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Abstract
The immense power of the immune system is harnessed in healthy individuals by a range of negative

regulatory signals and checkpoints. Manipulating these checkpoints through inhibition has resulted in

striking immune-mediated clearance of otherwise untreatable tumours and metastases; unfortunately,

not all patients respond to treatment with the currently available inhibitors of cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Combinatorial studies using

both anti-CTLA-4 and anti-PD-1 demonstrate synergistic effects of targeting multiple checkpoints, paving

the way for other immune checkpoints to be targeted. Src homology 2 domain-containing protein tyrosine

phosphatase 1 (SHP-1) is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it

is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and

therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes

it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen

receptor (CAR) T-cells. This review will discuss the potential value of SHP-1 inhibition in future tumour

immunotherapy.

Introduction
Immunotherapy has ushered in a new era in cancer treatment.

Both the success of immune checkpoint inhibition strategies,

and the limitations, which include non-responsiveness of

some patients, as well as toxicity, has led to a search for new

checkpoint targets. At the same time, the rise of cell-based

immunotherapy, and an improved range of techniques for ge-

netic modification, has expanded the range of possible targets

to include intracellular checkpoints such as Src homology 2

domain-containing protein tyrosine phosphatase 1 (SHP-1).

In this brief review, the potential of SHP-1 in the context of

current immunotherapy strategies will be discussed.

Checkpoint inhibition as an anti-tumour
strategy
Until the start of the 21st century, all cancer treatment

strategies focused on targeting and directly killing cancer

cells. However, greater understanding of the regulation

of T-lymphocytes in the late 1980s and 1990s led to an

entirely new strategy for tumour treatment; exploiting T-cell
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regulatory molecules to ‘arm’ the immune system in order

to clear tumours. The first of these checkpoint inhibitors

to reach the clinic was an anti-cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) antibody, ipilimumab, which

first demonstrated effectiveness in the treatment of melanoma

in 2008 [1,2]. This was closely followed by therapies targeting

programmed death receptor-1 (PD-1) [3], the ligand for

which, programmed death ligand-1 (PD-L1), is widely

expressed by tumour cells [4,5]. These strategies have been

recently and comprehensively reviewed elsewhere [6,7], so

will not be discussed in further detail here; but their

importance in signalling a sea-change in cancer therapy

should not be underestimated.

Adoptive cell therapy
Although checkpoint inhibition seeks to improve the ability

of endogenous T-cells to clear tumours, adoptive transfer

can take one of two approaches; ex-vivo expansion of a

patients’ own tumour-infiltrating lymphocytes (TILs) which

are then infused back into the patient [8], or generation

of T-cells genetically modified to target the tumour, either

through introduction of tumour-specific T-cell receptors

(TCRs) or chimeric antigen receptors (CARs) [9,10], which

replace the antigen recognition domain of a TCR with the

epitope binding moiety of an antibody [11]. The former

strategy suffers from the same limitation as checkpoint

inhibition; it relies upon the existence of endogenous T-cells

specific for the tumour. As tumours develop from normal

tissue, many of their antigens are recognized as ‘self’, and

Biochem. Soc. Trans. (2016) 44, 356–362; doi:10.1042/BST20150251

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
4.0 (CC BY).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

c
h
e
m

s
o
c
tra

n
s
/a

rtic
le

-p
d
f/4

4
/2

/3
5
6
/4

3
2
4
4
7
/b

s
t0

4
4
0
3
5
6
.p

d
f b

y
 g

u
e

s
t o

n
 1

6
 A

u
g

u
s
t 2

0
2
2

mailto:Watsonha1@cf.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20150251&domain=pdf&date_stamp=2016-04-11


Chimeric antigen receptor therapy in haematology and oncology: current successes and challenges 357

those that are not are generally poorly immunogenic [12].

Mutations during tumorigenesis give rise to ‘neoantigens’;

novel antigens that can be targeted by the immune system

[13]. Incidence of neoantigens is associated with improved

response to checkpoint inhibitor therapy [14]. Unfortunately,

neoantigens are not equally distributed across cancer types

[15], meaning that either checkpoint inhibition or adoptive

transfer of endogenous TILs is unlikely to offer clinical

benefit to patients with low-neoantigen malignancies, which

include most haematological malignancies. In contrast, the

greatest success to date with CAR-T-cell therapy has been

with chronic lymphoid leukaemia, as circulating cancer cells

may be targeted by their expression of CD19 [16]. Like

any other cell-based therapy, CAR-T-cells are subject to

suppression by the tumour microenvironment, and also carry

the additional risk of on-target, off-tumour toxicity, including

normal B-cells expressing CD19. To address these limitations,

researchers are examining all aspects of CAR design, from

receptor affinity [17] to adding additional properties to CAR-

T-cells, such as cytokine production or release of neutralizing

scFvs directed against checkpoint inhibitors in so-called

‘armoured CAR-T-cells’ [18].

