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Abstract

Most image captioning frameworks generate captions di-

rectly from images, learning a mapping from visual fea-

tures to natural language. However, editing existing cap-

tions can be easier than generating new ones from scratch.

Intuitively, when editing captions, a model is not required

to learn information that is already present in the caption

(i.e. sentence structure), enabling it to focus on fixing de-

tails (e.g. replacing repetitive words). This paper proposes

a novel approach to image captioning based on iterative

adaptive refinement of an existing caption. Specifically, our

caption-editing model consisting of two sub-modules: (1)

EditNet, a language module with an adaptive copy mecha-

nism (Copy-LSTM) and a Selective Copy Memory Attention

mechanism (SCMA), and (2) DCNet, an LSTM-based de-

noising auto-encoder. These components enable our model

to directly copy from and modify existing captions. Experi-

ments demonstrate that our new approach achieves state-

of-art performance on the MS COCO dataset both with

and without sequence-level training. Code can be found at

https://github.com/fawazsammani/show-edit-tell.

1. Introduction

Image captioning is the task of producing a natural lan-

guage description of a visual scene. As one of the proto-

typical examples of multimodal learning, image captioning

combines techniques from computer vision (e.g. recogniz-

ing salient objects in an image), with those from natural

language processing (e.g. generating coherent sentences

describing these objects). Applications of image caption-

ing include content-based image retrieval [18] and assist-

ing the visually impaired by converting visual signals into

text, which can then be transformed to speech using text-to-

speech technologies [17].

Over the past five years, neural encoder-decoder sys-

tems have gained immense popularity in the field of im-

age captioning due to their superior performance compared

Figure 1. Our model learns how to edit existing image captions. At

each decoding step, attention weights (grey) are generated; these

correspond to the importance of each word in the existing caption

for the word currently being generated in the new caption. Us-

ing a selective copy memory attention (SCMA) mechanism, we

select the word with the highest probability and directly copy its

corresponding LSTM memory state to our language LSTM (Copy-

LSTM). That is, rather than learning to copy words directly from

the input caption, we learn whether to copy the hidden states cor-

responding to these words. We then generate our new caption from

this (possibly copied) hidden state. Best viewed in color.

to previous image processing-based techniques. The cur-

rent state-of-art image captioning models are composed of a

CNN encoder, an LSTM (or Transformer) decoder, and one

or more attention mechanisms. The input image is first en-

coded by a CNN into a set of feature vectors, each of which

captures semantic information about an image region, and

these feature vectors are decoded using an LSTM-based

or Transformer-based network, which generates words se-

quentially. Attention mechanisms enable the decoding pro-

cess to “focus” on particular image regions during genera-

tion, and the specific formulation of these mechanisms has

been the center of much research [8, 2, 28, 16, 30].

High-quality captions consist of two elements: coher-

ent natural language sentences (i.e. sentence/caption struc-

ture), and visually-grounded content (i.e. accurate details).

Current image captioning models learn a ground-up map-
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ping from image features to full captions, hoping to cap-

ture both elements simultaneously. Examining the outputs

of prior image captioning models [28, 2, 29], we observe

that models learn global sentence/caption structure excep-

tionally well, but they often produce incorrect, inconsistent,

or repetetive content.

Motivated by this observation, in recent months, re-

searchers have begun to consider the problem of editing

inputs independent from the problem of generating inputs

[7, 23]. Intuitively, editing should be easier than generating

from scratch, because a caption-editing model can focus on

visually-grounded details rather than on caption structure

[23]. For example, consider Figure 1: A state-of-art image

captioning framework [8] outputs “A sandwich on a table

with a table.” The network produces a sensible sentence

structure for this particular image (“A on a with a ”)

but fails to properly fill in the nouns, repeating the main

object in the image (“table”). A caption-editing model, ap-

plied to this caption, should be able to recognize this er-

ror (the noun repetition) and modify the caption to read “A

sandwich on a table with a glass of wine” or perhaps simply

“A sandwich on a table”.

