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ABSTRACT
Community detection is an important task for mining the
structure and function of complex networks. Generally, there
are several different kinds of nodes in a network which are
cluster nodes densely connected within communities, as well
as some special nodes like hubs bridging multiple commu-
nities and outliers marginally connected with a community.
In addition, it has been shown that there is a hierarchical
structure in complex networks with communities embedded
within other communities. Therefore, a good algorithm is
desirable to be able to not only detect hierarchical com-
munities, but also identify hubs and outliers. In this pa-
per, we propose a parameter-free hierarchical network clus-
tering algorithm SHRINK by combining the advantages of
density-based clustering and modularity optimization meth-
ods. Based on the structural connectivity information, the
proposed algorithm can effectively reveal the embedded hier-
archical community structure with multiresolution in large-
scale weighted undirected networks, and identify hubs and
outliers as well. Moreover, it overcomes the sensitive thresh-
old problem of density-based clustering algorithms and the
resolution limit possessed by other modularity-based meth-
ods. To illustrate our methodology, we conduct experiments
with both real-world and synthetic datasets for community
detection, and compare with many other baseline methods.
Experimental results demonstrate that SHRINK achieves
the best performance with consistent improvements.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; G.2.2 [Graph
Theory]: Graph Algorithms; I.5.3 [Clustering]: Algorithms
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1. INTRODUCTION
Nowadays, many real-world networks possess intrinsic com-

munity structure, such as large social networks, Web graphs,
and biological networks. A community (also referred to as a
module or cluster) is typically thought of a group of nodes
with dense connections within groups and sparse connec-
tions between groups as well. Detecting communities in a
network can provide insight into how network function and
topology affect each other and has received a great deal of
attention in recent years. For example, communities in a
co-authorship network might imply researchers working to-
gether with the same interests, and communities in a cita-
tion network might indicate related papers on a single topic,
meanwhile communities on the Web graph might represent
pages of related topics.

Finding communities in complex networks is a nontriv-
ial task, since the number of communities in the network is
typically unknown and the communities are often of unequal
size or density. Moreover, it has been shown that there is a
hierarchical structure of complex networks with communi-
ties embedded within other communities. Essentially, small
communities group together to form larger ones, which in
turn group together to form even larger ones [16]. Taking
the co-authorship network extracted from DBLP in Figure 1
as an example, a research field can be composed of many
research groups with the same academic interests. For ex-
ample, there are many groups in DM research field, while
a group may consist of several subgroups like “data stream
mining”, “graph mining”,“mining moving object” and so on.

Besides the general nodes that are densely connected with
communities, there are some special nodes like hubs (de-
noted as red diamonds) and outliers (denoted as white tri-
angles) in Figure 1. For example, some researchers, like “Ji-



Figure 1: Community structure and node roles for
an example of co-authorship network extracted from
DBLP.

awei Han”and“Philip S. Yu”, have published a large amount
of papers in collaboration with people from various research
communities. These nodes should be considered as hubs that
are closely related to different communities, forming over-
lapping communities. As we know, hubs play special and
important roles in many real-world networks. For example,
hubs in the WWW could be utilized to improve the search
engine rankings for relevant authoritative Web pages [14],
and hubs in viral marketing [7] and epidemiology [5] could
be central nodes for spreading ideas or diseases. Further-
more, there are some nodes that are marginally connected
with the community members, such as the white triangles
in Figure 1. In reality, a visiting scholar who only publishes
one paper with researchers in the hosted group should not
be considered as a member of the group, and meanwhile it
is better to be regarded as an outlier. Since outliers have
little or no influence in a community, they may be isolated
as noise in the network. Therefore, how to detect hierarchi-
cal communities as well as hubs and outliers in a network
becomes an interesting and challenging problem. However,
most existing approaches only study the community detec-
tion without considering hubs and outliers. In this paper,
we propose a parameter-free hierarchical network clustering
algorithm SHRINK by combining the advantages of density-
based clustering and modularity-based methods. The main
contributions are summarized in the following:

1. We propose a novel parameter-free network cluster-
ing algorithm. Through shrinkage of the local micro-
communities into super-node iteratively, our algorithm
does not only reveal the meaningful hierarchical com-
munity structure in networks, but also identify the
hubs and outliers.

2. Our algorithm can find the communities with various
densities. Moreover, the clustering result does not de-
pend on the order of processed nodes. Experimental
results show that our algorithm is effective and effi-
cient.

3. By combining the advantages of density-based cluster-
ing and modularity optimization, our algorithm over-

comes not only sensitive threshold problem of density-
based clustering algorithm, but also the resolution limit
that other modularity-based algorithms suffer from.

The rest of the paper is organized as follows. First we
briefly review some related work in Section 2. In section 3,
we formulize the notion of hierarchical structural-connected
clusters. In section 4, we describe the algorithms in detail.
In section 5, we report the experimental results. Finally,
we summarize our conclusions and suggest future work in
section 6.