Src homology 2 domain-containing protein
tyrosine phosphatase-1 in T-cells
SHP-1 [protein tyrosine phosphatase, non-receptor type 6

(PTPN6)] is expressed by all mature haematopoietic lineages

and at low levels, in a different isoform, by endothelial

cells [19]. There is 95 % homology between human and

mouse SHP-1, making it amenable for study in pre-clinical

mouse models [20]. SHP-1 consists of three domains;

the N-terminal Src homology-2 (SH2) domain, the C-

terminal SH2 domain, and the C-terminal catalytic protein

tyrosine phosphatase (PTP) domain [21]. The N-terminal

SH2 domain is auto-inhibitory; binding to the PTP domain

until the C-terminal SH2 domain binds to a phosphopeptide

ligand, allowing a conformational change and the release of

autoinhibition [21]. Maximal phosphatase activity is achieved

only when both SH2 domains are engaged [22]. Given this

requirement, it is likely that SHP-1 interacts with proteins

of the inhibitory-receptor superfamily (IRS) containing

immunoreceptor tyrosine-based inhibitory motifs (ITIMs)

(I/V/LxYxxL/V) within their cytoplasmic tails [23]. It has

been shown that SHP-1 constitutively interacts with ITIM-

containing leucocyte-associated immunoglobulin receptor-

1 (LAIR-1) [24], what is less clear is whether it directly

interacts with PD-1, which also contains a cytoplasmic ITIM

domain [25]. Studies in human CD4 T-cells and JURKAT

cells have demonstrated co-immunoprecipitation of SHP-1

and PD-1 [26,27], however, a recent study in human CD8

T-cells found that SHP-1 and PD-1 acted independently to

inhibit T-cell activation; with PD-1 preferentially inhibiting

T-cells with the highest affinity TCRs, while SHP-1-mediated

inhibition increased incrementally as TCR affinity increased

[28]. Furthermore, only SHP-2 has been demonstrated to

interact directly with PD-1 in activated T-cells [29]. CTLA-4

does not contain any ITIMs, but does have cytosolic tyrosines

that could represent potential binding sites for SHP-1,

however, although other PTPs have been shown to associate

with these cytosolic tyrosines, there is no direct evidence

for SHP-1 interaction with CTLA-4 [30]. To date, no

combinatorial studies of SHP-1 inhibition together with PD-

1 or CTLA-4 inhibition have been conducted, however, the

studies discussed above, in particular the work by Hebeisen

et al. [28], suggest that such combinations are more likely to

be synergistic than redundant in their anti-tumour effects.

Other than LAIR-1, little is known for certain about

SHP-1 binding partners in T-cells, and there is similar

debate regarding its substrates, although zeta-chain associated

protein kinase 70 (Zap70) [31], lymphocyte-specific protein

tyrosine kinase (Lck) [32], phosphoinositide 3-kinase (PI3K)

[33], Vav [34] and TCRζ [35] are all strongly implicated

[36] (Figure 1). However, the functional effect of SHP-1,

or, rather, its absence, on T-cells is better understood. In

the absence of SHP-1, CD8 T-cells form more stable and

durable synapses with antigen presenting cells (APCs) [37].

This leads to reduced activation thresholds and increased

proliferation [38], which is beneficial for any kind of adoptive

transfer strategy for two reasons: firstly, numbers of T-

cells available for transfer are often limited, especially where

genetic modification is involved; and, secondly it is known

that the balance of regulatory T-cells to effector T-cells is

key in tumour progression [39], so any modification that can

bias towards increased effector T-cells is likely to improve

treatment efficacy (Figure 2). It is worth noting that SHP-

1 has also been shown to be inhibitory to T regulatory

cells [40], and therefore inhibition of SHP-1 in these cells

leads to increased suppressor function. As with CD8 T-cells,

this effect is attributed to increases in TCR–APC conjugate

formation and duration. Specific deletion of SHP-1 in all

CD4 T-cells via a floxed Shp1fl/fl CD4-cre system in mice

demonstrated a key role for SHP-1 in negatively regulating

the responsiveness of CD4 T-cells to interleukin-4 signalling,

and therefore maintenance of a TH1 phenotype [41]. Deletion

of SHP-1 in other haematopoietic lineages in mouse models,

such as B-cells, neutrophils and dendritic cells, is associated

with a variety of pathologies [42–45], although SHP-1− / −

CD 8 T-cells have not been linked to any pathological effects,

to date.

