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Abstract

Sketch-based 3D shape retrieval has become an important researchtopic in content-based 3D object retrieval. The
aim of this track is to measure and compare the performance of sketch-based 3D shape retrieval methods based
on a large scale hand-drawn sketch query dataset which has 7200 sketches and a generic 3D model target dataset
containing 1258 3D models. The sketches and models are divided into 80 distinct classes. In this track, 5 runs have
been submitted by 3 groups and their retrieval accuracies were evaluated using 7 commonly used retrieval perfor-
mance metrics. We hope that this benchmark, its corresponding evaluation code, and the comparative evaluation
results will contribute to the progress of this research direction for the 3D model retrieval community.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

Sketch-based 3D model retrieval is focusing on retrieving
relevant 3D models using sketch(es) as input. This intuitive
and convenient scheme is easy for users to learn and use
to search for 3D models. It is also popular and important
for related applications such as sketch-based modeling and
recognition, as well as 3D animation production via 3D re-
construction of a scene of 2D storyboard [TWLB09].

However, most existing 3D model retrieval algorithms
target the Query-by-Model framework which uses exist-
ing 3D models as queries. Much less research work has
been done regarding the Query-by-Sketch framework. Pre-
vious work on sketch-based 3D object retrieval has evalu-
ated sketch-based retrieval on rather small benchmarks and

† Track organizers. For any questions related to the track, please
contact sketch@nist.gov or li.bo.ntu0@gmail.com.
‡ Track participants.

compared against a limited number of methods. The most
recent sketch-based retrieval evaluations have been demon-
strated in [LSG∗12] and [ERB∗12]. The latter provided the
largest benchmark data set until now, based on the Princeton
Shape Benchmark (PSB) [SMKF04] with one user sketch
for each PSB model. However, until now no comparative
evaluation has been done on a very large scale sketch-based
3D shape retrieval benchmark. Considering this and encour-
aged by the successful sketch-based 3D model retrieval track
in SHREC’12 [LSG∗12], we organize this track to further
foster this challenging research area by building a very large
scale benchmark and soliciting retrieval results from current
state-of-the-art retrieval methods for comparison. We will
also provide corresponding evaluation code for computing
a set of performance metrics similar to those used in the
Query-by-Model retrieval technique.

The objective of this track is to evaluate the performance
of different sketch-based 3D model retrieval algorithms us-

c© The Eurographics Association 2013.



B. Li et al / SHREC’13 Track: Large Scale Sketch-Based 3D Shape Retrieval

ing a large scale hand-drawn sketch query dataset for query-
ing from a generic 3D model dataset.

In this paper, we report the results of 4 3D retrieval al-
gorithms tested in the Large Scale Sketch-Based 3D Shape
Retrieval track of SHREC 2013, held in conjunction with the
sixth Eurographics Workshop on 3D Object Retrieval.

2. Benchmark

2.1. Overview

Our large scale sketch-based 3D model retrieval bench-
mark [SHR13] is motivated by the latest large collection of
human sketches built by Eitz et al. [EHA12]. To explore how
humans draw sketches and for the purpose of human sketch
recognition using a crowdsourcing approach, they collected
20,000 human-drawn sketches, categorized into 250 classes,
each with 80 sketches. This sketch dataset is regarded ex-
haustive in terms of the number of object categories. Fur-
thermore, it represents a basis for a benchmark which can
provide an equal and sufficiently large number of query
objects per class, avoiding query class bias. What’s more,
the sketch variation within each class is high. Thus, we be-
lieve a new sketch-based 3D model retrieval benchmark built
on [EHA12] and the PSB can foster the research of sketch-
based 3D object retrieval methods. This benchmark presents
a natural extension of the benchmark proposed in [ERB∗12]
for very large scale 3D sketch-based retrieval.

PSB is the most well-known and frequently used 3D shape
benchmark and it also covers most commonly occurring ob-
jects. It contains two datasets: “test” and “train”, each has
907 models, categorized into 97 and 90 distinct classes, re-
spectively. Most of the 97 and 90 classes share the same cat-
egories with each other. However, PSB has quite different
numbers of models for different classes, which is a target
class bias for retrieval performance evaluation. For example,
in the “test” dataset, the “fighter_jet” class has 50 models
while the “ant” class only has 5 models. In [ERB∗12] the
query sketch dataset and the target model dataset share the
same distribution in terms of number of models in each class.

