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M.; Sałamaszyńska-Guz, A. Should

We Consider Them as a Threat?

Antimicrobial Resistance, Virulence

Potential and Genetic Diversity of

Campylobacter spp. Isolated from

Varsovian Dogs. Antibiotics 2022, 11,

964. https://doi.org/10.3390/

antibiotics11070964

Academic Editor: Alain

Bousquet-Mélou

Received: 29 June 2022

Accepted: 15 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Should We Consider Them as a Threat? Antimicrobial
Resistance, Virulence Potential and Genetic Diversity of
Campylobacter spp. Isolated from Varsovian Dogs
Małgorzata Murawska 1,* , Monika Sypecka 2, Justyna Bartosik 3, Ewelina Kwiecień 1, Magdalena Rzewuska 1
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Abstract: Campylobacteriosis seems to be a growing problem worldwide. Apart from the most
common sources of numerous Campylobacter species, such as poultry and other farm animals, dogs
may be an underrated reservoir of this pathogen. Our goal was to establish the frequency of
occurrence, antimicrobial resistance, and detection of chosen virulence factor genes in genomes of
canine Campylobacter isolates. Campylobacter isolates frequency in dogs from shelters, and private
origin was 13%. All of the tested virulence factor genes were found in 28 of 31 isolates. We determined
high resistance levels to the ciprofloxacin and ampicillin and moderate tetracycline resistance. For
C. jejuni shelter isolates, genetic diversity was also determined using PFGE. Our results indicate that
dogs may be the reservoir of potentially diverse, potentially virulent, and antimicrobial-resistant
Campylobacter strains.
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1. Introduction

Campylobacter spp. is the most common etiological agent of human gastroenteritis in Eu-
rope, with a reported number of cases of 220,682 in 2019 and a notification rate of 59.7 cases
per 100,000 population [1]. Poland has one of the lowest notification rates in the EU (less
than 5.8 cases/100,000 population). However, the number of cases of campylobacteriosis
in Poland has been growing slowly in recent years, from 552 cases and a 1.4% notification
rate in 2013 up to 874 cases and a notification rate of 2.3% in 2017 [1]. Clinical manifes-
tation of campylobacteriosis is non-specific and includes diarrhoea (bloody or watery),
abdominal pain and fever. Campylobacteriosis is most frequently a self-limiting disease;
however, sometimes antimicrobial treatment is required, especially in immunodeficient
patients or when the disease seems to be severe or persistent. Campylobacteriosis may
also be followed by complications: gastrointestinal such as Inflammatory Bowel Disease,
Barret’s Oesophagus, and extra-gastrointestinal—such as Guillain–Barré Syndrome and
Miller–Fisher Syndrome [2].

The main sources of numerous Campylobacter species are poultry and other farm
animals and their products (e.g., meat and milk), contaminated soil and water, as well
as wild birds (e.g., gulls) [1,3]. Many studies indicate companion animals (dogs and
cats) as a huge, underestimated reservoir of genetically diverse, potentially virulent and
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antimicrobial-resistant Campylobacter species [4–7]. It has been shown that owning more
than one dog or cat, including at least one puppy or kitten, significantly increases the risk of
Campylobacter infection occurrence in humans [8]. Dogs and cats are mainly asymptomatic
carriers of Campylobacter spp. Some studies reported that animals with symptoms of
gastrointestinal disease (e.g., diarrhoea) as well as animals invaded with intestinal parasites
are more likely to be Campylobacter-positive. Moreover, increased species richness in
diarrheic dogs was highlighted [5,9]. Some factors such as age, stress, living conditions,
season, geographic area, model of feeding and breed are indicated as risk factors for
Campylobacter shedding. Few studies showed that young and senior animals, as well
as kennelled or shelter animals are more likely to be Campylobacter-positive as well as
pure-breed pets in comparison with cross-breed animals [4,5,7,10–13]. The prevalence of
Campylobacter spp. in companion animals varies widely from 5.9% to 97% and depends
on many factors: animal host species (dog or cat), season of sampling, geographic area, as
well as pathogen detection and identification method (culture-based or molecular), study
design and the number of samples analysed [4,6–22].

The study goals were to establish the frequency of occurrence, virulence potential and
antimicrobial resistance of Campylobacter strains isolated from dogs of private and shelter
origin. Additionally, the genetic diversity among Campylobacter jejuni isolates from shelter
dogs was determined.

