
SHRiMP: Accurate Mapping of Short Color-space Reads
Stephen M. Rumble1,2, Phil Lacroute3,4, Adrian V. Dalca1, Marc Fiume1, Arend Sidow3,4, Michael

Brudno1,5*

1 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 2 Department of Computer Science, Stanford University, Stanford, California, United

States of America, 3 Department of Genetics, Stanford University, Stanford, California, United States of America, 4 Department of Pathology, Stanford University, Stanford,

California, United States of America, 5 Banting & Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada

Abstract

The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads
(25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we
present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even
in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate
thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for
false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome.
We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high
heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.
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Introduction

Next generation sequencing (NGS) technologies are revolution-

izing the study of variation among individuals in a population. The

ability of sequencing platforms such as AB SOLiD and Illumina

(Solexa) to sequence one billion basepairs (gigabase) or more in a

few days has enabled the cheap re-sequencing of human genomes,

with the genomes of a Chinese individual [1], a Yoruban

individual [2], and matching tumor and healthy samples from a

female individual [3] sequenced in the last few months. These

resequencing efforts have been enabled by the development of

extremely efficient mapping tools, capable of aligning millions of

short (25–70 bp) reads to the human genome [4–10]. In order to

accelerate the computation, most of these methods allow for only a

fixed number of mismatches (usually two or three) between the

reference genome and the read, and usually do not allow for the

matching of reads with insertion/deletion (indel) polymorphisms.

These methods are extremely effective for mapping reads to the

human genome, most of which has a low polymorphism rate, and

so the likelihood that a single read spans multiple SNPs is small.

While matching with up to a few differences (allowing for a SNP

and 1–2 errors) is sufficient in these regions, these methods fail

when the polymorphism level is high.

NGS technologies are also opening the door to the study of

population genomics of non-model individuals in other species.

Various organisms have a wide range of polymorphism rates -

from 0.1% in humans to 4.5% in the marine ascidian Ciona savignyi.

The polymorphisms present in a particular species can be used to

discern its evolutionary history and understand the selective

pressures in various genomic loci. For example, the large amount

of variation in C. savignyi (two individuals’ genomes are as different

as Human and Macaque) was found to be due to a large effective

population size [11]. The re-sequencing of species like C. savignyi

(and regions of the human genome with high variability) requires

methods for short read mapping that allow for a combination of

several SNPs, indels, and sequencing errors within a single (short)

read. Furthermore, due to larger-scale ‘‘structural’’ variation, only

a fraction of the read may match to the genome, necessitating the

use of local, rather than global, alignment methods.

Previous short read mapping tools typically allow for a fixed

number of mismatches by separating a read into several sections

and requiring some number of these to match perfectly, while

others are allowed to vary [4,6,8]. An alternative approach

generates a set of subsequences from the read (often represented as

spaced seeds [7,10,12]), again in such a manner that if a read were

to match at a particular location with some number of

mismatches, at least one of the subsequences would match the

genome [5,9]. While these methods are extremely fast, they were

developed for genomes with relatively low levels of polymorphism,

and typically cannot handle a highly polymorphic, non-model

genome.

This becomes especially apparent when working with data from

Applied Biosystem’s SOLiD sequencing platform (AB SOLiD). AB

SOLiD uses a di-base sequencing chemistry that generates one of

four possible calls (colors) for each pair of nucleotides. While a

sequencing error is a change of one color-call to another, a single

SNP will change two adjacent color positions. Hence a read with

two (non-adjacent) SNPs and a sequencing error will differ from
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the reference genome in five different positions. Simultaneously,

the nature of the di-base sequencing code allows for the

identification (and correction) of sequencing errors, so by carefully

analyzing the exact sequence of matches and mismatches within a

read, it is possible to determine that the read and the genome

differ by two SNPs. While efficient mappers for color-space

sequences have been developed [5,13], they translate the genome

to color-space, and directly compare to the color-space read. The

complexity of the color-space representation makes the identifica-

tion of complex variation such as adjacent SNPs and short indels

challenging or impossible with these tools.

In this paper we develop algorithms for the mapping of short

reads to highly polymorphic genomes and methods for the analysis

of the mappings. We demonstrate an algorithm for mapping short

reads in the presence of a large amount of polymorphism. By

employing a fast k-mer hashing step and a simple, very efficient

implementation of the Smith-Waterman algorithm, our method

conducts a full alignment of each read to all areas of the genome

that are potentially homologous. Secondly, we introduce a novel,

specialized algorithm for mapping di-base (color-space) reads,

which allows for an accurate, non-heuristic alignment of AB

SOLiD reads to a reference genome. Finally, we introduce

methodology for evaluating the accuracy of discovered alignments.

Because a read may match the genome in several locations with

variable amounts of polymorphism, we develop a statistical

method for scoring the hits, allowing for the selection of the most

probable variants, and filtering of false positives.

Our methods are implemented as part of SHRiMP: the SHort

Read Mapping Package. To demonstrate the usefulness of

SHRiMP we re-sequenced a Japanese Ciona savignyi genome on

the SOLiD platform. Preliminary estimates obtained in the course

of sequencing the reference genome indicate that the SNP

heterozygosity is 4.5%, whereas indel heterozygosity is 16.6%.

This species represents the most challenging known test case for

the detection of polymorphisms with short read technologies. We

aligned the SOLiD reads of the Japanese individual to the C.

savignyi reference genome using both SHRiMP and AB’s read

mapper. SHRiMP is able to identify 5-fold more SNPs than AB’s

mapper, while also capturing 70,000 indel variants.

