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Abstract: Farmer field days (FFDs) are a tool often used in developing countries to trans-
fer knowledge about new agricultural technologies or methods from trained farmers to others
in their communities. However, there has thus far been a lack of rigorous economic analysis
of the effectiveness of FFDs for information diffusion. To fill this gap in the literature, we
surveyed and conducted experimental auctions for agricultural inputs with a random sample
of individuals from villages that held FFDs for novel organic inputs in western Kenya. We
identify the relationship between attendance at a FFD and willingness to pay (WTP) for
organic inputs through a spatial instrument using homestead and FFD locations. Following
predictions from our model pointing to increased knowledge of risks and expected benefits
of the new inputs, we find that attendance at a FFD significantly decreases WTP for or-
ganic inputs by 16% of the average input value and likewise decreases the WTP ratio for
organic inputs relative to a common inorganic input by 12.3 percentage points compared to
non-attendees. This study shows that FFDs can be effective in transmitting comprehensive
information of new agricultural technologies to large numbers of individuals, and can be
a useful tool to scale-up the impacts of more traditional extension programs in developing
countries.



Show and Tell: Causal Impacts of Field Days on Farmer Learning for Organic

Inputs in Kenya

Crop yields remain highly variable and far below potential in many developing countries,

which is linked with significant levels of food insecurity and rural poverty (Barrett and

Bevis, 2015; Frelat et al., 2016). For this reason, researchers have continued to seek the

most effective means for diffusing information on agricultural technologies and practices that

enhance farm productivity. A popular, yet oft-debated method is the “Farmer Field School”

(FFS), a participatory approach that emphasizes discovery and self-learning on the part of

farmers (FAO, 2011). Focusing on experiential and group learning, FFS can potentially

lead to the adoption of new technologies and more effective agricultural methods, as well as

increasing the capacity and confidence of participants − especially among women, poor, and

minority farmers (FAO, 2011; Davis et al., 2012).

The introduction of FFS across developing countries reflected a paradigm shift in in-

formation transfer, in which the trainer facilitates self-discovery rather than simply serving

as an instructor (Roling and van de Fliert, 1994; Feder, Murgai, and Quizon, 2004a). The

earliest analyses of FFS programs come from integrated pest management (IPM) projects in

southeast Asia (Feder, Murgai, and Quizon, 2004a,b; Tripp, Wijeratne, and Piyadasa, 2005;

Van den Berg and Jiggins, 2007). Typically in these programs, farmers regularly meet with

neighbors over the course of one or more cropping seasons to discuss, share, and analyze their

agro-ecosystems, and test and evaluate new experimental IPM interventions (Van den Berg

and Jiggins, 2007). This collective learning through FFS programs enables participants to

gain confidence, expertise, and strengthens learning that can be carried over past the end of

the program. FFS for other technologies and agricultural methods have since been expanded

to areas such as East Africa, where Davis et al. (2012) show positive impacts of the programs

on agricultural incomes and female empowerment. More recent studies have demonstrated

that FFS can be effective in increasing agricultural knowledge (Bonan and Pagani, 2018),

crop yields (Tsiboe et al., 2016), and food security (Larsen and Lilleor, 2014), though the
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latter study finds no effect on poverty reduction.

However, there does not exist consensus in the literature regarding the effectiveness of

FFS, either in impact or cost, and caution is warranted. There are few studies that rig-

orously evaluate the outcomes of FFS, and many studies that do exist have questionable

internal validity (Waddington et al., 2014). Moreover, Farmer field schools are relatively

expensive, requiring training, monitoring, and evaluation over an extended period of time

(Quizon, Feder, and Rinku, 2001). To prove cost effective, it is generally assumed that those

trained in FFS will diffuse their knowledge to other farmers in their village. Evidence exists

demonstrating that agricultural information can spread among individuals within the same

village social network (Conley and Udry, 2010; Foster and Rosenzweig, 2010; Maertens and

Barrett, 2013). Some recent literature has specifically examined the spread of technology

from trained farmers to others in their network. Looking at five-year panel data from Tan-

zania, Nakano et al. (2018) found evidence of the diffusion of improved rice technology from

trained primary farmers to other farmers in their villages, while Kondylis, Mueller, and Zhu

(2017) show large positive effects from training contact farmers on community adoption rates

of technology in Mozambique. In their survey of the FFS literature, however, Waddington

et al. (2014) found limited evidence of diffusion of information from FFS farmers to other

farmers in their village. Whether FFS in particular can catalyze the diffusion of information

within developing countries is still an open question.

In the context of FFS, farmer field days (FFDs) can potentially aid in diffusing infor-

mation from the trained FFS farmers to their communities. During FFDs, trained farmers

hold on-farm events seeking to transfer information to their community in attendance (FAO,

2011). A farmer who, for example, had been trained in a FFS to use new agricultural in-

puts, will invite neighbors, other farmers, and local government officials to a one-day event

to showcase the impacts of the input on his/her yields and teach attendees about the input.

While FFDs do not include the advantages of long-term experiential and discussion-based

learning found in the FFS itself, they can aid in the cost effectiveness of FFS programs
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through broadening the numbers of individuals exposed to the information in a particular

area (Amudavi et al., 2009). Moreover, FFDs empower FFS participants by showcasing

their accomplishments to the community and demonstrating to local government officials

the benefits of new technologies/methodologies, which may increase future support (FAO,

2011).

While FFDs are often integral aspects of the FFS strategy that can multiply the FFS

impacts throughout a community, there are few economic studies that have focused specif-

ically on FFDs and their impact on information diffusion. One, by Ricker-Gilbert et al.

(2008) in Bangladesh, find that FFDs are particularly cost effective as they can reach a large

number of farmers for low cost. However, the general lack of rigorous studies analyzing the

effectiveness of FFDs is notable given the large numbers of studies that focus on technology

diffusion in developing countries (Foster and Rosenzweig, 2010; Magruder, 2018). To fill this

gap in the literature, we analyze the impact of FFD activities on farmers’ willingness to pay

(WTP) for organic agricultural inputs in western Kenya. We measure WTP by conducting

experimental auctions after Becker, DeGroot, and Marschak (1964) (BDM) for the organic

inputs discussed at the FFD with a random sample of individuals from the villages (some of

whom had attended a FFD). To causally identify the relationship between FFD attendance

and WTP, we use the GPS-determined distance between a farmer’s homestead and the FFD

location (which, as we discuss later, is as good as random within a particular village).

Although following directly from our theoretical framework, we find a result that at first

blush may seem surprising. Using 2SLS with village-level fixed effects and clustered standard

errors, individuals who state that they attended the FFD bid almost 30 KSh (about 16%

of average WTP) less for organic inputs than non-attendees. This is despite of most of

organic input demonstration plots performing better than control plots on the same farm.

We also find that the WTP ratio for organic inputs to DAP (diammonium phosphate – a

common inorganic fertilizer) was 12.3 percentage points less among FFD attendees compared

to non-attendees. We find even larger magnitudes of the effect on WTP when we measure
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knowledge of the inputs, rather than simply attendance at FFD. These results show that

FFDs transmit information to farmers to an extent that cause a statistically significant and

economically meaningful impact on farmer behavior.

To understand the mechanism for these effects, we use a theoretical framework adopted

from studies that have highlighted the effects of information as influencing the distribution

of WTP values (Johnson and Myatt, 2006; Rickard et al., 2011; Liaukonyte, Streletskaya,

and Kaiser, 2015). Our model demonstrates that an information signal that updates farmer

perceptions about an input’s profitability can both shift and rotate the CDF and inverse

demand curves. All farmers in our sample received a brief description of the organic inputs

by the enumerators, while those who attended the FFD received significantly more detailed

and varied information through visual inspection of demonstration plots and instruction

from the host farmer The results of our study show that information provided by FFDs may

have impacted WTP through 1) increasing the knowledge of benefits of risks associated with

the input for particular soil types and nutrient levels (indeed, we find those who attended

FFDs had better estimates of the inputs’ values than non-attendees), and 2) increasing the

precision of WTP estimates, decreasing the variance of its distribution.

This study also makes important contributions to the literature discussing cost-effective

methods of information diffusion in developing countries. Traditional agricultural extension

is relatively costly, and evidence has been mixed as to the efficacy of this system (Birkhaeuser,

Evenson, and Feder, 1991; Anderson and Feder, 2004). However, because FFS are also ex-

pensive, there has been a search for alternative methods of information diffusion. This has

ranged from using mobile phones to disseminate information (Aker, 2011), which many in

rural areas of SSA now own, to using network analysis to target optimal entry points of in-

formation into social networks in order to maximize information diffusion from key farmers

(Banerjee et al., 2013; Beaman et al., 2015). A significant literature has emerged analyzing

the impacts of learning from fellow farmers in developing countries (Foster and Rosenzweig,

1995; Bandiera and Rasul, 2006; Conley and Udry, 2010; BenYishay and Mobarak, 2018).
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Notably, learning from peers has been shown to be more effective than learning from exten-

sion agents (Krishnan and Patnam, 2013). Because research shows that social learning can

be so effective for information diffusion, FFDs represent a potentially strong though under-

studied tool linking FFS with broader information dissemination through peer linkages.

