
Shrinking the Hypervisor One Subsystem at a Time
A Userspace Packet Switch for Virtual Machines

Julian Stecklina
TU Dresden

jsteckli@os.inf.tu-dresden.de

Abstract
Efficient and secure networking between virtual machines is
crucial in a time where a large share of the services on the
Internet and in private datacenters run in virtual machines.
To achieve this efficiency, virtualization solutions, such as
Qemu/KVM, move towards a monolithic system architec-
ture in which all performance critical functionality is imple-
mented directly in the hypervisor in privileged mode. This
is an attack surface in the hypervisor that can be used from
compromised VMs to take over the virtual machine host and
all VMs running on it.

We show that it is possible to implement an efficient
network switch for virtual machines as an unprivileged
userspace component running in the host system including
the driver for the upstream network adapter. Our network
switch relies on functionality already present in the KVM
hypervisor and requires no changes to Linux, the host oper-
ating system, and the guest.

Our userspace implementation compares favorably to the
existing in-kernel implementation with respect to throughput
and latency. We reduced per-packet overhead by using a
run-to-completion model and are able to outperform the
unmodified system for VM-to-VM traffic by a large margin
when packet rates are high.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design; D.4.4 [Operating Sys-
tems]: Communications Management–Network communi-
cation

Keywords Virtualization; Networking; Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VEE ’14, March 1–2, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2764-0/14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576202

1. Introduction
A large share of services on the Internet and in private
datacenters run in virtual machines [4]. To achieve effi-
ciency, virtualization solutions, such as Qemu/KVM [3],
have moved toward a monolithic system architecture in
which performance critical functionality is implemented di-
rectly in the hypervisor.

Monolithic virtualization layers are a particularly attrac-
tive target for attacks, because programming errors can lead
to denial of service, disclosure of confidential information,
or complete takeover of the virtual machine host by a mali-
cious third party including every unrelated virtual machine
on the same host. Security of the virtualization layer is of the
utmost importance.

The motivation for having a lean hypervisor with small
attack surface can be drawn from the microkernel commu-
nity, which argues to separate as many components as possi-
ble in their own address spaces and thus introduce additional
security hurdles for attackers. Despite growing experience in
designing microkernel-based systems [8] and applying these
design principles to virtualization [28], commodity hypervi-
sors have not adopted the microkernel approach.

In addition to mitigating safety and security concerns,
running subsystems in userspace also offers an easy way
to update, inspect, and debug them with tools that are fa-
miliar to developers of ordinary userspace programs. Yet
we still observe the ongoing adherence to monolithic sys-
tems even for operating system kernels in general, despite
successful efforts to move classic kernel functionality into
userspace [13].

Networking is a particularly important and problem-
atic [31] aspect of an efficient virtualization layer. In this
paper, we show that an efficient userspace implementation
can be achieved for the network path in a commodity hy-
pervisor, and more specifically that network connectivity for
virtual machines is possible without any network specific
code at all running in the hypervisor or in privileged compo-
nents.

Our example platform is KVM [14], an efficient and
mature virtualization solution for Linux. KVM is interest-
ing in this context, because it relies on the userspace vir-

tual machine monitor Qemu [3]. The per-VM Qemu process
provides additional isolation between VMs, but the role of
Qemu has shrunk since KVM’s inception. As of Linux 3.10
everything regarding interrupt handling and timeouts [18],
except their initial setup, is for the sake of performance now
done by the KVM module itself. This includes instruction
decoding and device emulation of certain timers and inter-
rupt controllers.

With the introduction of vhost-net, an accelerator mod-
ule for paravirtualized networking, network I/O handling is
handled in the Linux kernel. Future Linux versions will have
in-kernel implementations of paravirtual block I/O as well.
Qemu is left to handle the VM bootstrap and any devices that
are not deemed worthy of a kernel implementation yet, while
the attack surface in the most privileged software component
in the system, the hypervisor, is growing.

We introduce sv3, a network packet switch implemented
as a normal Linux process, which is a replacement for the
vhost-net acceleration module in the Linux kernel, an in-
kernel packet switch, and the virtio implementation in
Qemu itself. sv3 can also host the driver for the physical
network adapter used for outgoing traffic in userspace.

sv3 concentrates networking functionality in a single pro-
cess, but has all the advantages mentioned earlier. Isolated
networking islands can be built by running multiple sv3 in-
stances. Faults in one instance do not spread to subsystems,
processes, or VMs that do not depend on it.