Results/Discussion

This section is organized as follows: we begin with three

methodological sections, in which we first present an overview of

the algorithms used in SHRiMP for mapping short reads, explain

our specialized algorithm for alignment of di-base sequencing (AB

SOLiD) data, and present our framework for computing p-values

and other statistics for alignment quality. The data flow for these

methods is illustrated in Figure 1. In the last two subsections we

will first show the application of SHRiMP to the resequencing of

Ciona savignyi using the AB SOLiD sequencing technology and

present results on the accuracy of the SHRiMP tool on simulated

data.

Read Mapping Algorithm
The SHRiMP algorithm draws upon three recent developments

in the field of sequence alignment: q-gram filter approaches,

introduced by Rasmussen et al [14]; spaced seeds, introduced by

Califano and Rigoutsos [15] and popularized by the PatterHunter

family of tools [7,10]; and specialized vector computing hardware

to speed up the Smith-Waterman Algorithm [16–18] to rapidly

find the likely locations for the reads on the genome. Once these

locations are identified, we conduct a thorough, Smith-Waterman-

based algorithm to rigorously evaluate the alignments. In this

section we will provide a brief exposition of the methods used to

align short reads in SHRiMP (a more thorough description of each

of these steps is in Methods).

Spaced seeds. Most heuristic methods for local alignment

rely on the identification of seeds – short exact matches between

the two sequences. The advantage of using exact matches is that

they are easy to find using hash tables, suffix arrays, or related

techniques. While classically seeds have been contiguous matches,

more recently ‘‘spaced’’ seeds, where predetermined positions in the

read are allowed not to match, have been shown to be more

sensitive. Spaced seeds are often represented as a string of 1 s and

0 s, where 1 s indicate positions that must match, while 0 s

indicate positions that may mismatch. We refer to the length or span

of the seed as the total length of the string, and the weight of the

seed as the number of 1 s in the string. For example, the seed

‘‘11100111’’ requires matches at positions 1–3 and 6–8, and has

length 8 and weight 6. Because seeds with such small weight match

extremely often, we require multiple seeds to match within a

region before it is further considered, using a technique called Q-

gram filtering.

Q-gram filters. While most older local alignment tools, such

as BLAST, use a single matching seed to start a thorough

comparison of the strings around the seed, more recently

Rassmussen et al [14] introduced the use of q-gram filters,

where multiple seeds are used to determine if a good match exists.

This idea is also used in SHRiMP where we require a pre-

determined number of seeds from a read to match within a

window of the genome before we conduct a thorough comparison.

Vectorized Smith-Waterman. If a particular read has the

required number of seeds matching to a window of the genome we

conduct a rapid alignment of the two regions to verify the

similarity. This alignment is done using the classical Smith-

Waterman algorithm [19], implemented using specialized

‘‘vector’’ instructions that are part of all modern CPUs. In order

to speed up this stage we compute just the score of the optimal

alignment, and not the alignment itself. For every read we store

Author Summary

Next Generation Sequencing (NGS) technologies are
revolutionizing the way biologists acquire and analyze
genomic data. NGS machines, such as Illumina/Solexa and
AB SOLiD, are able to sequence genomes more cheaply by
200-fold than previous methods. One of the main
application areas of NGS technologies is the discovery of
genomic variation within a given species. The first step in
discovering this variation is the mapping of reads
sequenced from a donor individual to a known (‘‘refer-
ence’’) genome. Differences between the reference and
the reads are indicative either of polymorphisms, or of
sequencing errors. Since the introduction of NGS technol-
ogies, many methods have been devised for mapping
reads to reference genomes. However, these algorithms
often sacrifice sensitivity for fast running time. While they
are successful at mapping reads from organisms that
exhibit low polymorphism rates, they do not perform well
at mapping reads from highly polymorphic organisms. We
present a novel read mapping method, SHRiMP, that can
handle much greater amounts of polymorphism. Using
Ciona savignyi as our target organism, we demonstrate
that our method discovers significantly more variation
than other methods. Additionally, we develop color-space
extensions to classical alignment algorithms, allowing us
to map color-space, or ‘‘dibase’’, reads generated by AB
SOLiD sequencers.

SHRiMP: Mapping Short Reads
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the locations of top hits, sorted by their score. The number of top

hits to store is a parameter.

Final alignment. After we finish aligning all of the reads to

all of the potential locations, we conduct a final, full alignment of

each read to all of the top hits. This final alignment stage differs

depending on the specifics of the sequencing technology. Within

SHRiMP we have implemented separate final alignment

modules for Illumina/Solexa data (this is done with the regular

Smith-Waterman algorithm) and for color-space (di-base) data

produced by the AB SOLiD instrument (described in the next

section). Additionally we have an experimental module for

alignment of two-pass sequencing data, where two reads are

generated from every genomic location, which is described

elsewhere [20].

Algorithm for Color-space Alignment
The AB SOLiD sequencing technology introduced a novel

dibase sequencing technique, which reads overlapping pairs of letters

and generates one of four colors (typically labelled 0–3) at every

stage. Each base is interrogated twice: first as the right nucleotide of a

pair, and then as the left one. The exact combinations of letters and

the colors they generate are shown in Figure 2A. The sequencing

code can be thought of as a finite state automaton (FSA), in which

each previous letter is a state and each color code is a transition to the

next letter state. This automaton is demonstrated in Figure 2B. It is

notable that the sequence of colors is insufficient to reconstruct the

DNA sequence, as reconstruction requires knowledge of the first

letter of the sequence (or the last letter of the primer, which is fixed

for a single run of the technology).

