several other 345 

studies have found that parameter estimates are affected by spatial autocorrelation (Dormann, 346 

2007; Kühn, 2007; Bini et al., 2009; Hodges & Reich, 2010).  347 

In the hindcasting analyses, the SVI and SVI plus climate models performed similarly. 348 

This suggests that the climatic variables do not contribute much to explaining the variability of 349 

occurrence relative to that explained by the spatial random effects. AUC values based on fossil 350 

pollen indicated that the non-spatial model performed better for Fagus than either of the two 351 

spatial models, but the opposite was true for Tsuga. However, FNR values did not differ among 352 

the models for either genus, and FPR values were greater for non-spatial models for both genera. 353 

We have more confidence in FNR and FPR values than in AUC values because the latter 354 

describe portions of the ROC curve that are rarely encountered and weights omission and 355 

commission errors equally (Lobo et al., 2008). With the pollen record, equal weighting of 356 

omission and commission errors may not be ideal; we have much more confidence in the 357 

presence of pollen grains than in their absence (Blauww et al., 2007; Blois et al. 2011) and false 358 

negatives in the pollen record are more problematic than false positives. The lack of differences 359 

in false negative rates between models shows that the non-spatial and spatial models have similar 360 

FNRs.  361 

Although we have less confidence in actual absences in the pollen data, the FPRs are 362 

interesting when considering the ecological and evolutionary processes leading to conserved 363 



spatial structure in the distributions of species. The greater FPRs of non-spatial models for both 364 

genera suggest that spatial effects may account for smaller-scale climatic spatial structure that is 365 

not otherwise estimated in large-scale or averaged temperature and precipitation values (Gelfand 366 

et al., 2006; Hawkins et al., 2007). Evidence from the fossil pollen and paleoclimate records 367 

suggests that climatic shifts can result in abrupt ecological changes in vegetation that are driven 368 

by internal dynamics, such as site-specific environmental characteristics (e.g., soil moisture) or 369 

biotic interactions (e.g., competition) that create geographically localized variation in vegetation 370 

composition (Williams et al., 2011). Taxon-specific responses to climate forcing also could 371 

explain why the SVI model had the lowest DIC for Tsuga and why the two spatial models 372 

performed better in regards to both AUC and FPR for Tsuga, but not for Fagus. Approximately 373 

5.5 kaBP Tsuga experienced a range contraction known as the “hemlock decline” potentially due 374 

to an abrupt change in climate, a phytophagous insect infestation, or both (Bhiry & Filion, 1996; 375 

Foster et al., 2006). If the hemlock decline was due to an abrupt change in climate, then localized 376 

ecological changes could have resulted in stronger spatial structure in its distribution. However, 377 

decoupling changes in distributions due to climate and spatial structure due to biotic interactions 378 

or site-specific abiotic characteristics is difficult because observed spatial structure is (or was) 379 

inherently linked to abrupt climate change.  380 

Alternatively, the spatial random effects may have captured a missing covariate, such as 381 

an ecological process that generates spatial structure (Clayton et al., 1993; Paciorek, 2010). Such 382 

processes could include dispersal, competitive interactions, land-use history, or underlying 383 

features of the terrain. For example, if dispersal limitation prevents distributional shifts, then we 384 

might expect that spatial SDMs would perform better for dispersal-limited taxa (e.g., Tsuga) that 385 

cannot track changes in climate, but not necessarily for taxa with effective dispersal vectors (e.g., 386 



Fagus) that can gain dominance by migrating faster to climatically favorable sites (Pearman et 387 

al., 2008b). These taxon-specific differences in dispersal mode and degree of dominance could 388 

explain why Tsuga seemed to be less responsive to climate over the past 8 millennia than Fagus 389 

as evidenced by the better performance over time of the two spatial models in regards to both 390 

