
 Open access Proceedings Article DOI:10.1109/INFCOM.2003.1209216

SHRiNK: A method for scaleable performance prediction and efficient network
simulation — Source link

Rong Pan, Balaji Prabhakar, Konstantinos Psounis, Damon Wischik

Institutions: Stanford University

Published on: 09 Jul 2003 - International Conference on Computer Communications

Topics: Network simulation, Active queue management, Queueing theory, Network topology and Performance prediction

Related papers:

 Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED

 Fluid models and solutions for large-scale IP networks

 Random early detection gateways for congestion avoidance

 SHRiNK: a method for enabling scaleable performance prediction and efficient network simulation

 Modeling TCP throughput: a simple model and its empirical validation

Share this paper:

View more about this paper here: https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-
5fjkvlm1ev

https://typeset.io/
https://www.doi.org/10.1109/INFCOM.2003.1209216
https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-5fjkvlm1ev
https://typeset.io/authors/rong-pan-3qfnebrmrp
https://typeset.io/authors/balaji-prabhakar-1dt7hicj72
https://typeset.io/authors/konstantinos-psounis-1vpp3i6cmv
https://typeset.io/authors/damon-wischik-16ns8j2hnl
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/conferences/international-conference-on-computer-communications-145lolxb
https://typeset.io/topics/network-simulation-pgyi1wij
https://typeset.io/topics/active-queue-management-1s5cf2r7
https://typeset.io/topics/queueing-theory-33lgyn8z
https://typeset.io/topics/network-topology-3w57cbb3
https://typeset.io/topics/performance-prediction-3hbi2qio
https://typeset.io/papers/fluid-based-analysis-of-a-network-of-aqm-routers-supporting-lrd9p2phon
https://typeset.io/papers/fluid-models-and-solutions-for-large-scale-ip-networks-2ho0jtn9ns
https://typeset.io/papers/random-early-detection-gateways-for-congestion-avoidance-34o7r9dqub
https://typeset.io/papers/shrink-a-method-for-enabling-scaleable-performance-3adtbu2b19
https://typeset.io/papers/modeling-tcp-throughput-a-simple-model-and-its-empirical-1apeszzbnq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-5fjkvlm1ev
https://twitter.com/intent/tweet?text=SHRiNK:%20A%20method%20for%20scaleable%20performance%20prediction%20and%20efficient%20network%20simulation&url=https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-5fjkvlm1ev
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-5fjkvlm1ev
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-5fjkvlm1ev
https://typeset.io/papers/shrink-a-method-for-scaleable-performance-prediction-and-5fjkvlm1ev

SHRiNK: A method for scaleable performance prediction and efficient

network simulation

Rong Pan†, Balaji Prabhakar†, Konstantinos Psounis†, Damon Wischik‡

† Stanford Univerity, ‡ Cambridge University

Email: rong, balaji, kpsounis@stanford.edu, D.J.Wischik@statslab.cam.ac.uk

Abstract— In networks and in web-server farms, it is useful to
collect performance measurements, to monitor the state of the sys-
tem, and to perform simulations. However, the sheer volume of
traffic in large high-speed network systems makes it hard to mon-
itor their performance or to simulate them efficiently. And the
heterogeneity of the Internet means it is time-consuming and dif-
ficult to devise the traffic models and analytic tools which would
allow us to work with summary statistics.

We explore a method to side-step these problems by combining
sampling, modeling and simulation. Our hypothesis is this: if we
take a sample of the input traffic, and feed it into a suitably scaled
version of the system, we can extrapolate from the performance of
the scaled system to that of the original.

Our main findings are: When we scale an IP network which is
shared by TCP-like, UDP and web flows; and which is controlled
by a variety of active queue management schemes, then perfor-
mance measures such as queueing delay and drop probability are
left virtually unchanged. We show this in theory and in simula-
tions. This makes it possible to capture the performance of large
networks quite faithfully using smaller scale replicas.

I. INTRODUCTION

Measuring the performance of the Internet and predicting

its behavior under novel protocols and architectures are im-

portant research problems. These problems are made difficult

by the sheer size and heterogeneity of the Internet: it is very

hard to simulate large networks and to pinpoint aspects of al-

gorithms and protocols relevant to their behavior. This has

prompted work on traffic sampling [6], [7]. Sampling certainly

reduces the volume of data, although it can be hard to work

backwards—to infer the performance of the original system.

A direct way to measure and predict performance is with ex-

haustive simulation: If we record the primitive inputs to the

system, such as session arrival times and flow types, we can in

principle compute the full state of the system. Further, through

simulation we can test the behavior of the network under new

protocols and architectures. But such large-scale simulation re-

quires massive computing power.

Reduced-order models can go some way in reducing the bur-

den of simulation. In some cases [11], [26] one can reduce

the dimensionality of the data, for example by working with

traffic matrices rather than full traces, while retaining enough

information to estimate the state of the network. The trouble

is that this requires careful traffic characterization and model-

building. The heterogeneity of the Internet makes this time-

consuming and difficult, since each scenario might potentially

require a different new model.

In this paper we explore a way to reduce the computational

requirements of simulations and the cost of experiments, and

hence simplify network measurement and performance predic-

tion. We do this by combining simulations with sampling and

analysis. Our basic hypothesis, which we call SHRiNK (for

Small-scale Hi-fidelity Reproduction of Network Kinetics), is

this: if we take a sample of the traffic, and feed it into a suit-

ably scaled version of the system, we can extrapolate from the

performance of the scaled system to that of the original.
This has two benefits. First, by relying only on a sample

of the traffic, SHRiNK reduces the amount of data we need

to work with. Second, by using samples of actual traffic, it

short-cuts the traffic characterization and model-building pro-

cess while ensuring the relevance of the results.
This approach also presents challenges. At first sight, it ap-

pears optimistic. Might not the behavior of a large network with

many users and higher link speeds be intrinsically different to

that of a smaller network? Somewhat surprisingly we find that,

in several essential ways, one can mimic a large network using

a suitably scaled-down version. The key is to find suitable ways

to scale down the network and extrapolate performance.
Our main results are: (i) For networks which carry long-

lived TCP-like flows arriving in clusters, and which are con-

trolled by a variety of active queue management schemes, per-

formance measures such as queueing delay and drop probability

are left virtually unchanged. In Section II we verify this using

the differential-equation type models developed in [17]. Such

models have been widely used in designing control algorithms

and for conducting control-theoretic analyses of network be-

havior. (ii) For networks in which flows arrive at random times

and whose sizes are heavy-tailed, we find a different scaling to

that in Section II leaves the distribution of the number of active

flows and of their normalized transfer times unchanged. These

latter networks are representative of the Internet. A simple theo-

retical argument, using the M/GI-type models proposed in [14],

reveals that the method we suggest for “SHRiNKing” networks

in which flows arrive at random times will be widely applica-

ble (i.e. for a variety of topologies, flow transfer protocols, and

queue management schemes). By contrast, we find that the the-

oretical underpinning for SHRiNKing networks at which flows

arrive in clusters depends on the type of queue management

scheme used at the routers.
A motivating example: Before continuing, we consider a

simple example which illustrates the key points: the M/M/1
queue. Suppose jobs arrive at a queue according to a Poisson