2. Results
2.1. Occurrence of Campylobacter spp.

A total number of 196 faecal samples were examined by direct inoculation on mCCD
agar, including 124 samples from dogs living in the animal shelter and 72 samples taken
from private dogs.

In total, faecal samples from 26 dogs were Campylobacter—positive (13.3%, CI 95%:
8.85–18.83%). The frequency of Campylobacter occurrence in shelters and in private dogs
was 13.7% (CI 95%: 8.19–21.04%) and 12.5% (CI 95%: 5.88–22.41%), respectively, and did
not vary significantly (p = 0.81). Eleven of the Campylobacter-positive animals (42%) were
puppies (≤1 y/o), whereas fifteen (58%) were adults (>1 y/o). Additionally, 16 of the
Campylobacter-positive animals were concurrently invaded with intestinal parasites: Giardia
intestinalis, Toxocara canis, Isospora spp. and non-specified coccidia and nematodes. Exactly
75% of the invaded animals (12 of 16) were from the animal shelter.

Based on the various colony morphology, two different Campylobacter strains were
found in the samples from five dogs, including three dogs from a shelter (C. jejuni, C. lari)
and two private dogs (C. jejuni); thus, finally, 31 Campylobacter spp. strains were tested.
PCR and biochemical identification allowed us to identify 19 strains of Campylobacter jejuni
(9/19 of a shelter origin), nine strains of Campylobacter lari (8/9 of a shelter origin) and
three strains of Campylobacter upsaliensis (3/3 of a shelter origin). A species profile noted
for shelter and private dogs varied significantly (p = 0.017). Almost 65% of Campylobacter
spp. strains (n = 20) were isolated from shelter dogs, whereas the remaining strains (n = 11)
were derived from private animals. Neither Campylobacter helveticus nor Campylobacter
coli were isolated. Further information on Campylobacter-positive dogs is available in the
supplementary material (Table S1).

2.2. Detection of Virulence Factor Genes

PCR screening for selected virulence factor genes confirmed that all tested genes
responsible for the cytolethal distending toxin production (cdtA, cdtB and cdtC) and the
motility (flaA, flaB) were present in all studied Campylobacter spp. strains. The presence of
four selected genes responsible for adhesion and internalisation to the host’s cells (ciaB,
cadF, pldA and flpA) was confirmed in 28 strains (90%); however, the cadF gene was not
found in three C. upsaliensis strains. The summary of the information on the presence of the
virulence factor genes is available in the supplementary material (Table S2).
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2.3. Phenotypes and Genotypes of the Antimicrobial Resistance

The Minimum Inhibitory Concentration (MIC) values of the tested antimicrobials
were determined using a gradient strip method to establish an antimicrobial resistance
phenotype. For selected antimicrobial agents, resistance mechanisms were also studied by
PCR detection of appropriate resistance genes.

The significantly high level of the ciprofloxacin resistance (90.3%; in 28 out of 31 isolates)
was determined (Figure 1a). A point mutation C257T (codon 86) in the gyrA gene, resulting
in amino acid substitution (Thr-86-Ile), was found in the 16 ciprofloxacin-resistant C. jejuni
strains and two C. upsaliensis strains. However, in all resistant C. lari and one C. upsaliensis
isolate, no amino acid substitution was found.
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and resistance to antimicrobial agents, green—susceptible; red—resistant; CIP—ciprofloxacin; TE—
tetracycline; AM—ampicillin; E—erythromycin; GE—gentamicin; (b) Percentage of resistance to two
or more classes of antimicrobials.

Seven C. jejuni strains (22.6%) were resistant to tetracycline (Figure 1a), and all of them
harboured the tetO gene in plasmid DNA.

The resistance to ampicillin was at a high level (77.4%), and it was detected in all
Campylobacter species, but its determinants in the studied strains were not determined.

No resistance to gentamicin and erythromycin was noted (Figure 1a).
Twenty-six of thirty-one Campylobacter spp. strains (83.9%) were resistant to two or

more tested antimicrobial agents, including 4/31 strains (12.9%) classified as multidrug-
resistant (resistant to three or more of the antimicrobial classes; MDR) (Figure 1b). Two
MDR strains were isolated from dogs of shelter origin and the other two from dogs of
private owners. Six resistance patterns could be distinguished, the predominant was CIPR

AMR TES, and the less frequent pattern was CIPS AMR TES, found only in one strain
(Table 1).
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Table 1. Frequency of occurrence of the AMR patterns obtained in this study.

