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Abstract. Shrinkage of empirical Bayes estimates (EBEs) of posterior individual parameters in mixed-
effects models has been shown to obscure the apparent correlations among random effects and
relationships between random effects and covariates. Empirical quantification equations have been
widely used for population pharmacokinetic/pharmacodynamic models. The objectives of this manuscript
were (1) to compare the empirical equations with theoretically derived equations, (2) to investigate and
confirm the influencing factor on shrinkage, and (3) to evaluate the impact of shrinkage on estimation
errors of EBEs using Monte Carlo simulations. A mathematical derivation was first provided for the
shrinkage in nonlinear mixed effects model. Using a linear mixed model, the simulation results
demonstrated that the shrinkage estimated from the empirical equations matched those based on the
theoretically derived equations. Simulations with a two-compartment pharmacokinetic model verified
that shrinkage has a reversed relationship with the relative ratio of interindividual variability to residual
variability. Fewer numbers of observations per subject were associated with higher amount of shrinkage,
consistent with findings from previous research. The influence of sampling times appeared to be larger
when fewer PK samples were collected for each individual. As expected, sample size has very limited
impact on shrinkage of the PK parameters of the two-compartment model. Assessment of estimation
error suggested an average 1:1 relationship between shrinkage and median estimation error of EBEs.
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INTRODUCTION

The knowledge obtained from exposure–response
modeling can facilitate the drug development process,
and may be used to optimize patient response within the
therapeutic window. Longitudinal data for drug exposure
(i.e., drug concentrations) and pharmacological responses
are often collected in a large number of subjects to
understand the underlying relationship between pharma-
cokinetics (PK) and pharmacodynamics (PD) of a thera-
peutic agent. Mixed-effects modeling remains a popular
tool for analyzing longitudinal PK or/and PD data (1–3).
In population PK/PD analysis, individual parameter esti-
mates, a combination of fixed and random effects, are

often used as model diagnostic tools and subsequent
individual-based analysis (4). Such estimations of individ-
ual parameters are usually referred to as empirical Bayes
“estimates” (EBE) (5,6).

The distributions of EBEs obtained from mixed-
effects models are usually narrower than those assumed
to characterize the random variables being estimated. This
type of phenomenon is called shrinkage in the Bayesian
literature because subject-specific estimations are shrunk
toward an appropriate population mean (7,8). However,
there is some concern of the potential drawbacks of this
phenomenon. Savic and Karlsson pointed out that the
presence of a high level of shrinkage may compromise the
usefulness of EBE-based diagnostic tools for mixed-effects
models (4). Shrinkage may obscure the apparent correla-
tions between random effects and covariate relationships
or falsely induce such relationships (4,5). Overshrinkage
can also lead to reduction in sensitivity to identify
“extreme” individuals (9–11).

The amount of shrinkage has been shown to be
associated with the quality of EBE-based model diagnos-
tics (4). Empirical equations based on variability (i.e.,
standard deviation (SD) or variance) of estimated individ-
ual random effects were proposed to quantify the overall
shrinkage of a parameter for a study population (4,12–14).
Shrinkage has been studied extensively for mixed-effects
models in statistical literature (15,16). Since different
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definitions and equations have been used and reported in
PK/PD and statistical arenas, it is of great interest to
compare the shrinkage calculation based on the proposed
empirical equations in the PK/PD literature to that based
on the theoretically derived equation in statistical litera-
ture. This may help to understand the similarity and
differences between these shrinkage estimation equations
and to avoid confusions.

As noted previously, shrinkage can lead to poor estima-
tion of subject-specific random effects, particularly for
subjects who exhibit much higher or lower values of
parameters compared to the population mean (11). However,
in a clinical study, those subjects who have extremely low or
high drug exposure are usually at risk of being undertreated
or experiencing unwanted adverse events. Therefore, under-
standing the impact of shrinkage on estimation error of
subject-specific model parameters is important for exposure
response analysis.