AUC and FPR for Tsuga, but not for Fagus. Simulation experiments for European trees with 391 

spatially explicit process models accounting for changing macroclimate, competition, and habitat 392 

connectivity showed that some of the spatial autocorrelation between two time periods may be 393 

due to very slow migration rates resulting in severe time lags that are not accounted for in non-394 

dynamic and non-spatial SDMs (Meier et al., 2012). Also, Dobrowski et al. (2011) found that 395 

non-spatial SDMs fit to widespread plants with more effective dispersal mechanisms had higher 396 

predictive accuracy over 75 years of climate change in California than non-spatial SDMs fit to 397 

dispersal-limited plants.  398 

Given the results of this study, should researchers include spatial random effects in 399 

SDMs? We found that for two long-lived eastern North American trees, spatial models provided 400 

better fits to calibration data and lower FPRs, but not necessarily improvements in AUC or the 401 

FNR. The better fits of the spatial SDMs may have resulted from the richness of the FIA data 402 

used to calibrate the models. Large samples of evenly-dispersed data likely will capture any 403 

spatial structure; consequently a spatial SDM should fit well. However, when sample sizes are 404 

small, there is less of a chance that the spatial structure will be represented adequately. 405 

Ultimately, whether to include spatial random effects in SDMs will depend on the taxon being 406 

modeled, the cost of false positives, and the quality of the data. 407 
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Table 1. Parameter credible intervals (2.5%, 50.0%, and 97.5% percentiles) for the Fagus 563 

spatially-varying intercept (SVI), non-spatial (NS2 and NS4) and SVI plus climate (SVI2 and 564 

SVI4) models. The numbers two and four in the acronyms for the non-spatial and SVI plus 565 

climate models indicate the number of bioclimatic explanatory variables included in the models. 566 

The two climatic variables models included annual mean temperature (BIO1) and precipitation 567 

seasonality (BIO15). The four climatic variables models included annual mean temperature 568 

(BIO1), mean diurnal range (BIO2), annual precipitation (BIO12), and precipitation seasonality 569 

(BIO15). For models with spatial random effects, the spatial random effect variance and spatial 570 

decay parameter are denoted σ
 2

 and φ, respectively.  571 

Model  β Parameter  2.5%   50.0%   97.5%  572 

  573 

SVI  Intercept  -7.23   -5.28   -2.72 574 

SVI  σ
 2   

8.11   12.90   20.24 575 

SVI  φ   1.09  10
-6

   1.62  10
-6

  2.63  10
-6 576 

NS2  Intercept  -3.06   -3.01   -2.96 577 

NS2  BIO1   -0.48   -0.46   -0.43 578 

NS2  BIO15   -1.83   -1.78   -1.72 579 

NS4  Intercept  -3.11   -3.06   -3.01 580 

NS4  BIO1   -0.62   -0.58   -0.54 581 

NS4  BIO2   0.33   0.37   0.40 582 

NS4  BIO12   -0.20   -0.14   -0.09 583 

NS4  BIO15   -2.03   -1.96   -1.90 584 

SVI2  Intercept  -7.49   -5.77   -4.41 585 



SVI2  BIO1   -1.57   -1.25   -0.89 586 

SVI2  BIO15   -0.97   -0.47   -0.08 587 

SVI2  σ
 2   

6.35   10.32   17.25 588 

SVI 2  φ   1.15  10
-6

  1.90  10
-6

  3.20  10
-6 589 

SVI 4  Intercept  -8.27   -5.47   -3.13 590 

SVI 4  BIO1   -1.37   -0.83   -0.25 591 

SVI 4  BIO2   -0.16   -0.03   -0.11 592 

SVI 4  BIO12   -0.15   -0.47   0.80 593 

SVI 4  BIO15   -0.89   -0.36   -0.12 594 

SVI 4  σ
 2 

  5.53   10.50   17.78 595 

SVI 4  φ   1.14  10
-6

  1.91  10
-6

  3.69  10
-6 596 

 597 



Table 2. Parameter credible intervals (2.5%, 50%, and 97.5% percentiles) for the Tsuga spatially-598 

varying intercept (SVI), non-spatial (NS2 and NS4) and SVI plus climate (SVI 2 and SVI 4) 599 

models. The numbers two and four in the acronyms for the non-spatial and SVI plus climate 600 

models indicate the number of bioclimatic explanatory variables included in the models. The two 601 

climatic variables models included annual mean temperature (BIO1) and precipitation 602 

seasonality (BIO15). The four climatic variables models included annual mean temperature 603 