A natural model
In 1965, a spontaneous recessive mutation was observed

among the mice in Jackson Laboratories, and was given the

name ‘motheaten’ due to the marked skin lesions observed

on homozygous animals [46]. Motheaten mice die at 3–

4 weeks of age, but in 1985 a new mutant mouse was

described that had a mutation in the motheaten locus, but

survived up to 9 weeks of age; this mouse was dubbed

‘motheaten viable’ [47]. It was not until 1993 that these

mutations were associated with a haematopoietic phosphatase

[48,49], later named SHP-1 by consensus. The motheaten

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
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Figure 1 SHP-1 mediated inhibition of TCR signalling

SHP-1 is constitutively associated with the inhibitory receptor LAIR-1, which, in turn, is constitutively phosphorylated by Lck

[74], although SHP-1 may also be activated by other ITIM-containing inhibitory receptors. Activation of SHP-1 allows it to

inhibit antigen-induced TCR signalling either through direct dephosphorylation of the TCRζ chain, or dephosphorylation of

downstream adaptor proteins such as Lck and ZAP70. Activating phosphate groups are shown as stars.

ITAMs

TCR

CD3 CD3

LAIR-1

ITIMs

SHP-1

ZAP70

LCK

Downstream effectors

Figure 2 Lowered activation thresholds, increased duration of interaction with antigen presenting cells (green) and increased

expansion of SHP-1− / − CD8 T-cells are beneficial in tumour therapy

(1a) Tumour antigens (grey) are low affinity and poorly immunogenic, and offer limited stimulation to naı̈ve T-cells (purple).

(1b) Low numbers of tumour specific effector T-cells (red) are insufficient to control tumour growth. (2a) SHP-1 − / −

T-cells have lower activation thresholds, therefore can be stimulated by low-affinity antigens. (2b) In response to antigen

stimulation SHP-1 − / − T-cells proliferate more than WT T-cells, leading to increased numbers of tumour specific effector

T-cells, and predicted control of tumour growth.

SHP-1+/+ SHP-1-/-

1 2

a ab b

mouse suffers a range of pathologies, including myeloid-

driven skin lesions, interstitial pneumonitis (usually fatal),

and a range of haematological abnormalities; polyclonal

activation of B-cells, decreased NK cell activity, haemolytic

anaemia, decreased dermal dendritic cells, as well as the

previously described hyperproliferative T-cells [50,51]. The

short lifespan of these animals and the range of multifactorial

immunopathologies make them difficult to use effectively in

the study of T-cell function. However, the extent of immune

dysregulation in these animals indicates the importance of

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
4.0 (CC BY).
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SHP-1 in the regulation of the immune system, and further

suggests that specific targeting of SHP-1 in individual cell

populations might be a safer approach in patients, rather

than global inhibition, as in anti-CTLA-4 and anti-PD-1

therapies.

SHP-1 abrogation in cancer therapy
A number of strategies to exploit the benefits of SHP-

1 abrogation have been attempted to date. In pre-clinical

studies, adoptive transfer of SHP-1 knockout T-cells has

been shown to be beneficial in a model of leukaemia [52],

whereas two phase I clinical trials have been taken place to

assess the safety of using systemic treatment with sodium

stibogluconate (SSG), a licensed treatment for leishmaniasis

that is also an active-site inhibitor of SHP-1 and the related

SHP-2, as a cancer therapy [53,54]. A further pre-clinical

study has looked at developing a new, orally-bioavailable

(SSG must be infused intravenously) SHP-1 inhibitor; a

small-molecule, aromatic compound denoted as tyrosine

phosphatase inhibitor 1 (TPI-1) by the authors [55]. In

this study, TPI-1 was found to be ∼58 times as effective

as SSG in vitro, and elicited an anti-tumour effect against

4-day established B16 melanomas in vivo, where SSG

failed to have any effect. NSC-87877 is a small molecule

competitive inhibitor of SHP-2, which is also inhibitory

to SHP-1 [56] and is being explored as an anti-tumour

agent, however this is due to its inhibitory effects on dual

specificity protein phosphatase 26 (DUSP 26), which is

overexpressed in neuroblastoma, rather than as a result of

SHP-1 inhibition [57]. Suramin is another anti-parasitic agent

that has been found to mediate active-site inhibition of a

range of PTPs, and is therefore being investigated as an anti-

tumour agent, however, its wide spectrum of target PTPs

puts it beyond the scope of this review [58]. Historically,

active-site-directed inhibitors of PTPs have been challenging

due to the problem of creating cell membrane-permeable yet

highly negatively charged compounds, however, recently, a

cryptic allosteric inhibition site has been successfully targeted

in SHP-2 [59], which represents a new strategy for PTP

inhibition that might improve the clinical applicability of PTP

inhibition.