This study is organized in the following way: we first discuss our theoretical framework,

focusing on how information impacts the WTP distribution of FFD attendees and non-

attendees. We next explore our data and the project background, which includes a discussion

of our calculation of the value of the organic inputs used in the study. We then discuss our

empirical method and identification strategy, focusing on our spatial instrument. Using that

section as a guide, we then detail our results that show the significant impact of the FFDs

on farmer WTP. Various robustness and falsification checks are next discussed, followed by

our concluding remarks.

Theoretical Framework

To frame our analysis of the effects of FFDs on farmer WTP, we use a model after Johnson

and Myatt (2006), Liaukonyte, Streletskaya, and Kaiser (2015) and Murphy et al. (2019) to

analyze the effect of information on consumer demand. In our context, we have a new input

k with profitability πk(Ek), where for simplicity we assume πk is primarily a function of the

unit increase in yields for a unit increase of the input applied per hectare (or agronomic

efficiency) E (Vanlauwe et al., 2011).1 Profitability for input k, πk, is not constant, but

varies by soil condition, rainfall, etc, and we assume a normal distribution for πk defined by

N(µk, σ
2
k). The variance σ

2 is small when the profitability of k is similar for all farmers, and

large when there is significant heterogeneity in its profitability. Given the large degree of

variation in soil nutrient levels in western Kenya, for many inputs, σ2 is often large. Prior

to any information received through a FFD or staff visit, for simplicity we assume that an

1We assume that in the western Kenyan context, these farmers are both consumers and producers.
Zapata and Carpio (2014) show that a farmer’s utility maximization is directly connected with his/her profit
maximization.
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individual i has a prior on µ and σ2. A farmer receives an information signal, ωk regarding

the profitability of input k, where ωk ∼ N (πk, ζ
2
k).

In this study, there are two groups (g) of farmers: FFD attendees (A) and non-attendees

(N); g = {A,N}. Those in each group receive different information signals, such that

ωAk 6= ωNk. Importantly, we assume that the variance of the information signals to attendees,

ωAk, is ζ
2
Ak(var(Ek)), that is, a function of the variance of the agronomic efficiency of input k.

This is because at FFDs, attendees receive complex information signals regarding the input’s

profitability, as this varies with its agronomic efficiency E (itself a function of soil nutrient

levels and other site-specific conditions, which vary based on field day site). Indeed, as table

1 illustrates, there were heterogeneous effects of the organic inputs on FFD demonstration

plot crop yields not only across field day sites, but within farms as well. The information

signal for non-attendees, however, is simply the brief information provided to them at the

time of the survey by the enumerators, such that ζ2Nk is less dispersed and only a function

of individual enumerator characteristics.

With Bayesian updating, a farmer’s updated posterior of input profitability becomes:

πk|ωgk ∼ N

(

σ2
kωgk + ζ2gkµk

σ2
k + ζ2gk

,
σ2
kζ

2
gk

σ2
k + ζ2gk

)

(1)

If we assume that farmers are maximizing their utility under particular risk preferences,

we can arrive at their WTP by inserting the results of equation 1 into a certainty equivalent

E[πk|ωgk]−λvar[πk|ωgk]/2, where λ is a parameter indicating level of risk aversion (assumed,

for simplicity, to be uniform across participants) (Featherstone and Moss, 1990):

θ(ωgk) =

[

µkζ
2
gk + σ2

kωgk −
λσ2

kζ
2
gk

2

]

(

σ2
k + ζ2gk

)

−1
(2)

which we can see is weighted average of the original distribution of πk and that of the

information signal. If we assume that realized information signals are distributed ωgk ∼

N(µk, σ
2
k + ζ2gk) and linear in ω, then, following Liaukonyte, Streletskaya, and Kaiser (2015),
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we have the following distribution for our WTP:

WTP ∼ N

(

µk −
λσ2

kζ
2
gk

2(σ2
k + ζ2gk)

,
σ4
k

ζ2gk + σ2
k

)

(3)

which provide us with the following first order conditions for ζ2gk:

∂WTP

∂ζ2gk
= −

ζgkλσ
4
k

ζ2gk + σ2
k

(4)

∂var(WTP )

∂ζ2gk
= −

2ζgkσ
4
k

ζ2gk + σ2
k

(5)

The FOCs are both negative, indicating that both mean and variance of the WTP dis-

tribution fall with increases in ζ2, the variance of the information signal. Recall that we

assume that ζ2 is a function of the variance of the agronomic efficiency of input k for those

who attend the FFD, and thus ζ2Ak > ζ2Nk. A wider array of information signals received by

those who attend a FFD may decrease the attractiveness of the input (increases knowledge

of both benefits and risks), and can potentially decrease mean WTP. On the other hand, a

more complete picture of the range of benefits of the input can increase the precision of the

WTP estimates and thus lower the variance of WTP. How do changes in ζ2 affect the CDF

of the WTP function for a particular agricultural input? As we describe below, changes in

the mean of the WTP distribution will shift this curve, while changes in its variance will

cause its rotation.

As shown in equation 2, farmers are willing to pay up to θ for a unit of the auctioned

input, which is drawn from a distribution Fs(θ).
2 Parameter s ∈ S, a family of distributions,

indicates the distribution’s shape, with higher values indicating larger levels of dispersion. To

translate this into market prices, we can analyze the inverse demand curve, Ps(q) = Fs(1−p),

where q = 1 − Fs − 1(p) is the fraction of consumers that would purchase the agricultural

2We assume this distribution is twice differentiable on both s and Θ with support on an interval (θ
s
, θs).
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input at a particular price p.3 Figure 1 below provides an example relevant to our FFD

context. Rotation of the demand curve from Fs(θ) to Fs(θ)
′ and a rightward shift of the

CDF from Fs(θ) to Fs(θ)
′′ can be caused through decreases in ζ2.

In our empirical analysis, we attempt to identify whether FFD attendance has a dif-

ferential impact on the distribution of WTP compared to non-attendance. As part of the

experimental auctions in this study, enumerators read short descriptions of the products to

all participants, which described potential benefits to crop yields of their use. Those who

attend farmer field days, however, received more complex information signals that described

risks and benefits of the inputs for different soil types and nutrient levels. If we assume that

both µk and σ2
k are constant, but that ζ2Ak > ζ2Nk (the variance of the information signals is

greater for FFD attendees), then our model has the following predictions:

Prediction 1 : WTPA < WTPN

which shows that we expect that the mean WTP among FFD attendees will be less than the

mean WTP among FFD non-attendees. This follows from equations 3 and 4, and our belief

that ζ2A > ζ2N . The greater the variance in the information signals, the lower the WTP will

be. Graphically, this would be evidenced by a CDF curve of WTPA to the left of WTPN .

Our second prediction concerns the relative variance of the two groups:

Prediction 2 : var(WTPA) < var(WTPN)

that is, we predict the variance of the WTP values for FFD attendees to be less than for

non-attendees. This follows from equations 3 and 5 and our same belief about ζ2 among the

two groups as above, which would be evidenced in more precise estimates of WTP among

FFD attendees resulting from farmers better able to identify the value of the input compared

to non-attendees.

3For full derivations, see Johnson and Myatt (2006) and Liaukonyte, Streletskaya, and Kaiser (2015).
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Background and Data

The food security and income of farmers living across sub humid mid-altitude highlands in

the west of Kenya depends for a large part on production of maize and common bean. Yields

of these two crops however have stagnated or decreased over the past decade (FAO, 2018)

due to limitations caused by various abiotic and/or biotic factors. To respond to some of

these challenges, USDA and Cornell University implemented the project “Improving Bean

Yields by Reversing Soil Degradation and Reducing Soil borne Pathogens on Small-holder

Farms in Western Kenya” from 2012 to 2016. In partnership with IITA, multi-locational

field trials analyzed the effects of vermicompost4 and biochar5 agricultural inputs on the

production of common bush bean in Kakamega, Bungoma, and Busia counties. Findings

from this study indicate that the two organic inputs can significantly reduce plant parasite

damage and enhance crop yields as compared to control trials on the same farm (Were et al.,

2015).