Considering the above fact and analysis, we build
the benchmark by finding common classes in both the
sketch [EHA12] and the 3D model [SMKF04] datasets. We
search for the relevant 3D models (or classes) in PSB and
the acceptance criterion is as follows: for each class in
the sketch dataset, if we can find the relevant models and
classes in PSB, we keep both sketches and models, other-
wise we ignore both of them. In total, 90 of 250 classes,
that is 7200 sketches, in the sketch dataset have 1258 rele-
vant models in PSB. The benchmark is therefore composed
of 7200 sketches and 1258 models, divided into 90 classes.
Figure 1 shows example sketches and their relevant mod-
els of 18 classes in the benchmark. We randomly select 50
sketches from each class for training and use the remain-
ing 30 sketches per class for testing, while the 1258 relevant

models as a whole are remained as the target dataset. Par-
ticipants need to submit results on the training and testing
datasets, respectively. To provide a complete reference for
the future users of our benchmark, we evaluate the partici-
pating algorithms on both the testing dataset (30 sketches per
class, totally 2700 sketches) and the complete benchmark
(80 sketches per class, 7200 sketches).

(a) Example hand-drawn 2D sketches in Eitz et al.’s
sketch dataset

(b) Example relevant 3D models in PSB benchmark

Figure 1: Example 2D sketches and their relevant 3D mod-
els in the benchmark.

2.2. 2D Sketch Dataset

The 2D sketch query set comprises the selected 7200
sketches (90 classes, each with 80 sketches), which have rel-
evant models in PSB [SMKF04], from Eitz et al.’s [EHA12]
human sketch recognition dataset. One example indicating
the variations within one class is demonstrated in Fig.2.

Figure 2: An example of intra-class variations of hand-
drawn sketches: 80 sketches of the “airplane” class.

2.3. 3D Model Dataset

The 3D model dataset is built on the Princeton Shape Bench-
mark (PSB) dataset [SMKF04]. The target 3D model dataset
comprises 1258 selected models distributed on 90 classes.

3. Evaluation

All the sketches and models are already categorized accord-
ing to the classifications in Eitz et al. [EHA12] and the PSB
benchmark, respectively. In our classification and evalua-
tion, we adopt the class names in Eitz et al. [EHA12].
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To have a comprehensive evaluation of the retrieval al-
gorithm, we employ seven commonly adopted performance
metrics [SMKF04,SHR13] in Information Retrieval Evalua-
tion that are also widely used in the 3D model retrieval field.
They are Precision-Recall (PR) diagram, Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST), E-Measures (E),
Discounted Cumulated Gain (DCG) and Average Precision
(AP). We also have developed the code [SHR13] to compute
them.

4. Participants

Three groups have participated in the SHREC’13 track on
Large Scale Sketch-Based 3D Shape Retrieval. 5 rank list
results (runs) for 4 different methods have been submitted.
The participants and their runs are listed as follows:

• EFSDsubmitted by Masaki Aono and Shoki Tashiro from
Toyohashi University of Technology, Japan (Section5.1)

• SBR-2D-3D_NUM_50submitted by Bo Li and Yijuan Lu
from Texas State University, USA; and Henry Johan from
Fraunhofer IDM@NTU, Singapore (Section5.2)

• SBR-VC_NUM_100andSBR-VC_NUM_50submitted by
Bo Li and Yijuan Lu from Texas State University, USA;
and Henry Johan from Fraunhofer IDM@NTU, Singa-
pore (Section5.3)

• FDC submitted by Jose M. Saavedra from Department
of Computer Science, University of Chile, Chile and
ORAND S.A., Santiago, Chile (Section5.4)