2. RELATED WORK
Community discovery in complex networks has been stud-

ied for years in multiple fields, particularly computer science
and physics. Traditional graph partitioning methods, such
as Kernighan-Lin algorithm [13], Girvan-Newman algorithm
[11], normalized cut [24], and spectral bisection methods [25]
have been widely applied to find network communities. Re-
cently, significant progress has been archived in this research
field and many approaches have been presented for detecting
communities in networks.

Modularity-based methods: For evaluating the qual-
ity of network partitions, Newman and Girvan proposed the
modularity measure Q [20] which has been widely used in
community discovery. Modularity-based methods assume
that high values of modularity indicate good partitions. But
it has been proven that modularity optimization is an NP-
complete problem. Most of the modularity-based algorithms
find good approximation of the modularity maximum with
high computational complexity such as SA (Simulated An-
nealing) [12], FN [19], and CNM [6]. Recently, Blondel et
al. proposed a greedy modularity-based algorithm, called
BGLL[3], for finding communities in weighted networks. This
algorithm has a low computational complexity and can dis-
cover hierarchical communities. However, the results of the
algorithm depend on the order in which the nodes are vis-
ited. Actually, the methods of greedy optimization of mod-
ularity often tend to form large communities through com-
bination of small ones. Recent research shows that modu-
larity is not a scale-invariant measure, and hence, by rely-
ing on its maximization, detection of communities smaller
than a certain size is impossible. This serious problem is
famously known as the resolution limit of modularity-based
algorithms [10]. Compared with the traditional modularity-
based methods, our work use the modularity as a quality
function to guide the selection of optimal hierarchical com-
munities.

Hierarchical and Overlapping methods: In the pres-
ence of hierarchy, the concept of community structure be-
comes richer. Agglomerative or divisive hierarchical cluster-
ing are well-known techniques to solve this problem [19, 11].
Starting from a partition in which each node is its own com-
munity, or all nodes are in the same community, one merges
or splits clusters according to a topological measure of sim-
ilarity between nodes. In this way, one builds a hierarchical
tree of partitions. Though this type of methods naturally
produces a hierarchy of partitions, it needs a metric to stop
the algorithm. Recently, some work focused on the problem
of identifying meaningful community hierarchies [23] and de-
tecting multiresolution levels [2, 16, 22].

The issue of finding overlapping communities has become
a hot topic. Palla et al. proposed a clique percolation



method (CPM) [21]. A complete sub-graph of k nodes,
called k-clique, is rolled over the network through other
cliques with k−1 common nodes. In this way, a set of nodes
can be reached, which is regarded as a community. One node
can belong to more than one community; therefore, overlaps
naturally occur. The CPM algorithm is limited by its as-
sumption that the graph has a large number of cliques. Fur-
thermore, the method is not suitable to detect hierarchical
structure. Recently, Nepusz et al. considered the problem
of fuzzy community detection in networks, which expands
the concept of overlapping community structure [18]. Ev-
ery node is allowed to belong to multiple communities with
different degrees of membership. A measure was introduced
to identify regular nodes in a community, hubs that have
significant membership in more than one single community,
and outliers that do not belong to any of the communities.

In real networks, communities are usually both hierar-
chical and overlapping. Most existing methods investigate
these two phenomena separately. Our work is one of the few
methods that try to discover both hierarchical communities
and overlapping nodes in a given network.

Density-based methods: Density-based clustering ap-
proaches (e.g., DBSCAN [8] and OPTICS [1]) have been
widely used in data mining owing to their ability of find-
ing clusters of arbitrary shape even in the presence of noise.
Recently, Xu et al. proposed an efficient structural net-
work clustering algorithm SCAN [26] through extension of
the DBSCAN [8]. This algorithm can find communities as
well as hubs and outliers in a network. However, it requires
a minimum similarity parameter ε and a minimum cluster
size µ to define clusters, and is sensitive to the parame-
ter ε which is difficult to determine automatically. To deal
with this problem, Bortner et al. proposed a new algorithm,
called SCOT+HintClus [4], to detect the hierarchical cluster
boundaries of network by extending the algorithm OPTICS
[1]. However, it does not find the global clustering result and
needs an additional pruning process to expose the reasonable
hierarchical structure of the networks. Our work tries to de-
velop a parameter-free method to explore the hierarchy of
structural-connected communities with multiresolution lev-
els in networks.

3. DENSELY CONNECTED HIERARCHICAL
COMMUNITIES

The goals of our algorithm are not only to cluster networks
hierarchically but also to identify two kinds of special nodes:
hubs and outliers. Therefore, local connectivity structure of
the network is used in our optimal clustering. In this section,
we formalize some notions and properties of the hierarchical
structure-connected clusters.

Definition 1. (Structural Similarity) Let G = (V, E, w)
be a weighted undirected network and w(e) be the weight of
the edge e. For a node u ∈ V , we define w({u, u}) = 1. The
structure neighborhood of a node u is the set Γ(u) containing
u and its adjacent nodes which are incident with a common
edge with u : Γ(u) = {v ∈ V |{u, v} ∈ E} ∪ {u}. The
structural similarity between two adjacent nodes u and v is
then

σ(u, v) =

∑
x∈Γ(u)∩Γ(v)

w(u, x) · w(v, x)√ ∑
x∈Γ(u)

w2(u, x) ·
√ ∑

x∈Γ(v)

w2(v, x)
. (1)
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Figure 2: A segment of similarity-plot for the DBLP
co-authorship network.