Resistance Profile Number of Isolates Frequency [%] Species Included [%]

CIPR AMR TES 19 61.3 C. jejuni (47.4), C. lari
(15.8), C. upsaliensis (36.8)

CIPR AMR TER 4 12.9 C. jejuni (100)
CIPR AMS TER 3 9.6 C. jejuni (100)
CIPR AMS TES 2 6.5 C. jejuni (100)
CIPS AMS TES 2 6.5 C. jejuni (100)
CIPS AMR TES 1 3.2 C. jejuni (100)

Total 31

2.4. Genetic Diversity of Campylobacter jejuni

Pulsed-field gel electrophoresis (PFGE) was performed to establish the genetic diver-
sity of C. jejuni isolates obtained from the shelter dogs.

Nine C. jejuni strains isolated from faeces of the shelter dogs were classified into six
pulsotypes (P1–P6). The similarity between those pulsotypes varied from 53.5% to 75%
(Figure 2). The Simpson’s index of discrimination of the studied molecular typing method
was 0.944 (95% CI: 0.870–1.018).
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Interestingly, two C. jejuni strains (13d and 13m), isolated from the same dog of shelter
origin, have been classified into separate pulsotypes (Figure 2). However, strain 13d
clustered together with strain 08 into the pulsotype P5. The pulsotype P2 consisted of three
strains; two of them, 104 and 104α, isolated from the same dog were similar at 94.1%, and
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curiously enough, the third strain isolated from another dog was genetically identical to
the strain 104α (Figure 2).

The results of PFGE typing were compared with the antimicrobial resistance patterns.
The strains 13d and 13m obtained from the same dog had different resistance patterns.
However, strain 104 had a resistance pattern similar to strain 33 and different from the 104α
strain, which was isolated from the same dog (Figure 2).

3. Discussion

Our study showed that dogs might be an important reservoir of Campylobacter species
potentially dangerous for human health. The previous studies reported the prevalence
of these bacteria in pets’ faeces strongly varied, as well as various virulence potential,
antimicrobial resistance, and genetic diversity of Campylobacter isolates. It seems that the
obtained results may depend on some factors, such as the number of samples, the age and
origin of tested animals or the detection and identification methods used.

In this research, we obtained the frequency of the Campylobacter spp. occurrence
in dog faeces much lower (13.3%) than in most literature reports. In many studies, the
prevalence of these bacteria above 20% in dogs was noted [4,7,10–12,15,17–19]. In a few
reports, the prevalence of Campylobacter spp. in animals living in shelters varied from
45.4% to 87% [10,11,15]. However, there are also few reports showing similar or lower
Campylobacter prevalence than in our study, and it varied from 5.9% to 18.3% [6,13,16,21–23].
It should be highlighted that in this study, the frequency of Campylobacter spp. occurrence
did not vary significantly between shelter animals and animals of private owners (13.7% vs.
12.5%).

Most of the previous studies were focused on two species, C. jejuni and C. coli, which
are the most common causes of human gastroenteritis, but C. coli was rarely isolated from
dogs [7,8,17,22]. However, Chaban et al. [9] showed, using a quantitive PCR, that dogs may
be a reservoir of numerous Campylobacter species other than C. jejuni and C. coli, such as
C. upsaliensis, C. hyointestinalis, C. showae, C. sputorum, C. fetus and C. lari.

In our study, three species of Campylobacter: C. jejuni, C. upsaliensis and C. lari were
found. C. jejuni was the predominant species, which is in accordance with the literature
data [6,7,12,16,17,19,20,22]. Curiously, in this study, the C. upsaliensis strains represented
only 9.7% of the isolates, even though this species is reported as commonly occurring
in Campylobacter spp. in dogs, similarly to C. jejuni [4,8,12,18–20,24]. Interestingly, we
identified nine strains of C. lari, which was 29% of all isolates. C. lari is rarely reported in
dogs and cats [7,8,19,20] but is mostly associated with animals living in coastal regions and
the marine environment (gulls, molluscs, aquatic mammals, and birds) [3,25]. Thus, such
a high frequency of this species in dogs in the central region of Poland (Warsaw and the
surrounding area) is difficult to explain. However, we lack information on the history of
the origin of those dogs. Eight of nine C. lari strains were isolated from shelter dogs, as well
as all C. upsaliensis strains. It suggests that animals kept in shelters potentially may be a
reservoir of more diverse Campylobacter species than dogs or cats of private owners. We
did not isolate any C. coli and C. helveticus strains, which is consistent with some previous
reports [4,11,13,16,19].