5. Methods

5.1. Fourier Spectra from Silhouette, Contour, and
Edge Images (EFSD)

In the pursuit of 3D shape search from 2D photos, they
have tested a new composite Fourier Spectra feature ex-
tracted from Silhouette, Contour, and Edge images for a
given 2D input image. With their previous approach called
MFSD (Multiple Fourier Spectra Descriptor) [TA09], they
have considered a combination of Fourier spectra from four
distinct sources extracted from 3D shapes; i.e. Depth-buffer,
Silhouette, Contour, and Voxel, where both Depth-buffer and
Silhouette images are further processed with peripheral en-
hancement filters. In particular, original binary Silhouette
images are converted to gray-scale images before Fourier
transform. However, direct application of MFSD to Sketch
task might be too much in the sense that no volumetric data
is available. Similarly, depth-buffer feature, which expects a
shaded gradation in the input, might not be adequate for a
sketch-shape retrieval task.

On the other hand, they have assumed that the 2D input
image, as a query for 3D shape retrieval, is given in the form
of a digital photo in their other previous work [AI12], where
they employed HoG (Histogram of Gradient) and Zernike

Rendering from 3D, 
Sketch, or Picture (b) Silhouette (c) Contour

(a) Edge

Binarization
Contour 
Extraction

Edge Extraction

Figure 3: Edge-based Fourier Spectra Descriptor (EFSD):
for each edge-based image, they apply Fourier transform to
get spectrum.

moments, which they call HG approach hereafter. HG ap-
proach also might not be directly applicable to 3D shape
search from a 2D sketch.

Even so, they feel it necessary to adapt their previous
methods (MFSD and HG) to Sketch task as much as they
can. They thus decide to modify MFSD into EFSD (Edge-
based Fourier Spectra Descriptor) which is described below.
Please note that they could take advantage of Silhouette and
Contour features in EFSD by applying a well-known Seed-
Fill algorithm [Hec90] to the enclosing drawings in advance,
in order to get better precision.

(1) Edge-Based Fourier Spectra Descriptor. The
overview of how they define their EFSD is illustrated in
Fig. 3. Given a 2D image (whether it is generated by ren-
dering a 3D shape, a photograph or sketch), they compute
Silhouette, Contour, and Edge images.

Silhouette image is generated by binarizing the input im-
age. During this process they assume there is a closed shape
inside the image. Thus, if there is only a 2D shape not en-
closed with a closed curve, they end up with no meaning-
ful silhouette image. 2D sketch, for instance, might have an
open curve. Contour image is computed from Silhouette im-
age by extracting the enclosed contour. The same problem
might arise when the 2D sketch has no closed curve. Edge
image, on the other hand, is generated directly from given
2D image by applying Laplacian edge filter.

As pre-processing, they perform pose normalization, be-
cause EFSD is sensitive to the position, size, and orienta-
tion of the 3D object. Specifically, they employ a couple of
their previously developed pose normalizations: PointSVD
and NormalSVD [TA09]. As post-processing they convert
each image space from Cartesian coordinate space to polar
coordinate space, taking advantage of the fact that Fourier
transform is robust against translation. In fact, rotational dif-
ference is absorbed by translation when they use polar co-
ordinate. After polar coordinate of each image is computed,
they apply Fourier transform to get spectra. Finally, EFSD is
defined by compositing all the lower-frequency spectra.

(2) Dissimilarity Computation. For 3D data, after pose

c© The Eurographics Association 2013.



B. Li et al / SHREC’13 Track: Large Scale Sketch-Based 3D Shape Retrieval

 

Online Retrieval Stage 

Sketch query Silhoue!e

feature view 

Sketch’s View Context 

computa"on 

Sketch’s shape context 

computa"on 

2D-3D 

alignment 

 

View sampling 

View Context 

computa"on 

2D-3D 

matching 

& ranking 

Shape context 

computa"on 

… 

3D model 

dataset 

Precomputa"on Stage 

Figure 4: Flow chart of the sketch-based 3D model retrieval algorithm based on 2D-3D alignment and shape context matching.

normalization, they select 26 views as in their previous
work [AI12]. 26 view settings are the same for Silhouette,
Contour, and Edge images. On the other hand, for a given
2D image as input, naturally just that input is taken for fea-
ture extraction.