Figure 1. Data flow and processing within the SHRiMP. Candidate mapping locations are first discovered by the seed scanner and then
validated by the vectorized Smith-Waterman algorithm, computing only a score. Top scoring hits are then fully aligned by a platform-specific
algorithm (i.e. letter-space for Solexa data and color-space for SOLiD data). Statistical confidence for the final mappings are then computed using the
PROBCALC utility.
doi:10.1371/journal.pcbi.1000386.g001

Figure 2. Two representations of the color-space (dibase) encoding used by the AB SOLiD sequencing system. A: The standard
representation, with the first and second letter of the queried pair along the horizontal and vertical axes, respectively. B: The equivalent Finite State
Automaton representation, with edges labelled with the readouts and nodes corresponding to the basepairs of the underlying genome.
doi:10.1371/journal.pcbi.1000386.g002

SHRiMP: Mapping Short Reads
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The AB SOLiD sequencing technology has the remarkable

property of differentiating between sequencing errors and biological

SNPs (under the assumption that the reference genome has no

sequencing errors): a SNP changes two adjacent readouts of the

color-space code, while a sequencing error is unlikely to happen at

two adjacent positions by chance (the technology does not sequence

adjacent letters at adjacent time points). At the same time, however,

the color-space code introduces certain complexities.

Let us consider a comparison done by first translating the color-

space read code into the letter-space sequence. Notice that a single

sequencing error would cause every position after the place of

error to be mistranslated (Figure 3B). Consequently, most

approaches have translated the letter-space genome into the

corresponding color code. However, this is problematic: since the

color-coding of every dibase pairing is not unique, a string of

colors can represent one of several DNA strings, depending on the

preceding base pair. For example, a string of zeroes could be

translated as a poly-A, poly-C, poly-G or poly-T string.

There is an additional drawback to translating the genome into

color-space code: a sequence of matches and mismatches in color-

space does not map uniquely into letter-space similarity. For

example, a single SNP results in two sequential color-space

mismatches. However, given two consecutive colors, there are 9

possible ways to generate two mismatches. Of these, only 3

correspond to a SNP, while the rest lead to DNA strings that

completely differ from the reference. This is illustrated in

Figure 3D.

We propose an alternate approach. Our key observation is that

while a color-space error causes the rest of the sequence to be

mistranslated, the genome will match one of the other three

possible translations. This is illustrated in Figure 4C. Consequent-

ly, we adapt the classical dynamic programming algorithm to

simultaneously align the genome to all four possible translations of

the read, allowing the algorithm to move from one translation to

another by paying a ‘‘crossover’’, or sequencing error penalty. If

one wishes for a probabilistic interpretation of the algorithm, one

can consider the FSA in Figure 2B to be a Hidden Markov Model,

where the letter is the hidden state, and the color-space sequence is

the output of the model. By taking the cross product of this HMM

with the standard pair-HMM associated with the Smith-

Waterman algorithm, we can allow all of the typical alignment

parameters, including the error penalty, to be probabilistically

motivated as the log of the probability of the event, and trained

using the Expectation-Maximization algorithm. It is notable that

our approach handles not only matches, mismatches, and

sequencing errors, but also indels. Because the sequences are

aligned in letter-space (to be precise, they are aligned and

translated simultaneously), indels can be penalized using the

standard affine gap penalty with no further modification of the

algorithm.

Figure 3. Various mutation and error events, and their effects on the color-code readouts. The reference genome is labeled G and the
read R. A: A perfect alignment; B: In case of a sequencing error (the 2 should have been read as a 0) the rest of the read no longer matches the
genome in letter-space; C: In case of a SNP two adjacent colors do not match the genome, but all subsequent letters do match. However, D: only 3 of
the 9 possible color changes represent valid SNPs; E: the rules for deciding which insertion and deletion events are valid are even more complex, as
indels can also change adjacent color readouts.
doi:10.1371/journal.pcbi.1000386.g003

Figure 4. Color-space (dibase) sequence alignment. A: The Dynamic Programming (DP) representation, B: recurrences, and C: alignment of a
letter space sequence to a color-space read with a sequencing error. Within the DP matrix we simultaneously align all of the four possible translations
(vertical) to the reference genome (horizontal); however the alignment can transition between translations by paying the crossover penalty. This is
illustrated by the fourth recurrence, where the third index (k) corresponds to the translation currently being used. In the alignment (C) after the
sequencing error, the original translation of the read (starting from a T) no longer matches, but a different one (starting from a C) does.
doi:10.1371/journal.pcbi.1000386.g004

SHRiMP: Mapping Short Reads
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In the SHRiMP algorithm, we only apply the special color-

space Smith-Waterman algorithm in the final stage. For the initial

stages, we convert the genome from letter-space to color-space,

and search for k-mer matches as well as perform vectorized Smith-

Waterman strictly in color-space. In order to better incorporate

SNPs in color-space data, we use a spaced seed that allows for two

adjacent mismatching colors between the read and the reference

genome.

Computing Statistics for Reads and Mate-pairs
Once all of the reads are mapped, for every read and mate-pair

we compute mapping confidence statistics. Initially these are

computed for each read; however, they are then combined to

compute likelihoods of accidental matches for mate-pairs.

Computing statistics for single reads. While a very

thorough statistical theory for local alignments has been

established [21], this theory assumes the comparison of infinite

length strings, and hence is inappropriate for evaluating

alignments of very short reads to a reference genome. Instead,

we have designed confidence statistics that explicitly model short

reads, and allow for the computation of confidences in the

presence of short insertions and deletions. We estimate the

confidence in the possible mappings of each read by using the

following statistics (calculated by the PROBCALC program):

pchance – the probability that the hit occurred by chance – and

pgenome – the probability that the hit was generated by the genome,

given the observed rates of the various evolutionary and error

events. For example, a good alignment would have a low pchance

(close to 0) and a very high pgenome (close to 1). In this section we

briefly expand on these two concepts, give them mathematical

definitions, and merge them to formulate an overall alignment

quality measurement. A detailed description is in Methods

(Computing Statistics: pchance and pgenome).