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

process of rate λ, and that service times are independent and

exponential with rate µ > λ. Let Q(t) be the number of jobs in

the system at time t.

Now scale the system as follows: Sample the arriving jobs,

keeping each job with probability α, independent of the others,

so that sampled arrivals form a Poisson process of rateαλ. Con-

sider feeding the sampled arrivals to a separate queue whose

server runs slower than the first by a factor α. This is equiv-

alent to multiplying the service times by a factor 1/α (so that

they are rate αµ exponentials), and the second queue is also

M/M/1. If Q̃(t) is the number of jobs in the slower queue at

time t, then it is not hard to see that Q̃(t) = Q(αt) in distribu-

tion. That is, the evolution of the slower queue is statistically

equivalent to that of the original queue slowed down in time by

a factor α. This is because the queue-size process in an M/M/1

queue is a birth-death chain. The birth and death rates in the

original queue are λ and µ respectively; while they are αλ and

αµ in the slower queue.

As a consequence, in equilibrium, the marginal distributions

of the two queues are equal: i.e. P (Q ≥ n) = (λ/µ)n =
(αλ/αµ)n = P (Q̃ ≥ n). Thus, we have inferred the distri-

bution of queue-size, and hence of delay, in the original high-

speed system by looking at a smaller-scale version.

It is natural to be skeptical of the relevance of these re-

sults. After all, they assume Poisson input traffic, whereas Inter-

net packet traffic exhibits long-range dependence. Even more,

these are open networks (the rate of arrivals is independent of

current network congestion), quite different from the window

flow-controlled Internet.

Nevertheless we find in the coming sections that the SHRiNK

approach can be applied to IP networks, because it relies on

factors other than packet level statistics: we shall see that it

relies on certain fundamental scalability properties of networks.

II. IP NETWORKS WITH LONG-LIVED FLOWS

In this section we explore how SHRiNK applies to IP net-

works used by long-lived TCP-like flows that arrive in clusters,

and controlled by queue management schemes like RED.

First, we explain in general terms how we sample traffic,

scale the network, and extrapolate performance.

Sampling is simple. We sample a proportion α of the flows,

independently and without replacement.

We scale the network as follows: link speeds and buffer sizes

are multiplied by α. The various AQM-specific parameters are

also scaled, as we will explain in the following section II-A.

The network topology is unchanged during scaling. In the cases

we study, performance measures such as average queueing de-

lay are virtually the same in the scaled and the unscaled system.

Our main theoretical tool is the recent work on fluid models

for TCP networks [17]. While [17] shows these models to be

reasonably accurate in most scenarios, the range of their appli-

cability is not yet fully understood. However, in some cases

the SHRiNK hypothesis holds even when the fluid model is not

accurate, as shown in Section II-A.3.

A. RED

The key features of RED are the following two equations,

which together specify the drop (or marking) probability. RED

maintains a moving average qa of the instantaneous queue size

q; and qa is updated whenever a packet arrives, according to the

rule

qa := (1 − w)qa + wq,

where the w parameter determines the averaging window. The

average queue size determines the drop probability p, according

to the equation

pRED(qa) =











0 if qa < minth

pmax

(

qa−minth

maxth−minth

)

if minth ≤ qa < maxth

1 if qa > maxth

(1)

We now explain how we scale the parameters pmax, minth,

maxth and w. We will multiply minth and maxth by α. Recall

that we are multiplying the buffer size by α: thus minth and

maxth are fixed to be a constant fraction of the buffer size. (This

is in accord with the recommendations in [10].) We will keep

pmax fixed at 10%, so that the drop probability is kept under

10% as long as the buffer is slightly congested. The averag-

ing parameter w takes more thought. We shall multiply it by

α−1. The intuition is this: when the network is scaled down,

packets arrive less frequently, so qa is updated less often, so

we make the updates larger in magnitude. Simulation and the-

ory, described below, both indicate that this choice of scaling is

natural for extrapolating performance.

100Mbps 100Mbps

grp1
grp2

grp3

#
o
f

T
C

P
fl

o
w

s

600

0 50 150 200100
time

#
o
f

T
C

P
fl

o
w

s

1200

0 50 150 200100 time

#
o
f

T
C

P
fl

o
w

s

1200

0 50 150 200100 time

300

R1 R2 R3

Fig. 1. Basic network topology and flow information

1) THE BASIC SETUP: We consider two congested links

in tandem, as shown in Figure 1. There are three routers, R1,

R2 and R3; and three groups of flows, grp1, grp2, and grp3,

with group i connecting sources in srci to receivers in rcvi. The

link speeds are 100Mbps and the buffers can hold 8000 packets.

The RED parameters are minth = 1000, maxth = 2500 and w =
0.000005. For the flows: grp0 consists of 1200 TCP flows each

having a propagation delay of 150ms, grp1 consists of 1200

TCP flows each having a propagation delay of 200ms, and grp2

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

consists of 600 TCP flows each having a propagation delay of

250ms. The flows switch on and off as shown in the timing

diagram in Figure 1. Note that 75% of grp0 flows switch off at

time 150s.