(BIO1), mean diurnal range (BIO2), annual precipitation (BIO12), and precipitation seasonality 604 

(BIO15). For models with spatial random effects, the spatial random effect variance and spatial 605 

decay parameter are denoted σ
 2

 and φ, respectively.  606 

Model  β Parameter  2.5%   50%   97.5%  607 

  608 

SVI  Intercept  -9.10   -7.68   -4.15 609 

SVI  σ
 2  

  12.6   22.3   36.4 610 

SVI  φ   1.09  10
-6

  2.23  10
-6  

2.74  10
-6 611 

NS2  Intercept  -3.50   -3.45   -3.40 612 

NS2  BIO1   -1.14   -1.11   -1.07 613 

NS2  BIO15   -1.20   -1.16   -1.12 614 

NS4  Intercept  -3.55   -3.50   -3.45 615 

NS4  BIO1   -1.34   -1.30   -1.25 616 

NS4  BIO2   0.31   0.35   0.40 617 

NS4  BIO12   0.07   0.14   0.21 618 

NS4  BIO15   -1.25   -1.21   -1.12 619 

SVI2  Intercept  -10.18   -8.38   -3.45 620 



SVI 2  BIO1   0.07   0.48   0.89 621 

SVI 2  BIO15   -1.09   -0.55   -0.05 622 

SVI 2  σ
 2   

10.86
   

18.57   32.11 623 

SVI 2  φ   1.09  10
-6

  1.68  10
-6

  2.96  10
-6 624 

SVI 4  Intercept  -8.28   -5.73   -4.00 625 

SVI 4  BIO1   -1.28   -0.85   -0.26 626 

SVI 4  BIO2   -0.16   -0.03   0.11 627 

SVI 4  BIO12   -0.15   0.47   0.80 628 

SVI 4  BIO15   -0.81   -0.36   0.12 629 

SVI 4  σ
 2
   5.94   10.58   17.86 630 

SVI 4  φ   1.14  10
-6 

  1.89  10
-6

  3.43  10
-6 631 

 632 



Table 3. Fits of the spatially-varying intercept (SVI), non-spatial, and SVI plus climate SDMs to 633 

the modern Forest Inventory and Analysis (FIA) occurrence data for Fagus and Tsuga. 634 

Bioclimatic variables included in the models with climatic predictors were: annual mean 635 

temperature (BIO1), mean diurnal range (BIO2), annual precipitation (BIO12), and precipitation 636 

seasonality (BIO15). Model fit was evaluated with the Deviance Information Criterion (DIC), 637 

which is the sum of PD (the effective number of parameters) and the posterior mean of the 638 

deviance. To facilitate model comparison, ΔDIC was also calculated, where the model with the 639 

lowest DIC has a value of zero and all other models are compared to it. 640 

Model  Bioclimatic variable  Genus  PD DIC ΔDIC 641 

SVI  None   Fagus  247 35893 81 642 

Non-spatial 1, 15   Fagus  3 41497 5685 643 

Non-spatial  1, 2, 12, 15  Fagus  5 41125 5313 644 

SVI-climate 1, 15    Fagus  248 35812 0 645 

SVI-climate 1, 2, 12, 15  Fagus  251 35826 14 646 

SVI-climate None   Tsuga  170 23685 0 647 

Non-spatial 1, 15   Tsuga   3 30025 6340 648 

Non-spatial  1, 2, 12, 15  Tsuga  5 29715 6030 649 

SVI-climate 1, 15   Tsuga  164 23708 23 650 

SVI-climate 1, 2, 12, 15  Tsuga  160 23727 42 651 

 



 

Table 4. Model performance as measured by Area Under the Receiver Operating Curve (AUC), 

false negative rates (FNR), and false positive rates (FPR) for the non-spatial model, spatially-

varying intercept (SVI) model, SVI plus climate, and multilevel B-spline fit to modern Fagus 

and Tsuga occurrence data from the Forest Inventory and Analysis (FIA) data. Predictions of the 

models for modern time were validated with a 10% hold-out dataset from the FIA data. 

