
[17:18 10/8/2009 Bioinformatics-btp379.tex] Page: 2157 2157–2163

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 17 2009, pages 2157–2163
doi:10.1093/bioinformatics/btp379

Genome analysis

SHREC: a short-read error correction method
Jan Schröder1,3,∗, Heiko Schröder2, Simon J. Puglisi2, Ranjan Sinha3

and Bertil Schmidt4
1Institut für Informatik, Christian-Albrecht-Universität Kiel, Herman-Rodewald-Strasse 3, 24118 Kiel, Germany,
2School of Computer Science and Information Technology, RMIT University, Victoria 3000, 3Department of
Computer Science and Software Engineering, University of Melbourne, Victoria 3010, Australia and
4School of Computer Engineering, Nanyang Technological University, Singapore 639798

Received on January 15, 2009; revised on May 18, 2009; accepted on June 15, 2009

Advance Access publication June 19, 2009

Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: Second-generation sequencing technologies produce
a massive amount of short reads in a single experiment. However,
sequencing errors can cause major problems when using this
approach for de novo sequencing applications. Moreover, existing
error correction methods have been designed and optimized for
shotgun sequencing. Therefore, there is an urgent need for the design
of fast and accurate computational methods and tools for error
correction of large amounts of short read data.
Results: We present SHREC, a new algorithm for correcting errors
in short-read data that uses a generalized suffix trie on the read
data as the underlying data structure. Our results show that the
method can identify erroneous reads with sensitivity and specificity
of over 99% and 96% for simulated data with error rates of up
to 3% as well as for real data. Furthermore, it achieves an error
correction accuracy of over 80% for simulated data and over 88% for
real data. These results are clearly superior to previously published
approaches. SHREC is available as an efficient open-source Java
implementation that allows processing of 10 million of short reads
on a standard workstation.
Availability: SHREC source code in JAVA is freely available at
http://www.informatik.uni-kiel.de/∼jasc/Shrec/
Contact: jasc@informatik.uni-kiel.de

1 INTRODUCTION
Recently, a number of emerging (second-generation) DNA
sequencing technologies has been introduced. Compared with
the traditional shotgun technique (Sanger et al., 1977), these
technologies can generate a larger amount of read data at lower
cost (Mardis 2008, Pop and Salzberg 2008, Strausberg et al.,
2008). Examples of already available second-generation technology
include products from Illumina, 454 Life Sciences and Applied
Biosystems. However, the length of produced reads is significantly
shorter than for the classical Sanger technique. For example, the
Illumina Genome Analyzer can generate up to 100 million reads in
a single run with a read length between 35 and 75 and a per-base
error rate between 1% and 2%.

∗To whom correspondence should be addressed.

Established methods and tools for fragment assembly have been
designed and optimized for shotgun sequencing (i.e. read lengths
of around 500 bp and 6–10-fold coverage) and generally do
not scale well for high-coverage short read data. Consequently,
several new assemblers that are tailored towards short reads and
high coverage have recently been introduced including SSAKE
(Warren et al., 2007), SHARCGS (Dohm et al., 2007), Edena
(Hernandez et al., 2008), Velvet (Zerbino and Birney, 2008),
ALLPATHS (Butler et al., 2008) and Euler-SR (Chaisson and
Pevzner, 2008; Chaisson et al. 2009). Although, these tools can
assemble a few million of short reads in a reasonable amount of time,
the quality of assembled contigs is highly sensitive to sequencing
errors. For example, the per-base error rate for the Illumina 1G
sequencing device has been reported to be between 1% and 2%
(Dohm et al. 2008). One way to improve assembly results is to
correct sequencing errors before assembly.

Re-sequencing is another important application area of second-
generation sequencing technology. It requires the mapping of reads
to a reference genome, which also can be simplified by error
correction. Furthermore, reads are often trimmed towards their
3′-ends making them even shorter. Correcting errors in these
trimmed parts, would lead to longer reads which in turn could
improve assembly and mapping quality (Smith et al., 2008).