As part of the project, 21 farmers across the three counties of Kenya engaged in partic-

ipatory demonstration trials with the researchers, which involved learning how to prepare

and use biochar and compost on their own farm plots. In 2016, these trained farmers planted

common bush beans on eight demonstration plots on their own farm. These plots included

a control plot (no inputs), a plot where only biochar was used, another with only vermicom-

post, one with an agricultural inoculant, one with NPK fertilizer, and the remaining plots

with combinations of these inputs. Results from these farmer-managed plots are in table 1,

and demonstrate that most plots using biochar and vermicompost performed better than the

4Vermicompost is the end-product of the breakdown of organic matter by an earthworm, also called worm
castings. If applied to the soil at the optimal rate vermicompost will improve crop production because it
contains substantial amounts of nutrients, has a large water holding capacity and enriches the soil with
micro-organisms (Jack and Thies, 2006).

5Biochar results from the thermal decomposition of biomass in the absence of oxygen, generating a type
of charcoal. It is produced from left-over plant material of field crops on-farm like maize cobs and stovers,
rice husks and haulms, sugarcane bagasse, coconut shells, and others. If applied to soil at the optimal rate,
biochar helps to improve crop production by increasing the uptake of fertilizers, manure and water (Lehmann
and Joseph, 2009).
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control plot on the same farm.6 As expected, plots with NPK fertilizer generally performed

better than plots with only biochar or vermicompost added (given the nutrient density of

NPK fertilizer), though plots with biochar and NPK fertilizer were often especially effective.

In May of 2016, the trained host farmers held FFDs for local farmers, showcasing differ-

ences in crop yields between the control and treatment plots. These host farmers distributed

IITA research results to FFD attendees, informing them about the impacts of input practices

over varying agro-ecological conditions. Attendees also learned information regarding com-

posting and about cookstoves that generate biochar, which provided insights into organic

input generation.

In our study, we identified the 18 villages in which these 21 trained farmers resided and

then collected village-level lists of all household heads in these villages from local chiefs

and village elders. A subset of the household heads was randomly selected for participation

in the surveys and experimental auctions, resulting in a total sample of 884 individuals in

548 households. The survey instrument included questions on demographics, assets/income,

agricultural production, market activity, and organization membership and activity. As

can be seen in our summary statistics in table 2, the majority of the individuals surveyed

identify their primary occupation as farming, cultivating an average of about one acre of

land. From respondents across all villages, 24 percent stated that they had attended a

FFD organized through this project. IITA chose the individuals holding FFDs based on

their prior participation in the organization’s activities, but importantly for our empirical

identification, they were not specifically chosen by village or location within village. This

means that the FFD locations were as good as randomly located within a particular village.

Average distance from all surveyed households to the nearest FFD location within the village

was 0.53 kilometers.

Given the generally positive impacts of biochar and vermicompost on host farmer crop

yields in our sample (see table 1), we seek to determine the value that farmers placed on

6We are missing data from field days in two villages where the farmer harvested the demonstration plots
prior to the arrival of the researchers (contrary to instructions).

10



these organic inputs. More specifically, we are interested in whether those attending a FFDs

have a significantly different WTP distribution for these organic inputs compared to non-

attendees. As discussed in our theoretical framework, we expect that the more comprehensive

(and variable) information that farmers received at a FFD will both decrease average WTP

and decrease the dispersion of their estimates. To elicit our WTP estimates, we use an

experimental auction methodology after Becker, DeGroot, and Marschak (1964) (BDM) to

determine farmer willingness to pay (WTP) for several agricultural inputs. An advantage of

the BDM auction is that it is incentive compatible (represents true WTP), as it penalizes

individuals for making bids outside of their true preferences, thus accurately aligning pref-

erences with WTP measurements (Shogren, 2005). Moreover, it can be implemented with

each participant separately, ensuring that there is no bias from the presence of any other

individuals.

During implementation, we first conducted practice auctions with each participant for

small food products to ensure that the participants understood the auction methodol-

ogy. Project staff then presented 1KG and 5KG packs of DAP (diammonium phosphate),7

biochar, vermicompost, cow manure,8 and combinations of these inputs to each participant

in a random order (though with DAP fertilizer always first), and the participant bid on each

one. After bidding for each of the agricultural inputs, the enumerator’s tablet computer

selected a random input and price. If the participant had bid at least that random price for

that input, s/he paid that price and received the input, otherwise s/he kept the full cash

endowment.9

Because of potential liquidity constraints, in this auction, farmers received a cash endow-

7We chose to auction DAP fertilizer as it is one of the most commonly used inorganic fertilizer in Kenya
and sold in most rural town markets.

8Cow manure was presented in 5kg and 25kg packs as it is a lower-valued input.
9Murphy et al. (2019) contains additional details of this experimental auction methodology. In practice,

this experimental auction had two auction rounds, but we only use bids from the first round for this analysis.
The sample drops outliers in bids so as to be consistent with Murphy et al. (2019). Bids are dropped from
the analysis when the change in those bids for an individual between auction rounds is in the top or bottom
1% of the sample. We then additionally drop bids that are greater than 1400 KSh, which is twice the amount
of the primary auction cash endowment, as those bids are considered unrealistic.
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ment from the enumerators totaling 70 KSh (0.69 USD at that time) for each of two practice

auctions and 700 KSh (6.90 USD) at the beginning of primary auction for the agricultural

inputs.10 Participants who did not use all of their cash endowment of the practice auction

could carry it over to be used in the primary auction. Because many of the participants

may have been unfamiliar with these inputs, prior to making bids, the enumerators read a

short description of the agricultural inputs to the participants (included in Appendix A.1),

which focused on the composition of the inputs and potential benefits on crops that may

occur from their use. All participants therefore had some basic knowledge of the inputs auc-

tioned, though we hypothesize that farmers attending the FFD had a more comprehensive

understanding than those who did not attend.

In table 3, we present WTP results elicited from the experimental auction methodology

divided between those who state that they attended a FFD and FFD non-attendees. In

general, we do not find significant differences in bids between the two groups in these raw

results. However, we do see lower means for biochar and vermicompost quantities among

FFD attendees compared to non-attendees, which follows our model’s predictions and antic-

ipates our later findings. Figures 2 and 3 show the respective cumulative density functions

of bids for biochar (1KG) and the biochar (1 KG)-DAP (5 KG) WTP ratio divided between

these two groups (figures for other inputs and ratios are shown in Appendix figures A.2.1-

A.2.6). In each of these figures we see that the CDF of attendees is to the left of the CDF

of attendees suggesting a notable impact of attendance/non-attendance at FFDs on farmer

WTP.

To understand better the selection into attendance and non-attendance at the FFD, in

table 4 we show some of our variables divided between attendees and non-attendees at the

FFDs. Attendees at the FFD are more likely to have been farmers (as a primary occupation),

10Significant deliberation went into the decision regarding the size of the cash endowment. Providing too
much could cause overstated WTP estimates (Loureiro, Umberger, and Hine, 2003). On the other hand, two
little could lead to a censored upper bound, where farmers are unable to bid their true WTP given insufficient
liquidity. We chose 700 KSh as it is roughly twice the value of the most expensive input auctioned, following
other studies using experimental auctions in SSA (Morawetz, De Groóte, and Kimenju, 2011; De Groote
et al., 2016).
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have been in contact with a NGO, have larger farmers, have used compost, have used NPK,

and are less likely to have used urea fertilizer. Most of these correlations are to be expected:

those connected with an NGO are perhaps more likely to have heard about the FFD, and

those already using compost may have been more interested to learn more about organic

inputs. Also, those who have a primary occupation as farming would be more interested in

learning about new agricultural inputs. Another key correlation is that attendees at a FFD

live significantly closer to the FFD site, which as we show below, is a key to identifying our

empirical model.

Empirical Method and Identification

Using the results from our experimental auctions that elicit WTP for organic inputs, we seek

to determine the causal relationship between attendance at the farmer field days (FFDs) and

the valuation of these inputs by the randomly selected participants. . However, establishing

a causal relationship is complicated by the fact that attendance at a FFD is endogenous with

WTP: there are numerous observed and unobserved variables that may influence attendance,

such as an individual’s experience, inherent motivation, or relationships with the FFD host

or other attendees. As discussed earlier and shown on table 4, we find many significant

differences between attendees and non-attendees, such as farm size and prior use of organic

inputs.

To identify this relationship between field day attendance and organic input bid, we in-

clude distance from an individual’s household to the nearest FFD location as an instrumental

variable (IV). The vast majority of individuals in the sample (88%) have either inherited

their land or married into it. Moreover, as long as the homestead locations were not chosen to

be close to the FFD, we can assume that the homestead location is exogenous in our model.