Dissimilarity computation is carried out such that they
compute Manhattan distance between a feature vector com-
puted from 2D image and 26 feature vectors computed from
Silhouette, Contour, and Edge images. In general, assume
that there aren feature vectorsf1, f2, ..., fn, with dissimilar-
ity d1, d2, ..., dn, the similarity between 3D shape modelM
and 2D imageIk is denoted by the following equation:

dissimilarity(M, Ik)≡ dk = min(dk,1,dk,2, ...,dk,n),

wherek is eithers (Silhouette),c (Contour), ore (Edge). By
introducing weightsws, wc, andws, respectively, dissimilar-
ity computation for their EFSD is summarized as below:

dissimilarity(M, I) = wsds+wcdc+wede

During the training stage, they have tested with different
combination of weightsws, wc, andwe. After careful con-
sideration they have determined to take the same weights
for all the threews, wc, andwe. In the future, to get bet-
ter performance, they plan to incorporate the Seed-Fill algo-
rithm [Hec90] before applying EFSD.

5.2. Sketch-Based 3D Model Retrieval Based on 2D-3D
Alignment and Shape Context Matching
(SBR-2D-3D) [LJ12] [LSG∗12]

The main idea of the sketch-based retrieval algorithm pro-
posed in [LJ12] is that they want to maximize the chances
that they have selected the most similar or optimal corre-
sponding views for computing the distances between a 2D
sketch and a set of selected sample views of a 3D model,
while not adding additional online computation and avoid-
ing the brute-force comparison between the sketch and many
sample views of the model. They implemented the idea by
utilizing a 3D model feature named View Context [LJ10],

which has a capability of differentiating different sample
views of a 3D model. During online retrieval, for each 3D
model, a set of candidate views are efficiently shortlisted in
the 2D-3D alignment according to their top View Context
similarities as that of the sketch. Finally, a more accurate
shape context matching [BMP02] algorithm is employed to
compute the distances between the query sketch and the can-
didate sample views. The algorithm is composed of precom-
putation and online retrieval stages, which are illustrated in
Fig. 4. Some details and modifications about the algorithm
are given below.

Silhouette and outline feature views are respectively
selected for View Context feature extraction and shape
context-based 2D-3D matching. For a query sketch, a sil-
houette feature view is generated based on the following
six steps: binarization, Canny edge detection, morphological
closing (infinite times, which means repeating until the im-
age does not change), and filling holes, inversion and resiz-
ing into a 256×256 image. The corresponding outline fea-
ture view is very easy to obtain based on the silhouette fea-
ture view. An integrated image descriptor, which contains re-
gion, contour, and geometrical information of the silhouette
and outline feature views, is utilized to compute View Con-
text. Considering the large scale retrieval scenario, to reduce
computational cost, they set the number of sample points to
represent a contour feature view to 50 and only keep the top
4 candidate views during 2D-3D alignment. On the other
hand, to save the memory needed to load the shape context
features during online retrieval, they use the short integers
to code the locations of the 5×12 bins and values during the
loading of the precomputed shape context features.

Other steps of the retrieval algorithm are very similar
to [LJ12] and [LSG∗12]. Please refer for more details.

5.3. Sketch-Based 3D Model Retrieval Based on View
Clustering and Shape Context Matching (SBR-VC)

3D models often differ in their visual complexities, thus
there is no need to sample the same number of views to
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Figure 5: An overview of the SBR-VC algorithm. The first row is for precomputation while the second row is for retrieval stage.

represent each model. Motivated by this, a Sketch-Based
Retrieval algorithm based on adaptiveView Clustering and
ShapeContext matching, named SBR-VC, has been pro-
posed. Based on the viewpoint entropy distribution of a
set of sample views of a model, they propose a 3D model
visual complexity metric, based on which the number of
the representative views of the 3D model is adaptively as-
signed. Then, a Fuzzy C-Means view clustering is performed
on the sample views based on their viewpoint entropy val-
ues and viewpoint locations. Finally, shape context match-
ing [BMP02] is utilized during online retrieval for the match-
ing between a query sketch and the representative views for
each target model. The retrieval algorithm comprises pre-
computation and online retrieval stages. An overview of the
algorithm is shown in Fig.5.