In this article we present SHREC, a fast and scalable method to
correct sequencing errors for high-throughput short-read sequencing
data by building and traversing a generalized suffix trie built from
the read data. By analyzing internal nodes of the trie, we are able
to detect and correct errors accurately. In order to reduce memory
consumption, we further present an efficient data partitioning
method. This leads to an efficient implementation that can easily
scale to up to 10 million reads on a standard workstation.

Previous work on error correction can be classified into methods
designed for second-generation sequencing and those for classical
shotgun sequencing. The SHARCGS assembly tool (Dohm et al.,
2007) avoids erroneous reads by a pre-filtering procedure: only reads
that are generated at least n times by the sequencing machine and
for which overlapping partners exist are selected. Although this
method is simple and fast, it is only effective for very small error
rates and very high coverage. The Euler-SR assembly program is
a modification of the established Euler shotgun assembly program
(Pevzner et al., 2001) designed to cope with high-throughput short
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read data. It contains a prior error correction step based on spectral
alignment (SA) (Chaisson et al., 2004). The SA approach uses a
set consisting of all solid l-tuples. An l-tuple is called solid if it
occurs at least m times in the input read data set, and called weak
otherwise. A string is called solid if all its l-tuples are solid. The SA
problem for error correction takes each read r and computes a string
r∗ such that r∗ is solid and d(r, r∗) is minimal. Depending on the
utilized sequencing technology d(·, ·) can either be edit distance
(used for 454 sequencing data) or Hamming distance (used for
Illumina sequencing data). Euler-SR contains a corresponding error
correction programs to approximate spectral alignment problem
(SAP). The error correction approach in ALLPATHS (Butler et al.,
2008) is similar to the Euler-SR SAP heuristic, but uses an adaptive
error threshold. In Section 5, we will show that SHREC is superior
to the SAP-approach used in Euler-SR in terms of error correction
accuracy.

Examples of error correction in classical shotgun sequencing
include MisEd (Tammi et al., 2003) and the preprocessing step
in Arachne (Batzoglou, 2002). Both approaches compute multiple
alignments of shotgun reads and then detect errors in certain
columns of these alignments. Unfortunately, the computation of
such alignments is too time-consuming for the amount of reads
produced by second-generation sequencers such as the Illumina
Genome Analyzer. The approach presented in this article achieves
its efficiency by avoiding the computation of alignments but simply
traversing a space-efficient suffix trie representation of the read data.

2 METHODS
In the setting of short read fragment assembly, any error correction method
relies on sufficient coverage; e.g. if the coverage at a position of an error is
only two, we have no way to decide on which of the two reads contains the
correct base. Obviously, the coverage needs to be significantly larger than
two in order to do successful error correction. The main idea of the error
correction method presented in this article is to store all reads produced by a
sequencing machine plus their reverse complements in a generalized suffix
trie and add leaf counts to the edges of internal nodes of the trie.

In the following, we will show that this data structure allows an
effective characterization of sequencing errors. While optimal theoretical
algorithms for constructing generalized suffix trees are known (Gusfield
1997), storing and manipulating them efficiently for the enormous number of
reads produced by second-generation sequencers is challenging in practice
and therefore requires a careful implementation. In Section 4, we provide
implementation details of our data structure, which allow it to scale to tens
of millions of reads on a standard workstation.

We assume a genome G of length n and a multi-set of k reads {R1 ,…, Rk}
each of length l. Both G and Ri ∈ ∑∗ = {A, C, G, T}∗. Let � denote the multi-
set consisting of all reads plus their reverse complements. The coverage is
defined as c = l × k/n (we assume k and n to be very large relative to l).
We create a generalized suffix trie of � with frequencies included in each
internal node as follows.