The above structural similarity is extended from a cosine
similarity used in [26] which effectively denotes the local
connectivity density of any two adjacent nodes in a weighted
network. It can be replaced by other similarity definitions
such as Jaccard similarity, and our experimental results show
that the cosine similarity is better.

The density-based clustering algorithm OPTICS [1] shows
that the hierarchical cluster structure of a dataset can be
obtained from the reachability-similarity values plotted for
each object in the cluster-ordering. Here we intend to design
a parameter-free algorithm, and we do not use the minimum
similarity threshold ε and the minimum cluster size µ any
more. Actually, the reachability-similarity of any adjacent
nodes u and v are equal to their structural similarity when
µ = 2 and the clustering results are not sensitive to the
parameter µ. In Figure 2, we give a segment of ordered
similarity-plot extracted from the DBLP co-authorship net-
work. It is able to observe that the similarity distribution
describes the intrinsic clustering structure accurately with
high similarity regions surrounded by low similarity regions.
The clusters are clearly discernible as “mountains” in the
plot, and the hubs and outliers are located in the low re-
gions between the mountains. Thus, if we explore the clus-
ters from the top of each mountain to the plain, we would
find not only the nested cluster structure, but also clusters
with a variety of densities. Each local maximum of the sim-
ilarity in the plot corresponds to a densely connected node
pair.

Definition 2. (Dense Pair) Given a network G = (V, E),
σ(u, v) is the structural similarity of nodes u and v. If σ(u, v)
is the largest similarity between nodes u, v and their adjacent
neighbor nodes: σ(u, v) = max{σ(x, y)|(x = u, y ∈ Γ(u) −
{u})∨ (x = v, y ∈ Γ(v)−{v})}, then {u, v} is called a dense
pair in G, denoted by u ↔ε v, where ε = σ(u, v) is the
density of pair {u, v}.

A dense pair is a pair of nodes with the largest similarity
from each other. That is to say, the connectivity density of
the two nodes is not less than their surrounding links. As
shown in Figure 3, {9, 13} is a dense pair with density 0.8165
in the example network.

Definition 3. (Micro-community) Given a network G =
(V, E), C(a) = (V ′, E′, ε) is a connected sub-graph of G
represented by a node a. C(a) is a local micro-community
iff 1)a ∈ V ′; 2)for all u ∈ V ′, ∃v ∈ V ′(u ↔ε v); 3)̸ ∃u ∈
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Figure 3: The micro-communities in an example net-
work weighted by structural similarity.

V (u ↔ε v ∧ u ∈ V ′ ∧ v /∈ V ′). ε is the density of the
micro-community C(a).

The micro-community is an isolated node or a sub-graph
that consists of one or more connected dense pairs with cer-
tain density ε. As shown in Figure 3, the single node set {7}
forms a micro-community with density 1 and the nodes set
{8, 11, 12} forms a micro-community with density 0.8 in the
toy network. For any node v ∈ V , v must be in the same
micro-community with itself. Obviously, it is symmetric and
transitive for the relation of nodes being in the same micro-
community. Thus, a network will be partitioned into one or
more local micro-communities by this equivalence relation.
The involved properties are introduced in the following the-
orems.

Theorem 1. Given a network G = (V, E), C(a) = (V ′, E′, ε)
is a micro-community in G. For all u ∈ V , C(u) = C(a) iff
u ∈ V ′.

Theorem 2. Given a network G = (V, E), C = (V ′, E′, ε)
is a micro-community with density ε in G. If u ∈ V ′ and
v ∈ Γ(u) − {u}, then σ(u, v) ≤ ε.

According to the partitioning by micro-communities, the
original network can be reduced into a smaller super-graph
by shrinking the micro-communities into super-nodes. Then
a dense micro-community can be regarded as a single node
in the following process.

Definition 4. (Super-network) Given a network G = (V, E, σ),

Ṽ = {V1, V2, · · · , Vk} is a partition of the node set V and

∀Vi ∈ Ṽ , the sub-network Gi = (Vi, Ei) induced by the

node set Vi is a local micro-community in G. Define Ẽ =
{{Vi, Vj}|∃u ∈ Vi,∃v ∈ Vj , {u, v} ∈ E} and σ̃(Vi, Vj) =

max{σ(u, v)|u ∈ Vi, v ∈ Vj}; then G̃ = (Ṽ , Ẽ, σ̃) is called a
super-network of G.

When a hierarchical tree of local micro-communities has
been built, the following Theorem 3 shows that the density
of a local micro-community is not less than the density of
the bigger micro-community in which it is embedded.

Theorem 3. Given a network G = (V, E, σ) and its super-

network G̃ = (Ṽ , Ẽ, σ̃), if C = (V ′, E′, ε) is a local micro-

community in G, C̃ = (Ṽ ′, Ẽ′, ε̃) is a local micro-community

in G̃, and V ′ ∈ Ṽ ′, then ε̃ ≤ ε .