We propose a novel approach to image captioning based

on iterative adaptive refinement of an existing caption rather

than from-scratch caption generation. At each decoding

step of the caption editing process, a word from the ex-

isting caption is selected and its corresponding memory

state is copied into the internal structure of the LSTM (the

Copy-LSTM). This Copy-LSTM includes a separate selec-

tive copy attention mechanism (SCMA), enabling it to fur-

ther edit or copy the existing word into the final output cap-

tion. For example, in Figure 1, our model chooses to copy

the first instance of the word “table” and edit the second

instance to “glass”. Ultimately, our model produces: “A

sandwich on a table with a glass of wine”.

In summary, our contributions are as follows:

• We propose EditNet, a framework for editing exist-

ing image captions that consists of a Copy-LSTM

equipped with a Selective Copy Memory Attention

(SCMA) mechanism. Alongside EditNet, we propose

DCNet, a denoising auto-encoder that learns to denoise

previous captions. We optimize DCNet with a novel

objective function (MSE between hidden states), find-

ing it to be a simple and effective way to improve the

performance of our decoder.

• Our method achieves a new state-of-the-art perfor-

mance on MS COCO dataset.

• We present an ablation analysis of the components of

our model, demonstrating that each aspect contributes

non-trivially to our model’s final performance.

2. Related Work

2.1. Image Captioning

Image captioning has been widely studied in the com-

puter vision and natural language processing communities

for multiple decades. Traditional captioning systems, which

were primarily used for video captioning, involved detect-

ing keywords and using these keywords to fill in hand-made

templates [20, 19]. These models had the advantage of al-

ways producing logical sentence structures, but their ex-

pressive power was severely limited due to the need for re-

searchers to manually design templates.

In the past five years, neural network-based image cap-

tioning models have risen to prominence. Introduced by

[27], these approaches fall into the broader category of

encoder-decoder models, alongside those for machine trans-

lation, summarization, speech recognition, and a host of

other tasks [24]. Specifically, [27] proposed a captioning

model consisting of a CNN encoder and an LSTM decoder,

in which the output of the CNN encoder (the final convo-

lutional layer) was used as input to the LSTM. [28] dra-

matically improved upon the model introduced by [27] with

the addition of an attention mechanism. These mechanisms

have engendered large performance improvements across

sequence learning tasks [28, 3, 6].

Of the attention mechanisms designed specifically for

image captioning, bottom-up and top-down attention (Up-

Down; [2]) and the recent attention-on-attention (AoA; [8])

have proven among the most successful. [2] adds a top-

down attention LSTM before the language LSTM to selec-

tively attend to spatial image features. [8], currently the

state-of-the-art, adds an attention-on-attention module after

both the language LSTM and the standard attention mech-

anism. This module is designed to measure the relevance

between the attention result and the query; it transforms the

output of the standard attention mechanism, multiplying it

element-wise by an attention gate (a different transforma-

tion of the output followed by a sigmoid function).

Finally, parallel to improvements in attention mecha-

nisms, [22] proposed a new optimization objective for im-

age captioning. Traditionally, image captioning models are

trained to minimize the cross-entropy between their word-

level output and the ground truth caption. [22] instead op-

timizes a sequence-level objective, such as CIDEr [26] or

METEOR [4], using methods adopted from reinforcement

learning. It is now common in the literature to evaluate the

performance of new models using both cross-entropy and

self-critical training.

2.2. Sequence­to­Sequence Editing

In the past year, a new paradigm based around editing

the output of sequence-to-sequence models has been shown

to improve the performance of a large class of models. [7]
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Figure 2. Our proposed model which includes two submodules: On the left, EditNet along with its decoder (middle) is shown. For EditNet,

the existing caption is first encoded using a uni-directional LSTM, where each LSTM cell outputs a word representation (the hidden state

h
e

t and a memory state cet ). The hidden states are used to calculate attention weights which are then passed to the SCMA mechanism along

with the memory states. The SCMA selects a single memory state and directly copies it to the Copy-LSTM which includes an adaptive

copy mechanism in its internal structure and can choose weather to ”copy” or ”edit” an existing word. The textual attended vector is gated

to remove incorrect attended words before being passed as an input to the Copy-LSTM along with the visual attention vector. EditNet

is equiped with an LSTM-based denoising auto-encoder (right) which takes as input the existing caption, encodes it into a compressed

representation and then decodes the compressed representation to its expected output.

proposed a retrieve-and-edit framework for generating se-

quences such as source code from natural language inputs.