This network is scaled-down by factors α = 0.1 and 0.02,

and the parameters are modified as described above.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Q
u

e
u

e
in

g
 D

e
la

y
 (

m
s
e

c
)

Simulation Time (Sec)

fluid model
scale = 1
scale = 0.1
scale = 0.02

Fig. 2. Basic Setup: Average Queueing Delay at Q1

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200

Q
u
e
u
e
in

g
 D

e
la

y
 (

m
s
e
c
)

Simulation Time (Sec)

scale = 1
scale = 0.1

scale = 0.02

Fig. 3. Basic Setup: Average Queueing Delay at Q2

We plot the average queueing delay at Q1 and Q2 as a func-

tion of time in Figures 2 and 3. The drop probability at Q1 is

shown in 4. Due to limited space, we omit the plot of drop prob-

ability for Q2 whose behavior is similar to that of Q1. We see

that the queueing delay is almost identical at different scales. (It

is worth noting that it is the queueing delay which is unchanged

during scaling, whereas in the M/M/1 model it was the queue

size distribution.)

Since the drop probability is also the same in the scaled and

unscaled systems, the dynamics of the TCP flows are the same.

In other words, an individual flow which survives the sampling

process essentially cannot tell whether it is in the scaled or un-

scaled system.

2) THEORY: We now show that these simulation results are

supported by the recently-proposed theoretical fluid model of

TCP/RED [17].

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140 160 180 200

D
ro

p
 P

ro
b

a
b

ili
ty

Simulation Time (Sec)

scale = 1
scale = 0.1

scale = 0.02

Fig. 4. Basic Setup: Drop Probability at Q1

Consider N flows sharing a link of capacity C. Let Wi(t)
and Ri(t) be the window size and round-trip time of flow i at

time t. Here Ri(t) = Ti + q(t)/C, where Ti is the propagation

delay and q(t) is the queue size at time t. Let p(t) be the drop

probability at time t, and qa(t) the average queue size used by

RED.

The fluid model describes how these quantities evolve; or

rather, since these quantities are random, the fluid model de-

scribes how their expected values evolve. Let X̄ be the expected

value of random variableX . Then the fluid model equations are

these:

dW̄i(t)

dt
=

1

Ri(q̄(t))
− W̄i(t)W̄i(t − τi)

1.5Ri(q̄(t − τi))
p̄(t − τi) (2)

dq̄(t)

dt
=

N
∑

i=1

W̄i(t)

Ri(q̄(t − τi))
− C (3)

dq̄a(t)

dt
=

log(1 − w)

δ
q̄a(t) − log(1 − w)

δ
q̄(t) (4)

p̄(t) = pRED(q̄a(t)) (5)

where τi = τi(t) solves τi(t) = Ri(q̄(t − τi(t))), δ is the

average packet inter-arrival time, and pRED is as in (1).

Remarks: While the applicability of these equations is not yet

fully understood, [17] indicates that empirically they are rea-

sonably accurate. Also, note that we have the constant 1.5 in

(2), not 2 as in [17]. This change improves the accuracy of

the fluid model [21].1 Finally, note that while these equations

describe a single link, the extension to networks is straightfor-

ward, and is given in [17].

Returning to the differential equations, suppose we have a

solution to these equations

(

W̄i(·), q̄(·), q̄a(·), p̄(·)
)

.

Now, suppose the network is scaled and denote by C′, N ′,

etc the parameters of the scaled system. When the network is

scaled, the fluid model equations change, and so the solution

1Due to space limitations, we omit the derivation here. The complete proof
can be found in [21], and will be published in a longer version of the paper.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

changes. Let
(

W̄ ′
i (·), q̄′(·), q̄′

a(·), p̄′(·)
)

be the solution of the

scaled system. We claim that, in fact,

(

W̄ ′
i (·), q̄′(·), q̄′

a(·), p̄′(·)
)

=
(

W̄i(·), αq̄(·), αq̄a(·), p̄(·)
)

.

If our claim is established, we will obtain that the queueing

delay q̄′/C′ = αq̄/αC is identical to that in the unscaled sys-

tem. Note also that the drop probability is the same in each case

(p̄(t) = p̄′(t)). Thus, we will have theoretical support for the

observations in the previous section.

Establishing the claim. We will proceed through the fluid

model equations one by one. Consider first (2). Note that

R′
i(q̄

′(t)) = Ti + q̄′/C′ = Ti + αq̄/αC = Ri(q̄(t)), so that

τ ′(t) = τ(t). Hence

dW̄ ′
i (t)

dt
=

1

R′
i(q̄

′(t))
− W̄ ′

i (t)W̄
′
i (t− τ ′)

1.5R′
i(q̄

′(t − τ ′))
p̄′(t − τ ′).

Consider next (3). Suppose for simplicity that all flows have

identical routes. Then the Wi are statistically identical, hence

the expectations W̄i are all equal. So we can rewrite the equa-

tion as
dq̄(t)

dt
=

NW̄1(t)

R1(q̄(t − τ ′))
− C.

It is then easy to see that

dq̄′(t)

dt
= α

dq̄(t)

dt

=
N ′W̄ ′

1
(t)

R′
1
(q̄′(t− τ ′))

− C′.

This extends to the case of multiple groups of flows with differ-

ent routes, provided we sample a proportionα from each group.

Consider next (4). Recall that w′ = w/α. Note that the av-

erage packet inter-arrival time increases as the number of flows

and the capacity decrease, in proportion δ′ = δ/α. Making the

approximation log(1 − w/α) ≈ log(1 − w)/α, good for small

w, we see that log(1 − w′)/δ′ ≈ log(1 − w)/δ, and hence that

dq̄′
a(t)

dt
≈ log(1 − w′)

δ′
q̄′
a(t) − log(1 − w′)

δ′
q̄′(t).

In fact, we chose w′ = w/α so that this equation would be

satisfied, allowing us to scale properly.

Consider finally (5). Recall that p′
max = pmax, and that

min′
th = αminth and max′

th = αmaxth. It is then clear that

p̄′(t) = p′
max

(q̄′
a(t) − min′

th

max′
th − min′

th

)

.

This establishes the claim.

Figure 5 presents the solution of the fluid model for the

queueing delay at Q1 under the scenario of Figure 1 for the

scale parameters α = 1 and 0.1. As can be seen, both the solu-

tions are virtually identical, providing a numerical illustration

of the scaling property of the differential equations established

above.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Simulation Time (Sec)

Q
u
e
u
e
in

g
 D

e
la

y
 (

m
s
e
c
)

Scale = 1
Scale = 0.1

Fig. 5. Fluid model predicts scaling behavior

Remarks: It is worth remarking on a theoretical nicety related

to the scaling property of these differential equations. If they

had been derived from a limiting procedure in which the num-

ber of users, link capacities and buffer sizes all increase pro-

portionally with N , then the scaling behavior would have been

entirely expected (one has only to set N to equal αN before

taking limits). However, they have been derived via a different

route in [17]: by assuming that packet drops occur as a Poisson

process. Therefore, the scaling property they exhibit is rather

stunning. It strongly suggests that, in fact, they describe the

behavior of the network in a large-N limit.

