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ABSTRACT

Consistent estimation of associations in microbial genomic
survey count data is fundamental to microbiome research.
Technical limitations, including compositionality, low sample
sizes, and technical variability, obstruct standard application
of association measures and require data normalization
prior to estimating associations. Here, we investigate
the interplay between data normalization and microbial
association estimation by a comprehensive analysis of
statistical consistency. Leveraging the large sample size
of the American Gut Project (AGP), we assess the
consistency of the two prominent linear association
estimators, correlation and proportionality, under di↵erent
sample scenarios and data normalization schemes, including
RNA-seq analysis work flows and log-ratio transformations.
We show that shrinkage estimation, a standard technique
in high-dimensional statistics, can universally improve the
quality of association estimates for microbiome data. We
find that large-scale association patterns in the AGP
data can be grouped into five normalization-dependent
classes. Using microbial association network construction
and clustering as examples of exploratory data analysis,
we show that variance-stabilizing and log-ratio approaches
provide for the most consistent estimation of taxonomic and
structural coherence. Taken together, the findings from our
reproducible analysis workflow have important implications
for microbiome studies in multiple stages of analysis,
particularly when only small sample sizes are available.

INTRODUCTION

Recent advances in microbial amplicon and metagenomic
sequencing as well as large-scale data collection efforts
provide samples across different microbial habitats that are
amenable to quantitative analysis. Following the organization
of sequence data into Operational Taxonomic Units (OTUs)
or Amplicon Sequence Variants (ASVs), via pipelines such
as qiime (1), mothur (2), or dada2 (3), the resulting
count data are then available in tabular format for
statistical analysis. Downstream analysis tasks include
assessing community diversity (4), differential abundance
analysis, associating bacterial compositions to system-specific
ecological and biomedical covariates, and learning microbe-
microbe associations.

However, technical artifacts inherent in microbial
abundance data preclude the application of such analysis
tasks directly on the measured counts. The data typically
comprise a high proportion of zeros and carry only relative
information about species abundance. The total number of
read counts for any given observation is limited by the total
amount of sequencing, quality of DNA preparations, and
other technical factors and does not represent the community
abundance or total species abundance in the sample or
ecosystem. For example, unequal amplicon library sizes
can bias sequencing reads to taxa from the larger sample,
regardless of true abundance profiles. Although some recent
studies have used controlled communities, spike-in controls
and other innovations to obtain total community size (5–8), in
the majority of experimental designs, the community size is
unknown, and, thus, our data is best thought of as containing
relative or compositional information (each OTU fraction
of total counts, total community size unknown) (9, 10).
Additionally, technical variation due to sequencing such as
differences in amplification biases and batch effects due to
multiple sequencing runs can hamper proper quantification of
microbial compositions (11).
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To ameliorate these biases, general data normalization
methods have been proposed to correct for sampling bias,
library size, and technical variability, including workflows
from RNA-seq pre-processing and compositional data
analysis (12–15). Dedicated normalization and modeling
strategies are also available for specific analysis tasks, most
prominently, for differential abundance testing (16–19).

Here, we examine data normalization schemes in
connection with a fundamental multivariate statistical
estimation task: inferring pairwise linear associations from
microbial count data. Two common strategies that have been
adopted for microbial relative abundance data are Pearson
or rank-based correlations after data normalization (20, 21)
and proportionality (22, 23) as association measure for
compositional data. Consistent correlation or proportionality
estimation is of paramount importance for a host of
downstream analysis tasks, including state-of-the-art diversity
estimation that takes the connectivity of the community into
account (4), direct microbial association network inference
(12), discriminant analysis, and microbial community
clustering.

While previous work (20) has assessed the precision
of correlation detection strategies on synthetic microbial
sequencing count data, we took a different approach and
investigated the behavior of linear association estimation
on the largest-to-date citizen-science sample collection, the
American Gut Project (AGP) (24). The large available sample
size n>9000 allows us, for the first time, to critically
measure the asymptotic consistency of combinations of data
normalization and association estimation techniques. More
specifically, given the lack of “gold standard” microbial
associations in gut microbial communities, we evaluated
different estimation strategies on subsamples of the AGP data
of increasing size. We asked the question whether and how
association patterns inferred from small but realistic sample
sizes of tens to a few hundreds of samples resemble those
inferred using the entire data set.

Using a comprehensive set of evaluation criteria and
summary statistics, we first show that, independent of
any specific data normalization scheme, standard linear
association measures are unreliable in the small sample
regime. We propose the concept of shrinkage estimation (25)
as an effective strategy for consistent association estimation
in the small sample regime and quantify the effects of sample
size on data normalization and association estimates on several
down-stream analysis tasks, including microbial association
(or relevance) network inference and clustering. Figure 1
shows the proposed analysis framework used in this study.

Our analysis revealed that all normalization-dependent
association estimates in the AGP data can be broadly grouped
into five categories and that variance-stabilization and log-
ratio approaches provide the most consistent estimation in
terms of taxonomic and community structure coherence. Our
findings, available in a fully reproducible statistical analysis
R workflow at Synapse ID: syn21654780, have important
implications for microbiome studies in multiple stages of
analysis, most prominently in the presence of small sample
sizes. In particular, we believe that our developed shrinkage
estimation framework will improve the consistency of future
microbiome data analysis studies at almost no additional
computational cost.

METHODS

To examine the interplay of data normalization and association
estimation methods, we first describe the four essential
ingredients of our analysis: the processed AGP 16S rRNA
data set, the comprehensive list of data normalization methods,
statistical estimation of linear associations, and downstream
statistical evaluation and analysis tools.