The authors showed strong performance gains over stan-

dard sequence-to-sequence models on a code autocomple-

tion task and the Hearthstone cards benchmark; these re-

sults suggests that editing existing outputs may be easier

than generating new outputs from scratch.

Most recently, [23] proposed the task of editing image

captions. [23] used a deep averaging network to encode

an existing caption (outputted by a traditional sequence-to-

sequence model) into a vector, and added a gated output of

this vector along with the LSTM output, enabling the LSTM

to model the “residual” information. This model improved

upon the performance of some baseline methods, but failed

to outperform the state-of-the-art in image captioning.

In this work, we introduce a new framework for the edit-

ing task proposed in [23], where we employ copy mech-

anisms to better take advantage of the information in the

existing caption. Compared to both [23] and the state-of-

the-art in image caption generation (discussed above) [8],

we show significant performance improvements across im-

age captioning metrics.

3. Proposed Methodology

Our model consists of two submodules: EditNet and DC-

Net. In the following sections, we describe each of these

submodules in detail. A complete overview of our model is

shown in Figure 2.

3.1. EditNet

EditNet is a model designed to learn whether to copy

or edit each word in an input caption. It has an encoder-

decoder structure with two components: (1) a Selective

Memory Attention Mechanism (SCMA) and (2) a Copy-

LSTM decoder. We describe these parts in detail in the fol-

lowing subsections.

3.1.1 EditNet Architecture

We base the general structure of EditNet on the widely-used

bottom-up and top-down architecture from [2].

Given an image, our encoder extracts a set of 36 visual

features using an R-CNN based network. We denote these

features by V = {v1, v2, . . . , vk} where vi ∈ R
2048 and k

is the number of objects (in our case, k = 36).

Given output of our encoder and an input caption, our

decoder produces an edited version of the input caption.

Like [2], our decoder contains an attention LSTM and a

language LSTM. Unlike previous work, we add an input

caption LSTM and a novel SCMA module, and we replace

the language LSTM with a Copy-LSTM.

First, we encode the input caption using a uni-directional

one-layer LSTM (see the dashed red box in Figure 2). In the

following sections, we denote the encoded input caption by

hs = [he
1
. . . he

n], where n is the number of words in the
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input caption. We denote the memory states of the corre-

sponding LSTM cells by cs = [ce
1
. . . cen].

Next, we feed the following inputs to the attention

LSTM: the word embedding vector, the last hidden state

of the caption encoder, the mean-pooled image features

v = 1

k

∑

i vi, and the previous hidden state of the language

LSTM. That is, we input x1

t =
[

wt;h
e
n; v̄;h

2

t−1

]

where ;
indicates concatenation. Note that this attention LSTM is

a standard LSTM, not a Copy-LSTM, because it does not

take input from the SCMA module. The output of the at-

tention LSTM h1

t is used to compute two attention vectors,

one over the visual features and another over the textual fea-

tures. These are fused with a gating mechanism and used as

input to the Copy-LSTM.

The attention weights over textual features are also used

as input to the SCMA module; this module may be thought

of as learning to select and copy from the input caption

LSTM, and its output is used as input to the Copy-LSTM.

The Copy-LSTM takes as input the outputs of the atten-

tion LSTM along with the visual attended vector and the

gated textual vector. It outputs a hidden state h2

t , which is

passed to a final linear layer to predict the softmax prob-

ability distribution over the vocabulary. Finally, this distri-

bution is fused with the output of the denoising autoencoder

(described in section 3.2) to produce the final output word.

3.1.2 Selective Copy Memory Attention (SCMA)

The SCMA (Figure 3) enables our model to select and copy

memory states corresponding to words in the input caption.

We measure the similarity between the current initial de-

coder output h1

t and each word in the previous caption hs

using a shallow neural network followed by a softmax:

αp = softmax
(

wT
a tanh

(

Wsh̄s +Whh
1

t

))

(1)

Different from the conventional attention mechanism,

we do not utilize αp directly. Instead, we utilize the corre-

sponding memory state in the input caption encoder LSTM.