Suffix trie: the generalized suffix trie ST(�) (or just suffix trie for short)
is a tree comprising all suffixes of all strings in �. Each edge in ST(�) is
uniquely labeled with a single character. To ensure the path from the root
to each suffix is unique, we (logically) terminate each string in � with a
unique integer in the range 1, … ,2k. The concatenation of the edge labels on
a path from the root to a leaf corresponds to a unique suffix of a string in �.
Each leaf is labeled with an integer i denoting which string in � the suffix
is from (the same i which terminates the path). The path-label of node v,
denoted path-label(v), is the string formed by concatenating the characters
found on the path from the root to v. The level of a node v is the string length
of path-label(v). The i-th level of ST(�) is defined as the set of all nodes at

Almost complete tree, 
most nodes have 4 children.

t

About p×n nodes have more 
than one child. Most of 
these relate to errors.

t+q

s
Most nodes have low counts

Fig. 1. Structure of the suffix trie ST(�).

DNA

k2k1

Fig. 2. An example of a piece of genomic DNA with a coverage of about
10, highlighting all sub-strings covering a sub-string of the DNA of lengths
k1 and k2, respectively.

level i. Level 0 is called the top (or highest) level of ST(�) and l is called
the bottom (or lowest) level.

Weighted suffix trie: we weigh an edge of ST(�) by the number of leaves
in the sub-tree below this edge. The edge (v, w) is called the associated edge
of node w (note each node has only one associated edge). The weight of a
node is the weight of its associated edge. Observe that the weight of node w
is precisely how often the string path-label(w) appears as a sub-string in the
set of reads, �.

The weighted suffix trie of the read data has the following general
characteristics.

(1) In the top t levels, with t = min{log4(n), log4(k)}, the tree is almost
complete, i.e. almost every node has four children.

(2) For any given string of length t+r its expected number of appearances
in a random string of length n is n/(t + r)4. Thus, if all reads are correct,
the expected number of nodes at level t + r that have more than one
child is only 1/r4-th of all nodes at this level.

(3) With a sequencing error rate of p and sufficient coverage, we expect
at each level of the tree that at least p×n of all nodes have more than
one child [the share of nodes with more than one child is significantly
higher at higher levels of the tree; see (1)].

(4) The closer we get to the root of the tree, the less certain we can
be whether a node leads us to an erroneous read. We determine the
parameter q such that 1/4q < p is satisfied. Thus, most nodes below
level t +q point us at a read with an error.

(5) Nodes below level s can have a too small weight to distinguish reliably
between correct reads and erroneous reads.

Figure 1 illustrates the structure of ST(�).
We now introduce the main criterion that allows us to decide whether a

branch of the trie stems from a correct or from an erroneous read.
Any sub-string of length k has the expected occurrence of c×(l − k+ 1)/l

in the set of reads. The example in Figure 2 illustrates this for c= 10. The
sub-string of length k2 appears three times in the set of reads, while the
sequence of length k1 appears nine times. If one of the reads has an error,
a substring containing this error will only appear more than once if there is
another read with the same error.

An error at position k of a read with k > t +q, (assuming that there is no
error in the positions 1 to k −1) is likely to create a node at level k −1 in the
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Fig. 3. The typical error scenario.

suffix trie with two children. Figure 3 illustrates this scenario for one child
corresponding to the erroneous read and one child corresponding to correct
reads covering the same area. In general, correct reads and reads with errors
have the following characteristics visible in the suffix tree.

• Correct read: due to the coverage of the input data, any substring of
length k< l of a read has an expected occurrence of (l − k+ 1) ×c/l (see
Fig. 2 for an illustration).

• Erroneous read: a substring of length k < l that contains an error has
an expected occurrence of only 1 + (l − k+ 1) ×p× c/(3 ×l).

In the above formulas we have not taken account of the possibility that
the same sub-string might appear several times at different positions of the
genomic DNA being sequenced. This is always possible but highly unlikely
in random strings as long as we investigate only nodes below level t +q.
However, long repeats within genomic DNA happen. This is not entering the
formulas as we know neither their frequency nor their length.

The above criterion is used as the main criterion in our error correction
algorithm presented in the next section. We can apply this criterion to
complete reads as well as to prefixes, suffixes and any other sub-strings of
reads; i.e. we can use it to evaluate whether a sequence of weights attached
to a suffix of a read is likely to have been produced by a correct read or by
a faulty read.