Hindcasts were validated with data from the fossil pollen record provided by the Neotoma 

database using the “high” pollen thresholds for both genera. The numbers behind the AUC, FNR, 

and FPR values in parentheses for the Bayesian models represent the standard error calculated 

from 1000 random draws from the post burn-in MCMC iterations. For the FIA multilevel B-

spline approximation there is no standard error as there were no MCMC iterations to draw from. 

Genus Performance Time   Non-spatial SVI   SVI-climate FIA 

 Measure         (kaBP)      

Fagus AUC  0  0.87 (4 10
-4

) 0.91 (0.01) 0.92 (0.01) 0.91   

   1  0.89 (5 10
-4

) 0.87 (0.02) 0.87 (0.02) 0.86 

   2  0.90 (4 10
-4

) 0.88 (0.02) 0.88 (0.02) 0.86 

   3  0.89 (6 10
-4

) 0.88 (0.01) 0.88 (0.02) 0.86 

   4  0.88 (6 10
-4

) 0.87 (0.02) 0.87 (0.02) 0.84 

   5  0.85 (1 10
-3

) 0.85 (0.02) 0.84 (0.02) 0.83 

   6  0.84 (2 10
-3

) 0.84 (0.02) 0.83 (0.03) 0.83 

   7  0.81 (1 10
-3

) 0.80 (0.02) 0.80 (0.03) 0.78 

   8  0.73 (2 10
-3

) 0.76 (0.01) 0.74 (0.02) 0.71 

Fagus FNR  0  0.22 (0.01) 0.14 (0.04) 0.14 (0.03) 0.11 

   1  0.20 (0.01) 0.23 (0.04) 0.22 (0.09) 0.26  



 

   2  0.19 (0.02) 0.21 (0.05) 0.20 (0.09) 0.24 

   3  0.19 (0.01) 0.19 (0.04) 0.21 (0.09) 0.23 

   4  0.22 (0.01) 0.20 (0.04) 0.22 (0.09) 0.23 

   5  0.28 (0.02) 0.24 (0.04) 0.25 (0.10) 0.26 

   6  0.26 (0.01) 0.25 (0.05) 0.27 (0.10) 0.24 

   7  0.30 (0.01) 0.31 (0.05) 0.32 (0.10) 0.31 

   8  0.34 (0.03) 0.33 (0.04) 0.35 (0.07) 0.38 

Fagus  FPR  0  0.23 (0.01) 0.14 (0.02) 0.14 (0.02) 0.12 

   1  0.21 (0.02) 0.23 (0.04) 0.22 (0.05) 0.23 

   2  0.20 (0.02) 0.21 (0.04) 0.20 (0.06) 0.22 

   3  0.20 (0.01) 0.19 (0.03) 0.21 (0.06) 0.22 

   4  0.24 (0.02) 0.19 (0.04) 0.22 (0.07) 0.25 

   5  0.28 (0.03) 0.24 (0.03) 0.25 (0.07) 0.26 

   6  0.27 (0.02) 0.25 (0.04) 0.26 (0.07) 0.28 

   7  0.26 (0.02) 0.31 (0.04) 0.30 (0.07) 0.29 

   8  0.35 (0.01) 0.33 (0.04) 0.34 (0.07) 0.40 

Tsuga AUC  0  0.85 (3 10
-3

) 0.95 (0.02) 0.95 (8 10
-3

) 0.97 

1  0.85 (3 10
-3

) 0.91 (0.01) 0.91 (0.02) 0.82 

   2  0.86 (4 10
-4

) 0.89 (0.01) 0.89 (0.02) 0.81 

   3  0.87 (4 10
-4

) 0.88 (0.01) 0.87 (0.02) 0.80 

   4  0.83 (3 10
-3

) 0.86 (0.02) 0.85 (0.02) 0.80 

   5  0.84 (3 10
-3

) 0.90 (0.02) 0.89 (0.02) 0.84 

   6  0.86 (2 10
-3

) 0.91 (0.02) 0.90 (0.02) 0.80 



 