Our paper makes the following contributions:

• We design a userspace network switch for virtual ma-
chines that relies on existing functionality in Linux (Sec-
tion 3).

• We evaluate our prototype switch (Section 4) and show
that the performance of such a design is comparable to
a production in-kernel implementation, while security
properties are superior.

• We conclude that implementation of the networking path
in the hypervisor itself, including (para-)virtual device
emulation, packet switching, and driver for the upstream
network adapter is not necessary, because userspace im-
plementations can be equally efficient in a commodity
system.

In the following section, we review how Qemu and KVM
implement networking. The informed reader may skip to the
design of sv3 in Section 3.

2. Networking in Qemu/KVM
Bellard [3] developed Qemu as a standalone emulator for
all essential devices of a complete PC1 and as thus needed
no special support by the kernel initially, but suffered high
overhead. This situation was resolved by the advent of hard-

1 Of course, Qemu also supports different architectures, such as ARM,
MIPS, PowerPC and others.

ware-assisted virtualization on the x86 platform [29], which
made it possible to use virtualization with close to native
speeds.

KVM [14], a small abstraction for hardware virtualiza-
tion features, was introduced to make use of hardware virtu-
alization features and Qemu was modified to support it. The
combination of Qemu and KVM is an efficient and stable
production virtualization layer.

2.1 virtio

Given that the network is usually the only way for a virtual
machine to interact with the outside world, access to the net-
work has to be particularly efficient. virtio is a network
interface specification especially suited for use in virtual
machines. It works like other modern NICs by offering the
guest a set of DMA queues, at least one receive (RX) queue
and one transmit (TX) queue. The guest then chains mul-
tiple DMA descriptors together to form a descriptor chain,
which represents either a buffer to receive packet data or a
buffer that contains a packet ready to be sent. Whenever the
guest needs to notify the host, either after queuing packets
for transmissions or offering buffers for packet receiption,
the guest writes to the NOTIFY register of the virtio-net

device, which may be either an I/O port or a MMIO register
depending on the hardware platform. Similarly, if the host
needs to notify the guest, it injects IRQs.

The specification offers a way for both parties to see
whether the other needs to be notified. Each queue has
NO NOTIFY and NO INTERRUPT bits that can be set, when
explicit notifications are not necessary.

If both guest and host support offloads, a virtio-net

device offers a full complement of stateless offloads to the
guest, such as checksum and TCP segmentation offload for
sending and large receive offload for receiving packets.

A complete description of virtio is out of scope for this
paper. We refer the reader to Russel [24].

2.2 Accelerating virtio

Even with KVM, until the introduction of vhost-net,
Qemu handled network I/O in userspace and used tap de-
vices to pass packets to the kernel. These tap devices are
usually bridged with a physical NIC to provide access to a
network. For a virtio network device, sending a packet in-
volves exiting the virtual machine and scheduling the Qemu
process. Qemu will pass the packet to the tap device with
a write system call. When sending packets between VMs,
this scheme results in up to four system calls and multiple
packet copies.

vhost-net was introduced to Linux in 2010 in order
to reduce virtualization overheads for network-heavy work-
loads. The main idea is to move the packet handling path of
the virtio backend into the kernel and remove unnecessary
mode switching and packet copying.

Instead of tying vhost-net to KVM and creating a
special purpose solution, the Linux developers used mul-

VM

Packet

Linux
Kernel

VM

Packet

(1)

KVMKVM KVMKVMVHOST VHOST
Packet(2) (3) (4)

(5)

Figure 1. Control flow of packet transmission between two
VMs (A and B) with vhost-accelerated network adapters on
a single host. Each virtual NIC has a corresponding vhost
thread in the host kernel. The sending VM triggers an I/O
exit by writing its NOTIFY register (1), which KVM signals
to the vhost thread (2). This kernel thread copies the packet
data into a kernel buffer and delivers it to the network stack
(3). The network subsystem wakes up the receiver’s vhost
thread, which copies the packet data into a packet buffer of
the receiving VM. If an IRQ is necessary, it signals the re-
ceiver’s vCPU kernel thread to inject an interrupt (4), which
delivers the interrupt to the guest (5). No Qemu code exe-
cutes for packet transmission.

tiple event file descriptors (eventfds) to connect KVM and
vhost-net as shown in Figure 1. An eventfd is a file de-
scriptor that can be used to wait for events. In its most basic
form, a read on an eventfd will block, until the eventfd is
written to.