The motility, cytolethal distending toxin production and ability to adhere and invade
the host’s cells are pointed to as the main virulence factors among Campylobacter species.
Most research focused on detection of genes encoding flagellar proteins (FlaA, FlaB, FlaC),
subunits of cytolethal distending toxin (CdtA, CdtB, CdtC), adhesins (CadF, FlpA) and
invasion factors (CiaB, IamA). Some of them also indicated a product of the pldA gene en-
coding outer membrane phospholipase, which is involved in the invasion and colonisation
process [24,26–31].

In all examined strains in this study, both the presence of the flaA and flaB genes was
detected. They are encoding two proteins, FlaA and FlaB, responsible for the flagellum’s
filament formation and thus are responsible for the Campylobacter motility. These results
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are consistent with the available literature data, where a high prevalence of the flaA gene,
between 82–100% in human, canine and feline isolates, was detected [6,24,26,28].

The other important virulence factor of Campylobacter spp. is the cytolethal distending
toxin (CDT) with DNase activity, which is composed of three subunits encoded by the
cdtA, cdtB and cdtC genes. While the CdtB subunit is an active compound (DNase I), CdtA
and CdtC mediate in binding and internalisation to the host’s cells [31]. Therefore, most
of the studies focused on the presence of the cdtB gene [24,26,29,32], but some of them
investigated all of the three genes or the cdtABC cluster [28,30]. Unlike the flaA gene, the
prevalence of CDT encoding genes varied from 29.5–100% [6,24,28]. In our study, cdtA,
cdtB and cdtC were found in all of the examined strains belonging to C. jejuni, C. lari and
C. upsaliensis species; thus, a fully functional toxin may be produced by those isolates.

The ability to adhere to and invade of host’s enterocytes is also crucial for the pathogen-
esis of campylobacteriosis. The Campylobacter adhesion proteins, CadF and FlpA (fibrin-like
peptide A), are outer membrane proteins responsible for adhesion initiation by binding to
fibronectin of epithelium [27,31]. Products of the pldA gene, phospholipase A, and CiaB
protein are involved in the internalisation of Campylobacter into the host’s cells [27,31]. The
frequency of flpA, ciaB and pldA genes obtained in our study was 100%, while the cadF
gene occurred in 90.3% of the isolates overall. We did not find cadF in C. upsaliensis strains,
but 100% of the C. jejuni and C. lari strains were positive for this gene. The gene cadF was
usually detected in 100% of isolates from different sources: dogs, cats, broilers, pigs, cattle,
and humans [6,24,26,30,32]. Only in research by Selwet cadF was found in 83.6% of isolates
from dogs [28].

Almost the 100% frequency of selected genes occurrence, responsible for adhesion and
invasion process makes obtained isolates potentially able to colonise and damage intestinal
epithelium, which may result in symptomatic infection development.

As for all emerging pathogens, the antimicrobial resistance (AMR) in Campylobacter
spp. has been a growing problem over the years. For the Campylobacter genus, increasing
resistance to fluoroquinolones, quinolones, tetracyclines and penicillins is constantly ob-
served. Preventive administration of those antimicrobials in animal husbandries (chicken
and turkey broilers, pigs and cattle) and pet stores (puppies and kittens) may be indicated
as one of the main reasons for increasing AMR and more frequent occurrence of multidrug-
resistant strains [33,34]. Thus, it seems reasonable to monitor AMR and the occurrence of
multidrug resistance (MDR) in Campylobacter strains of pet origin.

In this study, antimicrobial susceptibility testing was performed for all isolated Campy-
lobacter spp. strains. It is worth noting that in the case of Campylobacter antimicrobial
susceptibility testing, the interpretation of the results may be problematic due to the fact
that breakpoints are available for few antimicrobials and are only established for C. jejuni
and C. coli, as these species are the main etiological factors of human campylobacteriosis.

A very high level of ciprofloxacin resistance (90.3%) was noted among the studied
Campylobacter spp. strains (Figure 1). Our results are similar to those performed on canine
and feline isolates in Iran, where the ciprofloxacin resistance was determined at the level of
75% [13]. The main mechanism of resistance to fluoroquinolones is the weakening of the
antimicrobial binding to the so-called quinolone-binding pocket at the GyrA subunit of
DNA gyrase, caused by amino acid substitution [35–37]. We found the most common point
mutation, C257T, in codon 86 of the gyrA gene, resulting in amino acid substitution (Thr-
86-Ile) in 19 (67.9%) of the ciprofloxacin-resistant strains, 17 C. jejuni and two C. upsaliensis
strains. No other mutations in the gyrA gene have been found in the studied ciprofloxacin-
resistant strains.