Although the focus of Savic and Karlsson’s work was
on the impact of shrinkage on EBE-based diagnostics, it
also suggested that the number of samples, sampling
times, and residual errors are important factors affecting
the overall shrinkage (4). However, some of the simu-
lations in their work are ordinary simulations with a very
small number of simulation replicates (i.e., n≤10), there-
fore limiting the interpretation of the simulation results.
Single ordinary simulations were carried out to evaluate
some factors (i.e., magnitude of interindividual variability
and residual variability, number of samples per subject,
and estimation algorithm) that may influence the amount
of shrinkage for clearance of a pharmacokinetic model
(17). In this work, we first provided a theoretical
derivation of shrinkage for a nonlinear mixed-effects
model based on linear approximations as it has not been
shown in the current literature. Also, we conduct Monte
Carlo simulations (1) to compare commonly used shrink-
age equations in a simple linear mixed-effects model, (2)
to explore potential factors that may influence shrinkage
for a pharmacokinetic model, and (3) to investigate the
impact of shrinkage on the estimation error of posterior
individual parameters.

METHODS

Random-Effects Estimation and Shrinkage in Nonlinear
Mixed-Effects Models

In this section, we discuss and demonstrate the
shrinkage of posterior individual random effects in a
nonlinear mixed-effects model. Consider a non-linear
mixed-effects model:

Yi ¼ f Xi; θ; ηið Þ þ "i; i ¼ 1; 2; . . . ;N; ð1Þ
where Yi ¼ Yi1; ::;Yinið Þ , is a vector of observed response
(e.g., drug concentration) for the ith subject who has ni
observations, Xi is a covariate matrix for the ith subject
(e.g., time), ηi is a q×1 vector for the random effects and
θ is a p×1 vector of fixed effect. We assume that ηi∼N
(0,Ω) and the residual error, εi∼N(0, Σi), and ηi and εi
are independent of each other. Ω=Ω(θ,ϕ) and Σi=Σi(θ,φ)

are the covariance matrices for the interindividual random
effects and residual variability, respectively, where ϕ,φ are
vector of parameters characterizing the covariance struc-
tures. By making first-order Taylor expansion of f(Xi,θ,ηi)
at ηi=0:

f Xi; θ; ηið Þ � f ðXi; θ; 0Þ þ Z Xi; θ; 0ð Þηi; ð2Þ
where

Z Xi; θ; 0ð Þ ¼ @f Xi; θ; ηið Þ
@η

0
i

ηi¼0f g;
��

therefore,

Yi � f Xi; θ; 0ð Þ þ Ziηi þ "ij; Zi ¼ Z Xi; θ; 0ð Þ; ð3Þ

where Zi is known as the design matrix (ni×q), which
links the random effects ηi to Yi, and contains the
information for covariates including time invariant or/and
time-varying covariates (15).

Similar to the derivations of shrinkage in linear mixed-
effects models (15,16), by considering ηi,εij jointly follows a

multivariate normal distribution N 0;
Ω 0
0 Σi

� �� �
, we can

obtain:

E ηijYið Þ � ΩZ
0
i ZiΩZ

0
i þΣi

� ��1
Yi � f Xi; θ; 0ð Þð Þ;

therefore, ηi can be derived as

ηi ¼ ΩZ
0
i Zi ΩZ

0
i þΣi

� ��1
Yi � f Xi; θ; 0ð Þð Þ;

The predicted response profile bYi

� �
can be then re-

expressed as follows:

bYi ¼ f Xi;bθ; 0� �
þ Zibηi ¼ Ini �Wi½ �f Xi;bθ; 0� �

þWiYi; ð4Þ

where the weight (Wi) is the fraction of interindividual
variability (IIV) from the overall variability:

Wi ¼ ZiΩZ
0
i ZiΩZ

0
i þΣi

� ��1
ð5Þ

As it was shown in Eq. 4, the predictions of individual
response profiles can be viewed as a weighted average of the
population mean profile f Xi;bθ; 0� �� �

and the observed data
(Yi). The shrinkage in nonlinear mixed-effects models can be
expressed as the weight associated with population mean as
follows:

SHi ¼ Ini �Wi ¼ Σi Zi ΩZ
0
i þΣi

� ��1
ð6Þ

Wi and SHi are computed at the estimated parameter
values. When the residual variability bΣi

� �
is large

compared to the IIV, the shrinkage becomes large,
whereas when IIV is greater than the residual variability,
the shrinkage is small. This clearly demonstrates that the
empirical Bayesian estimator shrinks the ith subject’s
predicted response profile towards the population mean.
It is noted that the derivation of Eq. 4 was based on the
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FO approximation (18–20). Similar derivations may also
be made for other approximation algorithms such as the
“first-order conditional” approach (known as FOCE) (21–
24). However, due to the complexity and involvement of
iterations in the FOCE algorithm, the derivation based on
FOCE is not provided in this manuscript.