4. THE ALGORITHMS
In this section, we describe the hierarchical clustering al-

gorithm SHRINK-H which reveals the densely connected

clusters, hubs and outliers in networks. A similarity-based
modularity gain is adopted to evaluate the quality of micro-
communities and to stop the algorithm. In order to re-
duce the running time, we also introduce a greedy algorithm
SHRINK-G which is more efficient with almost the same
clustering results.

4.1 Measurement of Modularity Gain
A metric is necessary for our algorithm to measure the

goodness of the discovered hierarchical communities. Many
quality functions have been proposed, such as modularity,
fitness, etc. Here we select the modularity measure Q as
the quality function because of its effectiveness in practice
and efficiency for calculation. We use the similarity-based
modularity function Qs proposed by Feng et al. in [9]. It
is extended from the connection-based modularity Q and
has a better ability to deal with hubs and outliers. Given a
cluster CR = {C1, C2, · · · , Ck} of the network G = (V, E),
the function Qs is defined as follows:

Qs =

k∑
i=1

[
ISi

TS
−

(
DSi

TS

)2
]
, (2)

where k is the number of clusters, ISi =
∑

u,v∈Ci
σ(u, v)

is the total similarity of nodes within cluster Ci, DSi =∑
u∈Ci,v∈V σ(u, v) is the total similarity between nodes in

cluster Ci and any node in the network, and TS =
∑

u,v∈V σ(u, v)
is the total similarity between any two nodes in the network.

To enhance the efficiency of the algorithm, we calculate
the modularity Qs incrementally. Given two adjacent mod-
ule Ci and Cj , the modularity gain ∆Qs can be computed
by

∆Qs = Q
Ci∪Cj
s − QCi

s − Q
Cj
s =

2USij

TS
− 2DSi · DSj

(TS)2
, (3)

where USij =
∑

u∈Ci,v∈Cj
σ(u, v) is the total similarity of

the links between two modules Ci and Cj .
Based on the equation (3), the gain of modularity Qs

for merging a micro-community C = {c1, c2, · · · , ck} into
a super-node can be easily computed as

∆Qs(C) =

∑
i,j∈{1,2,··· ,k},i̸=j

2USij

TS
−

∑
i,j∈{1,2,··· ,k},i̸=j

2DSi · DSj

(TS)2
.

(4)

The similarity-based modularity described above is a met-
ric to evaluate the quality of a partition. Here we use the
gain of modularity to control the shrinkage of the micro-
communities. If the modularity gain ∆Qs of a micro-community
C is positive, we argue that the nodes of C should be clus-
tered in the same community. Thus, given a network G,
the task of our community discovery algorithms is to find
a higher modularity solution under the principle of density-
based clustering, rather than to search a partition greedily
maximizing the modularity Qs.

4.2 Clustering via Hierarchical Shrinkage
The pseudo-code of our hierarchical clustering algorithm,

called SHRINK-H, is given in Algorithm 1. The main pro-
cess can be divided into two phases that are repeated iter-
atively, as shown in Figure 4(a). Given a network with n
nodes, first we initialize each node with a different commu-
nity label. In this initial partition, the number of communi-
ties is the same as the number of nodes. Then, for each node
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Figure 4: Illustration of the procedure and result of the hierarchical network clustering algorithm SHRINK-
H: (a) the process of the hierarchical shrinkage of the micro-communities, (b) the hierarchical structure of
the nested communities with different densities, and (c) the final two-layers overlapping communities.

i we find its local micro-community. This process is applied
sequentially for all nodes. We record all the different micro-
communities which represent a partition of the network and
then the first phase is completed. The second phase of the
algorithm is to build a super-network. We evaluate the gain
of Qs for the shrinkage of the micro-communities found dur-
ing the first phase. If the gain is positive, the corresponding
local community is replaced by a super-node. The above
two phases are executed in turns until there is no micro-
community with positive modularity gain. Then the hier-
archy of communities naturally occurs, as shown in Figure
4(b). This algorithm is efficient because the size of the net-
work is reduced rapidly in the process. In each iteration, a
node is visited only once and the corresponding local micro-
communities do not depend on the order in which the nodes
are visited.

If one wants to get traditional non-overlapping partitions
or overlapping communities without hubs and outliers, a
post-process can be employed to deal with the “homeless”
nodes: hubs and outliers. The homeless nodes whose neigh-
bors are within at most one cluster are outliers. Each out-
lier can be assigned to its adjacent cluster as a border node.
Other homeless nodes are regarded as hubs. If overlapping
communities are considered, the hubs can be assigned to
their adjacent communities as border nodes shown in Fig-
ure 4(c). Otherwise, they can be assigned to the adjacent
community that harvests the largest positive gain of Qs.