However, for the distance between the FFD site and homestead to be a valid instrument, we

must show that the FFD location is also exogenous. In our case, we are fortunate in that

IITA did not select the host-farmer based on any consideration of his/her location within the

13



village. In fact, IITA did not even have data on the village of the host-farmer prior to this

study. As a result, the distance between an individual’s homestead and nearest FFD site

is exogenous in our model and we rely on this exogeneity for our identification. Additional

falsification tests for this instrument are located in the Robustness Checks section.

In figure 4, we show an example of homestead locations and the FFD site from a rep-

resentative village in our sample, with colors coded based on whether the members of the

household attended the field day. This figure suggests that there is a negative correlation

between distance from FFD site and homestead location. We confirm this strong correlation

in our first stage estimation results (table 5), which show that a one kilometer increase in

the distance from a homestead to the FFD location corresponds to about a 39 percentage

point decrease in the likelihood of attending the FFD (controlling for household/demographic

characteristics and using village fixed effects). We therefore believe our instrument is both

strong and valid and can be used to identify our empirical model.

We thus conduct the following two-stage least square (2SLS) estimations, with equation 6

measuring the impact of field day attendance on organic input bids, and equation 7 analyzing

the effect of field day attendance on the WTP ratio of organic bids to DAP (5 KG) bids.

Bidik = α + β1γi + β2Mi + β3DAPi +
∑

n

βnXni + Ik + ϑ+ εik (6)

φik = α + β1γi + β2Mi +
∑

n

βnXni + Ik + ϑ+ εik (7)

where φik = Bidik/DAPi, Bidik is the bid by individual i for organic input k, DAPi is

individual i’s bid for a 5 KG sack of DAP fertilizer,11 and γ is an instrumented, binary

variable (described above) indicating whether the individual stated that s/he attended a

FFD related to organic inputs. Variable M is the quantity of cash endowment that the

11Five individuals bid zero for DAP (1 KG) and DAP (5 KG) and are therefore dropped from this estima-
tion. We include a robustness check with an alternative WTP ratio (using the average DAP bid rather than
the bid for 5 KG), with results in table A.7. In this model, we include bids for 1KG and 5KG of biochar and
vermicompost.
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participant had at the time of the auction.12 Variable Ik are input-level controls, and ϑ are

village, enumerator, and survey month fixed effects.

An individual’s bid for DAP fertilizer is included in both equations 6 and 7 – as a control

variable in the former and as part of the dependent variable in the latter. Why do we do

this? Because DAP was always presented first to the respondent (prior to the organic inputs),

individuals likely use their bid for DAP as a benchmark for future bids for the organic inputs

(see Morawetz, De Groóte, and Kimenju (2011) for a similar situation involving maize bids in

Kenya). Moreover, research shows that bidding for unfamiliar goods is influenced by known

prices of outside, familiar options (Cherry et al., 2004; Bernard and He, 2010). Indeed, we

find a strong correlation between an individual’s WTP for organic input and that individual’s

WTP for DAP.13 Either scaling the organic input bids by this variable to create a ratio or

including the variable in our estimation controls for this potential benchmarking effect.

The bid for DAP, however, is likely an endogenous variable in our empirical model.

For this reason, in equation 6, we employ a second instrument in addition to the distance

between homestead in FFD location. Using an IV strategy employed by Hausman, Leonard,

and Zona (1994) and Murphy, Berazneva, and Lee (2018) (among others), we use the except-

own average of bids for the DAP input in each village. As table 6 shows, this instrument

is highly correlated with an individual’s own bid for 5 KG of DAP. This instrument is also

valid, assuming that random individual-level factors that influence one’s own DAP bid are

independent of other individual’s bids. Because we conducted these auctions with each

respondent alone and separated from others (including his/her spouse), we believe that this

assumption is plausible.

Additional specifications of estimations 6 and 7 also include measures of soil nutrient

levels. Individuals were asked their perception of their soil health (on a scale of 1 to 5),

12Recall that individuals received a cash endowment for practice auctions in addition to a cash endowment
at the beginning of the input auction. The results of the practice auction often led to the spending of some
of the practice auction endowment funds, which led to differing amounts of money held by individuals at
the beginning of the main auction round.

13Specific estimation results for the correlation between WTP for organic inputs and DAP are available
on request.
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and we also measured their exact soil nutrient levels.14 A number of other specifications

include additional variables, such as whether the individual was a FFD host, whether s/he

was connected with an agricultural NGO, and whether s/he received any information from

government ministries.

Our identification of a causal relationship of attendance at a FFD in May, 2016 and WTP

that was measured between July and November, 2016 also rests on a stable unit treatment

value assumption – that there was no spillover effect between those who attended and did

not attend a field day. In other words, that those who attended a FFD did not influence

those who did not attend with respect to the auctioned agricultural inputs. As we discuss in

greater detail in the robustness checks, we found that there was little secondary information

diffusion – that those who attended a FFD did not tend to share this information with others

in the community. However, to control for this possibility and for additional analysis, in our

robustness checks we also show estimation results using knowledge of the agricultural inputs

rather than attendance at a field day as the primary variable of analysis. As we later discuss,

this substitution augments the magnitude of our results.

We now turn to our models second prediction and analyze the impact of FFD attendance

on WTP dispersion. We do this using the following mixed models, incorporating both fixed

and random effects:

Bidik = α + β1uikγi + β2Mi + β3DAPi +
∑

n

βnXni + Ik + ϑ+ εik (8)

φik = α + β1uikγi + β2Mi +
∑

n

βnXni + Ik + ϑ+ εik (9)

where u measures the input-level impact of field day attendance on organic input bids. To

test for differences in the level of dispersion in the WTP function between attendees and

14We measured levels of nitrate, phosphate, potassium, sulphur, and active carbon present in the soil using
SoilDoc, which adapts standard wet chemistry analysis of soil samples into a low-cost and portable kit. See
Murphy et al. (2019) for additional information.
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non-attendees, we divide u into fixed and random coefficient estimates:

uik = ūk + τkψik (10)

The fixed component, ū, estimates the effect of the field day attendance on the mean of the

WTP distribution, while τ measures the effect of attendance on the level of dispersion of

the distribution. The unobserved random variability between individuals, ψik, captures the

heterogeneous impacts on WTP within both groups (Berry, 1994).15 By combining equation

10 into equations 8 and 9, we can estimate a model to analyze the effect of FFD attendance

on the dispersion of the WTP distribution.

Results

Results from our 2SLS estimations (equations 6 and 7) with standard errors clustered at

the village level16 indicate that attendance at farmer field days (FFDs) had a large and

statistically significant impact on Bidik (the participants’ bids for organic inputs) and φik

(the WTP ratio of organic inputs to DAP). In-line with the predictions from our model,

attendance at a FFD decreased an individual’s WTP for organic inputs (WTP ratio for

organic inputs relative to their WTP for DAP). Tables 7 and 8 contain our primary results.

In table 7, we see that across all specifications, attendance at a FFD decreased organic

input bids by about 30 KSh (significant in most specifications at the p=0.05 level). Our

preferred specification is in Column 4, which controls for demographic and household char-

acteristics as well as the farmers’ lab-tested soil nutrient levels, shows a negative impact on

mean WTP for the organic inputs of 29.50 KSh, which approximates to sixteen percent of

15Variable ψik is distributed N(0, D), where we assume all covariances in D are zero. This is primarily due
to computational limitations, but since the auctions were held independently from one another, we would
assume that independent variances in this context are likely to exist.

16There may be some concern given the relatively small number of clusters using villages (18). To mitigate
these concerns, we conduct Wild Bootstrap estimations after Cameron, Gelbach, and Miller (2008), which
corrects for the small number of clusters. P-values from the original estimations in table 7 are shown
together with p-values from the bootstrapped estimations in Table A.5. We can see that in all six of the
specifications, the wild bootstrapped p-values are similar than those in our original estimations, indicating
that the relatively small number of clusters are not biasing our standard errors downward.
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the average WTP value across all organic inputs. Also as expected, average bid for DAP fer-

tilizer is highly statistically significant with the bids for organic inputs, as farmers are likely

using their bid for DAP fertilizer as a benchmark for their bids for the less familiar organic

inputs. Columns 5 and 6 report results of specifications that include variables indicating

whether the farmer was a “Project farmer” (FFD host), whether the farmer received infor-

mation from the agricultural ministry through extension projects, and whether the farmer

had contact with an agricultural NGO. With the exception of the NGO contact, which had

a negative impact on bids, the other variables do not show any impact. Finally, we see that

across specifications, higher levels of active carbon measured in a farmers’ soil had negative

impacts on bids for organic inputs. This result is likely due to a belief among farmers with

higher quality soils that the application of organic inputs is less necessary.