Variance functions are often used to model the
heteroscedasticity of variance structure (Σi) of the residual
errors. A general variance function model can be defined
as (25,26):

Var "ijjηi
� � ¼ σ2g2 nij; d

� �
where νij is a vector of variance covariates, δ is a vector
of variance parameters, and g(·) is the variance function.
For the commonly used proportional and combined error
structures, the variance models can be expressed as:

Var "ijjηi
� � ¼ σ2yij ðProportionalÞ

Var "ijjηi
� � ¼ σ2 yij þ d

� �
Combinedð Þ

Simulation Studies

Simulation 1: Comparison of shrinkage equations for a
linear mixed model

The purpose of this simulation was to compare the
theoretically derived shrinkage equation (Eq. 6) with the
empirical shrinkage equations commonly used in PK/PD
research. Although Eq. 6 appears straightforward, the
exact analytical solutions of shrinkage for nonlinear
mixed-effects models are usually complex. However, the
amount of shrinkage for some linear mixed-effects models
can be readily quantified by simple equations. For the
comparison purpose, a simple random intercept linear
model was used for the simulation as follows:

Yij ¼ μþ ηi þ "ij; i ¼ 1; � � � ; k; j ¼ 1; � � � ; nj

where ηi∼N(0, ω2), and εi j∼N(0, σ2) with mutual
independence.

For the random intercept model, Zi in Eq. 6 is an ni x1
vector of 1 s, and it can be shown that the theoretically

derived shrinkage based on variance can be expressed using
the following formula:

shder:vari ¼ 1�Wi ¼ 1� niw2

niw2 þ σ2 ¼ σ2

niw2 þ σ2 ð7aÞ

Another intuitive way to calculate the shrinkage for the
random intercept model can be based on the square root of
the derived weight (SD of the variance):

shder:sdi ¼ 1�
ffiffiffiffiffiffi
Wi

p
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niw2

niw2 þ σ2

s
ð7bÞ

Empirical equations based on variability (i.e., SD or
variance) of estimated individual random effects was used to
quantify the shrinkage of the random intercept (4,13,14):

shvarη ¼ 1� Var bηið Þ
bw2 ð8aÞ

shsdη ¼ 1� SD bηið Þbw ð8bÞ

where bηi is the posterior estimate for individuals based on
EBE and bw is the estimated standard deviation for the
corresponding random effect.

For the random intercept linearmodel, Eq. 7a can be viewed
as the derived counterpart of the variance version of the empirical
shrinkage equation (Eq. 8a), while Eq. 7b is the derived
counterpart for the SD version of the empirical shrinkage
(Eq. 8b), which has been built into software like NONMEM
and PsN (27,28). It should be noted that the SD-based shrinkage
equations are just a function of the variance-based shrinkage
equations, and can be easily converted to each other numerically.

The simulations were performed at low (≤15%),
medium (45–65%), and high (≥90%) shrinkage levels
(calculated based on Eq. 7a) for two different sampling
schemes: one with six samples per subject and the other
with 12 samples per subject. One hundred subjects were
simulated for each trial, and the simulation was repeated
1,000 times. To simplify the simulation, all subjects in a
trial have the same number of observations (either six or
12 samples per subject). The details of the simulations are
described in Table I.