We also draw attention to some interesting features of all of

the performance-related figures in this section. Note that tran-

sients are pretty well mimicked at the smaller scales. Also note

that the smaller scale plots look more jagged, as if they are a

noisy version of the original plots. The last point would be an

easy consequence of a limit theorem: If in the large-N limit

the behavior of the network is describable using deterministic

differential equations, then away from the limit (at smaller and

smaller scales) a corresponding Central Limit Theorem would

suggest that the noise would be proportional to 1/
√
α.

3) WITH FASTER AND SLOWER LINKS: Suppose we al-

ter the basic setup, by increasing the link speeds to 500Mbps,

while keeping all other parameters the same. Figure 6 (zoomed

in to emphasize the point) illustrates that, once again, scaling

the network does not alter the queueing delay. Note that under

these conditions the queue oscillates. There have been various

proposals for stabilizing RED [15], [20]. We are not concerned

with stabilizing RED here: we mention this case to show that

SHRiNK can work whether or not the queue oscillates.

Suppose we instead alter the basic setup, by decreasing the

link speeds to 50Mbps, while keeping all other parameters the

same. Once again, scaling the network does not alter the queue-

ing delay. For such a simulation scenario, especially in the time

frame 100sec-150sec, the fluid model is not a good fit (see Fig-

ure 7). This is not unexpected [25]: actual window and queue

sizes are integer-valued whereas fluid solutions are real-valued;

rounding errors are non-negligible when window sizes are small

as is the case here. The range of applicability of the fluid model

is not our primary concern in this paper: we mention this case

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

6

8

10

12

14

16

18

80 85 90 95 100 105 110

Q
u
e
u
e
in

g
 D

e
la

y
 (

m
s
e
c
)

Simulation Time (Sec)

scale = 1
scale = 0.1

scale = 0.02

Fig. 6. With faster links: Average queueing delay at Q1 (zoomed in)

0 20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

Q
u

e
u

e
in

g
 D

e
la

y
 (

m
s
e

c
)

Simulation Time (Sec)

fluid model
scale = 1
scale = 0.1

Fig. 7. With slower links: Average queueing delay at Q1

to show that SHRiNK can work whether or not the fluid model

is appropriate.

4) IN A MORE COMPLEX NETWORK: As a further vali-

dation, we test SHRiNK in a more complex network, shown in

Figure 8. There are seven routers R1 to R7. Links R1−R2,

R2−R3, R1−R5, R3−R5 and R4−R5 run at 150 Mbps, links

R1−R4 and R5−R6 run at 100 Mbps, and all other links run

at 50 Mbps. The traffic is a mixture of UDP and web flows;

and long-lived TCP, AIMD and Binomial [2] flows. These last

types have the following common form: on receiving an ac-

knowledgement, increase the congestion window w by awn−1

(TCP uses a = 1, n = 0), and on incurring a mark/drop, de-

crease w by bwm (TCP uses b = w/2, m = 1). The parameters

(a, n; b,m) describe each class.

We omit a detailed description of all the flows, except those

traversing link R1-R5 whose queueing dynamics are shown in

Figure 9. Link R1→R5 carries 1000 long-lived flows, divided

into five groups: 200 normal TCP, 200 AIMD (1, 0; .1, 1), 200

AIMD (2, 0; .5, 1), 200 Binomial (1, 1; .5, 1) and 200 Binomial

(1.5,−1; .5, 1). The links are controlled by RED with minth =
1000, maxth = 2000 and w = 0.000005. As before, we see that

scaling the network does not affect the queueing delay.

To illustrate the potential savings in resources, we report the

CPU time to run each of the simulations. We simulated the

original system, and logged the start times of flows, the sizes of

R1

R3

R2

R5

R4 R6

R7

end host

Fig. 8. A more complex topology

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

Q
u
e
u
e
in

g
 D

e
la

y
 (

m
s
e
c
)

Simulation Time (Sec)

scale = 10
scale = 1

scale = 0.02

Fig. 9. In a more complex network: Average queueing delay at R1-R5

sessions, and so on. This data was sampled, and used to drive

simulations at various scales α. The CPU times are: 3752.50

secs at α = 1, 172.85 secs at α = .1, and 49.13 secs at α =
0.02.

B. Proportional-Integral (PI) Controller

A different AQM scheme is the PI controller [16], which at-

tempts to stabilize the queue size around a given target value.

The PI controller drops/marks packets with a probability p
which is updated periodically by

p(t+δt) = p(t)+a
(

q(t+δt)−qtarget

)

− b
(

q(t)−qtarget

)

. (6)

Here, q is the instantaneous queue size, qtarget is the target queue

size, δt is the update timestep (here fixed at 0.01s), and a and b
are arbitrary parameters.

We first explain how we will scale the network. As usual, let

a′ etc. be the scaled parameters. We will sample a fraction α
of the flows, and set a′ = a/α, b′ = b/α and q′

target = αqtarget.

(This is in accordance with the design rules in [16].)

We simulated the basic setup of Section II-A, replacing

RED by the PI controller. We use a = 8.8681 × 10−7 and

b = 8.7427 × 10−7, as suggested in [16]. We set qtarget to be

1750 packets, which is half-way between our minth and maxth

parameters from the last section.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200

Q
u
e
u
e
in

g
 D

e
la

y
 (

m
s
e
c
)

Simulation Time (Sec)

scale = 1
scale = 0.1

Fig. 10. PI Controller: Average queueing delay at Q1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

D
ro

p
 P

ro
b
a
b
ili

ty

Simulation Time (Sec)

Q1:scale = 1
Q1:scale = 0.1

Q2:scale = 1
Q2:scale = 0.1

Fig. 11. PI Controller: Drop probabilities at Q1 and Q2

Figure 10 shows the average queueing delay at different

scales for Q1. We see that scaling the network does not affect

queueing delay, at least in steady state. There are some spikes

when the load changes abruptly, and the small-scale network

shows slightly larger spikes. Figure 11 shows that neither is the

drop probability affected by scaling the network.