The key component of the retrieval algorithm is viewpoint
entropy-based adaptive view clustering, which comprises the
following three steps.

(1) Viewpoint Entropy Distribution. For each model,
they sample a set of viewpoints by setting the cameras on
the vertices of a subdivided icosahedronLn obtained byn
times Loop subdivision on a regular icosahedronL0. View-
point entropy distributions of three models utilizingL3 for
view sampling are demonstrated in Fig.6. It can be seen that
for a 3D model, the complexity of its entropy distribution
pattern is highly related to the complexity of its geometry.
For instance, the two complex models horse and Lucy have
a more complicated pattern than the relatively simpler model
fish.

(2) Viewpoint Entropy-Based 3D Visual Complexity.
The visual complexity metric is defined based on a class-
level entropy distribution analysis on a 3D dataset. Mean
and standard deviation entropy valuesmandsamong all the
sample views of a 3D model are first computed, followed
by an average over all the models for each class. 3D visual
complexityC is defined asC=

√
ŝ2+ m̂2, where,̂sandm̂are

the normalizeds andm by their respective maximums over
all the classes. The metric is capable of reasonably reflecting
the semantic distances among different classes of models.

(3) Viewpoint Entropy-Based Adaptive Views Cluster-
ing. Utilizing the visual complexity valueC of a model, the

(a) fish (b) horse (c) Lucy

(d) fish (e) horse (f) Lucy

Figure 6: Viewpoint entropy distribution examples: First
row shows the models (front views); Second row demon-
strates the viewpoint entropy distribution of each model seen
from the viewpoint with respect to its front view. Entropy
values are mapped as colors on the surface of the spheres
based on HSV color model and smooth shading.Red: small
entropy;green: mid-size entropy;blue: large entropy.

number of representative outline feature viewsNc is adap-
tively assigned:Nc =

C
6 ·N0, whereN0 is the total number of

sample views and it is set to 81 in the algorithm. To speed
up the retrieval process, they choose the parameter setting
of 1

6 , compared to the selection of1
2 in the originally pro-

posed algorithm. Finally, a Fuzzy C-Means view clustering
is performed to obtain the representative views.

The two runs, SBR-VC_NUM_50 and SBR-
VC_NUM_100, are two variations of the original SBR-VC
by setting the number of sample points for the contour(s) of
each sketch, referred to as NUM, to 50 and 100, respectively.

5.4. Fourier Descriptors on 3D Models Silhouettes
(FDC)

They propose a strategy that represents in a minimal way the
3D models as well as the input sketches. This minimalistic
representation is based on the external contour or silhouette
of the underlying objects. For describing the extracted sil-
houettes they apply a Fourier based descriptor [ZL02].

(1) Pre-Processing. They extract sketch-like representa-
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tions from a 3D model by projecting it in six different view-
points (top, bottom, right, left, back, front). The sketch rep-
resentation is obtained by extracting the silhouette of the un-
derlying 3D model. An example of a 3D model together with
two of their six silhouettes is presented in Fig.7.

Figure 7: A 3D model and its two projections (back and top).

With respect to input sketches, they are characterized by
presenting high variability between shapes of the same class.
To deal with this problem, they focus on representing the
global shape of a sketch. This requires a sketch to be repre-
sented by only one connected component. To this end, their
strategy applies adilation operation in an iterative way un-
til one connected component is achieved. Then, they discard
internal holes in the shape using a filling algorithm. Finally
they extract the boundary of the shape that will be the in-
put for the next stage. An example of a sketch and its corre-
sponding boundary is showed in Fig.8.

Figure 8: A sketch and its boundary representation.

(2) Fourier-Based Descriptor. After the pre-processing
stage, they obtain a set of points representing the boundary
of an underlying object. LetX be the set of x-coordinates
andY be the set of y-coordinates of a boundary. The Fourier
descriptor is computed over the centroid distancesC which
is obtained as following:

C = distE(X−xc,Y−yc) (1)

where(xc,yc) is the centroid of the shape anddistE is the
Euclidean distance. To deal with different boundary sizes,
they sample 128 points using theequal arc-length sampling
as suggested by Zhang et al [ZL02].