Table I. Descriptions of Simulations Conducted to Evaluate the Empirical Shrinkage Equations Using a Linear Random-Intercept Model

Simulation scenario Number of observations Interindividual variability Residual variability Shrinkage (%)a Level of shrinkageb

1 12 0.4 0.33 5.3 Low
2 12 0.3 1 48.1 Medium
3 12 0.01 4 97.1 High
4 6 0.4 0.33 10.2 Low
5 6 0.3 1 64.9 Medium
6 6 0.01 4 98.5 High

aCalculated based on the derived variance-based shrinkage equation (Eq. 7a) and the predefined values for the interindividual and residual
variability used for simulations

bThe level of shrinkage is defined as follows: Low (≤15%); Medium (45–65%); and High (≥90%)
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Simulation 2: Factors Influencing Shrinkage in a PK
Model

As Eq. 6 indicates, the amount of shrinkage is a function
of the relative magnitude of interindividual and residual
variability, the number of observations per subject, and the
sampling times for the subject. The purpose of the simulations
was to confirm how these factors affect the shrinkage of the
parameters of a PK model. In addition, the impact of sample
size was also investigated in the simulation study. Based on
the theoretically derived shrinkage equation (Eq. 6), the
sample size will not have an impact on the estimated
shrinkage values. The purpose of the simulation for different
sample size was simply to confirm the derived equation, and
evaluate the impact of sample size on shrinkage estimation
due to its influence on the precision of population
estimates. It should be noted that the fixed-effect param-
eters were first estimated and the individual random
effects were estimated subsequently by fixing the popula-
tion parameters to their estimated values. Therefore,
effects on both population parameter estimation and on
shrinkage were studied. A two-compartment PK model
with first-order oral absorption and first-order elimination
was used for the simulations. The PK parameter values
are listed in Table II. The random effects of the PK
model were assumed to follow a log-normal distribution.
An exponential residual error model was used to simulate
the PK data. Due to involvement of wide range of factors,
it is not practical to examine all the combinations of
different values of these factors, and therefore only
limited simulations were conducted to evaluate the impact
of them. A number of simulation scenarios were consid-
ered for the four influencing factors on shrinkage as
follows:

1. To evaluate the impact of the relative magnitude of
inter- and intraindividual variability, the simulations
were conducted with 12 PK samples for each subject
at two IIV levels: 10% and 40%. For each IIV level,
four levels of residual variability were investigated
(10%, 20%, 40%, and 80%)

2. To evaluate the impact of sampling times and number
of observations, the inter- and intraindividual varia-
bilities were fixed at 40% and 10%, respectively. The
number of PK samples per subject was set to be two,
four, eight, or twelve. For each of the two-, four-, and

eight-sample scenario, four different sets of sampling
times in hours were considered:

a. (0.25, 24), (0.5, 20), (2, 16), and (4, 12)
b. (0.25, 1, 16, 24), (0.5, 2, 12, 20), (1, 4, 8, 12), (2, 4, 6, 8)
c. (0.25, 0.5, 1, 2, 12, 16, 20, and 24), (0.5, 1, 2, 4, 10,

12, 16, and 20), (1, 2, 4, 6, 8, 10, 12, and 16), and
(0.5, 2, 4, 6, 8, 12, 18, and 24)

Only one sampling time scenario was investigated for the
case with 12 observations per subject, 0.25, 0.5, 1, 2, 4, 6, 8, 10,
12, 16, 20, and 24 h. The sampling times were selected
arbitrarily. However, it is expected that samples at earlier
times contains more information for absorption.

3. To evaluate the impact of sample size, the inter- and
intraindividual variabilities were fixed at 10% and
40%, respectively. Two levels of numbers of observa-
tions per subject (four and twelve) were studied. A
sample size of 50, 100, 200, and 300 subjects per study
was simulated and compared. For the four-sample
simulation scenarios, PK samples were collected at
0.25, 1, 16, and 24 h

For each simulation, 100 PK datasets were simulated
using NONMEM VI 2.0 [5]. One hundred subjects were
included in each simulated dataset except for the simulation
series that evaluates the impact of sample size. For each
simulated trial, the same design was used for all subjects. The
simulated dependent variable was log-transformed before
modeling. The first-order conditional estimation method was
used.