In this study, the level of tetracycline resistance was at 22.6%, which may be considered
moderate in comparison with varied data from a few reports on tetracycline resistance
in canine and feline Campylobacter strains. In some studies, a low tetracycline resistance
level (0% to 8.6%) was noted, however other studies revealed high levels of tetracycline
resistance, up to 87.5% [13,14,22,28].
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Tetracycline activity is based on binding to the ribosome and inhibiting the protein syn-
thesis via blocking the accommodation of aminoacyl-tRNA into the A site of the ribosome.
One of the main mechanisms of tetracycline resistance is associated with the presence of
ribosomal protection proteins (RPP’s) encoded by tet genes [38]. Among the Campylobacter
genus, the presence of the tetO gene on a plasmid or chromosomal DNA, encoding Tet(O)
RPP, is the most widespread mechanism of tetracycline resistance [39]. In this study, in all
seven tetracycline-resistant Campylobacter strains, the tetO gene was found in plasmid DNA.
This result is in accordance with the literature data [30,40–42], where Tet(O) was found as a
main tetracycline resistance determinant.

β-lactam antibiotics are not commonly used for campylobacteriosis treatment, whereas
macrolides (azithromycin in particular) are now applied as a gold standard [30]. However,
few studies included the determination of the β-lactam resistance; thus, we decided to
perform susceptibility testing for ampicillin. A total of 77.4% of the studied strains were
ampicillin-resistant, which is much more than found in literature data, where the prevalence
of aminopenicillin resistance ranged from 25% to 58.1% [13,22,30,43]. However, the study
of Rozynek et al. showed that the level of ampicillin resistance increased over the years
from 8% to 35.5% and from 5.8% to 30.4% in human and broiler isolates, respectively [40].

We did not obtain any macrolide and aminoglycoside resistant strains of Campy-
lobacter spp. Most of the studies reported low levels of resistance to those two classes of
antimicrobials, and, in most cases, only single isolates were resistant [23,28–30,40,41,43].

Despite the fact that we did not determine any resistance to macrolides or aminogly-
cosides, four of the isolated strains were classified as multidrug-resistant because they
revealed the resistance to three classes of antimicrobial agents: fluoroquinolones, tetracy-
clines and β-lactams. The report of Montgomery et al. on the outbreak of MDR C. jejuni in
the United States after puppy exposure indicated that preventive usage of antimicrobials in
animals in pet stores could contribute to developing multidrug resistance and may lead to
more outbreaks of potentially untreatable infections in humans [33].

As the animal shelter is a closed environment in which the strains of bacteria can
circulate within the hosts, we decided to perform PFGE typing of nine strains of C. jejuni
isolated from shelter dogs and additionally the reference strain C. jejuni 81176 of human
origin, to determine genetical diversity among those strains. We showed that one dog
might be a source of different C. jejuni strains, e.g., genetically diverse strains 13d and
13m from one animal, belonging to the two different pulsotypes. Our results also indicate
that strains clustering into one pulsotype share identical or very similar antimicrobial
resistance patterns (Figure 2) which comes along with the research of Du et al. [44] on
human and poultry isolates but stays in contrast with the results of Bakhshi et al. [45] where
the genetically similar isolates of poultry meat origin showed different AMR patterns. It
has been confirmed that Campylobacter spp. strains could spread between animals in a
shelter.

Most of the studies on the genetic diversity of animal Campylobacter spp. strains
were focused on the investigation of isolates from slaughter animals (chicken broilers,
bovine meat, pig fatteners) due to the fact that meat contamination is indicated as the
most common source of pathogenic Campylobacter for humans. Those studies showed that
mentioned animal-origin isolates are genetically highly diverse [46–50]. However, little
is still known about the genetic diversity of canine Campylobacter strains. Our data and
previously published data clearly indicate that dogs and cats may be a reservoir of diverse
Campylobacter species and an important source of infections caused by these pathogens in
humans [6,7].

4. Materials and Methods
4.1. Sampling and Shipment

Samples of faeces were taken from 196 dogs, including 124, mostly healthy, dogs
from one of the Varsovian animal shelters and 72 dogs of private owners, subjected to
veterinary cabinets in the Warsaw agglomeration (Poland) due to needing to perform faeces
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examination. The study included animals, both males and females, aged from one month
to 16 years old. The samples were collected between February 2019 and June 2020.