4.3 Clustering via Greedy Shrinkage
To enhance the efficiency, we propose a modified greedy al-

gorithm SHRINK-G. Compared with micro-community, the
dense pair is a smaller unit which has the largest density
among its surrounding links. If we do not consider the hi-
erarchical structure of communities, we can cluster the net-

work via greedy shrinkage of the dense pairs. Thus, each
dense pair in a micro-community is considered separately.
Starting with an arbitrary node u in a network G, we find
the dense pair containing u. If there is a node v adjacent to
u that forms a dense pair {u, v} and its modularity gain is
positive, we merge node v and u to form a super-node u′.
Then we check whether there exists a dense pair containing
u′ and try to shrink it. The above process is repeated until
there does not exist a shrinkable dense pair containing cur-
rent node. Then the algorithm continues with next unvisited
node. The clustering is accomplished when all the nodes in
the network G are visited. The pseudo-code of this clus-
tering algorithm is given in Algorithm 2, called SHRINK-G.
Since this algorithm needs to visit all the nodes in a network
only once, it is much faster than the SHRINK-H. However,
the clustering result may rely on the visiting sequence of
the nodes. Nevertheless, our experimental results on a large
amount of networks show that the clustering results of the
above two algorithms are the same in most cases.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed algorithm SHRINK

using some real-world datasets and synthetic benchmark
datasets. We compare our algorithms with the density-based
network clustering algorithm SCAN and two representative
modularity-based methods: CNM [6] and BGLL [3]. Our
algorithms are implemented in ANSI C++. All the experi-
ments were conducted on a PC with a 2.4 GHz Pentium IV
processor and 2GB of RAM.

5.1 Evaluation Criteria
In our experiments, we adopt Normalized Mutual Infor-

mation (NMI), an information-theoretic based measurement,



Algorithm 1: SHRINK-H

Input: Network G = (V, E)
Output: Set of clusters CR = {C1, C2, · · · , Ck}; Set of hubs

and outliers N
begin

CR← {{vi}|vi ∈ V };
while true do

// Phase 1:Detect local micro-communities
MC ← ∅;
for each v ∈ V do

C(v)← ∅;
Queue q;
q.insert(v);
ε← max{σ(v, x)|x ∈ Γ(v)− {v}};
while q.empty() ̸= true do

u← q.pop();
if u = v ∨max{σ(u, x)|x ∈ Γ(u)− {u}} = ε
then

C(v)← C(v) ∪ {u};
for each w ∈ Γ(u)− {u} do

if σ(w, u) = ε then
q.insert(u);

end

end

end

end
MC ←MC ∪ C(v);

end
// Phase 2: Shrink micro-communities
∆Qs ← 0;
for each C ∈MC do

if |C| > 1 ∧∆Qs(C) > 0 then
ṽ ← {v|v ∈ C};
CR← (CR− ∪

vi∈C
{{vi}}) ∪ {ṽ};

∆Qs ← ∆Qs + ∆Qs(C);
end

end
if ∆Qs = 0 then

break;
end

end
N = ∅;
for each C ∈ CR do

if |C| = 1 then
CR = CR− C;
N = N ∪ C;

end

end
return CR, N;

end

Algorithm 2: SHRINK-G

Input: Network G = (V, E)
Output: Set of clusters CR = {C1, C2, · · · , Ck}; Set of hubs

and outliers N
begin

CR← {{vi}|vi ∈ V };
for each v ∈ V do

u← v;
L = ∅;
L← Γ(u)− {u};
for each l ∈ L do

if u↔ l ∧∆Qs({u, l}) > 0 then
CR← (CR− {{u}, {l}}) ∪ {{u, l}};
L← L ∪ (Γ(l)− {l});
u← {u, l};

end

end

end
N = ∅;
for each C ∈ CR do

if |C| = 1 then
CR = CR− C;
N = N ∪ C;

end

end
return CR, N;

end

to evaluate the quality of clusters generated by different
methods. It is currently widely used in measuring the per-
formance of network clustering algorithms [15]. Formally,
the measurement metric NMI can be defined as

NMI =
−2

∑
i,j Nij log(

NijN

Ni.N.j
)∑

i Ni.log(Ni.
N

) +
∑

j N.j log(
N.j

N
)
, (5)

where N is the confusion matrix, Nij is the number of nodes
in both cluster Xi and Yj , Ni. is the sum over row i of N and
N.j is the sum over column j of N . Note that the value of
NMI ranges between 0.0 (total disagreement) and 1.0 (total
agreement).

5.2 Evaluation on Real-world Networks
To assess the performance of the proposed method in

terms of accuracy, we conduct experiments on the DBLP
Co-authorship network and two popular real-world networks
from Newman1.

5.2.1 DBLP Co-authorship Network
The DBLP Co-authorship network in four research fields

(i.e., DB, IR, DM and ML) was extracted from the DBLP
computer science bibliographical dataset. We only consider
the authors who have published more than twenty papers.
Then we obtain a weighted undirected network with 1,547
nodes and 7,789 edges, in which each node corresponds to a
distinct author and the edge between two nodes represents
their co-author relationship. The integral weight of an edge
denotes the number of papers co-authored by these two au-
thors.