Next, they apply a Fourier Transform over the sample set.
Let F be the computed Fourier descriptor with 128 entries.
To deal with the rotation invariance issue, they use the mag-
nitude of the Fourier descriptor. In addition, considering that
the sample set is composed of real values, they take only half
of the Fourier entries. Finally, to deal with different scales,
the descriptor is normalized with respect toF0, so the final
descriptor is given by:

FD =

[
|F1|
|F0|

,

|F2|
|F0|

, · · · , |F64|
|F0|

]
(2)

(3) Similarity Search. In this case, they compare an in-
put sketch with the 3D model data set. First, they select the
best projection of a model by picking the projection with the
lowest distance to the input sketch, in terms of their Fourier
descriptors. Second, having one projection for each model,
the final ranking corresponds to the set of models sorted in
an ascending way with respect to the distance to the input
sketch, computed using the Fourier descriptors. In this case,
they use the Euclidean distance for comparing the similarity
between shapes.

6. Results

In this section, we perform a comparative evaluation of the
5 runs of the 4 methods submitted by 3 groups. We measure
retrieval performance based on the 7 metrics mentioned in
Section3: PR, NN, FT, ST, E, DCG and AP.

As described in Section2, the complete query sketch
dataset is divided into “Training” and “Testing” datasets,
which is to accustom to machine learning-based retrieval al-
gorithms. To provide complete reference performance data
for both learning-based and non-learning based approaches,
such as all the 4 participating algorithms, we evaluate the
submitted results on both “Training” and “Testing” datasets,
as well as the complete sketch dataset. Figure9 and Table1
compare the participating methods in terms of the 7 perfor-
mance metrics on the above three datasets, respectively.

The aforementioned figures and table show that Li’s SBR-
VC performs best, closely followed by Li’s SBR-2D-3D.
However when compared to the performance obtained in the
SHREC’12 sketch-based 3D model retrieval track [LSG∗12]
which employed a much smaller benchmark, the perfor-
mance of SBR-2D-3D is less successful. This finding is
worth noting because it evidently raises the issue of the ro-
bustness in the case of large-scale sketch-based model re-
trieval. Both Saavedra’s FDC and Aono’s EFSD methods are
Fourier descriptors-based approaches, while FDC performs
better than EFSD. The performance of these two methods is
lower than the performance from the top two approaches.

We noticed that all the retrieval performance metrics val-
ues are not high, which is mainly due to the challenges of
the benchmark. Firstly, the 80 sketches in a query class rep-
resent many variations of an object, which adds the difficulty
for accurate retrieval and deserves a higher standard on the
robustness of retrieval algorithms. Secondly, as mentioned
in Section2.1, the query class bias has already been solved
by making each query class contain the same number of
sketches, while the bias in the target class still exists. There is
a large variation in the number of models in different classes.
For example, the “airplane” class contains 184 target models
while the “ant” class only has 5 models. Thus, to accurately
retrieve these classes of models in the First Tier and Second
Tier is difficult. Therefore, their performance metrics values,
especially on NN, FT and ST, are relatively much lower and
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(a) Training dataset
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(b) Testing dataset
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(c) Complete benchmark

Figure 9: Precision-Recall diagram performance comparisons on different datasets of the SHREC’13 Sketch Track Benchmark
for the 5 runs of the 4 participating methods.

Table 1: Performance metrics for the performance comparison on the SHREC’13 Sketch Track Benchmark.