American Gut Project sample collection

We obtained Operational Taxonomic Units (OTU) count tables
and mapping files for unrarefied AGP samples (24) from the
project website ftp://ftp.microbio.me/AmericanGut/ag-2017-
12-04/. We filtered the dataset to contain only fecal samples
whose sequencing depths fall above the 10th percentile and
removed taxa that were present in fewer than 30% of all
samples. This resulted in a data matrix comprised of p=531
taxa and n=9631 samples.

To investigate the sample size dependence of data
normalization and association estimation on this dataset,
we generated collections of random subsamples of varying
sample sizes, ranging from 25n9000. Large-sample
reference association estimates were calculated using a subset
of samples at n=9000. To simulate reference data under
null correlation or proportionality, we randomly shuffled OTU
count data across samples prior to normalization.

Normalization methods

All normalization methods require as input OTU counts,
collected over n samples and stored in a matrix W 2
Nn⇥p
0 . Each row is a p-dimensional vector w(j) =

[w(j)
1 ,w(j)

2 ,. . . ,w(j)
p ], where j=1,. . . ,n is the sample index,

w
(j)
i is the read count of OTU i in sample j, and N0 is the

set of natural numbers {0,1,2,. . .}. Let the total OTU count
for sample j be m(j)=

Pp
i=1w

(j)
i . Several methods require

the application of a log transformation, thus requiring non-
negative input data. For consistency, we include a pseudocount
of 1 to all OTU input data if zero counts are not explicitly
handled by the respective normalization scheme. We consider
the following data normalization or transformation schemes.
Total Sum Scaling A standard approach for normalizing
count data is to divide individual counts by the total OTU
counts in a sample, thus scaling the count vector such that the
total sum is fixed to 1. This normalization is known as total
sum scaling (tss) or total sum normalization. It reads

tss(w(j))=

"
w
(j)
1

m(j)
,
w
(j)
2

m(j)
,...,

w
(j)
p

m(j)

#
2Sp.

The resulting sample space of the data is thus the (p�
1)�dimensional simplex.
Cumulative Sum Scaling The tss approach may place
unwanted influence on taxa that are highly sampled due to
sequencing biases by over-representing it in the scaling factor
m(j) (11). To reduce the influence of these highly abundant
taxa for sparse data, cumulative sum scaling (css) has been
proposed in (15) and implemented in the metagenomeSeq
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Figure 1. Framework for examining the effects of normalization methods on linear association estimation with increasing sample size. Comparative summary
statistics of the resulting association matrices include histogram-based analysis, distance-based matrix comparison, hierarchical clustering, and association
network analysis.

R package. Rather than normalizing by the total sum, css
selects a scaling factor that is a fixed quantile of OTUs counts.
Formally,

css(w(j))=

2

4w
(j)
1

m
(j)

l̂

N,
w
(j)
2

m
(j)

l̂

N,...,
w
(j)
p

m
(j)

l̂

N

3

52Rp
�0,

where the scaling factor for sample j is m
(j)

l̂
=

P
i|wijq

(j)
l

w
(j)
i . The quantity q

(j)
l is the sum of read

counts up to and including the lth quantile. N is a pre-
specified constant, e.g., N,1000, chosen such that the
resulting data vector resembles the units of the original
counts. The sample space of css-transformed data is that of
non-negative real numbers R�0.

Let l̂ be the index of the q
(j)
l , the lth quantile for sample j,

q̄l=medj
n
q
(j)
l

o
the median lth quantile across all samples,

and let µ(j)l be the mean lth quantile. css requires the median
absolute deviation of sample quantiles to be empirically stable
via the quantity �l=medj |µ

(j)
l � q̄l |. A common choice is

to set l̂ :=min{�l+1��l�0.1�l : 1 l<n} (15). The scaling
factor is then defined by summing all the counts up to the
smallest value of l that is stable, on average, across all samples
that is greater than or equal to the median. The default choice
for the median is the lth quantile.
Common Sum Scaling Common sum scaling (com), as
introduced in (11), is an alternative to rarefying OTU counts.
Counts are scaled to the minimum depth of each sample via

com(w(j))=

"$
w
(j)
1

m(min)

m(j)

%
, ...,

$
w
(j)
p

m(min)

m(j)

%#
2Rp,

where m(min)=inf{m(1),m(2),...,m(n)}. The operator b·c
rounds real proportions to the nearest integer.

Relative Log Expression The relative log expression (rle),
introduced for gene expression data and available in the
DESeq/edgeR package (14). The rle method is defined
as follows. Let g(x)=(

Qm
i=1xi)

1/m be the geometric
mean of an m-dimensional vector x, and let wi=WT

i =h
w
(1)
i ,...,w

(n)
i

i
be the vector of counts of OTU i over n

samples (a transposed column vector of count matrix W ). The
numeric scaling factor for sample j is

s(j) = med(j)
"

w
(j)
1

g(w1)
,...,

w
(j)
p

g(wp)

#
,

s̄(j) =
s(j)

g(s(·))
,

where med[x] denotes the median of vector x and s(·)=h
s(1),...,s(n)

i
is a collection of the sample scaling factors.

Let the global scaling factor ŝc= 1
n

Pn
j=1 s̄

(j) be the arithmetic
mean of all normalized scaling factors. The rle is then defined
as

rle(w(j))=

"
ŝc

w
(j)
1

s̄(j)
,...,ŝc

w
(j)
p

s̄(j)

#
2Rp

�0.