To be precise, we copy the corresponding memory state cet
from the input caption encoder with the highest similarity

(i.e. highest softmax output from αp).

Notably, this indexing operation is non-differentiable. To

get around this problem, we employ the re-parametrization

trick [12]. We construct two masks, a binary mask and a

shifting mask. The binary mask mb includes a 1 in the index

of the maximum probability value of the softmax output αp,

while the shifting mask ms includes the residual values that

shift the result of αpmb of the maximum word to 1 and 0

otherwise. Mathematically, this operation is:

ceS =

n
∑

i=1

(αpi
mbi +msi) c

e
i (2)

Figure 3. The operational flow of SCMA. Attention weights (grey)

are computed from the encoded output of the input caption and

highlight the importance of each word in accordance to the cur-

rent generated word at the language model. The attention weights

are then used to calculate two masks: a binary mask mb which is

multiplied with the corresponding attention weight of each word,

and a shifting mask ms which shifts the multiplication result to 1.

Finally, each resulting element is multiplied with the correspond-

ing memory state. Eventually, all memory states are eliminated

except for the one with the maximum attention weight, which is

the final copied output.

Figure 4. The structure of our Copy-LSTM (Equations 4-6).

For example, if the attention weight for the maximum

word is 0.8, then mbi = 1 and msi = 0.2. Therefore, the

extracted memory state would be cei (0.8 · 1 + 0.2) = cei .

Similarly, if the attention weight for a non-maximum word

is 0.3, then mbi = 0 and msi = 0. In this case, cci (0.3 ·
0 + 0) = 0, and cei would be eliminated. Consequently,

all words with a probability lower than the maximum value

would be multiplied by 0, and the memory cell cei with the

maximum probability would remain.

We utilize the copied memory state, denoted Ce
S , in the

Copy-LSTM described below.

3.1.3 Copy-LSTM

To incorporate the information from the input caption and

SCMA module into the language decoder, we augment the

LSTM cell with an adaptive copy mechanism. Our mod-

ified LSTM cell, which we denote Copy-LSTM, includes

a “copy gate” that controls how much information is taken
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from the SCMA module relative to the other input sources

(the visual features and the hidden state).

We now give a mathematical formulation for the Copy-

LSTM. As in a standard LSTM, the forget gate, input gate,

output gate and memory state calculation are given as:

ft = σ (Wf · [ht−1, xt] + bf )

it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ (Wo [ht−1, xt] + bo)

(3)

In addition, we incorporate a copy gate, cgt , which may

be thought of as calculating the similarity between the

copied memory state and the word currently being gener-

ated:

cgt = σ (Wn · [Ct, C
e
s ]) (4)

We then compute the amount to take from both memory

states, and modify the LSTM memory state to:

Capt
= cgt ∗ C

e
s + (1− cgt) ∗ Ct (5)

The hidden state is then computed with a tanh activation

function of the newly constructed memory state, multiplied

by the output gate:

ht = ot ∗ tanh (Capt
) (6)

With these modifications, the Copy-LSTM is able to in-

corporate the desired information into its output represen-

tation ht. It passes this hidden state to the output layer,

which predicts the next word in the caption. Note that if the

gate cgt is 1, then the word from the input caption is fully

copied, and if it is 0, then the previous caption is ignored

and the word is generated anew. An overview of the modi-

fied internal structure of the LSTM (Copy-LSTM) is shown

in Figure 4.

3.1.4 Context Gating

As mentioned earlier, our model attends over the textual

features h̄s of the existing caption. Intuitively, however, at-

tending over the textual features may mislead the language

LSTM when the existing caption contains incorrect infor-

mation. Inspired by the recent advances in neural machine

translation, we incorporate a “context gate” that learns how

much to focus on the source context (the textual attended

feature vector) and the target context (the word embedding

vector and the current LSTM hidden state). That is:

cm = zt ⊙ tanh (Wsct) + (1− zt)⊙ tanh (Wt · [wt;ht]))
(7)

where

zt = σ (WZ · [wt;ht; ct]) (8)

and

ct =

n
∑

i=1

αpi
he
i (9)

Note that equation 7 is different from [25], where we

include the gate and its compliment before the activation

function. We find that this operation performs better in

completely removing the unwanted elements in the atten-

tion vector. Also note that αp in equation 9 is same as that

of equation 1. We find that sharing the parameters give bet-

ter similarity scores and reduces the number of overall pa-

rameters.