The pchance of a hit is the probability that the read will align with

as good a score to a genome that has the same length, but random

nucleotide composition with equal base frequencies (that is, the

read will align as well by chance). In order to compute this, we count

all of the possible k-mers with an equal number of changes as

observed in the hit, and we call this number Z. For example, if we

only have substitutions in our alignment (that is, no indels) and an

alignment length of r, then Zsubs~
r

subs

� �
3subs gives the number

of unique strings to which the read can align with the specified

number of substitutions. A more detailed discussion on the

construction of Z, especially for the more complex Z count for

indels, appears in Computing Statistics: pchance and pgenome. The

term Z=4r compares the number of unique strings with the given

score (when aligned to the read) compared to all possible unique

reads of length r, and gives us the probability that a read matches

by chance at any location. To compute the pchance statistic over the

entire length of the genome, we assume independence of positions,

and evaluate the likelihood that there is a match at any of the

positions:

pchance~1{ 1{cf rð Þ:Z

4r

� �2:g

ð1Þ

where r is the alignment length, g is the genome length (2

corresponds to the two strands), and cf rð Þ is a correction factor for

mappings that are shorter than the length of the read, detailed in

Computing Statistics: pchance and pgenome.

Our second computation, pgenome, defines the probability that a

hit was generated by the genome via common evolutionary events

characteristic of the genome - i.e. substitutions, indels and errors.

First, we estimate the rate for each type of event via bootstrapping.

Then, we compute the likelihood that the read will differ by as

many events from the genome via a binomial probability that uses

this estimation and our observations for the events in the current

hit. For example, when considering the number of errors, we first

estimate the average error rate Ce over all hits, and then we can

define the probability that the current read was created via this

many errors by

pe&
r

ne

� �
Cne

e 1{Ceð Þr{ne ð2Þ

where ne is the number of observed errors in the current hit, and r

is the alignment length. We can similarly define psubs and pindel for

substituion and indel events, respectively. Finally, we can form

pgenome as

pgenome~pepsubspindel : ð3Þ

More specifics about the mathematical formulations are available

in Computing Statistics: pchance and pgenome.

Finally, we define the quality measurement of this hit as the

normalized odds, i.e. a probability odds ratio pgenome
pchance

normalized over

all of the hits of this read:

normoddshit~
pgenomehit=pchancehitP
Vhits pgenome=pchance

: ð4Þ

This value represents a relative credibility of this hit compared to

the others for a given read: A single hit would have a normalized

odds score of 1, two equally good hits will both have normodds

of 0.5 for both, while for an exact match and a more distant one,

the former will have a normodds close to 1, and the latter close

to 0.

Computing statistics for mate-pairs. SHRiMP also

assigns mate-pair confidence values (akin to the read

confidence values predicted by probcalc) by combining the

confidence values for individual reads with emprically observed

distributions of insert sizes in the library. We compute the

distribution of the mapped distances (distance between the

mapped positions of the two reads) d for all mate-pairs, and save

the average distance m (see Computing Mate Pairs with Statistics for

more details). Then, for each mate-pair mapping, we assign a

pchance, pgenome and normodds score, similar in meaning to

those used in the previous section:

N pchance for mate-pairs: assume pc gð Þ is the pchance of a

read that takes g, the length of the genome, as a parameter.

Now, the pchance of a mate-pair read_1, read_2 is defined as

pc~pc,read 1 gð Þ|pc,read 2 m{dz1j jð Þ ð5Þ

where g is the length of the genome used in probcalc, m is the

average mate-pair distance, and d is the distance of the current

mate-pair. That is, we ask the question: what is the probability

that a read as good as the first read would align anywhere in

the genome by chance, and that a second read will align by

chance within the observed mate-pair distance?

N pgenome for mate-pairs: assume pg is the pgenome of a

read. We can compute the pgenome of each mate-pair by

pg~pg,1|pg,2|T ð6Þ

SHRiMP: Mapping Short Reads
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where T is the tail probability of the mate-pair distance

distribution we computed (both tails, starting at the m{dij j
cutoff). Therefore, for a mate-pair with the distance really close

to m, the pgenome will be close to pg~pg,1|pg,2, otherwise, it

will be penalized. Thus, following the difinition of pgenome,

we will get a lower probability that the mate-pair was

generated from the genome if the mate-pair distance is too

big or too small compared to the average.

A discussion of the implementation steps are included in the

SHRiMP README, and a more detailed discussion of the

statistical values is included in Computing Mate Pairs with Statistics.

Validation
In our experiments, we used SHRiMP to compare 135 million

35 bp reads from a tunicate Ciona savignyi to the reference genome

[22]. The fragments were sequenced from sheared genomic DNA

with an AB SOLiD 1.0 instrument. In the following sections we

first describe the running time of SHRiMP at different parameter

settings, and then evaluate the quality of our alignments compared

to the Applied Biosystem’s read mapping program.

Running time analysis. One of the advantages of the

SHRiMP algorithm is the seamless parallelism provided by the

fact that we can simply subdivide the reads into separate

computational jobs, without affecting the results. This allows us

to take full advantage of compute clusters regardless of the amount

of memory available at each machine. We took a random subset

consisting of 500,000 35 bp C. Savignyi reads and mapped them to

the genome. The full read dataset and reference genome are

available at http://compbio.cs.toronto.edu/shrimp/misc/

paper_ciona_reads_35mer.csfasta.tar.bz2 and http://mendel.

stanford.edu/sidowlab/CionaData/CionaSavignyi_v.2.1.fa.zip,

respectively.