In summary, the rle estimates a median library from the
geometric mean over all samples. The median ratio of each
sample to the median library is then taken as the scale factor.
Inverse Hyperbolic Sine A standard variance-reducing
transformations, often applied to flow and mass cytometry
data (26, 27), is the inverse hyperbolic sine function, defined
as

asinh(w(j))=log(w(j)+
q
(w(j))2+1),

applied element-wise over the sample vector. The resulting
data matrix is then mean-centered prior to association
estimation.
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Wrench The Wrench procedure, introduced in (16), estimates
compositional correction factors in the presence of zero-
inflation. Wrench is defined as

wren(w(j))=

"
w
(j)
1

m(j)⌘�1
j

,...,
w
(j)
p

m(j)⌘�1
j

#
2Rp.

The quantity ⌘�1
j represents a compositional scale factor

where ⌘�1
j = 1

p

P
ie

(j)
i

yji
y++i

. Here, yji is the proportion of
each feature i in sample j, and y++i is the average proportion
of each feature i across all samples. The weight e

(j)
i is

estimated using the ”W2” scheme, the default choice in the
Wrench R package (see also (16) for further details). While
Wrench is capable of incorporating information about sample
grouping, e.g., for differential abundance testing, we consider
all samples to be in a single group.
Variance Stabilizing Transform The goal of variance
stabilizing transformations (vst) is to factor out the
dependence of the variance on the mean (over-
dispersion) (14). Consider the mean-dispersion relation

v(µ)= 1
n�1

nP
j=1

✓
w

(j)
i

ŝ(j)
�µ̂

(j)
i

◆2

. Here, the “size factors” are

ŝj=med

✓
w

(j)
i

g(w(j))

◆ 1
n

and µ̂
(j)
i = 1

n

nP
j=1

w
(j)
i
ŝj

is the sample

mean of counts to size factor ratios of sample j. The vst is
then the integral quantity defined as

vst(w(j))=

w
(j)
iˆ

0

dµp
v(µ)

2Rp .

The function v(µ) is approximated by a spline function
and evaluated for each count value in the column. The vst
normalization is available in the DESeq package where the
numerical fitting is achieved using local regression on the
graph (µ̂

(j)
i ,v(µ)). A smooth function v(µ) is estimated using

an estimate of raw variance: v̂(µ) = v(µ̂
(j)
i )�zi where zi=

µ
(j)
i
n

nP
j=1

1
ŝj

The local regression is parameterized such that

large counts are scaled to be asymptotically equal to the
logarithm base 2 of normalized counts. When we examined
the per-OTU standard deviation (taken across all (p=531)
OTUs) plotted against the rank of the average OTU count it
can be seen that vst produces similar counts to both clr and a
logarithm base 2 transform (Supplementary Fig 1).
Centered Log-Ratio transformation Log-ratio
transformations, introduced in (9), transform positive
compositional data from the simplex to Euclidean space
(9, 12). The centered log-ratio (clr) transform is defined as

clr(w(j))=

"
log

w
(j)
1

g(w(j))
,...,log

w
(j)
p

g(w(j))

#
2Rp,

where the ratio is taken with respect to the geometric mean of
the composition. The resulting data lies in a p�1 hyperplane
of p-dimensional Euclidean space.

Estimation of linear associations

Following a transformation of count data under some function
f : Np

0!X p, we consider several estimation methods for
linear associations among the p OTUs.
Covariance and Correlation estimation The standard way
of estimating linear associations is the empirical (sample)
covariances in the sample space X p which forms the basis
for many downstream multivariate data analysis techniques,
including principal component analysis (PCA), discriminant
analysis, metric learning, and network inference.

Formally, column-centering the transformed data results in
a n⇥p data matrix X=f(W )(Ip� 1

n1p) where Ip is the p-
dimensional identity matrix and 1p is unit (all-ones) matrix.
In matrix notation, the sample covariance matrix (cov) is Ŝ=
XTX � 1

n�11p, where � indicates element-wise multiplication
of two equal size matrices.

The estimate Ŝ is a symmetric p⇥p matrix with the sample
variances along the diagonal and can be normalized to obtain
a matrix containing Pearson correlation coefficients. Let D̂=
diag[Ŝ] be a diagonal matrix with the p post-transformed OTU
variances on the diagonal and zero elsewhere. The Pearson
correlation matrix is then R̂=D̂� 1

2 ŜD̂� 1
2 . The matrix R̂

is a symmetric p⇥p matrix where each entry r̂ik=R̂[i,k]
corresponds to the Pearson correlation between OTU i and
OTU k under the data transformation.

The magnitude and sign of the values in R̂ are
often interpreted as the association strength and direction,
respectively. The sample correlation/ covariance matrices are,
however, inadmissible in the p�n setting, i.e., when fewer
samples than OTUs are available. For example, type I errors
may be grossly inflated, since the parameters under estimation
are underdetermined. Standard operations for solving systems
of linear equations such as PCA are then ill-posed.
Shrinkage estimation To alleviate this shortcoming of the
standard sample covariance estimator, regularized covariance
and correlation estimation have been developed high-
dimensional statistics. By imposing structural assumptions
about the underlying population covariance, estimators with
stronger statistical properties can be derived in the p>n
setting. One prominent structural assumption is sparsity, i.e.,
only a few strong pairwise correlations are assumed to be
present in the dataset. An effective data-driven approach to
realizing structural sparsity is shrinkage estimation. While
several estimators have been proposed in the literature (28–
30), we focus here on Schäfer-Strimmer shrinkage estimation
(31), as implemented in the R package corpcor. The principle
idea of shrinkage estimation is to shrink small sample
correlation toward zero where the shrinkage intensities can
be efficiently estimated from data (28). More specifically, we
estimate individual entries s⇤ik of the shrinkage covariance S⇤

and r⇤ik in the shrinkage correlation R⇤ as follows. For all
off-diagonal elements in S⇤, we compute

s⇤ik= r̂⇤ik
p
ŝiiŝkk 8i 6=j,
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where the shrunk correlation estimates are r̂⇤ik=(1�b�⇤1)r̂ik.
The variances (var) s⇤ii are shrunk in a separate procedure
toward the median v=med[ŝ11,...,ŝpp] via s⇤ii=

b�⇤2v+(1�
b�⇤2)ŝii.