   7  0.85 (5 10
-3

) 0.88 (0.02) 0.87 (0.02) 0.80 

   8  0.76 (5 10
-3

) 0.89 (0.02) 0.88 (0.02) 0.79 

Tsuga  FNR  0  0.20 (0.03) 0.11 (0.04) 0.11 (0.04) 0.05 

   1  0.16 (0.07) 0.16 (0.04) 0.18 (0.03) 0.20  

   2  0.19 (0.02) 0.18 (0.04) 0.20 (0.03) 0.21 

   3  0.19 (0.03) 0.18 (0.04) 0.20 (0.04) 0.20 

   4  0.21 (3 10
-3

) 0.20 (0.05) 0.21 (0.04) 0.21 

   5  0.25 (0.02) 0.17 (0.04) 0.18 (0.04) 0.20 

   6  0.20 (0.02) 0.16 (0.04) 0.18 (0.03) 0.20 

   7  0.25 (0.01) 0.18 (0.04) 0.19 (0.03) 0.24 

   8  0.30 (0.01) 0.19 (0.05) 0.19 (0.04) 0.33 

Tsuga FPR  0  0.22 (0.01) 0.11 (0.03) 0.11 (0.03) 0.09 

   1  0.19 (0.03) 0.16 (0.04) 0.17 (0.04) 0.23 

   2  0.16 (0.01) 0.18 (0.04) 0.19 (0.03) 0.20 

   3  0.19 (1 10
-3

) 0.18 (0.04) 0.19 (0.03) 0.22 

   4  0.23 (0.01) 0.20 (0.03) 0.21 (0.03) 0.26 

   5  0.24 (0.02) 0.17 (0.04) 0.18 (0.04) 0.23 

   6  0.19 (0.01) 0.16 (0.05) 0.17 (0.04) 0.18 

   7  0.23 (0.01) 0.18 (0.04) 0.18 (0.03) 0.22 

   8  0.32 (0.01) 0.20 (0.04) 0.21 (0.03) 0.31 

 



 

Figure 1. Map of the study extent in the eastern United States showing Forest Inventory and 

Analysis (FIA) plots (hollow circles) and Neotoma pollen sites (solid triangles) snapped to a 

resolution of 0.5-degrees (Alber’s Equal Area Conic projection).  

Figure 2. Numbers of sites with presences (black fill) or absences (white fill) of Fagus (a and c) 

and Tsuga (b and d) based on the low and high pollen thresholds from present to 21 kiloannums 

before present (kaBP) based on fossil pollen data from the Neotoma database. Data extending 

beyond 8 kaBP were not used in the analyses due to the low number of presences of Fagus and 

Tsuga beyond that time. 

Figure 3. Maps of a) a surface approximation of the probability of occurrence of Fagus 

generated by a multilevel B-spline fit to the raw FIA data and the predicted probability of 

presence of the b) non-spatial, c) spatially-varying intercept, and d) spatially-varying intercept 

plus climate SDMs to modern Fagus FIA data (Alber’s Equal Area Conic Projection). The 

surface approximation in a) was calculated with the MBA package in R.  

Figure 4. Maps of a) a surface approximation of the probability of occurrence of Tsuga 

generated by a multilevel B-spline fit to the raw FIA data and the predicted probability of 

presence of the b) non-spatial, c) spatially-varying intercept, and d) spatially-varying intercept 

plus climate SDMs to modern Tsuga FIA data (Alber’s Equal Area Conic Projection). The 

surface approximation in a) was calculated with the MBA package in R. 
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