Our algorithms SHRINK-H and SHRINK-G get the same
clustering result on this network, where 172 communities
as well as 162 hubs and 47 outliers are found. Due to the
limited space, we can not present all the extracted commu-
nities. We then select six representative communities and
list no more than ten cluster members along with two rep-
resentative hubs and outliers in Table 1. Each community
represents a group of scientists with the same research in-
terests, such as machine learning community (36) and in-
formation retrieval community (147) in Table 1. Here we
are able to observe that SHRINK can discover meaning-
ful co-authorship communities from a large amount of real
academic associations. The identified hubs indicate some
famous researchers who have published a large number of
papers in collaboration with a variety of research groups.
On the contrary, the identified outliers always correspond
to those researchers who may only publish one or few pa-
pers coauthored with other scholars. Based on the results,
we can see that SHRINK is effective to find the meaningful
hubs and outliers from the research communities.

5.2.2 Zarchary’s Karate Network
The Zachary’s karate network [27] consists of 34 nodes

and 78 edges as shown in Figure 5. This network can be
separated into two distinct groups by the dashed line since
there is a conflict between one of the administrator (repre-
sented by node 1) and the instructor (represented by node
33) of the club.

As shown in Figure 5, our algorithms SHRINK-H and
SHRINK-G can find four communities in this network rep-
resented by different colors. The roles of nodes are repre-

1http://www-personal.umich.edu/∼mejn/netdata/



Table 1: Six communities discovered by SHRINK on DBLP Co-authorship network. The last two rows are
hubs and outliers associated with the corresponding communities which are labeled by ⋄ and △ respectively.

Community [17] Community[36] Community[64] Community[93] Community[116] Community[147]

Jon M. Kleinberg Michael I. Jordan Jeffrey D. Ullman Charu C. Aggarwal Soumen Chakrabarti James P. Callan
Ravi Kumar Dan Klein Michael Stonebraker Guy M. Lohman Shashank Pandit Jaime G. Carbonell

Deepayan ChakrabartiZoubin Ghahramani Yannis Papakonstantinou Sheng Ma Sunita Sarawagi Russell Greiner
Jure Leskovec Thomas Hofmann Jim Gray Vijayshankar Raman Gaurav Bhalotia Yiming Yang

David Liben-Nowell Tao Li Jinren Zhou Daniel Barbaŕlć Rushi Desai Nick Cercone
Ronald Fagin Chris H. Q. Ding Sharma Chakravarthy Joel L. Wolf B. Aditya Stephen E. Robertson
Ziv Bar-Yossef Zhongfei Zhang Per-Ake Larson Kun-Lung Wu Rahul Gupta Jamie Callan

Tobias Scheffer Wolfgang Lehner Calisto Zuzarte Byron Dom Nick Craswell

John Shawe-Taylor Ćl ↪esar A. Galindo-Legaria Chang-Shing Perng Vibhu O. Mittal
Eric P. Xing Janet L. Wiener Sam Lightstone Yasushi Ogawa

... ... ... ... ... ... ... ...
⋄Christos Faloutsos ⋄Nick Koudas ⋄Hector Garcia-Molina ⋄Jiawei Han ⋄Rakesh Agrawal ⋄John D. Lafferty

⋄Rajeev Motwani ⋄Philip S. Yu ⋄S. Sudarshan
△Robert A. Jacobs △John McPherson △Arpit Mathur
△Roded Sharan
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Figure 5: The clustering result of SHRINK on the
Zachary’s karate network.

sented by different shapes: two hubs denoted by diamonds,
six outliers denoted by triangles in the network, and oth-
ers are general cluster members. In our algorithms, nodes
10 and 20 are identified as hubs. The reason is that these
two nodes connected with two adjacent communities in the
same way. Hence, it is better for them to be considered as
shared nodes (i.e., hubs). Due to the sparse links of this
network, nodes 12, 15, 16, 19, 21 and 23 are identified as
outliers which are loosely connected with the communities.
In short, the SHRINK algorithm can successfully detect the
community and identify the hubs and outliers.

Although this partition of four communities in Figure
5 does not match the ground truth of the dataset, many
other methods obtain the same result which indicates that
it is topologically meaningful. The SCAN algorithm get the
same clustering result as our algorithms by using manually
detected parameters (ε = 0.527, µ = 3). The BGLL algo-
rithm also find four communities in this network, but it can
not find the hubs and outliers and it assigns the nodes 10 and
20 to the community of administrator. We also cluster this
network using the CNM algorithm, but it only detects three
communities in this network, among which the group of ad-
ministrator is divided into two unreasonable sub-groups: {1,
5, 6, 7, 11, 12, 17, 20} and {2, 3, 4, 8, 10, 14, 18, 22}. The
result of CNM indicates that the agglomerative hierarchical
performs badly in greedy modularity maximization.

5.2.3 NCAA College-football Network
The National Collegiate Athletic Association (NCAA) College-

football is a social network with communities (or confer-
ences) of American college football teams. In total, there

are 115 college football teams, which are divided into eleven
conferences and five independent teams (Utah State, Navy,
Notre Dame, Connecticut and Central Florida) that do not
belong to any conference. The network, representing the
schedule of Division I-A games for the 2000 season, con-
tains 115 nodes and 613 edges. Now the question is to find
out the communities from the graph. Figure 6(a) illustrates
the football network with each vertex represents a school
team. The teams belonging to a conference and the indepen-
dent teams are denoted by circles and diamonds respectively,
and teams in the same conference are identified by the same
color. There is a link between two teams if they played a
game together. The number of teams in a conference ranges
from seven to thirteen. Each team plays about ten games
in the season. Consequently, the inner link density of each
conference is different.