We report the results using the WTP ratio of organic inputs to DAP (φ) in table 8. These

estimations show attendance at a FFD decreased φ by between 0.12 and 0.15. Estimation

4, our preferred specification that controls for demographic and household characteristics as

well as the farmers’ lab-tested soil nutrient levels, shows that attendance at a FFD decreases

φ by 0.123. In other words, attendance at a FFD decreases an individual’s WTP for an

organic input relative to WTP for DAP by an average of 12.3 percentage points, significant

at the p=0.05 level. Inclusion of the lab-tested soil nutrient levels in Columns 4-6 show that

greater amounts of nitrogen present in the soil have a statistically significant and positive

impact on the relative WTP for organic inputs to DAP. This is expected as we believe that

farmers who have more nitrogen their soils are less willing to pay for additional DAP (a

commercial nitrogen input) relative to organic inputs. Unlike in the results for organic input

bids, we do not find that participation in an agricultural NGO significantly affects the WTP

ratio (Column 6 in table 8).

We also analyze this impact by calculating the marginal effects of attendance at a farmer

field day on bids for the auctioned inputs (figures 5 and 6). We specifically look at biochar,

as we have crop yield data from field trials using this input in the same region (discussed
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below in the extensions and robustness checks). Using our preferred specification from table

8, we find that individuals who did not attend the field day have a WTP ratio of 1KG (5KG)

biochar to 5KG DAP of 0.23 (0.82) respectively, setting all other variables at their mean

(95% confidence interval of 0.21 and 0.25 (0.79 and 0.85)). On the other hand, those who did

attend a FFD had a WTP ratio of 1KG (5KG) biochar to 5KG DAP of 0.12 (0.71), again

after setting all other variables at their mean (95% confidence interval of 0.05 and 0.19 (0.65

and 0.78)). Post-estimation pairwise comparisons of these marginal estimates demonstrate

a statistically significant difference (at p=0.01). Given this result, we can conclude that

attendance at a FFD has a significant and strongly negative impact on farmer valuation of

biochar relative to DAP. The same analysis performed for the organic input bid alone (not

the ratio) shows similar results.

From our analysis thus far, it seems clear that Prediction 1 from our model, thatWTPA <

WTPN (the average WTP among FFD attendees is less than the average WTP among

non-attendees) is valid. As described earlier, this is likely due to a higher variance in the

information signal regarding input k to attendees at a FFD than to non-attendees. In other

words, FFDs teach farmers about the varying profitability of input k that depends on soil

nutrient levels, which can decrease its universal attractiveness. On the other hand, more

varied information provided to farmers that teaches farmers about the risks and benefits of

the input for different soil conditions and environments can enable better estimates of the

WTP, increasing the precision of WTP estimates. To determine whether this is the case, we

next analyze our data using our mixed model incorporating random effects (equations 8 and

9).

Table 9 shows results from these mixed-model estimations, and we focus our analysis on

the standard deviations of the random coefficient estimates.17 By not including a constant

for the random effects, we are able to directly compare the standard deviations of the WTP

17“Attended Field Day” and “DAP (5kg) bid” variables in these estimations are predicted using our first
stage estimation results, and standard errors are corrected using bootstrapping. While the fixed effects
portion of these estimations is not the focus of our analysis (preferring the 2SLS results described earlier),
they show impacts that are generally similar using our 2SLS estimations.
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functions between attendees and non-attendees. The results show the variation in the impact

of the FFD attendance among individuals on their WTP, hence providing us with an estimate

of the effect on the dispersion of bids by an input. Column 1 and 2 correspond to above

equations 8 and 9 respectively. The results of both show that the standard deviations of

WTP (WTP ratio) for attendees is significantly less than for non-attendees, indicating more

precise estimates. These results thus provide supporting evidence to validate our model’s

second prediction that var(WTPAk) < var(WTPNk).

Results from our 2SLS and mixed-model estimations show significant impacts from at-

tendance at FFDs on the distribution of respondents’ WTP for the agricultural inputs. The

evidence suggests that information signals received by FFD attendees had greater variance

(due to various levels of success of the demonstration plots, more knowledge about risks

and benefits, etc), lowering mean WTP. Recall that the only information that non-attendees

may have had regarding these inputs was the few sentences read to them by project staff at

the time of the auction. This was likely insufficient information to enable matching between

personal preferences and farm characteristics with the inputs. We find supporting evidence

that FFD attendees had more precise WTP estimates, resulting in a rotation of the WTP

CDF. We explore additional results and extensions to our analysis in the following section.

Extensions and Robustness Checks

There are several additional aspects that can be considered with regard to our estimation,

which we discuss below.

Knowledge of input rather than attendance at field day

There are some concerns with using stated attendance at a FFD to measure the impact of

field day information on farmer WTP for the organic inputs. Farmers could report attending

a FFD, but may never have actually attended. On the other hand, farmers could have

attended, but not paid attention to any of the information discussed. It is also possible that
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farmers heard about inputs such as biochar from others in their network outside of attendance

at a FFD itself. As a robustness check, we conduct additional estimations that use measures

of knowledge of the agricultural inputs rather than attendance at a FFD. In addition to

asking the farmer during the survey whether s/he attended a FFD, we also asked the farmer

whether s/he had heard of biochar prior to the visit by the enumerators. If the farmer had

heard of biochar, the enumerator asked the respondent to describe it and indicated in the

survey whether the farmer had actual knowledge of the input. As key independent variables

in separate estimations, we thus use 1) whether the farmer had heard of biochar prior to

the survey, and 2) whether the farmer can describe biochar. In our random sample, 24% of

the 884 individuals report attending a FFD, 19% of the sample had heard of biochar, and

only 13% could describe biochar. There were relatively few individuals who had knowledge

of biochar but did not attend a FFD: of the 668 farmers who did not attend a FFD, only

24 had heard of biochar, and only 8 could accurately describe biochar. This suggests that

information presented at FFD had not necessarily spread rapidly to those who did not attend

the FFD.

Using these alternative independent variables, we conduct separate 2SLS estimations of

“heard of biochar” and “can describe biochar” on organic input WTP and relative WTP for

organic inputs compared to DAP using our preferred specifications from the previous sec-

tion (controlling for soil nutrient levels, household and demographic characteristics, village,

survey month, and enumerator). Like field day attendance, these “knowledge variables” are

endogenous in our model given the numerous omitted variables that are likely correlated with

both knowledge of biochar and WTP for the inputs. We therefore use the same identification

strategy as earlier, given that knowledge of biochar is highly correlated with distance to the

FFD site. Indeed, first stage estimations in table A.6 show a strong negative correlation

between distance from field day site and each of the knowledge variables (“heard of biochar”

and “can describe biochar”).

The results of these new estimations, shown in table 10, indicate that using the knowledge
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variables rather than the attendance variable increases the magnitude of the effects on both

WTP and the WTP ratio for the inputs. Columns 1 and 5 in table 10 repeat the results from

our preferred specifications in tables 7 and 8 using field day attendance as the instrumented

variables. Columns 2 and 6 present the same specification, but using “heard of biochar”

(instead of attended field day) as the instrumented variable, and in Columns 3 and 7 we

use ”can describe biochar” as the instrumented variable. We can see that as we move from

Column 1 to Column 3, the coefficient magnitude of the primary independent variable in the

estimation increases from -29.5 to -36.2 to -40.7 for “attended field day,” “heard of biochar,”

and “can describe biochar” respectively. The impact on the WTP ratio likewise increases

in magnitude as we move from Column 5 to Column 7. These results indicate that the

attendance at a FFD variable, which includes any farmer who states that they were at a

FFD, likely underestimates the impact of a FFD, as it may include individuals who falsely

claim they were there or who went but did not pay attention. The latter two estimations may

also be picking up effects from information diffusion, as some individuals who did not attend

the FFD state that they had heard of biochar or had knowledge of biochar. Given the greater

magnitude of our results using knowledge-based measures, it appears that the attendance

variable used in our primary results provides a conservative estimate of the program impact

on respondents.

Demonstration Plot Results and WTP

Another question we investigate is whether farmer WTP for organic inputs are correlated

with the success of the demonstration plots at a particular site. If field day attendees see

crop yields that are significantly better on plots where organic inputs are applied, there may

be a differential impact on WTP compared to attendees who see a field day where the plots

with the organic inputs are performing less well. As table 1 shows, demonstration plots of

organic inputs on four of the nineteen sites in which we have data performed less well than

the control plot, which perhaps could have decreased WTP. An optimal strategy to explore
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this question would be to add an additional variable to our estimations indicating whether

the organic input demonstration plots on a particular site had better yields than the control.

Interacting this variable with “attended field day” would then indicate the impact of these

differential site-level plot results on farmer WTP.