The shrinkage intensities b�⇤1 and b�⇤2 are determined
empirically by estimating the variance within the sample
covariance matrix (see Supplementary Methods).
Proportionality estimation Covariance and correlation
estimation on compositional data has long been criticized due
to the necessary presence of negative bias, scale dependence,
and subcompositional incoherence in the estimates (9, 32).
Association measures based on the concept of proportionality
have thus been put forward as an alternative to correlation
(22). Here, we consider the symmetric proportionality ⇢p
(23, 33) which by default operates on clr transformed data
Xclr,(W ). The measure is defined as:

⇢p
⇣
Xclr

i ,Xclr
k

⌘
=1�

var(Xclr
i �Xclr

k )

var(Xclr
i )+var(Xclr

k )

where Xclr
i and Xclr

k are the columns of the matrix
corresponding to OTU i and k, respectively. ⇢p is
a proportionality measure because differences of clr-
transformed components are equivalent to log-ratios of
compositions. As shown in (23, 33), the measure can be
equivalently expressed in terms of covariances and variances
as follows:

⇢p
⇣
Xclr

i ,Xclr
k

⌘
=

2⇥cov
⇣
Xclr

i ,Xclr
k

⌘

var
�
Xclr

i

�
+var

�
Xclr

k

�

⌘ 2ŝik
ŝii+ ŝkk

,

where ŝik are elements of the covariance estimates
Ŝ=(Xclr)TXclr � 1

n�11p on clr-transformed data. This
formulation also clarifies the link between the standard
correlation matrix on clr-transformed data and ⇢p: the former
uses the geometric mean of ŝii and ŝkk in the denominator
whereas the latter uses the arithmetic mean. Since ⇢p is
completely determined by sample covariances and variances,
we expect the measure to have the same drawbacks in the
small sample setting as the sample covariance estimators.

We thus propose the novel shrinkage-based proportionality
estimator ⇢⇤ (rhoshrink) as:

⇢⇤
⇣
Xclr

i ,Xclr
k

⌘
, 2s⇤ik

s⇤ii+s⇤kk
,

where s⇤ik are elements of the Schäfer-Strimmer shrinkage
covariance estimator S⇤.

Comparing Association Patterns

To quantify similarities of the estimated association patterns
across different data normalization method, association
measures, and sample sizes, we considered three different
distance measures. These distances are then used for

comparative low-dimensional embeddings of the different
estimates as well as for measuring convergence of the
estimators with sample size.
Frobenius Distance Given a pair of p⇥p-dimensional
association matrices R̂ and R̂0, the Frobenius distance
measures the sum of squared differences between the
corresponding entries and is defined as

df
⇣
R̂,R̂0

⌘
=

r
P

k
P

i

⇣
R̂ik�R̂0

ik

⌘2
⌘
���R̂ik�R̂0

ik

���
F

Spectral Distance Given a square, symmetric matrix A, let
A=U⌃UT be its singular value decomposition where ⌃ is
a diagonal matrix with singular values along the diagonal
entries, i.e., ⌃ii=�i. Let �max(A) be the largest singular
value of A. The spectral distance is

ds
⇣
R̂,R̂0

⌘
=
q

�max(R̂�R̂0)⌘
���R̂ik�R̂0

ik

���
2
.

The spectral distance is invariant to unitary transformations of
the association matrices.
Correlation Matrix Distance The Correlation Matrix
Distance (CMD) (34) measures the orthogonality of two
correlation matrices and is defined as

dcmd

⇣
R̂,R̂0

⌘
=1�

tr
⇣
R̂R̂0

⌘

���R̂
���
F

���R̂0
���
F

2 [0,1],

where the trace operator tr(A)=
P

iAii is the sum of the
diagonal entries of a square matrix.

Downstream analysis

We considered two downstream exploratory data analysis
tasks that require the estimation of microbial associations as
input: (i) taxa clustering and (ii) microbial association network
construction and community analysis.
Clustering Unsupervised clustering of microbial taxa can
help identify microbial sub-communities that may jointly
affect host phenotype or reveal experimental and batch
effects (24). We considered two popular clustering techniques:
spectral and hierarchical clustering.

Spectral clustering requires the construction of an “affinity
matrix” from estimated associations. Here, we transformed

associations into dissimilarity scores As=1�
q

1�R̂
2 and

constructed a k-nearest neighbor graph (k=2) to obtain a
sparse and symmetric affinity matrix A. Identification of
taxa clusters is based on k-means clustering of the first m
components of the eigendecomposition of of the normalized
Laplacian L=D

1
2 (D�A)D

1
2 , where D is the diagonal

degree matrix with entries containing the row or column sums
of A (35). We chose the target cluster size to be number of
connected components of the associated affinity graph (35). To
assess the taxonomic consistency of a particular clustering, we
evaluated the homogeneity of each cluster with respect to the
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taxonomic families of the underlying OTUs. As a quantitative
measure, we computed the ratio of the effective family number
(exponential of the Shannon entropy of family counts) to the
total number of families detected per cluster.

For hierarchical clustering, we converted association

matrices to dissimilarity measures using Ah=
q

1�R
2 .

Clustering was then performed using Ward’s method from the
hclust package in R. Circular dendrograms were cut using
the cuttree method where k=10 was chosen to represent the
number of class annotations.

Relevance networks and community analysis Relevance
networks (36) are a popular way of visualizing and
analyzing the overall structure of the microbial ecosystem.
Relevance network construction ranks all pairwise correlation
or proportionality values between OTUs by absolute value,
selects a certain percentage of highest ranked pairs, and
visualizes the resulting set of pairs as edges between OTUs
in an association network.