Impact of Shrinkage on Estimation of Individual PK
Parameters

Due to the shrinkage feature of the estimated posterior
Bayesian individual parameters, the performance and the
quality of the Bayes estimator may be compromised. For a
PK parameter, the relative deviation of an individual EBE for
a subject from its corresponding true value being used for the
simulation was evaluated by calculating the relative estima-
tion error (REE%) as follows:

REEi% ¼ bηi � ηtruei

� �
ηtruei

� 100%

where ηtruei is the true η value for the ith subject used for the
simulation and bηi is the posterior parameter estimate for that
subject based on EBE. Median REE% was then calculated
for each simulation trial to facilitate the comparison with the
study-specific shrinkage. Median was used as the statistics to
summarize the estimation error as it may be more suitable for
situations where a normal distribution may not be applicable
(29,30). Due to the shrinkage, the distribution of EBEs may
not be normal. It is worth mentioning that the median of
prediction errors has been utilized in PK/PD research as a
model validation criterion (31,32). The calculated shrinkage
amounts and median REE% percentages from all the
simulations conducted in the Simulation 2 section were
pooled and plotted against each other to evaluate the
relationship between amount of shrinkage and degree of
estimation error for individual PK parameters.

Table II. PK Parameters Used for Simulation 2

PK parameters Population mean Interindividual variability

CL (L/h) 30 10% or 40%a

Vc (L) 70 10% or 40%a

Vp (L) 200 10% or 40%a

Q (L/h) 20 10% or 40%a

KA 1.5 10% or 40%a

Residual error 10–80% (CV%)b

CL clearance, Vc central volume of distribution, Vp peripheral
volume of distribution, Q inter-compartmental clearance, KA absorp-
tion rate constant, CV coefficient of variation
aEither 10% or 40% was used for each simulation
bEither 10%, 20%, 40%, or 80% was used depending on the purpose
of the simulation
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RESULTS

Comparison of Shrinkage Equations in a Linear Mixed
Model

Figure 1 compares shrinkage values estimated from the
variance-based derived and empirical shrinkage equations for
the linear random intercept model for six different simulation
scenarios described in Table I. The comparison for the SD-based
derived and empirical shrinkage equations is presented in
Supplementary Figure 1. The model estimated interindividual
and residual variability were used for the estimation of
shrinkage. The shrinkage values calculated from the derived
shrinkage equations are almost identical to those based on the
empirical shrinkage equations (Fig. 1). A closer examination of
the shrinkage estimates from individual simulation replications
found that the relative difference between the derived and the
empirical equations was less than 0.0001%, suggesting that the
simple empirical shrinkage equations could provide shrinkage
estimates matching the values calculated based on theoretically
derived equations. The variance-based empirical shrinkage was
used in the later part of the manuscript (simulations for the two-
compartment PKmodel) as its direct reflection of the weight for
estimating individual response or parameters can be advanta-
geous (Eq. 4).

Evaluation of Influencing Factors on the Amount
of Shrinkage

Since similar trend was observed for all the PK
parameters, only the results for the primary PK parameters

(i.e., CL and Vc) are discussed in the manuscript and are
presented in the figures (Figs. 2, 3, 4, and 5), while the results
for all the other PK parameters are provided in Supplemen-
tary Figures (Supplementary Figures 2–5).

Magnitude of Interindividual and Residual Variability

The influence of the magnitude of interindividual and
residual variability on the shrinkage of posterior individual CL
and Vc is shown in Fig. 2. At both levels of IIV (10% and 40%),
as the residual variability increased, the shrinkage of the EBEs
for the PK parameters increased until it reached a plateau
around 100%. The amount of shrinkage at the 40% IIV level is
generally lower than that at the 10% level. The CL appears to
have lower shrinkage of the posterior individual estimates than
the other PK parameters in the two-compartment model.
Figure 2b demonstrates that as the ratio of IIV to residual
variability increased, the shrinkage of the PK parameters
decreased. In addition, it is also apparent that regardless of the
absolute level of IIV and residual variability, when the ratio of
IIV to residual variability is the same, the amount of shrinkage
of EBEs for a PK parameter is similar, supporting that shrinkage
is a function of the relative magnitude of IIV versus residual
variability in non-linear mixed-effects models as Eq. 6 suggests.