Faecal samples in sterile containers were stored at a temperature of 2–8 ◦C until ship-
ping and were delivered to the microbiological laboratory within 24–48 h from sampling.
Apart from a bacteriological study, additionally, a parasitology examination using the
routine methodology was performed for all samples.

4.2. Isolation and Identification of Campylobacter spp.

Specimens were streaked on selective mCCD agar plates (GRASO Biotech, Starogard
Gdański, Poland) using sterile cotton swabs, followed by two reducing streaks with a labo-
ratory wire loop. Plates were incubated at 42 ◦C for 48 h under microaerophilic conditions
using the GasPak Campy Container System (BD Biosciences, USA). After incubation, one
or two colonies (two colonies were taken if they differed) from each selective plate were
cultured on Columbia Blood Agar (GRASO Biotech, Starogard Gdański, Poland) at 42 ◦C
for 48 h under microaerophilic conditions. When pure cultures were obtained, preliminary
identification to the genus level was performed based on specific colony morphology, cell
morphology, and the motility observed by phase-contrast microscopy, as well as catalase
and oxidase test results. Preliminary identification was followed by DNA isolation using
the Genomic Mini isolation kit (A&A Biotechnology, Gdańsk, Poland), performed according
to the manufacturer’s instructions. Further recognition of isolates to the species level was
performed using PCR with species-specific primers (Table 2). Reaction conditions were
as follows: pre-denaturation at 95 ◦C for two minutes; 25 cycles of denaturation at 95 ◦C
for 30 s, primer annealing for 30 s, elongation at 72 ◦C for 30 s or 60 s (for C. upsaliensis
and C. helveticus identification); and an additional elongation step at 72 ◦C for five minutes;
annealing temperatures for all used primers are presented in Table 2. For positive control,
Campylobacter jejuni 81-176 ATCC® BAA2151 and Campylobacter coli 605 strains were used.
Identification of C. lari and C. upsaliensis strains was also confirmed with the API Campy
test (bioMérieux, Marcy-l’Étoile, France), following the manufacturer’s protocol.

Table 2. Primers used in this study for Campylobacter species identification.

Target
Species Primer Amplicon Size

[bp] Primer Sequence 5′-3′ Tm * [◦C] Ref.

C. jejuni mapAF
604

ATGTTTAAAAAATTTTTG
55 [51]mapAR AAGTTCAGAGATTAAACTAG

C. upsaliensis CHCU146F
879

GGGACAACACTTAGAAATGAG
55 [52]CU1024R CACTTCCGTATCTCTACAGA

C. helveticus
CHCU146F

1226
GGGACAACACTTAGAAATGAG

52 [52]CH1371R CCGTGACATGGCTGATTCAC

C. lari
lpxAF

233
TRCCAAATGTTAAAATAGGCGA

50 [53]lpxAR CAATCATGDGCDATATGASAATAHGCCAT

C. coli
Mu3

364
AGGCAAGGGAGCCTTTAATC

61 [51]Mu4 TATCCCTATCTACAATTCGC

* Tm—temperature of primer annealing.

4.3. Virulence Factor Genes Occurrence

For identified strains of Campylobacter spp., PCR assays were performed to detect
selected virulence factor genes: flaA, flaB, cdtA, cdtB, cdtC, ciaB, pldA, cadF and flpA. The
used primers are listed in Table 3. A template chromosomal DNA was isolated using the
Genomic Mini isolation kit (A&A Biotechnology, Gdańsk, Poland). For positive control,
Campylobacter jejuni 81-176 ATCC® BAA2151 was used. All reactions were performed
under the following conditions: pre-denaturation at 95 ◦C for two minutes; 30 cycles of
denaturation at 95 ◦C for 30 s, primer annealing for 30 s, elongation at 72 ◦C for 30 s (90 s for
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the flaA); an additional elongation step at 72 ◦C for five minutes; annealing temperatures
for the used primers are presented in Table 3.

Table 3. Primers used in this study for the detection of virulence factor genes and determination of
the molecular mechanisms of antimicrobial resistance.