The running times at several parameter settings are summarized

in Table 1. Note that from smallest to largest seed weight, we see a

nearly two orders of magnitude difference in total run time, most

of which is concentrated in the vectorized Smith-Waterman filter,

and, to a lesser degree, in the spaced k-mer scan. The final, full

color-space Smith-Waterman alignment took approximately

constant time across all runs, as the average number of top

scoring hits that reached the stage was nearly constant

(24.4960.5); however, proportional time increased as the filter

stages became more efficient. While SHRiMP is somewhat slower

than other short read mapping programs, it allows both for micro-

indels in the alignments and a proper color-space alignment

algorithm. SHRiMP is also very configurable in terms of sensitivity

and running time trade-offs.

Ciona savignyi polymorphism analysis. The primary

strength of SHRiMP and other mapping methods based on

Smith-Waterman alignments is the ability to map reads containing

complex patterns of sequence variation, including insertions,

deletions and clusters of closely-space SNPs. Mappers that

exclusively produce ungapped alignments can only find SNPs.

Furthermore they are more likely to miss dense clusters of SNPs,

since the overlapping reads contain many mismatches, and SNPs

adjacent to an indel, since only a small fraction of the overlapping

reads contain just the SNP. Finally, since SHRiMP produces local

alignments, it can map a read even if either end overlaps a large

indel or structural variant.

To evaluate the effectiveness of SHRiMP for detecting sequence

variation we used it to find polymorphisms in a resequenced Ciona

savignyi individual. C. savignyi is a challenging test case because of its

very high polymorphism rate: the SNP heterozygosity is 4.5% and

the average per-base indel heterozygosity is 16.6% (indel rate of

0.0072 events per base) [11]. We therefore expect that even short

reads will frequently span multiple variant sites.

We used the AB SOLiD sequencing platform to generate 135

million reads of length 35 bp from a single C. savignyi individual.

We then aligned those reads to the reference genome [22] with

SHRiMP using lenient scoring thresholds so that reads with

multiple variant sites could be mapped, and we selected the single

highest-scoring alignment for each read (see Methods). We

discarded alignments in repetitive sequence by removing reads

with multiple similarly scoring alignments (‘‘non-unique’’ match-

es). The mapping took 48 hours using 250 2.33 GHz cores.

Table 2 summarizes the mapping results.

The alignment data contains noise due to two types of errors:

sequencing errors and chance alignments. Chance alignments are

a significant problem for short reads, particularly with the low

alignment score thresholds necessary for mapping reads containing

significant variation. Reads containing both sequence variation

and sequencing errors are even more likely to map to the wrong

position in the reference sequence. To combat the high false-

positive rate, for the remaining analysis we focused on a high-

quality subset of the data consisting of sequence variants supported

by at least four independent reads.

Across the genome SHRiMP detected 2,119,720 SNPs

supported by at least four reads. For comparison, we used the

SOLiD aligner provided by Applied Biosystems to map the reads

to the genome with up to three mismatches, where each mismatch

can be either a single color-space mismatch or a pair of adjacent

mismatches consistent with the presence of a SNP. Compared to

the SOLiD mapper, SHRiMP mapped 4.2 times as many reads

and found 5.5 times as many SNPs. The AB mapper, however,

was a lot faster, requiring 255 CPU hours to complete the

alignments, or roughly 506 faster than SHRiMP. While it is

possible to run the mapper with greater sensitivity, allowing for

more errors and SNPs, and thus more mapped reads, doing so

would surrender much of the runtime advantage and still not

overcome its fundamental inability to detect insertion and deletion

Table 1. Running time of SHRiMP for mapping 500,000 35 bp SOLiD C. savignyi reads to the 180 Mb reference genome on a single
Core2 2.66 GHz processor.

K-mer (7,8) (8,9) (9,10) (10,11) (11,12) (12,13)

% K-mer Scan 10.1% 16.5% 18.9% 13.4% 9.8% 7.4%

% Vectorized SW Filter 88.8% 75.4% 49.8% 30.2% 20.1% 14.9%

% Full SW Alignment 1.1% 8.0% 30.7% 55.5% 68.8% 76.2%

Time 1 d21 h34 m 6 h18 m 1 h36 m 50 m28 s 37 m52 s 32 m32 s

In all cases, two k-mer hits were required within a 41 bp window to invoke the vectorized Smith-Waterman filter.
doi:10.1371/journal.pcbi.1000386.t001
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polymorphisms. SHRiMP, on the other hand, is capable of

handling indels, and detected tens of thousands of them.

SHRiMP detected 51,592 deletions and 19,970 insertions of size

1–5 bp. The observed ratio of 2.56between insertions and deletions

for the C. savignyi data is biased by the construction of the reference

genome – whenever the two haplomes differed, the reference agreed

with the longer one. While there is a smaller inherent bias against

detecting insertions (reads containing nucleotides not present in the

reference) compared to deletions because a read spanning a deletion

only incurs a gap penalty whereas an insertion both incurs a gap

penalty and has fewer bases that match the reference. For simulated

data (see next section) this bias was only ,5% for single basepair

indels (data not shown). The size distribution of the detected indels

(Figure 5A) drops more rapidly with length than expected [11], but

this detection bias against longer indels is not surprising since longer

indels have lower alignments scores.

Mapping C. savignyi sequence is challenging primarily because

the population contains so much variation. Figure 5B shows the

high frequency of closely spaced SNPs detected by SHRiMP.

Mappers that can only detect nearly exact matches fail to map the

reads overlapping these dense SNP clusters. Note that even though

the reads are generated from the whole genome, a significant

fraction of the non-repetitive C. savignyi genome is coding, making

it is possible to see the typical three-periodicity of SNPs in coding

regions. Furthermore SHRiMP recovers microindels, which are

completely invisible to ungapped aligners and yet account for a

significant fraction of sequence variation in C. savignyi.