3.2. Denoising Captioner (DCNet)

In parallel to EditNet, we use a denoising auto-encoder,

denoted DCNet, to denoise our input caption. Denoising

auto-encoders are traditionally used to re-construct noisy

images. In our case, we may think of our input caption as a

noisy version of a true caption.

DCNet is composed of a bi-directional LSTM encoder,

which encodes the noisy caption into a compressed repre-

sentation, and an LSTM decoder, which decodes the com-

pressed representation. Note that DCNet operates only on

textual features, without any visual features. Additionally,

the parameters in DCNet are not shared with the parameters

in EditNet. Further details on DCNet are included in the

supplementary material.

3.3. Objectives

We first train our model by optimizing the cross entropy

(XE) loss:

LXE(θ) = −

T
∑

t=1

log
(

pθ
(

y∗t |y
∗
1:t−1

))

(10)

After training with cross-entropy, we additionally opti-

mize our language decoder using mean-squared error be-

tween the last decoder hidden state of the language model

and the last hidden state of the ground truth caption. This

ground truth caption hidden state is obtained by running the

ground-truth caption through the encoder of the denoising

auto-encoder. In sum, this loss is given by:

LMSE =
1

n

n
∑

i=1

(

hd
n − hg

n

)

(11)

where we linearly project the last hidden state of the lan-

guage model h2

n without using any activation function:

hd
n = Wdh

2

n + bd (12)

We provide ablation studies on this scheme in section

4.4, where we demonstrate an increase in the CIDER score

of DCNet from 1.171 to 1.183. This optimization scheme
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is simple and not restricted to our model; it can be applied

to general sequence-to-sequence or vector-to-sequence task.

Our final loss (for non-sequence-level training) is:

L = LXE(θ) + LMSE (13)

Finally, for comparison with other works, we directly op-

timize for CiDEr-D using sequence-level training [22]. As

in [22], the policy gradient is:

∇θLRL(θ) ≈ − (r (Cs)− b)∇θ log pθ (C
s) (14)

where r (Cs
i ) is the CIDEr score of the sampled caption and

b is the CIDEr score of a greedily decoded caption [22].

3.4. Implementation Details

EditNet: For visual features, we use bottom-up features

from [2]. For textual features, we use captions from [8].1

We set the embedding and hidden size of both the LSTM

encoder and decoder network to 1024 and the attention di-

mension to 512. We train EditNet for 15 epochs using cross-

entropy, as in equation 12. Note that for EditNet, we do

not use MSE optimization after training with cross-entropy.

However, we still provide ablation studies on training Edit-

Net with MSE optimization.

We use the ADAM optimizer [11] with batch size 80, ini-

tial learning rate 5e-4, and decay the learning rate decay by

a factor of 0.8 every 3 epochs. We increase the scheduled

sampling probability by 0.05 every 5 epochs [5]. We op-

timize the CIDEr-D score with sequence-level training for

another 25 epochs with an initial learning rate of 5e-5 and

anneal it by 0.5 when the CIDER-D score shows no im-

provement for one epoch. We do not use label smoothing.

DCNet: DCNet fully operates on textual features, with-

out using any visual features. For the encoder LSTM, we

set the hidden size to 512 for each direction, ending up with

a dimension of 1024 for both directions. For the decoder,

we choose the top-down decoder [2] with a hidden size of

1024. The embedding dimension is set to 1024 and the at-

tention dimension to 512. We train DCNet for 4 epochs

using cross-entropy, as in equation 10 and optimize it with

MSE for one additional epoch, as in equation 13. We set the

batch size to 60 and use the same optimization settings (for

both XE and CIDER-D optimization) as EditNet.