Target Gene Primer Amplicon
Size [bp] Primer Sequence 5′- 3′ Tm * [◦C] Ref.

flaA flaA-F
1728

GGATTTCGTATTAACACAAATGGTGC
45 [54]flaA-R CTGTAGTAATCTTAAAACATTTTG

flaB fB1
260

AAGGATTTAAAATGGGTTTTAGAATAAACACC
54 [55]fA2 GCTCATCCATAGCTTTATCTGC

cdtA
cdtA-F

370
CCTTGTGATGCAAGCAATC

46 [56]cdtA-R ACACTCCATTTGCTTTCTG

cdtB
cdtB-F

620
CAGAAAGCAAATGGAGTGTT

47 [57]cdtB-R AGCTAAAAGCGGTGGAGTAT

cdtC
cdtC-F

182
TTGGCATTATAGAAAATACAGTT

46 [57]cdtC-R CGATGAGTTAAAACAAAAAGATA

ciaB
ciaB-F

527
TGCGAGATTTTTCGAGAATG

47 [58]ciaB-R TGCCCGCCTTAGAACTTACA

pldA pldA-F
385

AAGAGTGAGGCGAAATTCCA
49 [58]pldA-R GCAAGATGGCAGGATTATCA

flpA flpAF
1017

GCTTTTGAATGGGAGTCTTTATAT
49 This study

flpAR ATCAATAGCAATAACTTCATAACTATA

cadF
cadF_F

580
TTTGAGTGCTATTAAAGGTATTG

47 This study
cadF_R TCTTTCTGAAAGCTTTTGATTATA

cadF
(C. lari)

cadF_LF
589

GCGCACGACCTTCTTTAGT
50 This study

cadF_LR GCTTATGAAAATAAAAGCGGTATG

cadF
(C. upsaliensis)

cadF_UF
510

CTCTCTTGGTTCTTCAGGACA
52 This study

cadF_UR GATAATCGCTATGCACCAGGGA

tetO
tetO_F

559
GGCGTTTTGTTTA

49 [37]tetO_R ATGGACAACCCGACAGAAGC

gyrA gyrA_F
290

ATTATAGGTCGTGCTTTGCCT
50 This study

gyrA_R GCTTCAGTATAACGCATCGCA

* Tm—temperature of primer annealing

4.4. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility to ciprofloxacin (CIP), tetracycline (TE), gentamicin (GE),
erythromycin (E) and ampicillin (AM) was tested by MIC determination using the Etest
gradient strips (bioMérieux, Marcy-l’Étoile, France), according to the CLSI or EUCAST
guidelines [59,60]. Briefly, bacterial suspensions were prepared in 1 mL of sterile buffered
saline to obtain 0.5 McFarland density and streaked on Columbia Blood Agar plates with a
sterile cotton swab. Plates were dried for a few minutes, then gradient strips were placed,
and cultures were incubated at 42 ◦C for 48 h under microaerophilic conditions. After
incubation, the MIC values were read. Results of antimicrobial susceptibility testing were
interpreted according to the CLSI and EUCAST guidelines [59,60]. Campylobacter jejuni
81-176 ATCC® BAA2151 strain was used as the quality control. All tested antimicrobials
and interpretation criteria used are listed in Table 4.
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Table 4. Interpretation criteria (breakpoints) for antimicrobial susceptibility determination.

Antimicrobial
Agent

Antimicrobial
Class

Concentration Range
Tested [mg/L] Breakpoints for MIC Testing

S ≤ I R ≥

CIP b * Fluoroquinolones 0.002–32 0.001 - 0.5
TE a Tetracyclines 0.016–256 4 8 16

AM b β-lactams 0.016–256 2 - 8
E a Macrolides 0.016–256 8 16 32

GE b Aminoglycosides 0.016–256 0.5 - 0.5

* Interpretation according to: a CLSI or b EUCAST

4.5. Investigation of Antimicrobial Resistance Mechanisms

For tetracycline-resistant strains, PCR assays using both chromosomal and plasmid
DNA were performed to detect the tetO gene. A plasmid DNA was isolated using a
Plasmid Mini isolation kit (A&A Biotechnology, Gdańsk, Poland) and a chromosomal DNA
using the Genomic Mini isolation kit (A&A Biotechnology, Gdańsk, Poland), according to
manufacturer protocols.

For ciprofloxacin-resistant strains, a 290-bp fragment of the gyrA gene (codons 32-127)
was amplified by PCR using genomic DNA as a template. The following conditions for both
reactions were applied: pre-denaturation at 95 ◦C for two minutes; 25 cycles of denaturation
at 95 ◦C for 30 s, primer annealing for 30 s, elongation at 72 ◦C for 30 s (for tetO and gyrA
amplification); an additional elongation step at 72 ◦C for three minutes; primer sequences
and annealing temperatures are listed in Table 3. PCR products of gyrA were sequenced
(Genomed, Poland) and then analysed for point mutations using a DNA Baser Assembler
software v. 5.11.3 (Heracle Biosoft SRL, Mioveni, Romania).