Multiple studies have found a higher prevalence of positive
associations between taxonomically related taxa in human
gut datasets (12, 37–40). We thus use taxonomic coherence,
measured by assortativity (41), as independent summary
statistic for relevance networks. When categorical variables
are available for each node, the assortativity coefficient of a
network takes values in [�1,1] and measures the tendency of
adjacent nodes to belong to the same category. In the context
of microbial networks, the nodes are OTUs and the associated
categories are their inferred taxonomic rank at the Genus level.

We also examined the presence of community structure
in the relevance networks using the concept of modularity
(42). Similar to clustering analysis, modularity analysis of
a network enables the partitioning of nodes into tightly
connected sub-communities. Modularity was computed using

the fast-greedy algorithm, described in (43) and implemented
in the igraph package in R (44).

RESULTS

Our comprehensive computation and analysis workflow
produced several key results which are summarized below.
We highlighted statistical properties of association estimation,
followed by a comparison of downstream analysis results.

Shrinkage universally improves consistency of association

estimation We first analyzed the influence of shrinkage on the
estimation of associations under different data normalization
and sample sizes. We show the convergence properties of
association estimation, as measured by Frobenius distance
df with respect to the large sample limit, with increasing
sample size in Figure 2a. Shrinkage universally improves
estimates in the low sample regime compared to its sample
estimation counterparts. Even when the sample size n exceeds
the number of OTUs p, most shrinkage estimates remain
more consistent with their respective large-sample. This
behavior is also reflected in the distribution of association
estimates at low (n=50) and large (n=9000) sample sizes,
as highlighted in Figure 3 for the proportionality measures
⇢p (rhoprop) and ⇢⇤ (rhoshrink). In the small sample limit,
rhoprop produces too extreme estimates compared to the large
sample limit (third row in Figure 3). The distributions of
rhoshrink estimates in the small and large sample limit were
considerably more consistent. This phenomenon was observed
for all combinations of data normalization and association
estimation (Supplementary Figure 4a, Supplementary Figure
5a). As expected, the influence of shrinkage vanished in
the large sample limit, as reflected in decreasing shrinkage
intensities with increasing sample size (Supplementary Figure
2).

ba

Figure 2. Frobenius distance between estimates of association. a) Frobenius distance between sub-samples of different sizes. Dashed lines represent the
mean distance between normalized matrices after Pearson correlation. The solid lines represent the mean distance between normalized matrices where
correlation/proportionality estimation with shrinkage was performed. The dot-dash line represents RHO, a proportionality metric. Vertical lines represent standard
deviation from the mean for each corresponding method. b) Multidimensional scaling representation of Frobenius distance between correlation structures of
varying size estimated from different normalization methods. The most opaque points represent the mean of 5 subsamples of the same size. (color scheme as in
A)
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Normalization methods induce distinct association patterns

We next analyzed the similarity among the different
association estimates with increasing sample size using
multi-dimensional scaling (MDS). Figure 2b shows a 2D
MDS embedding of all shrinkage association estimates
using the Frobenius distance. We identified five distinct
classes. Association estimates following a variance-
reducing/stabilizing transformations (clr, vst, asinh, rhoprop,
rhoshrink) form a distinct linear trace in the embedding,
ordered along sample size. Correlation estimates on raw count
data form another distinct group. Correlation estimates after
css and wren normalization form two distinct traces in the
embedding. Finally, correlation estimates following the com,
rle, and tss normalization form the fifth class of association
patterns. For small sample sizes, association patterns are
similar independent of the normalization methods. As each of
the five classes form a distinct linear trace in the embedding,
we used the distances between estimates of different sample
sizes to evaluate the rate at which normalization methods
arrived at stable patterns of association. In agreement with
Figure 2a, we observed that wren, vst, and com arrived at
consistent association estimates with the fewest samples,
followed closely by rle and tss normalization methods (Figure
2b, Supplementary Figure 3). The observed grouping pattern
and convergence behavior is largely invariant to the distance
measure used (Supplementary Figure 4b and Supplementary
Figure 5b for spectral distance and CMD, respectively).

Association estimates are positively skewed We next analyzed
the shapes of empirical distributions of shrinkage association
estimates for all normalization schemes in three different
sample scenarios: Small sample regime (n=50), randomly
shuffled data in the small sample regime (n=50), and

large sample regime (n=9000). Figure 3 shows clr, tss,
rhoprop and rhoshrink distributions across these scenarios (see
Supplementary Figure 3 for all others). We observed that
variance-reducing/stabilizing transformations (clr, vst, asinh,
rhoprop, rhoshrink) induce association distribution that are
close to normal with moderate positive skewness. Estimates
without shrinkage are considerably wider in the low sample
regime (as exemplified for standard proportionality rhoprop
vs. rhoshrink in Figure 3). All other normalization schemes
induce asymmetric correlation distributions with large positive
skewness, resembling correlation distributions on raw count
data (Supplementary Figure 3). Positive skewness also persists
for association estimates on shuffled data. Although the shapes
of shrinkage association distributions are visually similar in
the small and large sample limit, we universally observed an
increase in skewness and kurtosis with larger sample sizes
independent of the normalization scheme.