4. Experiments

4.1. Dataset

We evaluate our proposed method on the popular MS

COCO dataset [14], which contains 123,287 images labeled

with 5 captions for each by 5 different people. We use the

1We use the pretrained model: https://github.com/husthuaan/AoANet

standard “Karpathy” data split [10] for the offline perfor-

mance comparisons, in which 5,000 images are used for val-

idation, 5,000 are used for testing and 113,287 are used for

training. We convert all sentences to lower case and remove

words that occur fewer than 3 times from our vocabulary,

ending up with a vocabulary of 13,368 words. For evalua-

tion, we use 4 different metrics: BLEU (1- to 4-grams) [21],

ROUGE-L [13], CIDEr-D [26] and SPICE [1]. All metrics

are computed with the standard public evaluation code. 2

4.2. Quantitative Analysis

Offline Evaluation: We report the performance of our

model compared with the current state-other-art in Tables

1 and 2. These models include NIC [27], which uses

a vanilla CNN-LSTM encoder-decoder framework; SCST

[22], which optimizes a standard attention-based model us-

ing non-differentiable metrics; Adaptive [15] which uses a

visual sentinel to eliminate visual attention over non-visual

words; Up-Down [2] which uses an attention LSTM to at-

tend over image features extracted from a Faster R-CNN

model; RFNet [9] which uses multiple CNNs and LSTMs

that are connected to each other; GCN-LSTM [29] which

predicts an image scene graph and fuses it with the vi-

sual features to produces better feature vectors; and fi-

nally AoANet [8] which uses a Transformer-based language

model and filters incorrect elements out of the attended vi-

sual vector.

For the cross-entropy loss training stage in Table 1, our

single model achieves the highest score on all metrics with

the exception of SPICE, where its score is marginally lower

than [8]. For the sequence-level optimization stage, our

model also achieves the highest scores across all metrics

except CIDER-D, where is slightly below the published re-

sults from [8] and equal to the pretrained model released

by [8]. Our model also dramatically outperforms the only

other caption-editing model, Modification Networks (MN)

[23], when using cross-entropy training (sequence-level re-

sults for MN are not reported).

Online Evaluation: The performance of our model on

the official MS-COCO online testing server is provided in

the supplementary material.

4.3. Qualitative Analysis

Figure 5 and 6 show some results generated by our edit-

ing framework. In Figure 5, we can see that the current

state-of-art framework [8] generates a sentence where it rec-

ognizes the correct objects, but fails to arrange them in the

correct format (standing on a person). Using these cap-

tions as input to our editing framework, our model is able

to fix the sentence and arrange the objects in the correct for-

mat (standing on top of a floor). The right side of Figure

5 shows a visualization of the textual alignment between

2https://github.com/tylin/coco-caption
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Table 1. Performance of our single model and other state-of-the-art models on MS-COCO “Karpathy” test split under cross-entropy

training. All values are reported as percentage (%). * indicates the results obtained from the publicly available pre-trained model. -

indicates that the results are not provided. † indicates results from previous models trained to edit captions, rather than generate captions.

Model Cross-Entropy Loss

Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr-D SPICE

NIC[27] - - - 29.6 52.6 94.0 -

SCST [22] - - - 30.0 53.4 99.4 -

Adaptive [15] 74.2 58.0 43.9 33.2 54.9 108.5 19.4

Up-Down [2] 77.2 - - 36.2 56.4 113.5 20.3

MN (Up-Down)† [23] 76.9 61.2 47.3 36.1 56.4 112.3 20.3

RFNet [9] 76.4 60.4 46.6 35.8 56.8 112.5 20.5

GCN-LSTM [29] 77.3 - - 36.8 57.0 116.3 20.9

AoANet [8] 77.4 - - 37.2 57.5 119.8 21.3

AoANet* [8] 77.3 61.6 47.9 36.9 57.3 118.4 21.6

ETN (Ours) 77.9 62.5 48.9 38.0 57.7 1.200 21.2

Table 2. Performance of our single model and other state-of-the-art models on MS-COCO “Karpathy” test split under CIDER-D score

optimization. All values are reported as percentage (%). * indicates the results obtained from the publicly available pre-trained model. -

indicates that the results are not provided.