Analysis of simulated data. In order to further validate the

accuracy of the SHRiMP alignments we have designed simulated

experiments, where we sampled random locations from the C.

savignyi genome, introduced polymorphisms (SNPs and indels) at

the rates previously observed in the C. savignyi genome [22],

added sequencing errors at rates observed in our C. savignyi dataset

(2–7%, depending on the position in the read), and mapped the

reads back to the original genome. Each sampled read could have

multiple SNPs and indels, though due to the low indel rate only a

small fraction of the reads had multiple indels. We mapped the

reads with SHRiMP and postprocessed with PROBCALC

Table 2. Mapping results for 135 million 35 bp SOLiD reads from Ciona savignyi using SHRiMP and the SOLiD mapper provided by
Applied Biosystems.

SHRiMP SOLiD Mapper

Uniquely-Mapped Reads 51,856,904 (38.5%) 15,268,771 (11.3%)

Non-Uniquely-Mapped Reads 64,252,692 (47.7%) 12,602,387 (9.4%)

Unmapped Reads 18,657,736 (13.8%) 106,896,174 (79.3%)

Average Coverage (Uniquely-Mapped Reads) 10.3 3.0

Median Coverage (Uniquely-Mapped Reads) 8 1

SNPs 2,119,720 383,099

Deletions (1–5 bp) 51,592 0

Insertions (1–5 bp) 19,970 0

Non-uniquely-mapped reads have at least two alignments, none of which is significantly better than the others (see Methods). SNPs and indels have at least four
supporting reads.
doi:10.1371/journal.pcbi.1000386.t002

Figure 5. Size distribution of indels. (A) and distance between adjacent SNPs (B) detected by SHRiMP. The distance between adjacent SNPs
shows a clear 3-periodicity, due to the fact that a significant fraction of the non-repetitive C. savignyi genome is coding.
doi:10.1371/journal.pcbi.1000386.g005
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(pchance,0.001). Considering only those reads that had a unique

top hit, we computed the precision – the fraction of reads for

which this unique hit was correct, and recall – the fraction of all

reads that had a unique, correct hit. Table 3 shows the results of

this analysis. For each read, we classified it based on the number of

SNPs and the maximum indel length, and computed precision and

recall for each class. With such polymorphism, we can expect the

average read to have approximately 1.5 SNPs and 1.9 errors.

SHRiMP was able to accurately map 76% of reads with 2 SNPs

and 0 indels, at 84% precision, and nearly half of all reads with 2

SNPs and 3 bp indels at 74% precision.

Methods

Details of the SHRiMP Algorithm
The algorithm starts with a rapid k-mer hashing step to localize

potential areas of similarity between the reads and the genome. All

of the spaced k-mers present in the reads are indexed. Then for

each k-mer in the genome, all of the matches of that particular k-

mer among the reads are found. If a particular read has as many

or more than a specified number of k-mer matches within a given

window of the genome, we execute a vectorized Smith-Waterman

step, described in the next section, to score and validate the

similarity. The top n highest-scoring regions are retained, filtered

through a full backtracking Smith-Waterman algorithm, and

output at the end of the program if their final scores meet a

specified threshold. The SHRiMP algorithm is summarized in

Figure 6.

Spaced seed filter. We build an index of all spaced k-mers in

the reads, and query this index with the genome. Our approach

was taken primarily for simplicity: our algorithm can rapidly

isolate which reads have several k-mer matches within a small

window by maintaining a simple circular buffer of recent positions

in the genome that matched the read. Since our targeted compute

platform is a cluster of batch processing machines, indexing the

reads means that we can easily control memory usage and

parallelism by varying the read input size and splitting the read set

accordingly. Data is only loaded at program invocation; we do not

stream in new reads from disk as the algorithm runs.

Vectorized Smith-Waterman implementation. The

SHRiMP approach relies on a rather liberal initial filtering step,

followed by a rigorous, but very fast Smith-Waterman alignment

process. By maximizing the speed of the Smith-Waterman

comparison, we are permitted to let the algorithm test a larger

number of potential regions.

Most contemporary mobile, desktop and server-class processors

have special vector execution units, which perform multiple

simultaneous data operations in a single instruction. For example,

it is possible to add the eight individual, 16-bit elements of two

128-bit vectors in one machine instruction. Over the past decade,

several methods have been devised to significantly enhance the

execution speed of Smith-Waterman-type algorithms by paralle-

lizing the computation of several cells of the dynamic program-

ming matrix. The simplest such implementation computes the

Table 3. Color-space mapping accuracy of SHRiMP.

Number of SNPs

0 1 2 3 4

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

0 85.7 83.2 84.8 81.3 83.5 76.6 80.6 65.2 75.6 46.8

Max 1 83.8 79.4 82.2 74.0 79.4 62.6 72.8 43.2 63.1 24.7

Indel 2 83.2 77.1 80.8 69.6 77.9 56.6 68.2 36.4 56.4 18.9

Length 3 80.7 71.0 79.6 64.2 73.6 48.3 66.5 31.5 57.1 16.6

4 78.0 65.4 76.5 56.1 71.4 41.9 60.6 23.9 50.3 12.4

5 75.9 58.9 73.0 48.1 69.7 36.6 57.0 21.3 46.0 12.7

Each cell shows the precision and recall for mapping simulated reads with
varying amounts of polymorphism. SHRiMP was able to accurately map .46%
of all reads with either 4 SNPs or 5 bp indels, despite the large number of
sequencing errors in our dataset (up to 7% towards the end of the read).
doi:10.1371/journal.pcbi.1000386.t003