Exploring this question is challenging for several reasons. First, we are missing data from

two of eighteen villages. In these, the host farmers harvested their plots prior to the arrival

of the researchers, so measurements were not taken of the demonstration plots. Second, all

villages (except one) have one field day site. The lack of within-village variation for most

of the villages combined with the use of village fixed effects means that the entirety of the

impact we would observe in our results would come from a single village (Village 5), which had

several field day site. Third, the interaction of attended field day and an indicator variable

for the success of the organic demonstration plots would require an additional instrument.

In situations like this (an endogenous variable interacted with an exogenous variable), the

literature suggests interacting an instrument with the exogenous variable. In our case, when

we do this, we have very weak instruments (results available on request). We therefore

conclude that this is an interesting question for analysis in future studies that have greater

within-cluster variation in field day results.

Falsification Tests for Instrument

Earlier, we explained that the validity of our IV (distance from homestead to field day) is

likely exogenous in our empirical model due to the effectively random location of the field

day within each village. However, we conduct additional tests on our IV strategy to provide

additional assurance of its validity.

As an initial falsification test, we first seek to determine whether it is not the distance to

the FFD site that matters, but distance to a particular individual’s homestead in the village.

We test this by running simulations with randomly sampled homesteads in the village serving

as a “fake” FFD site. For each simulation, we test whether the randomly chosen homestead
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in each of the villages provide us with a significant first stage (distance between “fake” FFD

site and FFD attendance). If we find a large percentage of these simulated distances provide

us with significant results, this would suggest that it was distance to other homesteads that

was driving the correlation of our distance IV with field day attendance. If this was the

case, we would need to develop alternative explanations to defend the exclusion assumption

of our IV, which could threaten our identification strategy.

In each of the 10,000 simulations, a randomly chosen homestead in each village was

designated as the “fake” FFD location. Using the distance between each homestead and

the “fake” FFD location, each simulation conducted a first stage estimation (specifically

that of Column 3 in table 5), calculated F-statistics, and p-values for the distance to the

fake FFD variable. The results located in table A.8 show that only a small share of these

estimations had statistically significant results. Only five percent of simulations resulted in

an F-statistics above 6.26 or a P-value less than 0.02. This is compared to a F-statistics

of 26.57 and p-value of 0.00 in our first-stage estimation using distance to the actual FFD.

These simulated results demonstrate that distances to random homesteads that serve as fake

field day locations are generally not strongly correlated with field day attendance and our

IV genuinely represents a strong correlation between distance to and attendance at the field

day.

In another test, we analyze the potential impact of outlying homesteads in our estima-

tions. While we described that field day locations were effectively randomly located within

each village (as IITA did not choose location based on village boundaries), there may still be

concern that the instrument is being driven by those located far from the village center. The

argument may be that those located far from the village center are less likely to attend a

FFD. It may also be that those farmers located far from the village center have fundamental

differences in their relative WTP for the inputs, which if true would violate the identification

assumptions. We test this by re-estimating our first-stage with distance between homestead

and village center as our potential instrumental variable. Our results, located in Table A.9,
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are reassuring. There is very weak correlation between distance from village center and field

day attendance. Moreover, unlike the strong negative correlation we found between distance

from the field day site and FFD attendance, the correlation here is weakly positive. We

conclude then that outlying homesteads in the sampled villages are likely not a threat to the

validity of this instrument.

Family Connections with FFD host

Another interesting avenue of exploration is whether a farmer has family connections with

the FFD host, and if so, what are the potential ramifications. We have data on whether an

individual states that s/he is immediate or extended family with the FFD host farmer. We

can use this information in two ways: as a control variable in the primary estimation or as an

additional instrumental variable. The intuition for an IV is as follows: if there exists a family

connection with the FFD host, an individual is more likely to attend the FFD. However,

blood ties with an individual are not a choice variable, which suggests it may satisfy the

exclusion restriction.

We first simply add a binary variable as a control to our estimation, which indicates

whether an individual is part of the FFD host’s extended family. This is the case for 36%

of the sample, as shown in the summary statistics (table 2). We show the estimation results

with this additional control variable in Columns 4 and 8 of table 10, which indicate no

significant correlation between this variable and either WTP for organic inputs or the ratio

of organic input to DAP WTP. Additionally, we find little impact of the inclusion of this

control variable on the “attended field day” coefficient in either case, which increases in

magnitude only slightly.

We also test the suitability of this variable as an additional IV. In Table A.10, we show

re-estimations of the first stage including both distance from homestead to the FFD site

and family relation to the FFD host farmer as potential instruments. Clearly visible from

these estimations is the lack of strong correlation between family relationship and attendance
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at the FFD when we also include distance. Therefore, we are not able to use this family

relationship variable as an additional IV for our identification.

Monte Carlo Simulations for the Value of Biochar

Here, we seek to compare participants’ WTP for inputs to their actual value. Organic

inputs, however, do not necessarily have a market price. Because of high transportation

costs, organic inputs are often produced on-farm in rural SSA (Place et al., 2003). Therefore,

estimating the value of organic inputs can be approximated by the value of the increase in

crop yield per hectare from a one-unit increase in the input per hectare. For our analysis,

we focus on the value of biochar, as it is an input that was taught at the FFDs and recent

research provides us with parameters to use to estimate the value of the input. We establish

this average value of biochar using Monte Carlo simulations with parameters informed by

an experiment carried out by Roobroeck et al. (2019), which analyzed data from three agro-

ecosystems in Kenya over multiple growing seasons.

Findings from that experiment show that applying 1 ton of biochar (dry weight – DW)

ha−1 increased grain productivity by 0.34 to 1.24 ton ha−1 compared to a no input control

over the three years for all study areas (table A.3). Adding 1 ton of DW biochar ha−1 to

maize that was receiving DAP fertilizer raised the maize yields by an additional 0.17 to 0.63

ton ha−1 over the same time period.18 The persistence of these yield impacts three years

later after a one-time application of biochar at 1 ton ha−1 show that biochar is particularly

useful under resource-limited conditions in smallholder farming systems.

Using these results (table A.3), we parameterize a Monte Carlo simulation to estimate

the value of biochar in western Kenya. In table A.4, we show the results of these simulations

for the distribution of the parameters and the final two-year present value of biochar. We

assume a discount rate that ranges between 0 and 0.1, and also assume that farmers who

18Higher yield responses were achieved when applying biochar at rates of 5 and 10 ton DW ha−1, ranging
from 1.05 to 3.17 ton ha-1 compared to plots where no inputs were applied, and 0.66 to 1.84 ton ha-1
compared to when exclusively inorganic fertilizers were applied.
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attended a FFD are aware that biochar will provide two years (four seasons) of benefits

from a single application. Using results described above from Roobroeck et al. (2019), the

parameter values in our simulation of biochar’s impact on maize yields range from 0 (i.e.

a 1 ton/ha application of biochar has no impact on maize yield) to 1 (i.e. a 1 ton/ha

application of biochar increases maize yields by 1 ton/ha). With 10,000 simulations, and

using a distribution for the price of maize centered on the village maize price at the time

of our survey, the results of our simulation show a mean per-kilo two-year present value of

biochar to be about 45 KSh (table A.4). We subsequently compare this estimate to WTP

findings for organic inputs between attendees and non-attendees at FFD in our results.

Marginal calculations (at means) of our 2SLS calculation of field day attendance shows

average biochar (1 KG) WTP of 49.2 KSh among those attending a FFD and 72.3 KSh

among non-attendees. We therefore find that the average bids among FFD attendees are

closer to the calculated biochar value than average bids of non-attendees.

Discussion

Farmer field days (FFDs) are a potentially effective method to diffuse productivity-enhancing

information or technology within developing country communities. Often used to multiply

the impacts of intensive, participatory, on-farm programs such as a farmer field schools (FFS),

which are costly to implement, FFDs are one day programs hosted by a trained farmer and

attended by his/her peers in the farmer’s village. However, to this point, there has been

few economic evaluations to measure the impacts from these FFDs. This is in part due to

identification problems: attendance at a FFD is a choice by the farmer, which is influenced

by numerous unobserved factors such as motivation and connections with the FFD host. As

a result, there is little evidence whether FFDs are effective in teaching smallholder farmers

tools to improve their productivity.