Model Sequence-Level Optimization

Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr-D SPICE

NIC [27] - - - 31.9 54.3 106.3 -

SCST [22] - - - 34.2 55.7 114.0 -

Up-Down [2] 79.8 - - 36.3 56.9 120.1 21.4

RFNet [9] 79.1 63.1 48.4 36.5 57.3 121.9 21.2

GCN-LSTM [29] 80.5 - 38.2 58.3 127.9 22.0

AoANet* [8] 80.5 65.2 50.1 39.1 58.9 128.9 22.7

AoANet [8] 80.2 - - 38.9 58.8 129.8 22.4

ETN (Ours) 80.6 65.3 51.1 39.2 58.9 128.9 22.6

the detected words (y-axis) and the existing words (x-axis).

From this, we can see which words the SCMA mechanism

selected and copied to the Copy-LSTM.

Figure 6 demonstrates that our model is also capable of

replacing repetitive words and adding details to captions.

The first three examples show that AoANet often repeats

words when it is unable to recognize the correct details in

the image (e.g. with a train station, and a stove, a bench).

Our editing model successfully fixes these issues by re-

placing the repetitive words. The last example in Figure 6

demonstrates that our model can add additional details to an

existing caption, even when the visual features are minimal

in the image (with its landing gear down).

4.4. Ablation Studies

In this section, we provide ablation studies on using

mean-squared error (MSE) optimization after training with

cross-entropy, and on using the Copy-LSTM alone along

with the SCMA mechanism.

Table 3 gives results for EditNet and DCNet with

and without using MSE optimization. The results with-

out MSE are obtained after training each submodule with

cross-entropy (XE) loss, while the results with MSE opti-

mization are after optimizing EditNet with both XE (first

alone) and MSE (together with XE). For DCNet, the ad-

dition of one epoch of MSE training boosts the BLEU-

4 score from 36.9 to 37.2 and the CIDEr-D score from

117.1 to 118.3. We also examine the performance of our

Copy-LSTM alone: we remove the visual features, the

context gate and the DCNet sub-module, and we train

the EditNet with cross-entropy (without MSE optimiza-

tion). Our scores for BLEU-1/BLEU-2/BLEU-3/BLEU-

4/ROUGE-L/CIDER-D are 77.3, 61.7, 48.0, 37.0, 57.2 and

117.3, respectively. This translates to no improvement over
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Figure 5. A caption generated by our editing framework when supplied with an input captions from AoANet [8], along with its visual

attention maps (left) and textual alignment plots (right). The alignment plot visualizes the words selected by the SCMA mechanism and

copied to the Copy-LSTM.

Figure 6. More results from our model compared to AoANet [8]

.

the pre-trained AoANet model for some metrics and a very

small improvement for others. Moreover, we examine the

performance of the context gate in our EditNet sub-module

without any visual features, and find that the context gate

improves the CIDER-D score from 117.3 to 117.5. By con-

trast, EditNet with visual features and textual context gating

gives better scores across the board. Finally, we examine

the performance of the non-differentiable indexing in the

SCMA mechanism. We find that simply using soft-attention

on the memory states achieves a CIDER-D score of 119.2,

which is lower than the achieved score of 1.200 when using

non-differentiable indexing.

Table 3. The effect of using MSE optimization after cross-entropy

training. B-4 indicates BLEU-4 and C indicates CIDEr-D.

Model DCNet EditNet

Metrics B-4 C B-4 C

w/o MSE Optimization 36.9 117.1 38.0 118.0

w/ MSE Optimization 37.2 118.3 38.0 118.5

5. Conclusion

In this paper, we propose a framework for editing im-

age captions based on iterative adaptive refinement of an

existing caption. This new perspective enables our frame-

work to focus on fixing details of existing captions, rather

than generating new captions from scratch. Specifically, our

model consists of two novel sub-modules: (1) EditNet, a

language module with an adaptive copy mechanism (Copy-

LSTM) and a Selective Copy Memory Attention mechanism

(SCMA), and (2) DCNet, an LSTM-based denoising auto-

encoder. Experiments on the MS COCO dataset demon-

strate that our approach achieves state-of-art performance

across image captioning metrics. In the future, our frame-

work may be extended to related tasks such as visual ques-

tion answering and neural machine translation.
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