Number of Observations and Sampling Times

As expected, lower shrinkage was clearly associated with
larger numbers of observations per subject (Fig. 3). Under the
current simulation conditions (40% IIV and 10% residual
variability), when the number of observations per subject

Fig. 1. Comparison of the variance-based derived and empirical shrinkage equations for a linear random-intercept
model. Model-estimated interindividual and residual variability were used in the equations
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increased from two to 12, the median shrinkage of CL of the
two-compartment model decreased from about 20% to <5%,
while for Vc, the median shrinkage decreased from approxi-
mately 80% to about 20%. The smaller number of observations
per subject was also related to a wider distribution of shrinkage
values as the amount of shrinkage for both CL and Vc ranged
from nearly 0% to 100%when there were only two PK samples
per subject. This indicates that locations of sampling times may
play a large role on estimation of posterior individual PK
parameters and its associated shrinkage when the number of
observations per subject is small. This is intuitively sensible
because PK samples at different time points may carry different
PK information. With fewer PK samples per subject collected, it
is more important to design the PK sampling at optimized time
points. In addition, when the number of observations is small,
high imprecision in the population parameter estimates is
expected, hence leading to more variability in the shrinkage.
We further investigated the impact of sampling time points on
the shrinkage by simulating four different sets of time points for
each of the two, four, and eight observations per subject

scenarios (Fig. 4). It appears that with two samples per subject,
the variation in shrinkage across different sampling schemes was
much higher than that with the four or eight samples per subject.
The shrinkage of CL and Vc was very similar among different
sampling schemes if four or eight PK samples were collected
from each subject. This pattern was particularly apparent when
there were eight observations per subjects. In the case of four
samples per subject, as the early sampling points changed from
0.25 and 1 h to 2 and 4 h, the shrinkage on the EBEs of KA
clearly increased from approximately 40% to nearly 80%
(Supplementary Figure 4b). This makes sense because the
information regarding the absorption phase mainly resides in
the samples collected during early time points (0–2 h).

Sample Size

Sample size has very limited impact on shrinkage of the
PK parameters (Fig. 5). The shrinkage of EBEs of CL
appears to be smaller with a sample size greater than 100
compared to a sample size of 50. When the observations per
subject were set to 12, the shrinkage of Vc EBEs appeared to
be smaller at larger sample size. Theoretically, the sample size
should not have an impact on the estimated shrinkage values.
It is worth noting that a large sample size may help to reduce
the variability in population parameter estimates and there-
fore to improve the precision of the estimation of shrinkage
as a tighter distribution of shrinkage estimates across
simulations can be observed when the sample size is larger.
The small difference in median shrinkage values may be a
result of larger variation in shrinkage at smaller sample size.

Relationship Between Shrinkage and Estimation Error

A scatter plot of the median estimation error of
individual posterior η values of the PK parameters for each
simulation dataset against the shrinkage calculated for that
dataset is presented in Fig. 6. All the simulated PK datasets
were combined to evaluate the relationship between

Fig. 2. The relationship between shrinkage and residual variability at IIV=10% and 40% for CL
and Vc (a) and the relationship between shrinkage and ratio of interindividual variability to
residual variability (b); in b, the boxplots with black and red median dots represent simulations for
IIV=10% and 40%, respectively. The empirical variance-based shrinkage was used

Fig. 3. The relationship between shrinkage (empirical variance-based)
and number of observations per subject for CL and Vc
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shrinkage and estimation error of EBEs. An apparent linear
relationship between the median estimation errors and the
level of shrinkage was noted although some noise is present.
Linear regression of the data for each PK parameter shows

the slope is close to 1, suggesting there is 1:1 relationship on
average between shrinkage and median estimation error of
EBEs, i.e., a 40% shrinkage of a model/dataset means 40%
estimation error of the individual-specific η values.

Fig. 4. The influence of sampling times (in hours) on shrinkage of CL and Vc when observations per subject are
two (a), four (b), or eight (c). S2-1: (0.25, 24), S2-2: (0.5, 20), S2-3: (2, 16), and S2-4: (4, 12); S4-1: (0.25, 1, 16, 24),
S4-2: (0.5, 2, 12, 20), S4-3: (1, 4, 8, 12), and S4-4: (2, 4, 6, 8); and S8-1: (0.25, 0.5, 1, 2, 12, 16, 20, 24), S8-2: (0.5, 1, 2, 4,
10, 12, 16, 20), S8-3: (1, 2, 4, 6, 8, 10, 12, 16), and S8-4: (0.5, 2, 4, 6, 8, 12, 18, 24)

Fig. 5. The relationship between shrinkage (empirical variance-based) and sample size for
CL and Vc
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DISCUSSION

The empirical Bayesian estimator is widely accepted for
estimating posterior random effects for individuals (33). The
tradeoff of this approach, as we mentioned previously and
demonstrated in this manuscript, is its tendency to shrink
estimates toward a population mean, which could lead to
poor performance of the EB estimator, particularly in
extreme regions of the random-effects distribution.