Figure 6. SHRiMP Hashing technique & Vectorized Alignment algorithm. A: Overview of the k-mer filtering stage within SHRiMP: A window
is moved along the genome. If a particular read has a preset number of k-mers within the window the vectorized Smith-Waterman stage is run to
align the read to the genome. B: Schematic of the vectorized-implementation of the Needleman-Wunsch algorithm. The red cells are the vector
being computed, on the basis of the vectors computed in the last step (yellow) and the next-to-last (blue). The match/mismatch vector for the
diagonal is determined by comparing one sequence with the other one reversed (indicated by the red arrow below). To obtain the set of match/
mismatch positions for the next diagonal, the lower sequence needs to be shifted to the right.
doi:10.1371/journal.pcbi.1000386.g006
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dynamic programming matrix using diagonals. Since each cell of

the matrix can be computed once the cell immediately above,

immediately to the left, and at the upper-left corner have been

computed, one can compute each successive diagonal once the two

prior diagonals have been completed. In this way, the problem can

be parallelized across the length of supported diagonals (see

Figure 6B). In most cases, this is a factor of 4 to 16. The only

portion of such a ‘Wozniak’ approach that cannot be parallelized

is the identification of match/mismatch scores for every cell of the

matrix, which has to be done sequentially. These operations are

expensive, necessitating 24 independent data loads for 8-cell

vectors, and become increasingly problematic as vector sizes

increase. Because memory loads cannot be ‘vectorized’, when the

parallelism grows, so does the number of lookups. For example,

with 16-cell vectors, the number of data loads doubles to 48.

We propose an alternate method, where the running time of the

fully vectorized algorithm is independent of the number of

matches and mismatches in the matrix, though it only supports

fixed match/mismatch scores (rather than full scoring matrices).

Our key observation is that it is possible to completely parallelize

the score computation for every diagonal. Figure 6B demonstrates

the essence of our algorithm: by storing one of the sequences

backwards, we can align them in such a way that a small number

of logical instructions obtain the positions of matches and

mismatches for a given diagonal. We then construct a vector of

match and mismatch scores for every cell of the diagonal without

having to use expensive and un-vectorizable load instructions or a

pre-compute a ‘query profile’. In our tests, using a diagonal

approach with our scoring scheme surpasses the performance of

Wozniak’s original algorithm and performs on par with Farrar’s

method [17]. Table 4 summarizes these results. The advantage of

our method over Farrar’s is that it is independent of the scores

used for matches/mismatches/gaps, and it will scale better with

larger vector sizes. A disadvantage is that we cannot support full

scoring matrices and are restricted to match/mismatch scores,

though this is less important for DNA alignment. Additionally,

Farrar’s method is much faster for large databases where most of

the sequence is dissimilar to the query. However, this is never the

case for SHRiMP as the seed scan phase targets only small, similar

regions for dynamic programming. In these cases our algorithms

perform similarly.

Final pass. The vectorized Smith-Waterman approach

described above is used to rapidly determine if the read has a

strong match to the local genomic sequence. The locations of the

top n hits for each read are stored in a heap data structure, which

is updated after every invocation of the vectorized Smith-

Waterman algorithm if the heap is not full, or if the attained

score is greater than or equal to the lowest scoring top hit. Once

the whole genome is processed, highest scoring n matches are re-

aligned using the appropriate full color- or letter-space Smith-

Waterman algorithm. This is necessary, as the vectorized Smith-

Waterman algorithm described above only computes the

maximum score of an alignment, not the traceback, as this

would require a much more complicated and costly

implementation. Instead, at most only the top n alignments for

each read are re-aligned in the final step.

Computing Statistics: pchance and pgenome
In Computing Statistics for Single Reads, we briefly introduced the

concepts of the pchance, pgenome and normalized odds of a hit. In this

section we expand on the details regarding the construction of

pchance and pgenome. In these formulas we make use the following

definitions:

N g is the genome length

N r is the alignment length (note this may be different from the

read length, which is constant)

N subs is the number of substitutions (mismatches) in our

alignment

N ins is the number of nucleotide insertions in our alignment,

where the genome is the ‘‘original’’ sequence. For example, if

the genome is AC-G and a read is ACTG, there is an insertion

of a T.

N dels is the number of nucleotide deletions in our alignment.

For example, if the genome is ACTG and a read is A-TG,

there is a deletion of a C.

N insev is the number of insertion events (for example, for a single

insertion of length 3 we have insev~1 and ins~3.) delev is

similar.

N insn: following the previous definition, insev! will describe the

number of permutations of insertion events. To determine the

number of distinguishable permutations, we need to first look at

the frequency of insertion events of a certain size,

frequencyinsev sizeð Þ. For example, is we have 3 insertions of

size 2, we need to divide the permutations by

frequencyinsev 2ð Þ!~3!. Therefore, the distinguishable permuta-

tions of insertion events can be written as:

insev!

Pi~insevsizes
frequencyinsev size~ið Þ!ð Þ

Below, we refer to this denominator term

Pi~insevsizes
frequencyinsev size~ið Þ!ð Þ as insn. We similarly define

deln.

N P n,kð Þ describes the number of ways to assign n indistinguish-

able objects in k indistinguishable bins, which is recursively

defined by P n,kð Þ~
Pk

i~1 P n{k,ið Þ with P n,nð Þ~1 and

P n,1ð Þ~1.

pchance. We begin with the mathematical formulation of

pchance (defined above):

pc~1{ 1{cf rð Þ:Z

4r

� �2:g

; ð7Þ

where, as described before, Z=4r is the number of possible unique

Table 4. Performance (in millions of cells per second) of the
various Smith-Waterman implementations, including a regular
implementation (not vectorized), Wozniak’s diagonal
implementation with memory lookups, Farrar’s method and
our diagonal approach without score lookups.