The clustering result of our algorithms SHRINK-H and
SHRINK-G is presented in Figure 6(b). We obtain eleven
clusters in this network which demonstrates a good match
with the original conference system. Four independent teams
are correctly identified as hubs. Although there is an inde-
pendent team that is falsely merged into a conference, and
three misclassified teams (i.e., Louisiana Monroe, Louisiana
Lafayette, and Louisiana Tech), our algorithm still performs
much better than other methods including the SCAN, CNM
and BGLL algorithms, which will be described as follows.

The SCAN algorithm finds thirteen communities as its
best result in this dataset with parameters (ε = 0.53, µ = 2).
The teams in the conference denoted by black circles in
Figure 6(a) are divided into two clusters. Meanwhile, five
hubs are identified including four correct independent teams:
CentralFlorida, Connecticut, Navy, and NotreDame. An-
other independent team UtahState is misclassified into a
conference. The accuracy of SCAN is worse than our algo-
rithm, because it is hard for the SCAN algorithm to detect
communities with various densities by using a global den-
sity threshold ε. The modularity-based algorithm CNM and
BGLL discover seven and ten communities in this network
respectively. The algorithm CNM only finds four clusters
matching with the conferences. For the five independent
teams, they are assigned to three different clusters.

In summary, SHRINK generates promising clustering re-
sults along with hubs and outliers in community detection,
consistently outperforming baseline methods including the
SCAN, CNM and BGLL algorithms.



 

(a)

 

 

 
(b)

Figure 6: NCAA College-football Network: (a) ground truth, (b) the clustering result of SHRINK.

Table 2: The parameters of the computer-generated
datasets for performance evaluation.

Dataset n m k maxk minc maxc

5000S 5,000 48,811 20 50 10 50
5000B 5,000 49,009 20 50 20 100
50000S 50,000 989,737 40 100 50 100
50000B 50,000 990,687 40 100 100 200

5.3 Evaluation on Synthetic Networks
So far, we have presented the experimental results of our

algorithms using several real-world networks. Now we also
use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark
graphs [17, 15] to evaluate the performance of our algo-
rithms. By varying the parameters of the networks, we can
analyze the behavior of the algorithms in detail. Some im-
portant parameters of the benchmark networks are given in
Table 2. We generate several weighted undirected bench-
mark networks with the number of nodes n = 5,000 and
50,000. For each n, two individual networks are generated
with different ranges of the community sizes, where S means
that the sizes of the communities in the dataset are relatively
small and B means that the sizes of communities are rela-
tively big. For each type of dataset, we range the mixing
parameter mu from 0.1 to 0.8 with a span of 0.05 and get
fifteen networks. Generally, the higher the mixture param-
eter of a network is, the more difficult it is to reveal the
community structure. Some important parameters of the
benchmark networks are:
• n: number of nodes
• m: average number of edges
• k : average degree of the nodes
• maxk : maximum degree
• mu: mixing parameter, each node shares a fraction mu

of its edges with nodes in other communities
• minc: minimum for the community sizes
• maxc: maximum for the community sizes

Due to the difficulty of detecting the parameter ε in the
benchmark networks for the algorithm SCAN, we only com-
pare our algorithm with two baseline methods of modular-
ity optimization: CNM and BGLL. Because these two al-
gorithms both assign each node to just one community, a
post-process is used in our algorithms to assign the homeless
nodes into the community with largest positive modularity
gain. The clustering results of our algorithms SHRINK-H
and SHRINK-G are almost the same or only slightly differ-
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Figure 7: Test of the accuracy of SHRINK, BGLL,
and CNM algorithms on the computer-generated
benchmark networks.

ent in all generated networks. Thus, we report the average
values of these two algorithms. The NMI scores of the three
methods are plotted in Figure 7. On most of the benchmark
datasets, our algorithm gets NMI = 1 when mu < 0.5, which
means a perfect match with the original network structure.
We can see that the performances of SHRINK are better
than that of BGLL on the generated networks in most cases,
because the BGLL algorithm tends to produce small number
of big communities on the large-scale networks, due to the
well known resolution limit of modularity [10]. For the pure
modularity optimization algorithm CNM, it performs worse
than both BGLL and SHRINK algorithms. However, the
performance of our algorithm is decreased when mu > 0.5,
especially in the small-scale network with big communities
(e.g. 5000B). This is because our algorithms have to deal
with more and more isolated hubs and outliers with the in-
creasing of parameter mu.

5.4 Analysis of the Resolution Limit Problem
Despite the good performance of the modularity measure

on many practical networks, it may lead to apparently un-
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Figure 8: Two schematic networks (the numbers on
the edge represent the structural similarity): (a)
the Ring network made out of identical cliques con-
nected by single links, and (b) the Pairwise network
with four identical cliques.