3 ALGORITHM
The proposed weighted suffix trie is analyzed for imbalances of edge
weights of neighboring edges which points to potential errors in the
associated reads. The initial step of the algorithm is constructing the
trie from all reads and their reverse complements. Subsequently, the
trie is traversed as follows.

(1) Perform a depth-first traversal of ST(�) inspecting the nodes
from level s up to level t +q for potential errors

(2) Identify all nodes v with at least two children where one of
the children w has a smaller than expected weight.

(3) For each identified node w find the set of reads R(w) belonging
to the suffixes in the sub-tree below w.

(4) For each read Ri ∈ R(w) examine if correction to a sibling of
w fits the suffix.

(a) If so, calculate error-position in Ri and correct the
nucleotide to the edge label of siblings’ associated edge.

(b) Otherwise, mark Ri as erroneous.

(5) After all nodes have been analyzed: if there are marked reads
that have not been corrected during the algorithm remove
them from the set of reads before assembly.

We now discuss how the steps of the algorithm are performed in
more detail:

Step 1: as described in the previous section, the part of the ST(�)
where errors can be effectively identified is between levels s and
t +q. Still, we traverse the tree below level s as well in order to
gather leave information for Step 3.

Step 2: the expected weight of a node depends on its level and
the coverage of the genome. We are using the expected value E(m)
and the SD σ (m) of the weight of a node at level m. The number of
positions in G that can cover a sub-string of length m using a read
of length l is a = l −m+ 1. Then

E(m)=ka/n and σ (m)=k(a/n−a2/n2).

A node at level m is identified as having a smaller than expected
weight if its weight is below E(m)−x ·σ (m), where x is a parameter.
A low value of x (e.g. x = 1) will result in detection of all errors
but many false positives (FPs) too—even with an ideal standard
distribution of the reads only ∼80% of the node weights are within
this range. A higher value of x reduces the chances of FPs but may
result in missing errors that have a high number of occurrences. Our
experiments have shown the best results in terms of correction rate
versus FPs for 5 ≤ x ≤ 7 for synthetic read data. However, tests with
experimentally obtained read datasets have obtained the best results
outside this range. Thus, our current implementation provides the
SHREC algorithm with a static user-defined value for the expected
visits of a node.

Step 3: Once a node is identified the algorithm retrieves
the corresponding reads and positions in which the error has
been detected. This suffix-to-read mapping requires a careful
implementation if memory usage is to be kept low and we describe
one such approach the next section.

Step 4a: In this case, an error has been found in the correct position
in the corresponding read. This can be determined by analyzing the
sub-tree beneath the faulty node and its neighbors: the erroneous sub-
tree should exactly fit into one of the neighboring trees. This implies
that a correction of the nucleotide represented by the erroneous node
to the nucleotide represented by the matching neighbor will fix the
error. The position of the error in the original read can be obtained by
comparing the read-length (l), the suffix-length (l’) and the position
of the error in the suffix (pos) as l− l’+ pos.

Step 4b: in this case, an error has been found at a position
different from its actual occurrence. This can happen if an error re-
routes the suffix to another matching part of the tree. The erroneous
suffix then matches a part of this sub-tree before it branches out.
Hence, identification of nodes in this case does not lead us to
the actual error position. This situation can also be detected by
analyzing the sibling(s) of an identified node: the correction of the
single nucleotide to a sibling’s edge label will most likely not lead
to a perfect match of the sub-tree. Therefore, the algorithm does
not perform a correction in this case but only marks the read as
erroneous.

Also note that reads with more than one error are more difficult
to correct in ST(�). Even if the correct position of the first error is
discovered, it will not lead us to a perfectly matching path in the
corrected sub-tree because of the second error. A practical solution
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to this problem is as follows: instead of demanding a perfectly
matching sub-tree after a correction, we consider it sufficient if the
paths only for a certain amount of bases following the corrected
base match. A more accurate way would be to analyze the hamming
distance of suffixes following the corrected nucleotide but would be
significantly more time consuming.

Algorithmic options: we discuss three options of the presented
error correction algorithm.