We can again use the fluid model to understand this be-

haviour. To obtain the fluid model for the PI controller, we

simply replace (4) and (5) in the fluid model by the fluid analog

of (6): the expected drop probability p̄ evolves according to

dp̄

dt
= −bdq̄

dt
+

(

b− a
)(

q̄(t) − qtarget

)

.

As before, by our choice of scaling,

dp̄

dt
=

dp̄′

dt
= −b′ dq̄

′

dt
+

(

b′ − a′
)(

q̄′(t) − q′
target

)

.

Thus the fluid model also scales.

C. Summary

In all the examples we have studied in this section—with het-

erogeneous end-systems, with different of active queue man-

agement policies, and with a range of system parameters—we

have found that basic performance measures such as queueing

delay are left unchanged, when we sample the input traffic and

scale the network parameters in proportion. This conclusion is

supported by the theory of fluid models, and even holds where

the fluid models fail. A notable exception is provided by the

queue management scheme DropTail, as described next.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

Q
u

e
u

e
in

g
 D

e
la

y
 (

m
s
e

c
)

Simulation Time (Sec)

Queueing Delay (Router 2)

scale = 1
scale = 0.1

Fig. 12. DropTail: Average queueing delay at Q2

DropTail: Consider the basic network setup of Section II-A,

and suppose that the routers use DropTail instead of RED. Fig-

ure 12 shows the average queueing delay at Q2. Clearly, the

queueing delays at different scales do not match. DropTail

drops all the packets that arrive at a full buffer. As a result, it

could cause a number of consecutive packets to be lost. These

bursty drops underlie the failure of the scaling hypothesis in this

case, as explained in [22]. Separately, note that when packet

drops are bursty and correlated, the assumption that packet

drops occur as a Poisson process (see [17]) is violated and the

differential equations become invalid. The connection between

these two phenomena (the failure of the scaling hypothesis and

the invalidation of the differential equation models) is explored

in [22].

III. IP NETWORKS WITH SHORT AND LONG FLOWS

It has been shown that the size distribution of flows on the

Internet is heavy-tailed [27]. Hence, Internet traffic consists of

a large fraction of short flows, and a small fraction of long flows

that carry most of the traffic. Also, it has been recently argued

that since network sessions arrive as a Poisson process [9], [19],

[23], 2 network flows are as if they were Poisson [14]. (In par-

ticular, the equilibrium distribution of the number of flows in

progress at any time can be obtained by assuming that flows

arrive as a Poisson process.) We take these observations into

account and study the scaling behavior of IP networks carry-

ing heavy-tail distributed, Poisson flows. Such networks are a

plausible representation of today’s Internet.

A. Sampling and Scaling

We start with sampling: Due to the tremendous increase in

the volume and speed of network traffic, it is very expensive

2That network sessions are Poisson is not surprising since a Poisson process
is known to result from the superposition of a large number of independent user
processes.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

10Mbps 10Mbps

grp1

arrival rate: 45-60 flows/sec

propagation delay: 50msec

of packets/flow ~ Pareto

grp1grp1

arrival rate: 45-60 flows/sec

propagation delay: 50msec

of packets/flow ~ Pareto
grp2grp2

arrival rate: 45-60 flows/sec

propagation delay: 100msec

of packets/flow ~ Pareto

grp3

arrival rate: 45-60 flows/sec

propagation delay: 150msec

of packets/flow ~ Pareto

grp3

arrival rate: 45-60 flows/sec

propagation delay: 150msec

of packets/flow ~ Pareto

DropTail / RED

Fig. 13. Basic network topology and flow information.

to sample packets. At the other end of the spectrum, one may

sample network sessions, e.g. modem calls, ftp, telnet, or web

sessions. However, sampling sessions is hard in practice, be-

cause only end users have enough information to distinguish

between different sessions. Hence, we choose to sample net-

work flows. 3 This reduces the traffic we have to deal with, and

is easy to implement in practice.

A second issue related to sampling is: How are the network

flows sampled? The method samples the flows, choosing each

one with proability α, all choices being independent. in an i.i.d.

fashion with some probability α. The last issue with sampling

is: Where are flows sampled? The method samples at network

entry points, e.g. at edge routers.

What is left is to describe how to obtain the small replica of

the original network. This is done as follows: (i) link capacities

are reduced by a factor α, (ii) propagation delays are scaled up

by a factor 1/α, and (iii) protocol timeouts are also scaled up

by the same factor. Intuitively, these steps aim to slow down the

speed of the network. This will become more clear in Section

III-C.

B. Simulation Results

In this section we investigate how accurately SHRiNK can

predict the performance of IP networks from small-scale repli-

cas, using the network simulator ns-2 [18].

For simplicity, consider the topology illustrated in Figure 13.

In Section III-C we establish that the results are independent

of the particular topology. There are three routers, R1, R2 and

R3, two links in tandem, and three groups of flows, grp1, grp2,

and grp3. The link speeds for are 10Mbps.

Routers use either the Random Early Detection (RED) or the

DropTail queue management schemes. The RED parameters

are minth = 100, maxth = 250 and w = 0.00005. When

using DropTail, the buffer can hold 200 packets.

Within each group, flows arrive as a Poisson process with

rate λ. We vary λ to study both uncongested and congested

scenarios. (We use the ns-2 built-in routines to generate web

sessions consisting of a single object each. This is what we

3Notice that in accordance with the usual practice [8], [12], [13], packets are
said to belong to the same flow if they have the same source and destination IP
address, and source and destination port number. A flow is “on” if its packets
arrive more frequently than a timeout of some seconds. This timeout is usually
set to something less than 60 seconds.

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

i

P
ro

b
a
b
ili

ty
 o

f
i
A

c
ti
v
e
 F

lo
w

s

α = 1

α = 0.1

α = 1

α = 0.1

α = 1

α = 0.1

Fig. 14. Distribution of number of active flows on the first link (RED).

call a flow in the simulations.) Each flow consists of a Pareto-

distributed number of packets with average size 12 packets and

shape parameter equal to 1.2. The packet size is set to 1000

bytes. The propagation delay of each flow of grp1, grp2, and

grp3, is 50msec, 100msec, and 150msec respectively.