Table 3: The number of communities on Ring and
Pairwise datasets found by SA, CNM, BGLL, and
SHRINK.

Dataset
Name n m c SA CNM BGLL SHRINK

Ring 150 330 30 15 16 15 30
Pairwise 50 404 4 3 3 3 4

reasonable partitions in some cases. It has been shown that
modularity contains an intrinsic scale that depends on the
total number of links in the network. Communities that
are smaller than this intrinsic scale may not be resolved,
even in the extreme case where they are complete graphs
connected by some single bridges. The resolution limit of
modularity actually depends on the degree of interconnect-
edness between pairs of communities and can reach values
of the order of the size for the whole network [10].

In Figure 8(a), we show a network consisting of a ring of
several cliques, connected through single links. Each clique
is a complete graph with n nodes and n(n−1)/2 links. Sup-
pose there are c cliques (with c even), the network has a
total of N = nc nodes and M = cn(n − 1)/2 + c edges.
According to [10], modularity optimization would lead to a
partition where the cliques are combined into groups of two
or more (represented by dotted lines). Here, we use a syn-
thetic dataset with n = 5 and c = 30, called Ring. Another
synthetic network is shown in Figure 8 (b). In this network,
the larger circles represent cliques with n nodes, denoted as
Kn, and the small cliques with p nodes. According to [10],
we set n = 20, p = 5 and get the network called Pairwise.
Modularity optimization merges the two smallest communi-
ties into one (shown with a dotted line).

We present the clustering results on the above two datasets
in Table 3, where n is the number of node, m is the number
of edges, and c is the correct number of communities. Our al-
gorithms SHRINK-H and SHRINK-G find the exact commu-
nities. For the Ring and Pairwise datasets, the modularity-
based algorithms SA (optimized by simulated annealing),
CNM, and BGLL all possess the resolution limit problem
which result in merging two small cliques into one cluster.

Following [10], we also conduct experiments on five exam-

Table 4: The real-world datasets for analyzing reso-
lution limit of the modularity-based algorithms and
the clustering results by SA, CNM, BGLL, and
SHRINK.

Dataset
Name n m c(Q) SA CNMBGLLSHRINK

Yeast 688 1079 57 (0.677) 9 27 26 49
E. coli 423 519 76 (0.661) 27 40 41 61

Elect. circuit 512 819 70 (0.640) 11 32 29 64
Social 67 182 21 (0.532) 10 7 7 10

C. elegans 306 2345 20 (0.319) 4 4 6 35

ples of real-world networks: Yeast2, E. coli2, Elect. circuit2,
Social2, and C. elegans3. We consider the above five net-
works as undirected. The datasets and clustering results
are listed in Table 4. In most cases, the numbers of com-
munities obtained by our algorithms are the most accurate
results, which are very close to the ground truth.

The reason that our algorithms can overcome the reso-
lution limit is that it combines the density-based clustering
principle and the modularity measure. The connected nodes
with higher similarity will be considered preferentially as in
the same community than the lower ones. Moreover, all of
the adjacent nodes with equal similarities will be merged in
one community or be staying alone.

5.5 Running Time Complexity
Finally, we analyze the computational complexity of our

algorithm SHRINK. The running time of SHRINK-H is mainly
consumed by finding micro-communities and merging the
nodes in them in each iteration. The time complexity is
O(m) for the network with m edges. If there are h steps
for the algorithm to terminate, the time complexity of is
O(m · h). Our tests show that h is always linear in loga-
rithm of the number of nodes n (i.e., log n), which results in
an overall time complexity of O(m log n).

To illustrate the running time of the proposed algorithms
SHRINK-H and SHRINK-G, we generate seven networks
with the number of nodes n ranging from 1,000 to 300,000.
For each network, the number of edges m is ten times of
the number of nodes. The running time for SHRINK-H
and SHRINK-G are plotted as a function of the number
of nodes in Figure 9, respectively. It shows that our algo-
rithm SHRINK-H can process the network of 300,000 nodes
within an hour. The greedy clustering algorithm SHRINK-
G is faster than the hierarchical one. Actually, we are able
to reduce more than half running time of SHRINK-H with
the similar performance.

6. CONCLUSIONS
In this paper we present a novel parameter-free network

clustering algorithm SHRINK by combining the advantages
of density-based clustering and modularity optimization meth-
ods. Based on the structural connectivity information, the
proposed algorithm can effectively reveal the embedded hi-
erarchical community structure in large-scale weighted undi-
rected networks, and identify hubs and outliers as well. More-
over, it overcomes the sensitive threshold problem of density-
based clustering algorithms and the resolution limit pos-
sessed by other modularity-based methods. Experimental

2www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html
3http://toreopsahl.com/datasets/
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Figure 9: Running time for SHRINK with varying
network sizes.

results on the real-world and synthetic datasets show that
our algorithm achieves the best performance when compared
with the baseline methods. It is efficient with time complex-
ity O(m log n). In the future, it is interesting to investigate
the local communities in large-scale online networks, and
to use our method to analyze complex networks in various
applications.
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