(1) Identify-only approach (no actual error correction): a simple
method to handle errors in the read is by ignoring erroneous
reads and hope for enough error-free reads to perform
subsequent de novo genome assembly. This approach can
obviously only work if the error rate is low and the coverage
is high. The algorithm would only need to identify nodes with
an unexpectedly low weight, find the corresponding reads and
delete them. This method is often not sufficient for common
error rates and correction of the reads does not add much
complexity to the algorithm so we abandon this idea.

(2) Static approach [correcting errors without updating ST(�)]:
once an error is found the corresponding read is identified
as explained above and the error is corrected. Afterwards the
read will be marked so the same error would not be corrected
again.

(3) Dynamic approach [correcting errors with updating ST(�)]:
as soon as there are two errors in one read, it is impossible
to find both error-positions correctly since the first error
re-routes the suffixes to the wrong sub-tree (see Step 4b). The
algorithm has better chances to correct these multi-error-reads
if the suffix trie is updated each time an error is corrected. The
update operation needs to take the identified erroneous read
and all of its suffixes out of the tree and place the corrected
read and all of its suffixes in the tree again. The updated trie
then allows for an easier identification of a potential second
error. Furthermore, this dynamic updating approach can lead
to a cascading effect. Corrections affecting nodes in a way that
one after the other the structure becomes clearer and more and
more errors can be identified and corrected. The drawback to
this method is its time consumption. Updating a read and all
its suffixes is an expensive operation: the algorithm has to
update l different suffixes—and each of these needs O(l) tree
operations. This leads to an additional work of O(l2) for each
correction.

4 IMPLEMENTATION
The implementation of the presented algorithm needs to address the
following three issues.

(1) Suffix-to-read mapping: for each identified node v, all reads
with the sub-string path-label(v) need to be retrieved. This is
a frequent operation and therefore needs to be implemented
efficiently.

(2) Memory reduction: a large number of reads and high error
rates can result in a suffix trie with a prohibitively large
memory footprint. Therefore, a mechanism is required that
keeps memory consumption within a feasible range.

Prefix

Startlevel

Endlevel

r1  r2

Actually calculated parts of the tree

Fig. 4. Reducing the memory consumption of the suffix trie by (i) building
and analyzing only the sub-trie starting with Prefix; (ii) limiting the levels
of this sub-trie to the interval (Startlevel, Endlevel).

(3) Trie Updating: updating of the suffix trie data structure needs
to be supported for the dynamic error correction approach.

Suffix-to-read mapping: each read in � is assigned a unique read
number id, with id ∈ {1, … ,2k} (in the following, we refer to reads
and read numbers interchangeably). Our implementation uses the
permutation �′ of � to implement the suffix-to-read mapping. �′
sorts the reads of � in lexicographical order using the reverse of all
reads as keys (the reverse of a read r =r1 … rk is defined as r′ = rk
… r1). We use the following trick to avoid explicit representation of
leaves in the trie using �′. Access to leaf lists can then be provided
with a constant amount of overhead per node by storing two indices
into �′. Consider an internal node v. The leaf labels of the leaves
that are direct children of v correspond precisely to the reads that
end in path-label(v), i.e. the reads that have path-label(v) as a suffix.
These reads appear in a contiguous portion of �′ and so rather than
store these labels explicitly as children of v we need only store two
indices cl, cr into �′.

Memory reduction: the total amount of memory required to store
ST(�) is determined by the number of nodes times the per-node
memory consumption. The total amount of nodes depends on the
actual read dataset but can be asymptotically estimated as follows.
For error-free read data, the number of nodes is O(l ×n). Each
erroneous read creates additional O(l2) nodes. With the assumption
that the number of erroneous reads is O(n), this results in a total
amount of O(l2 ×n) nodes. Obviously, the amount of memory
needed for this implementation grows beyond the capacities of
a regular desktop PC even for moderately sized genomes and
very short read-lengths. Our implementation uses the following
techniques to deal with the memory consumption problem.