We run the experiments for scale factors α = 1 and 0.1, and

compare the distribution of the number of active flows as well

as the histogram of the normalized delays of the flows in the

original and the scaled system. (The normalized delays are the

flow transfer times multiplied by α.) We also compare more

detailed performance measures such as the distribution of ac-

tive flows that are less than some size and belong to a particular

group, and the distribution of the packet buffer occupancies.

As will be shown in Section III-C, the method can predict the

marginal and joint distributions of a large number of perfor-

mance measures.

Due to limitations of space, we do not present results when

the links are uncongested, but only compare distributions for

the more challenging and realistic case of congested networks.

For a full exposition of the simulation results, interested readers

are referred to [24].

Accordingly, to induce congestion, flow arrival rates are set

to 60 flows/sec within each group. Flows experience drops that

account for up to 5% of the total traffic. We first present simu-

lations where all three routers use RED.

Figure 14 plots the distribution of the number of active flows

in the first link. The two distributions match. A similar conclu-

sion is obtained at the second link.

Figure 15 plots the histogram of the normalized delays of the

flows of grp1. To generate the histogram, we use normalized

delay chunks of 10msec each. There are 150 such delay chunks

in the plot, corresponding to flows having a normalized delay

of 0 to 10msec, 10msec to 20msec, and so on. The last de-

lay chunk is for flows that have a normalized delay of at least

1.5sec. The plot reveals that the distribution of the normalized

delays match. The results for the other two groups of flows are

similar.

The peaks in the delay plots are due to the TCP slow-start

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

α Delay (msec)

P
ro

p
o

rt
io

n
 o

f
F

lo
w

s

α = 1

α = 0.1

Fig. 15. Histogram of normalized delays of grp1 flows (RED).

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

i

P
ro

b
a
b
ili

ty
 o

f
i
A

c
ti
v
e
 F

lo
w

s α = 1

α = 0.1

Fig. 16. Distribution of number of active grp3 flows with size less than 12
packets (RED).

mechanism. The left-most peak corresponds to flows which

send only one packet and face no congestion. These flows only

have to wait for the setup of the TCP connection. (Hence, for

example, in Figure 15 where propagation delays are 50msec,

the normalized delay for these flows is a bit more than 200msec

accounting for SYN, SYN-ACK, the data packet, the ACK for

the packet, and insignificant transmission and queueing delays.)

The portion of the curve between the first and second peaks cor-

responds to flows which send only one packet and face conges-

tion (but no drops). The next peak corresponds to flows which

send two or three packets and face no congestion. These flows

have to wait for an additional round trip time for the acknowl-

edgment for the first packet to arrive. The third peak corre-

sponds to flows which send between four and seven packets

and face no congestion, and so on. 4

What about more detailed performance measures? As an ex-

ample, we compare the distribution of active flows belonging to

grp3 that are less than 12 packets long. Figure 16 compares the

4Recall: Whenever an acknowledgment arrives, TCP senders double their
window sizes.

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

i

P
ro

b
a
b
ili

ty
 o

f
i
A

c
ti
v
e
 F

lo
w

s

α = 1

α = 0.1

Fig. 17. Distribution of number of active flows on the second link (DropTail).

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

α Delay (msec)

P
ro

p
o

rt
io

n
 o

f
F

lo
w

s
α = 1

α = 0.1

Fig. 18. Histogram of normalized delays of grp2 flows (DropTail).

two distributions from the original and scaled system. Again,

the plots match.

We will now investigate if distributions scale when DropTail

is used. Figure 17 plots the distribution of the number of con-

currently active flows in the second link between routers R2
and R3 when all routers use DropTail. It is evident from the

plot that the two distributions match as before. A similar scal-

ing holds for the other link.

Figure 18 plots the histogram of the normalized delays of

the flows of grp2 when DropTail is employed. The distribu-

tions match as before. A similar scaling holds for the other two

groups of flows.

So far, the method has successfully predicted the distribution

of various performance measures at the flow level. Figure 19

compares the distribution of the number of packets at the first

queue, which uses RED, in the original and scaled network. As

evident from the plot, the method can also predict the distribu-

tion of the queue occupancies.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

i

P
ro

b
a
b
ili

ty
 o

f
i
P

a
c
k
e
ts

 i
n
 Q

u
e
u
e

α = 1

α = 0.1

Fig. 19. Distribution of number of packets in R1.

C. Understanding SHRiNK

Recall that flows arrive as a Poisson process, bearing sizes

drawn independently from a common (Pareto) distribution. 5

The above observation allow the use of M/GI-type queueing

models to analyze SHRiNK.

By the state of the network at time t we mean the total in-

formation that is needed to resume the evolution of the network

from time t onwards, given input data (flow arrival times and

sizes) after time t. For example, the state consists of informa-

tion about currently active flows: their transfered packets, their

packets in transit, and where they are at time t, etc. Write S(t)
for the state at time t. If I(t) denotes the input data to the sys-

tem then S(t) is some function, F , of the input until time t.
Symbolically, S(t) = F [I(s), s < t]. We shall abbreviate this

to S(t) = F [I(·)]. Note that F is some complicated function

depending on transport protocols, queue management schemes,

and other network- and user-specific details.

Theorem 1: Let S(t) be the state of the original network at

time t, and S̃(t) be the state of the scaled network at time t.

Then S(αt)
d
= S̃(t), i.e. the same in distribution.

Proof: Let I(·) and Ĩ(·) be the inputs to the original and

scaled systems, respectively. Let Fo and Fs denote the func-

tions corresponding to the original and scaled (slowed-down)

networks. This gives S(t) = Fo[I(·)] and S̃(t) = Fs[Ĩ(·)].
Our method of proof consists of constructing a third system, the

“time-stretched system”, which is obtained by applying the in-

put Î(t) ≡ I(αt) to the scaled system. Thus, the time-stretched

system has as input the input of the original system stretched

out in time by a factor α. That is, flow f , of size s, arrives

to the original system at time t iff it arrives, again with size s,

to the time-stretched system at time t/α. It is a simple, but far-

reaching, property of the Poisson process that Ĩ(·) d
= Î(·), since

sampling a proportion α of the points of a rate λ Poisson pro-

cess will yield a rate αλ Poisson process. And the indpendent

nature of the sampling process does not destroy the i.i.d. nature

5Note that whereas flow sizes are independent, their delays (equal to their
total transfer times) are usually dependent.