To process buffers enqueued by the guest in a timely
fashion, vhost-net needs to be informed when the guest
wrote the NOTIFY register. For this reason vhost creates
a thread per virtio device, which blocks on an eventfd.
This file descriptor is triggered by KVM, when the NOTIFY

register is written.
When packets have been delivered, vhost needs to inject

interrupts into the guest. Interrupt injection happens by bind-
ing an eventfd to an interrupt source in KVM and giving
this eventfd to vhost, which can trigger it.

The actual setup of these event file descriptors is handled
by Qemu in userspace. As of Linux 3.10 when running a
network benchmark in a properly configured Qemu/KVM,
Qemu itself is not involved beyond the initial setup of the
VM.

3. sv3: Packet Switch for VMs
During the development of the sv3 switch we strove to solve
the following problems.

Per-packet overhead should be minimized, as this will
facilitate throughput even when data is arriving in small
packets. As seen in Figure 2, in the extreme case of 64 byte
packets, only 67 ns are available per packet on average to
keep up line rate. While achieving 10 Gbit/s line rate with
small packets on commodity hardware certainly remains a

0 2 4 6 8 10 12 14 16

200

400

600

800

1,000

1,200

64
B

pa
ck

et
s

@
10

G

67 ns

15
18

B
pa

ck
et

s
@

10
G

Packet rate in 106 pps

Pr
oc

es
si

ng
tim

e
in

ns

Figure 2. Time available for packet processing for given
packet rates on 10 Gbit/s Ethernet. A 64 byte packet must
be processed in 67 ns to keep up with line rate. System calls
or mutex acquisitions per packet are infeasible.

challenge, it is clear that heavy-weight operations per packet,
such as lock acquisitions or system calls, must be avoided to
come close to that goal.

Related to per-packet overhead is the issue of dealing
with high notification overhead. We initially believed that
our userspace switch will have significant overhead for no-
tifications and IRQ injecting into its client VMs. While this
overhead turned out to be less pronounced than we expected
(Figure 5), it drove us to abandon the thread-per-VM model
of vhost-net.

Memory-bandwidth starts to become a limiting factor as
network speeds approach the same order of magnitude. For
common operations, our switch should thus not copy data
needlessly.

3.1 Qemu Modifications
Just as vhost-net, we concentrate on the virtio network
adapter. In vhost-net, the virtio implementation is split
between the code handling the setup in Qemu and the packet
handling path in the vhost-net module. To avoid this com-
plexity, we strove to implement virtio in a single compo-
nent only. Because sv3 is meant as a switch for virtual ma-
chines, it makes sense to closely tie the implementation of
the virtio NIC to the switch itself.

Qemu offers no facility to implement devices out-of-
process, so we enhanced Qemu to allow externally imple-
mented PCI devices. Our modified Qemu is able to connect
to another process that implements a specific device using a
UNIX domain socket.

UNIX domain sockets allow file descriptors to be trans-
mitted between two processes. The modified Qemu creates
the guest’s memory as a file on a RAM-backed file system

VM

Packet

Linux
Kernel

VM

Packet

(1) (2)

VM

Packet

VM

Packet

(3)

KVMKVM

(5)

KVMKVM

VMSwitch

(2) (4)

Figure 3. Control flow of packet transmission between two
VMs (A and B) with sv3 as packet switch. The sending VM
triggers an I/O exit by writing its NOTIFY register (1), which
KVM signals to sv3 via an eventfd (2). sv3 is unblocked
by the write to the eventfd (3) and copies the packet via
its local mappings of VM memory (4). The receiving VM
is notified of the packet by signaling an eventfd (5) that
is bound to KVM’s IRQ injection (6). KVM then injects a
virtual interrupt (7).

and transmits the corresponding file descriptors via the do-
main socket. The external process can then mmap the guest’s
memory in its own address space. Further eventfds are ex-
changed for interrupt injection and I/O notifications.

Our implementation of external PCI devices is complete
enough to handle devices with MSI-X interrupts, DMA, and
port I/O. This covers virtio, but with minor additions, we
can implement other PCI devices in external processes as
well.