Clustering methods are sensitive to normalization and

shrinkage estimation We next focused on analyzing the
influence of normalization and association estimation on
downstream data analysis tasks. We first considered clustering
of OTUs using a large sample limit of n=9000 samples
from the AGP dataset. For spectral clustering, we asked
the question whether and how normalization and shrinkage
influences (i) the standard selection of the number of cluster
and (ii) the taxa composition of the resulting clusters.
One common strategy for model selection in spectral
clustering is the “spectral gap” criterion. The number of
selected clusters is considerably larger (k�11) for the
variance-reducing/stabilizing transformations (clr, vst, asinh,
rhoprop, rhoshrink) than for other normalization methods
(k8)(Supplementary Figure 6). Despite the large sample
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kurtosis = 4.401

mean = 0.003
variance = 0.026
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Figure 3. Frequencies of association after transformation and shrinkage. Density plots of association value frequency of matrices after application of different
normalization methods at different sample sizes. Mean, variance, skewness and kurtosis are shown for each distribution.
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size, the spectral gap of rhoprop - and rhoshrink-based
spectral clustering resulted is still different, resulting in k=
11 and k=12 clusters, respectively. The different number of
clusters also contributed to marked differences in terms of
the homogeneity of taxa compositions, as shown in Figure
4. Variance-reducing/stabilizing transformations produced
taxonomically more homogeneous groups at the Family level.
rhoshrink-based clustering produced the highest mean cluster
purity, indicating strong agreement between estimated OTU
associations and taxonomic identity (as shown for Family
level in Figure 4 and Supplementary Figure 5). rhoprop-
and rhoshrink-based clustering formed very similar but not
identical clusters in terms of composition and cluster purity. A
larger number of taxa of Family Ruminococcaceae and Class
Bacteriodia cluster together in clr-based clustering compared
to tss-based clustering. Taxa clusters derived from css, rle, and
wren normalization resulted in no distinct taxonomic grouping
(see Supplementary Figure 5).

Hierarchical clustering largely confirmed the previous
observations. For ease of comparison, we set the number of
clusters to k=10 for inference workflows. Figure 5 shows
the dendrograms for clr-, tss-, rhoprop-, and rhoshrink-based
clustering. While some distinct and homogeneous clusters can
be found in the tss case, the majority of taxa has been grouped
into a single cluster comprising many families and classes
of taxonomically unrelated bacteria. However, taxonomic
grouping is well represented by hierarchical clustering of
rho- and rhoshrink-based estimates (Figure 5). Similarly, vst
and asinh have recovered large groups of the most prevalent
family annotation: Ruminococcaceae, Lachnospiraceae, and
Bacteroidaceae (see Supplementary Figure 8).

Normalization induces relevance networks with different

community structures We next considered the downstream

statistical task of learning microbial relevance networks from
AGP data. We estimated associations in the large sample
limit n=9000 and selected the top 2000 associations for
network construction in every data normalization/association
estimation workflow. Figure 6 shows network visualizations
for clr-, tss-, rhoprop-, and rhoshrink-based relevance
networks (Supplementary Figure 9 for the other instances).
We identified sub-communities of highly connected taxa
using modularity maximization. The number of identified
modules ranged between 20 (using Wrench) and 38 (using vst
normalization). Relevance networks derived from variance-
reducing/stabilizing transformations (clr, vst, asinh, rhoprop,
and rhoshrink) were partitioned into 35-38 modules and
achieved a maximum modularity score of ⇡0.8 (compared
to modularity scores of <0.6 for all other networks).
Visual inspection of these networks revealed that members
of the Bacteroidetes phylum (represented by square nodes
in Figure 6) formed tightly connected modules with few
edges connecting to other phyla. Firmicutes (represented
by circular nodes) in networks were divided into a
higher number of modules comprising distinct families,
including Lachnospiraceae (represented by orange circles)
and Ruminococcaceae (teal circles, Figure 6, Supplementary
Figure 9). This striking modularity is less pronounced in the
tss-based relevance networks (Figure 6b).

Similar to the clustering analysis, we next evaluated
the taxonomic coherence of the different networks. Using
assortativity on the genus level as a quantitative measure,
we found that relevance networks derived from variance-
reducing/stabilizing transformations showed the highest
overall assortativity in the large sample limit (⇡0.35).

We next asked the question whether high-level network
properties such as assortativity and modularity were

b

dc

a

Figure 4. Horizontal stacked bar plot of OTU groups resulting from spectral clustering. a-d) The stacked bar plots represent the composition of OTUs in each
cluster at the Family level. Clusters are vertically ordered from highest percentage of the most abundant Family: Ruminococcaceae. Horizontally the order
represents the highest percentage of Family in each cluster. Numbers on the left axis represent the number of OTUs in each cluster. Values stated next to method
name represent cluster purity.
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Figure 5. Circular dendrograms of hierarchical clustering patterns amongst taxa Family and Class. Each point surrounding the circular dendrogram represents
one of the 531 OTUs in our data set. The color represents Family annotation and shape represents Class annotation. Each dendrogram has been cut hierarchically
into 10 trees (representing the 10 Orders to which each Family maps). The grey and black shading is used to highlight different clusters which are numbered.

consistent independent of the sample size used to estimate
the association networks. We thus repeated the previous
analysis for different sample sizes, ranging from n=
25 to n=9000. Figure 7 shows the estimated network
assortativity and maximum modularity score estimates
vs. sample size. We found that for relevance networks
derived from variance-reducing/stabilizing transformations,
both assortativity and modularity monotonically increase with
sample size. Both estimates stabilize around samples sizes
n⇡p. For the remaining relevance networks, assortativity
estimates monotonically increase with sample size while
modularity tends to decrease with sample size. In summary,
this analysis implies that estimates of high-level network
summary statistics such as assortativity and modularity are
inconsistent compared to their large-sample limit.