First, the suffix trie is cut into smaller sub-tries, which are built and
analyzed independently. Each sub-trie corresponds to a particular
prefix. This prefix indicates the sub-trie in which the process will
work during the algorithm. Second, two parameters are used to limit
the levels of each sub-trie. This allows restricting construction and
analysis of the sub-trie only to the promising parts and keeping the
less significant parts from consuming memory. Figure 4 illustrates
the two described memory reduction techniques.

Please note that uneven distribution of the nucleotides in real
genomes (favoring the letters A and T) leads to uneven numbers of
nodes following each prefix. The differences can be easily up to a
factor of 1000 (when, for example, comparing a prefix with high
number of A, T with the one only consisting of C’s). This problem
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Variable prefix length

medium densityhigh density low density

Fig. 5. Balancing the amount of memory used per sub-trie by using a variable
prefix length.

can be dealt with by choosing the prefix lengths of each sub-trie
depending on the quantity of C’s and G’s; i.e. choosing a shorter
prefix length for those with a high CG content (Fig. 5).

Trie updating: the data structure containing the reads is
progressively altered according to the error corrections made. As
a result our partitioned implementation has a dynamic character:
subsequently built sub-tries benefit from the corrections made
earlier, since a correction in one sub-trie affects suffixes in several
other sub-tries. Furthermore, we run two consecutive iterations of
the error correction algorithm in order to support the correction of
reads with multiple errors.

5 PERFORMANCE EVALUATION
We have evaluated the performance of the presented SHREC
algorithm using several simulated Solexa/Illumina-style datasets
as well as a real Solexa/Illumina dataset. The simulated datasets
have been produced by generating random reads with a given error-
rate from a reference genome sequence. In order to test scalability,
we have selected yeast chromosomes [Saccharomyces cerevisiae
chromosome 5 (S.cer5) and chromosome 7 (S.cer7)] and bacterial
genomes [Haemophilus influenzae (H.inf ), Escherichia coli (E.col)]
as reference sequences of various lengths (ranging from 0.58 Mbp
to 4.71 Mbp). Three datasets have been created for each reference
genome sequence using per-base error-rates of 1%, 2% and 3%, a
coverage of C = 70, and a constant read length of L = 70. To test
the robustness of SHREC, we have further created three datasets
with a lower coverage of C = 35. Thus, the size of simulated input
datasets varies from 0.3 m to 9.4 m reads. The real dataset consists
of 3.43 m unambiguous reads (i.e. they do not contain any non-
determined nucleotide) of length 35 each, which was downloaded
from http://www.genomic.ch/edena.php and has a relatively low
coverage of 43. It has been obtained experimentally by Hernandez
et al. (2008) using the Illumina Genome Analyzer for sequencing the
Staphylococcus Aureus strain MW2 (H.Aci). We have estimated the
error rate of this dataset as 1% by aligning each read to the reference
genome using RMAP (Smith et al., 2008). The 16 datasets used for
our performance evaluation are summarized in Table 1.

We have measured the runtime and error correction/identification
performance of these datasets on an Intel Xeon multi-core machine
with 2.6 GHz. The current version of SHREC is implemented
in Java. In order to take advantage of multiple cores, we are

Table 1. Datasets used for performance evaluation

ID Reference genome
(GenBank)

Genome
length
(M)

Error
rate
(%)

Coverage Number
of reads
(M)

A1l S.cer5 (NC_001137) 0.6 1 35 0.3
A2l 2
A3l 3
A1h 1 70 0.6
A2h 2
A3h 3
B1 S.cer7 (NC_001139) 1.1 1 1.1
B2 2
B3 3
C1 H.inf (NC_007146) 1.9 1 1.9
C2 2
C3 3
D1 E.col (NC_000913) 4.7 1 4.7
D2 2
D3 3
E S.aureus (NC_003923) 2.8 1 43 3.4