X

X

X

(i) (ii) (iii)

x
x

x

x

x

source destination

Fig. 20. Time evolution of: (i) the original, (ii) the time-stretched, and (iii) the
scaled system.

of the flow sizes.

Let Ŝ(t) = Fs[Î(·)] denote the state of the time-stretched

system at time t. We shall show that the following identity is

satisfied at every time t:

Ŝ(t) = S(αt). (7)

Establishing this will complete our proof since S(αt) = Ŝ(t) =

Fs[Î(·)] d
= Fs[Ĩ(·)] = S̃(t).

We now establish the identity at (7). Consider the conse-

quences of our method of scaling (slowing down) the origi-

nal network: reducing link speeds by a factor α will increase

queueing delays by factor 1/α, increasing progagation delays

by a factor 1/α will increase transmission times by 1/α. Since

the total delay of a packet is the sum of its queueing and trans-

mission times, we have effectively increased the delay of every

packet by 1/α. This in turn increases the delay of every flow

transfer time by a factor 1/α. It is now quite easy to see that

much more is true: Since the networks are all discrete-event

systems, clocked by trasmissions and acknowledgements of

packets, every event that occured in the original system at time

t will occur in the time-stretched system at time t/α. Therefore

S(αt) = Ŝ(t), and the theorem is proved.

Remark 1: It is instructive to consider an illustration of the

three systems, as in Figure 20. The time evolution of each of the

three systems is shown between some one source-destination

pair. In each sub-figure, the corresponding input process is

shown on the left axis. The graph of an input process denotes

flow arrival times and their corresponding sizes. The lines go-

ing from right to left denote acknowledgments. Finally, the big

“X” ’s denote packet drops. The original system has an input

process of I(t). For the time-stretched system, packets have

larger transmission and propagation delays, denoted by “fatter”

parallelograms going from left to right and larger slopes respec-

tively; and the input process, Î(t), is a time-stretched version of

I(t). Notice that the time-stretched system is just a devise for

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

the proof, it does not exist. The input of the scaled system, Ĩ(t),
is just a subsample of the flows of I(t). The unsampled flows

of I(t) are denoted by tiny “x” ’s on the vertical axis of Figure

20(iii).

Remark 2: The theorem explains why the distributions of var-

ious performance measures match in distribution. Further, it

shows that performance scaling involves speeding up the time,

and this is why we compare normalized delays rather than de-

lays. The proof of the theorem only relies on the assumptions

about inputs (Poisson flow arrivals and i.i.d. sizes) and the fact

that the network evolves as a discrete-event system. Therefore,

when these assumptions are met, 6 SHRiNK is widely applica-

ble for marginal, joint, steady-state and transient distributions

of a large family of performance measures, for any network

topology, transport protocol, and queue mechanism. Another

consequence of Theorem 1 is that SHRiNK works for any value

of α. Thus, networks can be slowed down arbitrarily. However,

the smaller the α, the slower the network is, and the longer it

takes for distributions to converge.

D. Applications

Since the method provides a way to deduce the performance

of a fast network from a slowed-down replica, it can be used

to reduce the cost of experimentation: Imagine a test-network

with slow network interfaces, slow switches and routers, and

cheap links, that is fed with a sample of the actual network traf-

fic. 7 In this network one may experiment with new algorithms,

protocols, and architectures, and extrapolate performance.

Another use of the method is the following: There has been

a recent development of research prototypes and products [5]

that record partial information about the network by sampling

incoming traffic. SHRiNK offers a systematic way to reproduce

offline the whole behavior of the network using this sample.

IV. WEB SERVER FARMS

In this section we briefly outline how SHRiNK may apply to

web server farms. Since a rapid growth in the size and capac-

ity of web server farms makes it increasingly difficult to take

performance measurements and to evaluate new algorithms and

architectures, if SHRiNK applies to web server farms it would

help reduce this difficulty significantly.

How should server farms be scaled? Consider a web server

farm with N servers each having speed s, as in Figure 21.

Sample the requests for the original farm, retaining each in-

dependently with probability α. Feed the sampled traffic into

a scaled-down farm consisting of either (i) a fraction α of the

original web servers, or (ii) the same number of servers each

having speed αs (see (i) and (ii) of Figure 21). Of interest is the

closeness of the average response time, and the server through-

put and capacity (maximum throughput) in the scaled system to

those in the original system.

6We refer the reader [14] and [4] for an interesting discussion of the M/GI
models and their role in generating the well-documented self-similar nature of
network traffic.

7This network should also have larger propagation delay than the original.
This can be achieved in software, or with delay-loops.

Load-Balancing

Sampling

A(t)

“αA(t)” αN servers

speed s

N servers

speed s

Sampling

“αA(t)” N servers

speed αs

(i)

(ii)

Load-Balancing

Load-Balancing

clients

Fig. 21. Scaling a web server farm8: (i) scaling the number of servers, (ii)
scaling the speed of the servers.

800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.05

0.1

0.15

0.2

0.25

α
−1

 load (no. of user equivalents)

m
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

α=1: solid, o

α=0.25: dotted, +

Fig. 22. Average response time, when sampling user equivalents.

We conducted some preliminary experiments using eight

Linux machines configured with a Pentium III at 550MHz and

384MB of RAM, connected to a 100Mbits/sec switch. Four

machines constitute the original farm and act as servers, each

of which host one Apache 1.3.9 [1] web server. The other four

machines act as clients, each of which run Surge [3] to generate

HTTP requests.

Due to lack of space we only present results for the case

where α = 0.25, one scales the number of servers, the clients

use HTTP1.1, load-balancing is a simple round-robin scheme,

and both load-balancing and sampling take place at the user-

equivalent level. (Surge uses the notion of user equivalents to

generate sequences of requests similar to those generated by

web sessions that stays “on” throughout the experiment.) Please

refer to [24] for more experimental results.

Figures 22 and 23 show the average response time and the

normalized server throughput as a function of the normalized

8This is a simplified picture of a farm, since the application-servers, the
databases, and the switches used to interconnect the various components are
absent.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

800 1000 1200 1400 1600 1800 2000 2200 2400
400

500

600

700

800

900

1000

1100

α
−1

 load (no. of user equivalents)

α
−

1
 s

e
rv

e
r

th
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

α=1: solid, o

α=0.25: dotted, +

Fig. 23. Server throughput, when sampling user equivalents.

load. (Normalized quantities are quantities multiplied by α−1.)