We next examined the edge overlap from correlation-
based relevance networks (clr and tss transformations) and
proportionality metrics (rhoprop and rhoshrink). We found a
common core of 1086 edges between 349 OTUs that were
present in all relevance networks. This consensus network
also contained several tightly connected network modules
with highly assortative inter-family associations (Figure 8a).
Overall, we found that clr-, rhoprop, and rhoshrink-based
networks shared the majority of common edges with rhoprop-
and rhoshrink-based edge set differing only by a single edge.
The tss-based relevance network comprised 779 unique edges
not shared by any of the other networks (Figure 8b).

Additionally, we found that clr-, vst-, and asinh-based
correlation networks also shared a large common consensus
core (Supplement Figure 10a). Similarly, com-, rle-, and tss-
based networks showed a large edge set overlap (Supplement
Figure 10b). These observations confirmed the distinct
groupings observed in the MDS embedding of Frobenius
distances (Figure 2b).

DISCUSSION

Data normalization and inference of taxon-taxon associations
from microbial genomic survey count data are two of the most
basic statistical analysis tasks in modern microbiome research.
To help the practitioner of microbial data analysis make
informed choices about the different available normalization
and association inference schemes, we have taken a closer
look at the impact of data normalization on association
estimation and several downstream exploratory data analysis
tasks. Rather than asking what is the best method available
for different analysis steps, we have leveraged the large
available sample size in the American Gut Project (AGP)
data set and assessed the consistency of two ubiquitous linear
association estimators for microbiome data, correlation and
proportionality, under a wide range of realistic sample size
scenarios, data normalization schemes, and downstream data
analysis tasks.
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Figure 6. Relevance network visualization displaying modularity. a-d) For networks on the left of each panel every node represents an OTU labeled with module
annotation as predicted by the Fast-Greedy modularity algorithm. The networks on the right represent the corresponding taxonomic annotation of the OTU at
the family level. Values stated next to method name represent the number of modules in the network. Layout using the force-directed Fruchterman-Reingold
algorithm was conserved for both networks in each panel.

Our analysis revealed several important observations that
have direct implications for best practice in microbiome
data analysis workflows. Firstly, we have confirmed that
correlation and proportionality estimates are inconsistent
in the low sample regime n<p when compared to large
sample counterparts, both in terms of general large-scale
association patterns (Figure 2) and downstream network
summary statistics, including assortativity and modularity
(Figure 7). While this phenomenon has been long appreciated
in the statistical literature, we have established that shrinkage
estimation, a popular statistical regularization scheme used in
finance (28) and genomics research (31), can also improve
association estimation for microbiome data, independent
of the employed normalization method. Leveraging the
close mathematical relationship between variance-covariance
estimation and the concept of proportionality, we have
also introduced a novel shrinkage proportionality estimator,
rhoshrink, that is easy to compute and may prove useful in
other scientific areas where compositional data are available.

On the AGP data, we have been able to categorize ten
data normalization/association estimation workflows into five
coherent groups that show strong agreement across all sample
size scenarios (Figure 2b). Most prominently, we have found
that variance-reducing/stabilizing transformations lead to a
high agreement of correlation or proportionality estimates.
This was also confirmed in the downstream microbial
relevance network comparison where clr-based correlation
networks and proportionality association networks showed
high agreement among the inferred edge sets (Figure 8).
This implies that, in the presence of large samples sizes
and large number of OTUs, differences between correlation
and proportionality estimates are less pronounced than
previously expected. An important observation on the AGP
dataset was that the empirical distributions of association
estimates were universally right-skewed even in the randomly
shuffled data scenario. This implies that no matter the
data normalization/association inference workflow, one will

observe a higher prevalence of positive associations. This
phenomenon has been previously described in the context
of microbial association inference across many different
microbial habitats (12, 45). While it is tempting to interpret
these results as ecological features of the underlying microbial
community in terms of higher prevalence of commensual
rather than competitive microbial interactions, the positive
skewness may also be due to technical limitations in the
data generation process and statistical shortcomings. More
specifically, truncation to zero effects for low sequencing
read counts likely obstruct unbiased estimation of negative
correlations, and in turn, proportionality. A possible remedy
for this data-induced artifact is the application of more
advanced semi-parametric correlation estimators that infer
latent correlations under data truncation assumptions (21,
46). A detailed investigation of semi-parametric and other
estimators may provide a promising avenue for future
research.

Despite the universal presence of positive skewness
in association estimates for the AGP data, we have
observed that variance-reducing/stabilizing transformations
could reduce positive skewness in shrunk association
estimates (Figure 3). Moreover, our results on microbial
association network construction and clustering as typical
downstream exploratory data analysis examples also revealed
that variance-reducing/stabilizing approaches provided the
most consistent estimation in terms of taxonomic and
structural coherence, as measured by taxonomic cluster purity
in spectral and hierarchical clustering (Figures 4 and 5) and
network assortativity (Figures 6 and 7). Taken together, we can
recommend any variance-reducing/stabilizing transformations
followed by shrinkage estimation for association inference.
However, transformations such as asinh and clr may
be preferred since they are faster to compute than vst,
while providing similar statistical properties. The resulting
shrinkage correlation estimates can then also serve as input for
more involved direct microbial network inference workflows
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Figure 7. Community analysis of relevance network structure with increasing sample size. a) Assortativity coefficient across sample size of genus annotation. b)
Maximum modularity score across sample size at 2000 edges. For all plots lines represent mean and grey ribbon represent standard deviation from the mean.

that account for transitive correlations, adjust for additional
covariates, or model latent effects (12, 37, 47, 48).

For relevance network estimation, consensus network
construction, as put forward here for the AGP data (Figure
8), is a straightforward strategy to relax the influence of data
normalization. For our AGP consensus network, we found
that more than half of the top 2000 edges in the tss-, clr-,
rhoprop-, and rhoshrink-based relevance networks were in full
agreement, connecting a subset of 346 taxa. The inferred AGP
consensus network comprised a majority of positive edges
and showed high assortativity at the genus level (0.39) and
a maximum modularity of 0.8.