We model FFD attendees and non-attendees as receiving different information signals

with different variances, where attendees receive a greater variety of information informing of
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the benefits and risks of the input and varying profitability depending on soil characteristics of

an individual’s farm. Farmers who attended FFDs also saw the effects of the inputs on farmer

plots – most field day sites with organic input demonstration plots showed an improvement

in crop yields compared to control plots, although often the yields were less than other

demonstration plots only using NPK fertilizer. Most non-attending farmers, on the other

hand, heard about these organic inputs only from a brief description given by enumerators

prior to the experimental auctions. The information at the FFDs potentially both shift and

rotate the willingness to pay (WTP) CDF - potentially decreasing WTP through an increased

knowledge of both risks, benefits, and the variability of profits, but broader knowledge also

increasing the precision of the WTP estimates by farmers. To test our model and examine

whether these shifts and rotations took place, we randomly sampled individuals from villages

in western Kenya that held FFDs to disseminate information about novel organic inputs in

2016. We implemented Becker-DeGroot-Marschak experimental auctions with the entire

random sample for several organic inputs and DAP fertilizer, a common inorganic fertilizer

in the area. To identify the causal impact of attendance at a FFD on WTP for the organic

inputs, we used GPS-measured distance between an individual’s homestead and the nearest

FFD location (the host farmer’s farm), which was effectively randomly determined within

each village.

Using 2SLS with village-level fixed effects, we find that attendance at a FFD decreases

both the farmer’s WTP for the featured organic inputs and the WTP ratio of organic inputs

to DAP compared to farmers that did not attend a FFD. As a robustness check, substituting

a knowledge variable for the attendance at the FFD variable increases the magnitude of the

impact on WTP for the inputs. We also use a hierarchical, mixed model with random and

fixed effects to analyze differences in variation between the WTP distributions of attendees

and non-attendees. As our model predicts, we find more precise estimates among those who

attend a FFD. These results speak to the potential for FFD to transmit real information

that enables matching between a farmer’s needs and the agricultural product.
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We include numerous other robustness checks including falsification tests of our instru-

mental variable (distance from homesteads to the FFD site). We find that randomly located

field day sites in the village are generally uncorrelated with field day attendance, strength-

ening our argument that it is the distance to the field day site, not to other individuals’

homesteads in general that drive our identification. Moreover, we show that outlying home-

steads are not less likely to attend the FFD by using a variable composed of the distance

of a homestead to the village center as an alternative (and ineffective) instrument. We also

show that family relationships between farmers and the FFD host farmer do not drive our

results by including this variable in the second stage as a control variable, and by showing

that it is ineffective as a potential second instrument. As an extension, using field day from

a separate project using biochar in western Kenya, we conduct a Monte Carlo simulation

to estimate an actual value of biochar. Doing this, and comparing the results to marginal

estimates of average WTP of biochar by FFD attendance, we find that the average WTP

for FFD attendees was significantly closer to our estimated value of biochar compared to

non-attendees.

This study demonstrates that FFDs can be effective at transmitting information to in-

dividuals in a developing country context. While FFDs are typically one day events and

cannot necessarily transfer complex technology or practices to those in attendance, they can

be a useful tool for cost effective diffusion of more simple or straightforward productivity-

enhancing techniques (Ricker-Gilbert et al., 2008). As there continues to be a debate in

the literature as to the efficacy of farmer field schools (FFS) (Van den Berg and Jiggins,

2007; Feder, Murgai, and Quizon, 2008; Davis et al., 2012; Waddington et al., 2014), this

research shows that FFDs can be added to FFS programs to increase their reach and cost

effectiveness.

While we find significant impacts of this FFD in western Kenya, we cannot claim that

the specific results found here can be expected in other FFDs in other contexts (geography,

information intervention, etc). These results are for a specific product, location, and time.
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Nonetheless, we believe that the results are indicative of the potential of FFDs to shape

perceptions of attendees and magnify impacts of other programs, which otherwise may not

be cost effective.

Because of the highly degraded soils in much of Sub-Saharan Africa, crop yields are often

below potential resulting in food insecurity for many small-scale farmers. Therefore, rigorous

evaluations of methods for disseminating information on productivity-enhancing technology

are needed. This study demonstrates that one method of information diffusion, farmer field

days, can result in real learning from those in attendance, and as a result should be considered

as a cost-effective method for information diffusion in future development projects.
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Note: Figure represents potential shifts and rotations of consumer CDFs due to new information. A clockwise rotation of the
CDF, potentially due to increased detailed knowledge among a sample about a particular product, is illustrated as a change
for the function from FS(Θ) to FS(Θ)′. A shift in the CDF, on the other hand, due to perhaps promotional information about
a product, is illustrated as a shift from FS(Θ) to FS(Θ)′′.

Figure 1: Rotations and Shifts of Farmer CDF
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Figure 2: Cumulative Distribution: Biochar (1KG) WTP
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Figure 3: Cumulative Distribution: Biochar (1KG) - DAP (5KG) WTP Ratio
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Notes: Example village demonstrating the negative correlation of randomly sampled households between
distance to field day site and attendance.

Figure 4: Field Day Site Example
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Notes: Predicted ratios with all regressors set at their means. Vertical lines represent 95% confidence
intervals.

Figure 5: Predicted WTP ratio of 1KG Biochar to 5KG DAP fertilizer at means
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Notes: Predicted ratios with all regressors set at their means. Vertical lines represent 95% confidence
intervals.

Figure 6: Predicted WTP ratio of 5KG Biochar to 5KG DAP fertilizer at means
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Table 2: Summary Statistics

Mean Std. Dev. Min Max

Individual level (n=884)
Agea 48.29 16.09 19 109
Years of educationb 7.95 3.8 0 26

Yes=1
Attended field day (Yes=1) .24 .43 0 1
Heard of biochar (Yes=1) .19 .4 0 1
Can describe biochar (Yes=1) .13 .34 0 1
Mathematics abilityc .56 .5 0 1
Female .58 .49 0 1
Widow .14 .35 0 1
Farmer .88 .33 0 1

Household level (n=548)
Household sized 5.29 3.27 0 40
Weekly food expenditures (KSh)e 1228.03 1774.7 0 21000
Distance to field day location (km) (IV) .53 .35 0 1.83
Total farm area (acres) 1.06 1.06 .02 8.87

Used input (Yes=1) in past two seasons
Compost .37 .48 0 1
Fresh manure .08 .28 0 1
Urea .19 .4 0 1
DAP .79 .41 0 1
NPK .13 .34 0 1
CAN .72 .45 0 1

Input use (annual kg/acre), excluding zeroes
Compost 1443.54 2785.58 10.9 28406.02
Fresh manure 989.5 3249.04 .56 21668.62
Urea 55.06 65.14 2.54 419.76
DAP 75.42 178.79 .87 3303.91
NPK 88.62 94.48 .71 494.26
CAN 86.12 261.18 1.64 4281.11

Yes=1
Household head is female .45 .5 0 1
Extended family of FFD host farmer .36 .48 0 1
Connection with NGO in past five years .13 .34 0 1
River as primary water source .43 .5 0 1
Electricity (grid) .13 .33 0 1
Solar panels .29 .45 0 1
Metal roof .87 .33 0 1
Mud walls .78 .42 0 1
Earth/mud floor .72 .45 0 1
Polygamous household .1 .29 0 1
Own cow(s) .37 .48 0 1

Notes: a One women claimed she was 109 years old. b High max education due to sampled inividuals with graduate

degrees. c Was able to complete a simple multiplication problem. d Defined as the number of individuals who spent

the night at the dwelling last night. e 1 USD was approximatley equal to 102 KSh at the time of the survey.
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Table 3: Bids for FFD Attendees and Non-attendees

(1) (2) T-test
Field Day Attendee Field Day Non-attendee Difference

Variable N Mean/SD N Mean/SD (1)-(2)

DAP (1KG) 216 81.458
(32.602)

668 84.356
(35.761)

-2.898

DAP (5KG) 212 380.047
(157.839)

656 364.909
(158.722)

15.139

Biochar (1KG) 216 65.995
(39.881)

668 67.629
(39.946)

-1.633

Biochar (5KG) 211 266.232
(142.799)

660 278.424
(147.033)

-12.192

Vermicompost (1KG) 216 81.968
(48.644)

668 82.250
(45.372)

-0.282

Vermicompost (5KG) 208 321.851
(158.842)

647 324.660
(163.738)

-2.809

Biochar-DAP (1KG) 216 80.185
(48.414)

668 77.061
(46.931)

3.124

Biochar-DAP (5KG) 208 304.014
(152.713)

650 292.869
(145.776)

11.145

Biochar-Vermicompost (1KG) 216 68.935
(39.609)

668 68.106
(39.010)

0.829

Biochar-Vermicompost (5KG) 210 294.524
(161.342)

647 285.688
(147.411)

8.836

Manure (5KG) 211 132.190
(133.141)

659 117.904
(110.950)

14.285

Manure (25KG) 186 353.683
(281.070)

623 315.273
(236.787)