Participant Method NN FT ST E DCG AP

Training dataset

Li SBR-VC_NUM_100 0.160 0.097 0.149 0.085 0.349 0.113

Li SBR-VC_NUM_50 0.131 0.082 0.130 0.076 0.333 0.098

Li SBR-2D-3D_NUM_50 0.133 0.080 0.126 0.075 0.330 0.097

Saavedra FDC 0.051 0.039 0.069 0.041 0.279 0.051

Aono EFSD 0.024 0.019 0.038 0.020 0.241 0.032

Testing dataset

Li SBR-VC_NUM_100 0.164 0.097 0.149 0.085 0.348 0.114

Li SBR-VC_NUM_50 0.132 0.082 0.131 0.075 0.331 0.098

Li SBR-2D-3D_NUM_50 0.132 0.077 0.124 0.074 0.327 0.095

Saavedra FDC 0.053 0.038 0.068 0.041 0.279 0.051

Aono EFSD 0.023 0.019 0.036 0.019 0.240 0.031

Complete benchmark

Li SBR-VC_NUM_100 0.161 0.097 0.149 0.085 0.349 0.113

Li SBR-VC_NUM_50 0.131 0.082 0.130 0.076 0.332 0.098

Li SBR-2D-3D_NUM_50 0.133 0.079 0.125 0.074 0.329 0.096

Saavedra FDC 0.052 0.039 0.069 0.041 0.279 0.051

Aono EFSD 0.023 0.019 0.037 0.019 0.241 0.032

this happens to all the 4 participating methods. One demon-
strating example is shown in Fig.10. More details about
the variations in the performance with respect to different
classes for each participating method can be found in the
track homepage [SHR13]. The remaining bias deserves our
further improvement, such as making each class contain the
same number of 3D models by adding more models from
other 3D model benchmarks.

In addition, we have an approximate efficiency perfor-
mance comparison by asking participants to provide tim-
ing information. The average response time per query
on the “Testing” dataset based on a modern computer is
0.02s, 20.24s, 43.93s, 68.92s, and 208.85s respectively for
FDC, EFSD, SBR-2D-3D_NUM_50, SBR-VC_NUM_50,
and SBR-VC_NUM_100. Obviously, FDC is the most ef-

ficient, followed by EFSD, while the above best-performing
approaches SBR-VC and SBR-2D-3D have inferior perfor-
mance on this, thus need further improvement in this regard.

Finally, we classify all participating methods with respect
to the techniques employed. Two methods (EFSD and FDC)
utilize Fourier descriptors to extract 2D and 3D features.
Two methods (SBR-2D-3D and SBR-VC) perform global
feature matching by utilizing the shape context features.

7. Conclusions and Future Work

We performed a comprehensive comparative evaluation of
4 sketch-based retrieval methods. Based on all the compari-
son results, Li’s SBR-VC method performs best, closely fol-
lowed by Li’s SBR-2D-3D approach. Both of the two meth-
ods perform view selection, extract shape context features

c© The Eurographics Association 2013.
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Figure 10: Precision-Recall diagram performance compar-
isons on the “airplane” and “ant” classes of the SHREC’13
Sketch Track Benchmark for the 4 participating methods.

and utilize global shape matching. Both Saavedra’s FDC and
Aono’s EFSD methods are based on Fourier descriptors and
they have relatively lower performance compared to the top
two while FDC outperforms EFSC in terms of retrieval ac-
curacy. On the other hand, FDC is the fastest, followed by
EFSD. Both of them outperform either SBR-VC or SBR-
2D-3D on this aspect. In addition, we notice that generally
the retrieval performance, either in terms of accuracy or effi-
ciency, is far from satisfactory and the performance of exist-
ing sketch-based retrieval algorithms drop apparently when
scaled to a large collection. Therefore, we identify the future
direction of this research area is developing robust and ef-
ficient algorithms which are scalable to different sizes and
types of sketch queries and models. To achieve this, we rec-
ommend utilizing knowledge and techniques from other re-
lated disciplines, such as pattern recognition, machine learn-
ing, and computer vision.

In conclusion, this large scale sketch-based retrieval track
is an attempt to further foster this challenging and interesting
research direction encouraged by the success of SHREC’12
Sketch-based 3D shape retrieval track. Though the bench-
mark is very challenging, we still have 3 groups who have
successfully participated in the track and they have con-
tributed 5 runs of 4 methods. In this track, we provided a
common platform (the benchmark) to solicit current sketch-
based 3D model retrieval approaches in terms of this large
scale retrieval scenario. This helps us identify state-of-the-
art methods as well as future research directions for this re-
search area. We also hope that the large scale sketch retrieval
benchmark together with the evaluation code will become a
useful reference for researchers in this community.