Shrinkage has become a popular indicator of the quality
of the model building and evaluation procedure for popula-
tion PK/PD models (4). Intuitive empirical shrinkage equa-
tions are commonly used for estimating overall shrinkage for
population PK and PD models and datasets (4,13). Based on
the theoretical derivations in this manuscript for nonlinear
mixed models (Eq. 4) and in previous literature for linear
mixed-effects models (15,16), posterior predicted responses
for individuals can be viewed as weighted averages of
population mean and observed data. Also, this weighting
scheme can be also extended to estimate the EBEs of the
individual parameters in linear models (15), where the EBEs
of parameters bθEBEi

� �
are expressed as linear combinations

of the population mean value of a parameter bθ� �
and

ordinary least square estimate bθolsi

� �
based only on the

individual’s observations with shrinkage as the weight as
follows:

bθEBEi ¼ Iq �Wi
� �

Ai
bθþWi

bθolsi ð9Þ

where Iq is a q×q identity matrix, Ai is a design matrix
including a set of between-individual covariates (a q×p
matrix), and, again, Iq−Wi represents the shrinkage. There-
fore, shrinkage can be interpreted and defined based on the
theoretically derived weight. The simulations based on a
linear model showed that the empirical shrinkage estimates
were virtually same as the derived weight-based shrinkage.
This result may provide a theoretical basis for the empirical
equations, although they are already very intuitive as EBEs
usually exhibit less variability than actually present in the
population of random effects, ηi. It is worth mentioning that

the variance-based shrinkage directly reflects the weights that
can be used for predicting individual response profiles or
posterior individual parameters, and therefore might be a
natural choice for quantifying shrinkage. Further simulations
are needed to investigate these shrinkage equations in
nonlinear mixed-effects models, where such investigation is
currently hampered by the lack of closed-form solutions of
shrinkage.

The empirical shrinkage equations characterize the overall
population shrinkage of a model and the underlying data.
However, based on Eqs. 6, 7a, and 7b, shrinkage is indeed a
subject-specific concept. Although the population shrinkage
estimate may provide an indication of the overall performance
of a model/dataset, it does not provide a means to resolve the
problems caused by large shrinkage. Individual-level shrinkage
has been proposed to choose informative EBEs which may
serve as a basis for refined EBE-based diagnostics (34). As we
noticed from the simulation study, the amount of shrinkage for
the EBEs of a particular subject is dependent on the data quality
(experimental errors), informativeness of samples (appropriate-
ness of sampling times), and number of observations for that
subject. Since population PK/PD often involve multiple studies
and large numbers of subjects, a large amount of shrinkage may
be encountered for such analysis due to poor data quality from
poor sampling design, misconduct of a study or/and sparse data
from late clinical phase studies. In such cases, an individual-
based shrinkage estimation may allow identification and omis-
sion of influential individuals with inflated shrinkage from the
EBE-based diagnostic plots (e.g., covariate search based on
EBEs), and thereby reduce the impact of shrinkage on such
diagnostic tools.

Since multiple factors (relative magnitude of IIV and
residual error, sampling times, and number of observations
per subject, etc.) may affect the shrinkage, appropriately
interpreting and understanding the sources of shrinkage of a
model parameter is important. When IIV is small (e.g., <10%
IIV) and relatively big residual error (e.g., 30%), it can be
expected that shrinkage may be large in this case as the
relative magnitude of residual error is large. In this case, the
large shrinkage toward the population mean is intuitive as the