38.410*

Biochar (1KG) - DAP (5KG) WTP Ratio 211 0.192
(0.126)

653 0.204
(0.123)

-0.012

Biochar (5KG) - DAP (5KG) WTP Ratio 207 0.758
(0.401)

645 0.813
(0.367)

-0.054*

Vermicompost (1KG) - DAP (5KG) WTP Ratio 211 0.234
(0.142)

653 0.246
(0.154)

-0.011

Vermicompost (5KG) - DAP (5KG) WTP Ratio 203 0.916
(0.378)

633 0.946
(0.398)

-0.030

Notes: Differences in sample sizes (N) due to dropping of outliers from the analysis (See text for details).
The value displayed for t-tests are the differences in the means across the groups. ***, **, and * indicate
significance at the 1, 5, and 10 percent critical level.
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Table 4: Balance between FFD Attendees and Non-attendees

(1) (2) T-test
Field Day Attendee Field Day Non-attendee Difference

Variable N Mean/SD N Mean/SD (1)-(2)

Distance to field day location (km) (IV) 216 0.358
(0.343)

668 0.583
(0.328)

-0.224***

Age 216 48.208
(14.559)

668 48.311
(16.571)

-0.103

Years of education 216 8.176
(3.478)

668 7.882
(3.896)

0.294

Mathematics ability (Yes=1) 216 0.602
(0.491)

668 0.546
(0.498)

0.055

Female (Yes=1) 216 0.551
(0.499)

668 0.587
(0.493)

-0.036

Widow (Yes=1) 216 0.139
(0.347)

668 0.139
(0.346)

-0.000

Farmer (Yes=1) 216 0.931
(0.255)

668 0.862
(0.345)

0.068***

Household size 216 5.472
(2.570)

668 5.404
(3.308)

0.068

Contact with NGO (Yes=1) 216 0.231
(0.423)

668 0.105
(0.307)

0.127***

Total farm area (acres) 216 1.277
(1.136)

668 1.051
(1.039)

0.226***

Asset index 216 0.026
(0.933)

668 0.022
(0.959)

0.004

Used compost (Yes=1) 216 0.500
(0.501)

668 0.325
(0.469)

0.175***

Used fresh manure (Yes=1) 216 0.079
(0.270)

668 0.094
(0.292)

-0.016

Used urea (Yes=1) 216 0.111
(0.315)

668 0.222
(0.416)

-0.110***

Used DAP (Yes=1) 216 0.833
(0.374)

668 0.799
(0.401)

0.034

Used NPK (Yes=1) 216 0.199
(0.400)

668 0.127
(0.333)

0.072***

Used CAN (Yes=1) 216 0.741
(0.439)

668 0.734
(0.442)

0.007

Notes: The value displayed for t-tests are the differences in the means across the groups. ***, **, and *
indicate significance at the 1, 5, and 10 percent critical level.
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Table 9: Mixed-model estimations
Organic Input WTP Organic/DAP WTP ratio

(1) (2)
Attended Field Day -29.26∗ -0.134∗∗∗

(15.23) (0.0383)
DAP (5kg) bid 0.291∗∗∗

(0.0184)
Total auction money (hundreds of KSh) -6.521 -0.00192

(5.703) (0.0168)
Nitrate-N (g NO3-N kg soil−1) 310.7∗ 1.298∗∗∗

(130.5) (0.396)
Phosphate-P (g PO−3

4 per kg soil−1) -8553.4 -19.15
(6125.3) (15.55)

Active C (g per kg soil−1) -33.62∗∗∗ -0.0450∗

(9.139) (0.0227)
Constant 529.8∗∗∗ 0.559∗∗∗

(62.22) (0.176)
sd(Field Day) 98.41∗∗∗ 0.319∗∗∗

(5.478) (0.0167)
sd(No Field Day) 120.2∗∗∗ 0.331∗∗∗

(2.652) (0.00759)
sd(Residual) 98.84∗∗∗ 0.282∗∗∗

(2.391) (0.00838)
Observations 3486 3408
Fixed effects (Village/Enumerator/Input/Svy. Month) Yes Yes
Household/Demographic controls Yes Yes

Notes: Hierarchical, mixed model incorporating both fixed and random effects. Attended Field Day and
DAP (5kg) bid variables here are predicted using first stage estimations. Standard errors corrected through
bootstrapping (100 repetitions). *p < 0.10, **p < 0.05, ***p < 0.01.
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Appendix A.1. Description of organic inputs provided to all respondents

“Biochar” is a type of charcoal that is produced from left-over plant material of field crops on

farm like maize cobs and stovers, rice husks and haulms, sugarcane bagasse, coconut shells,

and others. If applied to soil at the correct rate, biochar helps to improve crop production

by increasing the uptake of fertilizers, manure and water.

“Vermicompost” is the end-product of the breakdown of organic matter by an earthworm,

also called worm castings. It is compost produced using earthworms. If applied to the soil in

the correct rate vermicompost will improve crop production because it contains substantial

amounts of nutrients, has a large water holding capacity and enriches the soil with micro-

organisms.
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Figure A.2.1: Cumulative Distribution: Biochar (5KG) - DAP (5KG) WTP Ratio

55



Figure A.2.2: Cumulative Distribution: Vermicompost (1KG) - DAP (5KG) WTP Ratio
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Figure A.2.3: Cumulative Distribution: Vermicompost (5KG) - DAP (5KG) WTP Ratio
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Figure A.2.4: Cumulative Distribution: Biochar (5KG) - DAP (5KG) WTP Ratio

58



Figure A.2.5: Cumulative Distribution: Vermicompost (1KG) - DAP (5KG) WTP Ratio
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Figure A.2.6: Cumulative Distribution: Vermicompost (5KG) - DAP (5KG) WTP Ratio
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Table A.3: Biochar Yield Responses

Maize yield response compared to:
No input trial (ton ha−1) Fertilized trial (ton ha−1)

Location Season 1 5 10 1 5 10
(ton biochar DW ha−1) (ton biochar DW ha−1)

LR2015 0.56* 1.29* 1.96* 0.33* 0.82* 1.46*
Siaya SR2015 0.67* 1.34* 2.07* 0.29* 0.79* 1.35*

(n=288) LR2016 0.67* 1.33* 2.14* 0.29* 0.68* 1.36*
LR2017 0.34* 1.05* 1.68* 0.22 0.84* 1.23*

LR2015 0.73* 1.92* 2.54* 0.43* 1.02* 1.75*
Embu SR2015 0.74* 1.94* 2.50* 0.43* 1.01* 1.73*
(n=240) LR2016 1.44* 2.65* 3.17* 0.58* 1.26* 1.74*

LR2017 1.43* 2.13* 2.31* 0.63* 1.36* 1.84*

Kwale LR2015 0.39 1.29* 1.47* 0.13 0.66* 1.27*
(n=96) LR2016 1.11* 1.97* 2.68* 0.17 0.76* 1.39*

LR2017 0.98* 1.74* 2.64* 0.33 0.97* 1.68*

Maize grain yield responses to different rates of soil biochar amendments compared to no-input and
fertilized trails from three agro-ecosystems in Kenya over multiple growing seasons LR: Long rains season;
SR: short rain season). Biochar was applied once, at the start of the experiments, incorporated along the
base of planting lines. Information derived from mixed effect significance of difference test between input
treatments per study area. Data reported by the International Institute of Tropical Agriculture, the
Swedish University of Agricultural Sciences, and the Royal Institute of Technology in Stockholm. *p< 0.05.

Table A.4: Monte Carlo Simulation Results for Biochar PV

Parameter Mean (Std. Dev)

Discount rate 0.051
(0.028)

Maize price (KSh per ton) 24070.14
(2422.08)

Biochar yield impact (tons per hectare) 0.501
(0.291)

Biochar app. rate (constant - tons per hectare) 1.0

Total two-year biochar present value (KSh per kilo) 44.93
(26.71)

Results from Monte Carlo estimations with 10,000 repetitions.
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Table A.9: Falsification Test: Fake FFDs
F-statistic P-value

Actual First Stage 26.57 0

Simulation Results:
Mean 1.47 .47
Std. Dev. 2.37 .3
Median .57 .46
75th percentile 1.73 .21
90th percentile 3.99 .06
95th percentile 6.26 .02

Notes: 10,000 first-stage estimations with random “fake” homesteads serving as field day locations chosen within village.
Specification used is found in Column 3 of Table 3. Actual first-stage statistics as found in Table 3 are in the first row above.
Simulation results for fake field day locations are in the lower panel. The statistics demonstrate that distances to random
homesteads that serve as fake field day locations are generally not strongly correlated with field day attendance, showing that
our IV genuinely represents a strong correlation between distance to and attendance at the field day.
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