3.2 Implementing virtio in sv3
Using our Qemu modifications, we are able move the com-
plete implementation of the virtio PCI device into the
switch process. This has advantages beyond just simplic-
ity. Because the switch has direct access to virtio DMA
queues and can communicate directly with KVM for inter-
rupt injection, there is no involvement of Qemu in packet
handling.

Uncritical port I/O by the guest on the I/O addresses of
the virtio device are relayed to the switch via the domain
socket connection. This is only used during virtio config-
uration by the guest. Afterwards, the guest only writes to the
NOTIFY register of the device. The switch instructs Qemu to
attach an eventfd to this particular register. When a write
occurs, KVM will trigger this eventfd instead of notifying
Qemu of the I/O operation.

3.3 The Switching Loop
The key part in sv3 is its switching loop. Shalev et al. [25]
have shown that a single threaded network subsystem is
feasible. We build on this result by having a single thread in
sv3 to do all packet switching. This thread executes a loop
that continuously checks all ports and their queues for work
until no port has outgoing packets pending. At this point it
will block on an eventfd. Writes by a guest to the NOTIFY

register of a virtio device trigger exactly this eventfd,
thus unblocking the switch.

In effect, there is no need for mutexes and atomic opera-
tions. Operations on switch data structures that rarely change
and are modifed outside the switching loop, such as the list
of attached ports, are serialized with userspace RCU [7].

While the switching loop is active, sv3 disables notifica-
tions for all client VMs. In particular, this means that while
the switch is busy copying packets for one VM, another VM
need not cause a VM exit to notify the switch of activity in
its DMA queues. The busier the switching loop gets the less
notifications are needed in the system, until there are no no-
tifications needed at all. sv3 only enables notifications from
VMs when it is idle and about to sleep.

Depending on the destination, a packet originating from
a virtual machine can take two paths. If the destination is an-
other VM, the packet will be directly copied from the source
VM’s memory to the receiving VM in a run-to-completion
fashion. If the receiving VM does not have sufficient net-
work buffers queued at its virtio device, the packet will be
dropped.

While packets that are destined for a VM are either de-
livered directly or dropped, packets destined for the physical
network adapter are sent asynchronously. sv3 translates the
packet description given as virtio descriptors into DMA
descriptors of the physical NIC. The switching loop then
polls regularly to check when the transmission is completed
and in turn indicates completion to the sending VM. At this
point, the sending VM can reuse its packet buffers. This
mode of operation will complete transmit operations poten-
tially out-of-order from the perspective of the guest, a use-
case that was already anticipated by Russel [24] in the orig-
inal virtio design to allow zero-copy transmit. Since only
packets delivered to different switch ports may be reordered,
the performance of TCP connections is not affected.

As already hinted, with all guest memory directly visible
in the sv3 process additional packet copies can be avoided.
In contrast to the Linux kernel, where large virtually contigu-
ous in-kernel mappings of user memory are problematic, and
where user memory is usually handled pagewise, a userspace
solution has the luxury of a simple virtual memory layout:
mmaping large files into an application’s address space is a
common operation.

With packet switching implemented in a single thread,
sv3 has to do its own scheduling of how long to service each
port. The main tunable parameter in sv3 is the number of
packets the switch will deliver from a single queue until
it considers packets from another queue. The rationale to
set this batch size to values larger than one is to exploit
the warmed up cache. Large values obviously affect packet
latency.

Choosing the optimal batch size is not the scope of this
paper. We use a value of 16 by default and note that this
can lead to unfair behavior of the switch when different

VM

Packet

Linux
Kernel

(1) (2)

VM

Packet

(3)

KVMKVM

VMSwitch

(2)

DMA
Queue

NIC

(4)

Figure 4. Receiving or sending a packet using the physical
network adapter. Step 1 to 3 work as in the VM-to-VM
case shown in Figure 3 on the facing page. sv3 translates
virtio’s packet description to DMA descriptors understood
by the NIC. The NIC then reads the packet data directly from
the guest’s memory.

.

VMs send packets of different average size. In this situation,
the switching loop will spend more time servicing the VM
sending larger packets.

When latency is of concern, the switching loop can be
instructed not to block when the switch is idle, until a certain
time has passed. We call this the idle poll time. An idle poll
time of zero means that the switch will immediately sleep
once it has nothing to do. This is the default mode of sv3. A
large idle poll time turns the switch into polling mode, where
it never sleeps. For the rest of the paper we do not consider
poll times other than zero, as it makes the switch behavior
hard to compare to vhost-net.