Assortativity increased in the consensus network compared
to individual relevance networks. Notably, many taxa in the
consensus network were frequently identified as key targets
for microbiome therapeutics, such as prebiotic treatment
and fecal microbiota transplants, including Akkermansia

muciniphila, Prevotella copri, Ruminococcus bromii, and
Faecalibacterium prausnitzii (49, 50).

Our computational data analysis workflow, available on
GitHub and as synapse project (see Data Availability), is
fully reproducible, provides all novel shrinkage estimators
introduced here, and allows easy extension and comparison
to additional data normalization, estimation, and downstream
analysis tasks. For instance, future work could include the
integration of more advanced zero-replacement strategies
(51, 52), application of popular data normalization schemes
from single-cell data analysis (53) or the application of other
correlation (21, 46) or proportionality estimators, including
those available in the propr package (23). Here, rather than
using universal thresholding for sparsifying associations, more
advanced selection strategies that control false discovery rates
(as available in the propr package (23)) may improve the
consistency of the microbial association inference workflows.

ba

Figure 8. A) Edges in common between relevance networks. This consensus network contains 1086 edges between 346 taxa. Node color represents Family
annotation and node shape represents phylum. Network layout was generated using the force-directed Fruchterman-Reingold algorithm. B) Venn Diagram of
edges in common from the top 2000 edges between four highlighted normalization methods.
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Going forward, we believe that large-scale reproducible
computational analysis workflows that focus on sample-
size dependent consistency of statistical estimates are of
paramount importance for deriving stable testable hypotheses
about the complex interplay between host phenotype and the
microbiome from large-scale microbial genomic survey data.

DATA AVAILABILITY

The code and data used is available as a github repository at
https://github.com/MichelleBadri/NormCorr manuscript and
Synapse project syn21654780. Data used for this study was
accessed from ftp://ftp.microbio.me/AmericanGut/ag-2017-
12-04/. The latest complete American Gut Project dataset can
be accessed on Qiita using study ID 10317 (24).
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Figure 9. Supplement 1: Standard deviation per-OTU (taken across all 531
OTUs) plotted against the rank of the average count.
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Figure 10. Supplement 2: Lambda values for shrinkage estimation. a)
Lambda values selected for shrinkage estimation of correlation ( b�⇤

1). b)
Lambda of correlation (b�⇤

1) and Lambda of variance shrinkage (b�⇤
2) used

jointly to estimate shrinkage of covariance for rhoshrink )
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Figure 11. Supplement 3: Frequencies of correlation after transformation.
Density plots of correlation frequency of matrices after application of different
normalization methods. Mean, variance, skewness, and kurtosis are shown for
each distribution.
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Figure 12. Supplement 4: Spectral distance between estimates of association
a) Spectral distance between sub-samples of different sizes. Lines represent
mean and error lines represent standard deviation from the mean. Lines
represent normalized matrices where correlation/proportionality estimation
with shrinkage was performed. b) Multidimensional scaling representation
of Spectral distance between correlation structures of varying size estimated
from different normalization methods. The most opaque points represent the
mean of 5 subsamples of the same size. (color scheme as in A)
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Figure 13. Supplement 5: CMD distance between estimates of association
a) CMD distance between sub-samples of different sizes. Lines represent
mean and error lines represent standard deviation from the mean. Dashed
lines represent normalized matrices after Pearson correlation. The solid lines
represent normalized matrices where correlation/proportionality estimation
with shrinkage was performed. The dot-dash line represents rho, a
proportionality metric. b) Multidimensional scaling representation of CMD
distance between correlation structures of varying size estimated from
different normalization methods. The most opaque points represent the mean
of 5 subsamples of the same size. (color scheme as in A)

Figure 14. Supplement 6: Numbers of clusters as selected by the number of
connected components. Vertical lines represent the first non-zero eigenvalue
which is selected as the number of clusters.
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Figure 15. Supplement 7: Horizontal stacked bar plot of OTU groups
resulting from spectral clustering. The stacked bar plots represent the
composition of OTUs in each cluster at the Family level. Clusters are
vertically ordered from highest percentage of the most abundant Family:
Ruminococcaceae. Horizontally the order represents the highest percentage
of Family in each cluster. Numbers on the left axis represent the number of
OTUs in each cluster. Values stated next to method name represent cluster
purity.
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Figure 16. Supplement 8: Circular dendrograms of hierarchical clustering
patterns amongst taxa Family and Class. Each point surrounding the circular
dendrogram represents one of the 531 OTUs in our data set. The color
represents Family annotation and shape represents Class annotation. Each
dendrogram has been cut hierarchically into 10 trees (representing the 10
Orders to which each Family maps). The grey and black shading is used to
highlight different clusters which are numbered.
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Figure 17. Supplement 9: Relevance network visualization displaying
modularity. For networks on the left of each panel every node represents
an OTU labelled with module annotation as predicted by the Fast-Greedy
modularity algorithm. The networks on the right represent the corresponding
phylogenetic annotation of the OTU at the family level. Values stated next to
method name represent the number of modules in the network. Layout using
the force-directed Fruchterman-Reingold algorithm was conserved for both
networks in each panel for comparison
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Figure 18. Supplement 10: Edges in common between relevance networks.
Venn Diagram of edges in common from the top 2000 edges between a) Log-
based normalization methods clr, vst, asinh and rhoshrink b) rle, com, and
tss.
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Supplementary Methods

SHRINKAGE ESTIMATION
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The detailed computation of unbiased estimation of
variance (dVar) for b�⇤1 and b�⇤2 can be found in Schaf̈er and
Strimmer (31, 54).
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