As future work, this benchmark could be extended by
adding more models to the target 3D model dataset to make
each class contain the same number of models, which will
remove the remaining bias and make the benchmark more
representative.

Acknowledgments

This work of Bo Li and Yijuan Lu is supported by the Texas
State University Research Enhancement Program (REP),
Army Research Office grant W911NF-12-1-0057, and NSF
CRI 1058724 to Dr. Yijuan Lu. The work of Afzal Godil is
supported by the Shape Metrology IMS.

We would like to thank Mathias Eitz, James Hays and
Marc Alexa who collected the sketches; as well as Philip
Shilane, Patrick Min, Michael M. Kazhdan, Thomas A.
Funkhouser who built the Princeton Shape Benchmark.

References

[AI12] A ONO M., IWABUCHI H.: 3D shape retrieval from a 2D
image as query. InSignal & Information Processing Associa-
tion Annual Summit and Conference (APSIPA ASC) 2012,(2012),
pp. 1–10.3, 4

[BMP02] BELONGIE S., MALIK J., PUZICHA J.: Shape match-
ing and object recognition using shape contexts.IEEE Trans.
Pattern Anal. Mach. Intell. 24, 4 (2002), 509–522.4, 5

[EHA12] EITZ M., HAYS J., ALEXA M.: How do humans sketch
objects?ACM Trans. Graph. 31, 4 (2012), 44:1–44:10.2

[ERB∗12] EITZ M., RICHTER R., BOUBEKEUR T., HILDE-
BRAND K., ALEXA M.: Sketch-based shape retrieval.ACM
Trans. Graph. 31, 4 (2012), 31:1–31:10.1, 2

[Hec90] HECKBERT P.: A Seed Fill Algorithm. InGraphics Gem
(1990), Academic Press, pp. 275–277.3, 4

[LJ10] LI B., JOHAN H.: View context: A 3D model feature for
retrieval. In: S. Boll et al. (eds.): MMM 2010, LNCS, Springer,
Heidelberg 5916(2010), 185–195.4

[LJ12] LI B., JOHAN H.: Sketch-based 3D model retrieval by
incorporating 2D-3D alignment.Multimedia Tools and Applica-
tions(2012), 1–23 (online first version).4

[LSG∗12] LI B., SCHRECK T., GODIL A., ALEXA M.,
BOUBEKEUR T., BUSTOS B., CHEN J., EITZ M., FURUYA

T., HILDEBRAND K., HUANG S., JOHAN H., KUIJPER A.,
OHBUCHI R., RICHTER R., SAAVEDRA J. M., SCHERER M.,
YANAGIMACHI T., YOON G.-J., YOON S. M.: SHREC’12
track: Sketch-based 3D shape retrieval. In3DOR(2012), Spagn-
uolo M., Bronstein M. M., Bronstein A. M., Ferreira A., (Eds.),
Eurographics Association, pp. 109–118.1, 4, 6

[SHR13] http://www.itl.nist.gov/iad/vug/sharp/contest/2013/SBR/,
2013.2, 3, 7

[SMKF04] SHILANE P., MIN P., KAZHDAN M. M.,
FUNKHOUSER T. A.: The Princeton shape benchmark. In
SMI (2004), IEEE Computer Society, pp. 167–178.1, 2, 3

[TA09] TATSUMA A., AONO M.: Multi-Fourier spectra descrip-
tor and augmentation with spectral clustering for 3D shape re-
trieval. Vis. Comput. 25(2009), 785–804.3

[TWLB09] TA A.-P., WOLF C., LAVOUÉ G., BASKURT A.: 3D
object detection and viewpoint selection in sketch images using
local patch-based zernike moments. InCBMI (2009), Kollias
S. D., Avrithis Y. S., (Eds.), IEEE Computer Society, pp. 189–
194. 1

[ZL02] ZHANG D., LU G.: A comparative study of Fourier de-
scriptors for shape representation and retrieval. InProc. of 5th
Asian Conference on Computer Vision (ACCV)(2002), Springer,
pp. 646–651.5, 6

c© The Eurographics Association 2013.