The main differences between vhost-net and sv3, be-
sides whether they run in the kernel, are their styles of execu-
tion. While vhost employs one thread per VM, sv3 utilizes
a single thread that delivers packets in a run-to-completion
fashion.

During overload, i.e. more packets are queued than the
network subsystem can handle, sv3 degrades gracefully in
that it does not need notifications by VMs anymore, as
explained earlier. vhost will instead have multiple busy
threads that need to synchronize and compete for compute
resources with vCPU threads and each other.

3.4 External Connection with Userspace Drivers
Even a packet switch for virtual machines needs an up-
stream port to transmit packets beyond the boundaries of a
single physical host. We decided against using Linux’s net-
working subsystem for this purpose, because it only offers
PF PACKET socketsfor high-performance raw packet recep-
tion and transmission. We consider PF PACKET sockets lim-
iting, as they require batching of buffer operations and thus
introduce unnecessary delays. Additionally, they only sup-
port zero-copy transmission from a fixed kernel-provided
memory region, which makes direct transmission from VM
memory impossible.

We instead decided to drive the physical NIC in sv3 itself,
using the VFIO framework [30]. VFIO is primarily meant
for implementing PCI passthrough in Qemu, but is sufficient
for implementing drivers for PCI devices in Linux userspace
directly.

VFIO allows binding event file descriptors to interrupts.
In sv3, we use this feature to unblock the switching loop
when the NIC signals incoming packets. This is analogous
to how VMs unblock the switching loop by writing to their
virtio’s NOTIFY register.

By including the device driver in the switch, zero-copy
packet transmission is possible2 and the NIC sends packets
directly from guest memory. Receiving packets requires an
additional packet copy, because the NIC delivers packets
before the switch knows where to deliver them.

The switch passes stateless offloads programmed by the
guest for a packet to the NIC. Given guests and an upstream
NIC that all support TCP segmentation and checksum of-
floads, the switch never needs to segment packets or com-
pute checksums on its own. The switch also passes Large
receives, i.e. TCP packets belonging to the same connection
that have been merged into a single packet, on to guests, if
they support it.

We implemented a driver for the Intel X520 NIC, a pop-
ular 10Gbit Ethernet adapter, from scratch. This particular
NIC, as practically all competing 10Gbit NICs, offers a su-
perset of the offloads that are possible with virtio and is
therefore a good fit for sv3.

4. Evaluation
We evaluated our system on an Intel Core i7 3770S CPU
running at 3.1 GHz. Memtest86+ [1] reports 18975 MiB/s
memory bandwidth (roughly 159 GBit/s). Memory access
is uniform. Our host system uses Fedora 19 with a vanilla
Linux kernel version 3.10.18 and has power management
and frequency scaling disabled. As already mentioned in
Section 3.4, we used an Intel X520 network adapter. Our
guests used a stripped down 3.10.10 kernel. We used our
modified Qemu based on version 1.5.0 for all tests. Disre-
garding small changes in how guest memory is allocated,
our modifications do not touch Qemu’s own virtio-net

implementation.

4.1 Security
One of the major concerns with code executing in kernel
space is its security and safety, since one programming error
can crash the system, cause unrelated subsystems to fail,
disclose information, or in the worst case allow attackers to
gain control of the system.

With respect to sv3, there are two sides to this issue. The
first one is attack surface and the second the implications

2 Zero-copy packet transmission is only possible of VM memory is locked.
If the system overcommits memory, an additional copy is required, because
the NIC cannot DMA into guest memory in this case.

of a successful attack. With regards to an attacker that can
craft arbitrary packets and fully control one of the connected
virtual machines, sv3 shares the same attack surface as KVM
used with vhost-net, that is the virtio interface and those
parts of KVM that are necessary for mapping specific VM
exits to eventfds.

While the latter feature in the KVM module might be
superfluous and could be removed from the kernel, if general
userspace VM exit handling were fast enough [28], the real
value of userspace packet switching lies in the mitigation of
attacks.