Scaling the system leaves these quantities virtually unchanged.

Note that we treat the farm of the four servers as a single en-

tity. The normalized load is the total normalized load directed

into the farm, and the normalized throughput is the sum of the

normalized throughputs of the servers of the farm.

Similar are the results that we obtain from experiments where

one scales the speed of servers, or samples document requests

instead of user equivalents. These results encourage further

work.

V. CONCLUSION

In this paper we have described an approach, called

SHRiNK, for scaleable performance prediction and efficient

simulation of large networks. Our first example was a con-

gested network of long-lived TCP-like flows that arrive in clus-

ters. Our second example concerned a network in which flows

come and go at random times. Both these examples are of re-

search interest, either as models for designing and testing new

algorithms or as plausible representations of different aspects of

a network. We have found that performance measures such as

delay, packet loss probability and the distribution of flow trans-

fer times in the original system can be inferred quite accurately

from measurements of a scaled-down system. We have also

suggested how SHRiNK might be applied to web server farms.

Our approach exploits the scaling behavior exhibited by large

networks with many users. It does away with the need for de-

tailed traffic models, since it uses a sample of the very traffic

that the original system sees. Thus the complexity of using sim-

ulation to predict the performance of a large-scale network can

be significantly reduced.

REFERENCES

[1] The Apache web-server. http://httpd.apache.org, accessed
January 2002.

[2] D. Bansal and H. Balakrishnan. Binomial congestion control algorithms.
In Proceedings of INFOCOM, 2001.

[3] P. Barford and M. Crovella. Generating representative web workloads for
network and server performance evaluation. In Proceedings of the ACM
SIGMETRICS Conference, June 1998.

[4] T. Bonalds, A. Prutiere, G. Gegnie, and J. Roberts. Insensitivity results in
statistical bandwidth sharing. In Proceedings of ITC17, September, 2001.

[5] Cisco. NetFlow services and applications. White paper, 2000.
http://cisco.com/warp/public/cc/pd/iosw/ioft/
neflct/tech/napps_wp.htm.

[6] Kimberly Claffy, George Polyzos, and Hans-Werner Braun. Applications
of sampling methodologies to network traffic characterization. In Pro-
ceedings of SIGCOMM, 1993.

[7] Cristian Estan and George Varghese. New directions in traffic measure-
ment and accounting. In Proceedings of ACM SIGCOMM Internet Mea-
surement Workshop, 2001.

[8] W. Fang and L. Peterson. Inter-as traffic patterns and their implications.
In Proceedings of the 4th Global Internet Symposium, December 1999.

[9] A. Feldmann, A. C. Gilbert, and W. Willinger. Data networks as cascades:
Investigating the multifractal nature of internet wan traffic. In Proceed-
ings of ACM SIGCOMM, 1998.

[10] S. Floyd and V. Jacobson. Random early detection gateways for conges-
tion avoidance. IEEE/ACM Transaction on Networking, pages 397–413,
1991.

[11] Fluid models for large, heterogeneous networks. http://www-net.
cs.umass.edu/fluid/, accessed January 2002.

[12] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki,
and F. Tobagi. Design and deployment of a passive monitoring infras-
tructure. In Proceedings of the Workshop on Passive and Active Measure-
ments, PAM, April 2001.

[13] C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi. Packet-level traffic
measurements from a tier-1 IP backbone. Technical Report TR01-ATL-
110101, Sprint ATL Technical Report, November 2001.

[14] S. Ben Fredj, T. Bonalds, A. Prutiere, G. Gegnie, and J. Roberts. Statisti-
cal bandwidth sharing: a study of congestion at flow level. In Proceedings
of SIGCOMM, 2001.

[15] C.V. Hollot, V. Misra, D. Towlsey, and W. Gong. A control theoretic
analysis of RED. In Proceedings of INFOCOM, 2001.

[16] C.V. Hollot, V. Misra, D. Towlsey, and W. Gong. On designing improved
controllers for AQM routers supporting TCP flow. In Proceedings of IN-
FOCOM, 2001.

[17] V. Misra, W. Gong, and D. Towsley. A fluid-based analysis of a network
of AQM routers supporting TCP flows with an application to RED. In
Proceedings of SIGCOMM, 2000.

[18] Network simulator. http:www.isi.edu/nsnam/ns, accessed June
2000.

[19] C. J. Nuzman, I. Saniee, W. Sweldens, and A. Weiss. A compound model
for tcp connection arrivals. In Proceedings of ITC Seminar on IP Traffic
Modeling, Monterey, 2000.

[20] T. Ott, T. Lakshman, and L. Wong. SRED: Stabilized RED. In Proceed-
ings of INFOCOM, 1999.

[21] R. Pan. Randomized Algorithms for Bandwidth Partitioning and Per-
formance Prediction in the Internet. PhD thesis, Stanford University,
September 2002. www.stanford.edu/˜rong/thesis.ps.

[22] R. Pan, B. Prabhakar, K. Psounis, and M. Sharma. A study of the appli-
cability of a scaling-hypothesis. In Proceedings of ASCC, 2002.

[23] Vern Paxson and Sally Floyd. Wide area traffic: the fail-
ure of Poisson modeling. IEEE/ACM Transactions on Network-
ing, 3(3):226–244, 1995. citeseer.nj.nec.com/article/
paxson94widearea.html.

[24] K. Psounis. Probabilistic Methods for Web Caching and Performance
Prediction of IP Networks and Web Farms. PhD thesis, Stanford Univer-
sity, December 2002. www.stanford.edu/˜kpsounis/thesis.
html.

[25] S. Shakkottai and R. Srikant. How good are deterministic fluid models of
internet congestion control. In Proceedings of Infocom 2002, to appear,
2002.

[26] Jean Walrand. A transaction-level tool for predicting TCP perfor-
mance and for network engineering. In MASCOTS, 2000. http://
walrandpc.eecs.berkeley.edu/Papers/mascots1.pdf.

[27] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wil-
son. Self-similarity through high-variability: Statistical analysis of ether-
net lan traffic at the source level. IEEE/ACM Transactions on Networking,
5(1):71–86, 1997.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