Table 2. Runtime (in seconds) for selected datasets

A1h A2h A3h B1 B2 B3 C1 C2 C3 D1 D2 D3 E

185 220 270 520 620 710 865 1010 1205 2350 2725 2750 739

using multithreading; i.e. each thread constructs and analyzes an
independent prefix. Table 2 shows the runtime for 13 selected
datasets using JVM 1.5. It can be seen that the runtime of SHREC
scales linearly with the genome length and with the error-rates.
This becomes clear if we look at the construction of the trie, which
dominates the runtime: a genome of length n provides roughly 2n
different possible reads or suffixes. This limits the size of the trie
at each (higher) level. An error in a read however introduces new
nodes to the trie: regardless of the error position in the read, l new
suffixes of the read will be changed and possibly create new nodes.
The complexity for the trie size follows O(n× l× e) for each level
k of the trie where 4k > n. The correction step requires scanning
each node on one specific level and comparing sub-tries in case of a
suspected error. In theory, the comparison is a depth-first search trie
operation. The characteristics of the error correction trie make it run
in linear runtime with the height of the compared sub-tries (four in
our case). So, the overall complexity follows to O(n× l × e) as well.

We have analyzed the accuracy of SHREC in terms of

(1) identification: identifying reads as erroneous or error free, and

(2) correction: actual correction of erroneous reads.

The identification of erroneous reads can be defined as a
binary classification test. The corresponding definitions of true
positive (TP), FP, true negative (TN) and false negative (FN) are
given in Table 3. Sensitivity and specificity measures are defined as:

Sensitivity = TP/(TP + FN);Specificity = TN/(TN + FP).
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Table 3. Definitions of TP, FP, FN and TN for the read identification
classification test

Read condition

Algorithm outcome Erroneous Error free

Fixed or discarded TP FP
Unchanged FN TN

Table 4. Performance of the read identification classification test measured
in terms of sensitivity and specificity for each dataset (the number of reads
in the four sets TP, FP, TN and FN as well as the percentage of discarded
reads in TP are also shown)

TP (discarded) (%) FP FN TN Sensitivity Specificity

A1l 140 215 (0.44) 320 3575 141 836 0.975 0.998
A2l 208 485 (0.64) 413 7425 70 429 0.966 0.994
A3l 241 740 (0.74) 298 10 038 35 007 0.960 0.992
A1h 281 472 (0.32) 0 6238 283 181 0.978 1
A2h 418 351 (0.38) 1 12 801 140 452 0.970 1
A3h 488 156 (0.82) 0 15 783 70 074 0.969 1
B1 543 864 (0.43) 0 12 558 545 892 0.977 1
B2 806 972 (0.36) 0 24 719 271 246 0.970 1
B3 942 457 (0.77) 0 30 143 134 697 0.969 1
C1 936 523 (0.46) 2 24 112 943 698 0.975 1
C2 1 397 114 (0.74) 4 44 774 468 391 0.969 1
C3 1 625 092 (0.71) 0 53 554 232 858 0.968 1
D1 2 311 124 (0.31) 1 61 545 2 334 385 0.974 1
D2 3 443 262 (0.40) 0 111 421 1 159 156 0.969 1
D3 4 007 602 (0.36) 0 130 905 575 856 0.968 1
E 828 374 (0.90) 5865 28 012 2 537 749 0.967 0.998

Table 4 shows the specificity and sensitivity measures for 13 tested
datasets. It can be seen that that SHREC identifies erroneous reads
with very high sensitivity and specificity. We have further analyzed
the reads that have been classified as erroneous. These reads are
further sub-divided into

• corrected reads: reads identified as erroneous and corrected by
SHREC, and

• discarded reads: reads identified as erroneous but not corrected
by SHREC.

The amount of corrected reads relative to the total number of reads
and relative to the total number of erroneous reads is shown Table 5.
Furthermore, we have compared the correction performance of
SHREC with the SAP-based error correction approach implemented
in Euler-SR. The correction performance of Euler-SR on the same
datasets is also shown in Table 5.