4.6. Pulsed-Field Gel Electrophoresis (PFGE)

Pulse-field gel electrophoresis (PFGE) was performed only for C. jejuni strains isolated
from the shelter dogs, according to Ribot et al. rapid PFGE protocol for subtyping of
Campylobacter jejuni [61]. Briefly, pure cultures of the strains were streaked on the Columbia
Agar plates (GRASO, Starogard Gdański, Poland) and cultured at 42 ◦C for 24 h in mi-
croaerophilic conditions. After incubation, bacterial suspensions were prepared in sterile
buffered saline (OD600 = 0.6–0.8) with the addition of a proteinase K (A&A Biotechnol-
ogy, Gdańsk, Poland) and then were mixed with 2% low melting point agarose (Bio-rad,
Hercules, CA, USA) in a ratio of 1:1, and agarose plugs were prepared on glass slides.
Plugs were incubated in the cell lysis buffer with proteinase K and then washed once with
sterile deionised water and three times with Tris-EDTA (TE) buffer. Plugs were stored
in TE buffer at 4 ◦C until digestion. Digestion was preceded by equilibration of plugs in
a solution containing restriction enzyme buffer and sterile deionised water. Plugs were
then digested with 40 U of SmaI enzyme (Thermo Fisher Scientific, Waltham, MA, USA)
at 25 ◦C for two hours, then washed in 0.5× TRIS-borate-EDTA (TBE) buffer once and
equilibrated in 200 µL of fresh 0.5× TBE buffer. Electrophoresis was performed in 1.5%
agarose in 0.5× TBE buffer on the CHEF-DR II apparatus (Bio-Rad, Hercules, CA, USA)
under the following conditions: an initial pulse time of 6.8 s, a final pulse time of 38.4 s,
gradient 6 V/cm, 19 h, angle 120◦. The gel was stained with ethidium bromide (0.5 µg/mL)
and washed in distilled water, and then visualised on a Gel Doc™ EZ Imaging System with
Image Lab software v. 5.2.1 (Bio-Rad, Hercules, CA, USA). The images were analysed using
BioNumerics v. 7.6 software (Applied Maths, Sint-Martens-Latem, Belgium). Obtained pat-
terns were compared, and a UPGMA dendrogram was generated, using a Dice coefficient
with a 1.5% tolerance window and 90% cut-off value. Simpson’s index of discrimination
was also calculated. The analysed strains were compared to the reference Campylobacter
jejuni 81-176 (ATCC® BAA2151) strain.
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4.7. Statistical Analysis

Statistical analysis was performed using a IBM SPSS software Statistics for Windows,
version 28 (IBM Corp., Armonk, N.Y., USA) software [62]. Confidence intervals were
calculated using a Sample Size Calculators online tool [63].

5. Conclusions

Companion animals may be a potential source of Campylobacter strains causing zoonotic
infections in humans; therefore, it seems reasonable to monitor the occurrence of these
bacteria in pets. In this study, we obtained the relatively low frequency of the Campylobacter
spp. occurrence in dogs; however, the isolated strains seem to be potentially virulent and
antimicrobial-resistant.

Since, from the epidemiological point of view, C. jejuni and C. coli are a significant
threat to human health, most studies are focused only on those species and are based on
phenotypic bacteriological methods, while it was shown that molecular detection and iden-
tification methods are more effective and may allow detection of a higher prevalence and a
species richness. Results of this research showed that dogs might play a role as reservoirs
of different, potentially virulent Campylobacter species, which can be antimicrobial-resistant
and even multidrug-resistant. Therefore, it seems reasonable to monitor the dissemina-
tion of various Campylobacter species in different populations of dogs, including shelters
and veterinary cabinets from a large area, to obtain more meaningful results, and even
though C. lari has been connected with single cases of human campylobacteriosis, it seems
important to control its occurrence, as many virulence factors and antimicrobial resistance
mechanisms are conserved and similar to those present in C. jejuni.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11070964/s1, Table S1: The summary of information
on Campylobacter-positive dogs; Table S2: The summary of information on the presence of the selected
virulence factor genes among Campylobacter isolates.
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