Processor type Unvectorized Wozniak Farrar SHRiMP

Xeon 97 261 335 338

Core 2 105 285 533 537

We inserted each into SHRiMP, and used SHRiMP to align 50 thousand reads to
a reference genome with default parameters. The improvements of the Core 2
architecture for vectored instructions lead to a significant speedup for our
approach and Farrar’s, while Wozniak’s algorithm slight improvement is due to
the slow match/mismatch lookups.
doi:10.1371/journal.pcbi.1000386.t004
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sequences with the given edit distance as a fraction of all possible

unique reads of length r. Thus, Z=4r gives us the probability that

the current read has aligned by chance to a random genome of the

size of a read. To this term, we add a correction factor of

cf rð Þ~ readsize{rz1ð Þ which accounts for all the possible places

the alignment of size r might match. For example, if the readsize is

25 and we have a match of size 22, we should count Z=4r for every

position where this match could be found, that is 25222+1 = 4.

Finally, to get the probability that the current read has aligned by

chance to a random genome of size g (instead of size r), we get

formula (7).

The factor that lies at the core of this calculation is Z, the

number of possible unique sequences that would align to the read

with the given edit distance. We have shown the definition of

Zsubs, which computes Z when there are no indels in the

alignment:

Zsubs~
r

subs

� �
3subs: ð8Þ

However, the calculation of the number of references to which a

read will map with a particular indel count, Zindels, depends on the

sequence of that read and is significantly more complicated. We define

a lower and upper bound on Z in this case: a lower bound (least

number of unique sequences) occurs when the current read is one

repeated nucleotide, for example [AAAAAA], and the higher bound

occurs with the most change in nearby nucleotides, say [ACGTAC].

In the former case, we need to look at the deletion events from the

genome to this read, consider all the combinations of that number of

deletion events and deleted nucleotides, as well as all the places where

these combinations may occur. This gives the formula

Zlower~
delev!

deln

� �
P dels,delevð Þ

rzdels{ins

dels

� �
3dels: ð9Þ

Looking for the upper bound, we note that the places and

combinations of insertions also matters in generating unique

sequences, therefore giving us two extra terms involving insev

Zupper~
insev!

insn

� �
r

insev

� �
Zlower ð10Þ

~
insev!

insn

� �
r

insev

� �
delev!

deln
P dels,delevð Þ

rzdels{ins

dels

� �
3dels: ð11Þ

In order to estimate the correct value for Zindels, we estimated

the average complexity of the reads in our dataset (i.e., between

the simplest [AAAAA…] and the most complex [ACG-

TACGT…]). And have found that the mean observed Zindels

could be accurately estimated by

Zindels&
1

2
ZlowerzZupper

� �
: ð12Þ

Finally, we can approximate the total Z as

Z&Zsubs
:Zindels: ð13Þ

pgenome. In Computing Statistics for Single Reads, we defined our

pgenome factor as pe
:psubs

:pindel , where

pe&
r

ne

� �
Ceð Þne 1{Ceð Þr{ne ð14Þ

with Ce the rate of event e (estimated via bootstrapping) and ne the

number of observed events of type e in the current alignment. We

wrote pe as an approximation because there are small corrections

to this formula for each probability that is part of pgenome. First,

for the error term pe, the number of sites that can support errors is

in fact one minus the read size, giving us

pe~
r{1

ne

� �
Ceð Þne 1{Ceð Þr{1{ne : ð15Þ

When considering substitutions, we can have changes at any of the

inner nucleotides, excluding erroneous sites:

psub~
r{2{ne

nsub

� �
Csubð Þnsub 1{Csubð Þr{1{ne{nsub : ð16Þ

As before, when we look at alignments that involve indels, the

formula becomes more complex. In the case of pgenome, we do not

have to consider the various placements of insertion or deletion

events, but we do have to consider, for fixed placements of events,

the various combinations of the total number of insertions and

deletions into a set number of events.

pindel~P indels,indelevð Þ
r{1

nindelev

 !

Cindelev
ð Þnindelev 1{Cindelev

ð Þr{1{nindelev :

ð17Þ

Computing mate pairs with statistics. In this section we

provide several details for the implementation, usage and statistics

of the matepair post-processing step introduced in Computing

Statistics for Mate-pairs. We define a good matepair mapping as a

mapping whose distance d (between the two reads) are smaller

than some chosen limit M, and for which the read mappings are

in a consistent orientation and strand(i.e. R+F+ or F2R2). First,

probcalc_mp will compute a matepair distance and standard

deviation by looking at all the connected forward and reverse

reads - all matepairs - and adding the distance of any matepair

with exactly one good mapping to a histogram. Optionally, one can

choose to use only unique good mappings, or only use a certain

number of mappings (say, the first 100,000) to speed up the

program.

Next, we call a matepair concordant if it has at least one good

mapping, and otherwise we call it discordant. Depending on the

task, probcalc_mp can output all concordant matepairs, or all

discordant matepairs. For each matepair mapping, probcalc_mp

will compute the pgenome and pchance, as introduced in

Computing Mate Pairs with Statistics.

Parameters
For the C. savignyi polymorphism analysis we ran SHRiMP with

the following parameters. We used the spaced seed ‘‘11110111’’

and required two hits per 40-base window to invoke the Smith-

Waterman algorithm. The Smith-Waterman scoring parameters

were set to +100 for a matching base, 290 for a mismatch, 2250

and 2100 to open and extend a gap respectively, and 2300 for a

crossover (sequencing error). The minimum Smith-Waterman

SHRiMP: Mapping Short Reads
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score thresholds were 1000 for the vectorized first pass and 1275

for the final alignment pass. We discarded alignments with pchance

less than 0.05, and to remove reads from known repetitive

sequence we required normodds to be at least 0.8.
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