Table 5 shows better robustness of SHREC compared with the
SAP-approach in Euler-SR with respect to correction accuracy.
While the accuracy of SHREC remains at least 80%, for 3% error-
rate datasets and low coverage, Euler-SR drops significantly. This
can be explained by the larger number of erroneous reads with more
than one error for higher error-rates. These reads are difficult to
correct by the SAP approximation algorithm used by Euler-SR. Note
that Table 5 shows only completely corrected reads. SHREC also

Table 5. Percentage of corrected reads relative to the total number of reads
(corrected) and relative to the total number of erroneous reads (accuracy)
by SHREC and EULER-SR (using default parameters for Illumina data)

SHREC Euler-SR

Corrected (%) Accuracy (%) Corrected (%) Accuracy (%)

A1l 49.2 95.2 41.3 83.2
A2l 73.2 89.3 52.9 71.1
A3l 84.8 81.1 49.8 57.4
A1h 49.4 95.7 39.9 80.2
A2h 73.4 90.5 50.6 68.0
A3h 85.6 84.0 16.0 16.9
B1 49.4 95.3 40.8 80.3
B2 73.4 90.0 51.7 68.0
B3 85.7 83.3 13.1 13.7
C1 49.3 94.1 39.4 80.0
C2 73.5 88.2 49.9 67.7
C3 85.5 81.0 47.0 53.5
D1 49.2 93.5 40.2 80.0
D2 73.3 87.4 50.9 67.7
D3 85.3 80.0 47.7 54.4
E 27.0 88.3 9.4 33.4

delivers partially corrected reads which can still be of use during
the assembly process. Taking partially corrected reads into account
as well, SHREC delivers accuracy well beyond 97% even for high-
error rates. A further observation is that the accuracy for the real
dataset (i.e. dataset E) is lower than for the simulated datasets with
a similar error-rate. There are two reasons for this. First, the lower
coverage and second, that errors in real reads are not as evenly
distributed as in our simulated reads (Dohm et al., 2008). It can be
seen that the suffix-trie-based approach used in SHREC can deal well
with this situation, while the accuracy of the SAP-based approach
in Euler-SR breaks further down.

In order to demonstrate the practical gain of SHREC, we have
analyzed how the performance of de novo assembly tools can benefit
from our error correction method. We have conducted experiments
with the Edena assembler (Hernandez et al., 2008) using the datasets
A1h, A2h, A3h with the original reads and the set of reads output
by SHREC as inputs. The obtained results (using the minimum
overlap of 40, which gave the best assembly results) are shown
in Table 6. It can be seen that assembly greatly improves by using
error-corrected reads (particularly for higher error rates).

6 CONCLUSION AND FUTURE WORK
Emerging HTSR sequencing technologies present a major
bioinformatics challenge. In particular, bioinformatics tools that
can process massive amounts of short reads are required. In this
article, we have addressed this challenge by presenting the design
and implementation of SHREC, a new short read error correction
method. Using a suffix trie based approach; SHREC is able to
achieve high-identification sensitivity and specificity as well as high-
correction accuracy for both simulated and real datasets. SHREC
also outperforms the previously used SAP-based error correction
approach and can deal well with low coverage and uneven error
distribution.
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Table 6. Assembly quality produced by Edena using the original read data
sets A1h, A2h and A3h compared with the corresponding error-corrected
read datasets by SHREC

Dataset Number of
contigs
(≥100 bp)

N50 Mean contig
length (bp)

Maximum
contig
length (bp)

A1h 413 10 459 1437 27 932
A1h corrected 241 46 438 2421 77 021
A2h 413 5989 1409 17 949
A2h corrected 265 28 424 2207 73 079
A3h 941 496 366 1921
A3h corrected 277 29 542 2111 66 009

Furthermore, we have used a partitioning technique to allow
SHREC to process 10 million reads on a standard desktop computer.
Extending the current SHREC implementation to be able to process
>100 million reads and to handle insertions and deletions is part of
our future work. We further plan to adapt SHREC to correct read data
from other sequencing technologies (such as the 2-base encoding
system used by the SOLiD sequencing platform). The suffix trie
representation of read data could also be used to do subsequent
de novo short read assembly. The assembly algorithm could use
the notion of extensibility based on suffix links in the suffix trie.
It would be interesting to compare this method with the commonly
used graph-based assembly approaches.
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