In the study by Stromnes et al. [52], the authors used

an Lck-driven cre to knockout floxed SHP-1 in mature

T-cells. This system was used in preference to the SHP-

1null motheaten mouse, in order to avoid any confounding

influence of other aberrantly activated SHP-1null immune

cells [60] on the maturation of the T-cells. In order to mimic

clinical adoptive transfer strategies, T-cells were subject to

three rounds of in vitro antigen stimulation prior to transfer.

Although this system might appear to fail to take advantage of

the increased antigen-dependent proliferation of naive SHP-

1null T-cells described by Sathish et al. [37,61], the authors

observed increased proliferation of transferred effector T-

cells in response to tumour in vivo, reduced apoptosis and

improved survival of SHP-1− / − T-cells, and, ultimately

improved clearance of leukaemia. This demonstrates that

abrogation of SHP-1 is beneficial in effector T-cells, not just

in naive T-cells, and therefore knocking out SHP-1 in in vitro-

activated, genetically modified T-cells would still add value

to adoptive transfer strategies.

To date, although carried out in cancer patients, clinical

trials of small-molecule SHP-1 inhibitors remain restricted

to phase I dosing studies, and therefore anti-tumour effects,

although measured, were not the primary purpose of the

studies. In the event, no clinically measurable anti-tumour

effects were observed in either study [53,54]. Although

not the purpose, this is disappointing and does bring into

question the effectiveness of SSG administration as an anti-

cancer strategy. No phase II studies of small-molecule SHP-1

inhibition have been completed. Evaluation of toxicity of SSG

was somewhat limited in both studies due to the combination

of SSG with interferon and/or chemotherapy, and therefore

where severe and/or life threatening adverse effects were

observed (in up to 68 % of patients), it was difficult to

establish which treatment was responsible. Dose-limiting

toxicities observed included pancreatitis, bone marrow

suppression, fatigue, lipase elevation and gastrointestinal

upset. Not observed was the fatal cardiac toxicity seen

in 5–7 % of leishmaniasis patients treated with SSG [62].

Both studies concluded that SSG treatment was well

tolerated.

Interestingly, especially when considering global SHP-

1 inhibition with agents such as SSG or TPI-1, SHP-1

expression is altered in a range of malignancies; up-regulated

in breast and ovarian cancers [63,64], and gene-silenced in

lymphomas, leukaemias and colorectal cancers [65–67].

Future strategies
The disappointing performance of SSG/TPI-1 as an anti-

cancer agent in both the pre-clinical and clinical studies

described above suggests that the adoptive transfer approach

of Stromnes et al. [52] might be the most promising avenue

for exploitation of SHP-1 inhibition for tumour therapy. The

cytosolic nature of SHP-1, and the difficulty in identifying

inhibitors that will not target SHP-2 and other PTPs,

means that genetic manipulation would be the best strategy

for translational studies. There are currently a range of

different techniques available for genetic manipulation that

have been utilized in various adoptive transfer and CAR-T-

cell approaches. A recent study used zinc finger nucleases

via RNA electroporation to knockout PD-1 in TILs on a

clinical scale in order to treat metastatic melanoma [68],

however, limited success meant only in vitro evaluation of the

modified cells was possible. In our own lab, we are currently

investigating a zinc finger nuclease approach for ablating

SHP-1 in human CD8 T-cells for tumour therapy. In the

past, lenti- and retrovirally mediated gene transfer strategies

have been popular, but difficulties with transduction of T-

cells has led to electroporation of either DNA or RNA

becoming the method of choice. CAR-T-cell therapies have

optimized a number of genetic modification approaches,

including the Sleeping Beauty transposon system [69],

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
4.0 (CC BY).
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clustered regularly interspaced short palindromic repeats

(CRISPR) [70] and transcription activator-like effector

nucleases (TALEN) [71]. These approaches are reviewed in

more detail elsewhere [72,73]. However, the range of clinically

applicable gene transfer techniques available today mean that

the additional knockout of a molecule like SHP-1 from

T-cells already undergoing genetic modification becomes a

much more straightforward proposition, making it more

likely that the beneficial anti-cancer properties of SHP-

1− / − T-cells can be exploited in the clinic in the near

future.
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