Fig. 6. Impact of shrinkage (empirical variance-based) on median estimation error of subject-level parameter values for different PK
parameters
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population is relatively homogeneous, and does not suggest a
problematic model or less informative data but rather a
homogeneous population. In situations where there is a high
observed IIV (e.g., 20–30%), combined with a high residual error
(40–50%), a large amount of shrinkage could indicate inappro-
priateness of a model (i.e., a poor choice of structural model) or
large experimental errors (sampling errors or measurement
errors). In this case, diagnostic plots on residual errors should
be carefully examined to identify means to reduce the residual
error. It is worth mentioning that shrinkage is only a secondary
phenomenon and not as informative as residual error when it
comes to model misspecification. When both IIV and residual
error are within normal limits, a large shrinkage may indicate
insufficient or non-informative data (small number of observa-
tions per subject or a poorly designed sampling scheme). It should
be noted that lack of information (e.g., fewer observations and
less informative sampling times) may also result in large standard
errors of estimated population parameters in addition to high
shrinkage of EBEs of random effects. Therefore, it is interesting
to study the relationship between shrinkage of EBEs and
standard errors of fixed- and random-effects parameters in future
research.

To date, the discussion of the impact of shrinkage has
been primarily focusing on model diagnostics and covariate
model development using EBE-based random effects. Our
research suggests that shrinkage of random effects can also be
viewed as a metric of estimation error of posterior individual
parameters. On average, there is an almost 1:1 relationship
between the amount of shrinkage and the median relative
estimation error for individual parameters. This means that
high shrinkage of PK parameters could have profound impact
on PK/PD analysis, particularly for sequential PK/PD analysis
due to the use of posterior individual parameters in the approach.
Since the amount of shrinkage varies among different PK
parameters as was shown previously (4) and in the present
simulation analysis, modelers need to evaluate and understand
the amount of shrinkage for each PK parameter before choosing
an appropriate PK measure (e.g., AUC, Cmin, or Cmax) for a
sequential PK/PD analysis when summary PK variables are used.
It appears that CL is usually the most well-informed PK
parameter, and its EBEs are often associated with lower
shrinkage (4). Therefore, AUC would be expected to be the
most well-informed exposure variable. The influence of shrink-
age should be limited for simultaneous PK/PD modeling. Some
variations of sequential PK/PD methods (e.g., IPPSE and
PPP&D)may reduce the influence of the shrinkage on estimation
of PD parameters (35,36). In addition, various approaches,
including nonparametric mixed-effects modeling and constrained
Bayes estimation, have been proposed to reduce shrinkage in
mixed-effects models (10,37,38). However, those topics are out of
the scope of this article.

Savic and Karlsson suggested that a higher than 20–30%
shrinkage (SD based) may result in misleading modeling
diagnostics using EBEs (4). This amount of shrinkage is
equivalent to approximately 40–50% shrinkage based on the
variance-based shrinkage equation. This is intuitively sensible
since shrinkage can be interpreted as the relative contribution to
the estimation of individual parameters from either population
mean estimates or individual OLS estimates (Eq. 9). When the
shrinkage is greater than 50%, more contribution (weight) is
provided by the population mean values, while the individual
OLS estimates (or information from individuals) become more

important when shrinkage is less than 50%. It can be expected
that the correlations between random effects and covariate
relationships may be falsely identified if EBEs of a parameter
only contain limited information from individuals. The data from
the current simulation study showed that the false-positive
correlation between PK parameters increased with shrinkage
(Supplementary Figure 6), confirming the previous findings (4).
In addition, the cutoff value of 20–30% SD-based shrinkage may
also be translated into approximately 50% estimation error in
individual posterior model parameters.

In summary, the intuitive empirical shrinkage equations may
provide shrinkage estimates close to those based on the
theoretically derived equations for linear mixed-effects model.
Further assessment is needed for nonlinear mixed models,
particularly for population PK/PD models. The variance-based
shrinkage directly reflects the weights that can be used for
predicting individual response profiles or posterior individual
parameters. In modeling practice, caution should be used to
interpret the sources of shrinkage asmultiple factors (e.g., relative
magnitude of IIVand residual error, sampling times, and number
of observations per subject, etc.) may affect the shrinkage. The
present research suggests that, on average, there is a 1:1
relationship between the amount of shrinkage and the median
relative estimation error for EBEs of PK parameters. Therefore,
shrinkage can also be viewed as a metric of estimation error of
posterior individual parameters. In addition, individual-based
shrinkage may facilitate identification of subjects with inflated
shrinkage and reduction of the influence of these subjects on
EBE-based diagnostics.
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