Because sv3 is an ordinary Linux application, existing
hardening techniques, such as sandboxing, can be easily de-
ployed making security relevant flaws harder to exploit for
an attacker and attacks themselves easier to detect. Even a
successful attack on sv3 will only grant an attacker user priv-
ileges on the host, control over the physical network adapter
and access to memory of the connected virtual machines.

Access to VM memory can further be restricted by a
virtualization layer that emulates an IOMMU [2]. Qemu
needs to share only memory that guests mark as DMA-able
with a sv3 instance.

Control over the network adapter is also not as valuable
as it appears. Due to the use of the host’s IOMMU to safely
drive the device in userspace in the first place, DMA cannot
be used to subvert the rest of the system. The Linux ker-
nel makes sure the application can only establish IOMMU
mappings to memory its own memory and an attacker would
need to overcome this security feature first.

Finally, sv3 does not need root privileges.3 It only needs
access to its UNIX domain socket and the VFIO device file
of the network adapter is supposed to drive. Sandboxing sv3
is trivial.

4.2 Resource Consumption
Low resource consumption is one argument in favor of pro-
cesses instead of virtual machines as units of disaggregating
operating system functionality. Measuring exact memory us-
age of a Linux process is not straightforward. We measured
sv3’s memory footprint by observing its resident set size
(RSS) as displayed by the tool ps and subtracted the amount
of shared guest memory, as the latter would otherwise be ac-
counted twice, once for the virtual machine and once for sv3.
Note that RSS does not include kernel data structures, such
as page tables.

Without the upstream network driver sv3 consumes be-
low 2 MiB of resident memory and currently needs 384 bytes
metadata per virtual switch port. The Intel X520 NIC driver
increases memory usage to 16 MiB, mostly because of a lib-
eral amount of packet buffers.

3 Root privileges are required for setting interrupt affinity, if that is required,
because the VFIO interface is incomplete in that respect. Privileges can be
dropped after initialization and before a VM is connected to the switch. We
consider adding this capability to VFIO.

 0

 2

 4

 6

 8

 10

 12

 14

vhost sv3

R
o

u
n

d
tr

ip
 L

a
te

n
cy

 i
n

 μ
s

Figure 5. Time between triggering network processing in
the guest and receiving an IRQ in the guest for vhost-net
and sv3 without network processing. The overhead for sv3
is caused by traversing the system call layer and switching
to userspace. Error bars indicate standard deviation.

As a point of comparison, consider recent work by Colp
et al. [5], who decompose the privileged Domain 0 in a
Xen system by running Domain 0 subsystems in virtual
machines. The network backend VM in their systems is
allocated 128 MiB of RAM. The smallest VMs in their
design use 32 MiB RAM and are confined, unlike sv3, to
a very limited programming environment.

4.3 Microbenchmarks
sv3 reimplements a kernel subsystem in userspace. Thus it
must use userspace APIs to achieve what vhost-net can
do with potentially more optimized in-kernel APIs. In this
section, we want to measure the direct overhead of using
userspace APIs.

In our particular case, sv3 uses eventfds to be notified
of activity in the guest’s DMA queues and to inject IRQs.
vhost-net uses the same functionality inside the Linux ker-
nel directly and can avoid the kernel to user mode transition.

We modified both implementations to not do any packet
processing, but inject an interrupt directly after being no-
tified by the guest. In Figure 5, we measure the time that
elapses between triggering network processing from the
guest and receiving the IRQ in the same virtual machine.
This time includes, for both systems, the same overhead for
the actual VM exit and interrupt injection done by KVM.
sv3 adds overhead for traversing the system call layer and
switching to and from userspace.

The additional overhead is below 2 µs. The design de-
cision to minimize wake ups by using only one switching
thread, may thus not be as important as we initially thought.

4.4 Performance
We evaluate the efficiency of sv3 by measuring the CPU
utilization of the host system for constant-throughput TCP
streams and packet latency. TCP stream measurements were
generated using nuttcp [20]. netperf [19] was used to
assess latency using its request/response benchmarks. We

compare sv3 to vhost-net, which had its zero-copy mode
enabled.

We consider two basic scenarios. In the first scenario,
an external machine generates the load and a VM on the
test system receives it. We use the userspace driver of our
Intel X520 NIC, which is built into sv3. vhost-net uses the
normal Linux network stack and thus the Linux driver. We
tried to use hardware features, such as Large Receive Offload
and interrupt rate throttling, in our driver in the same way as
the Linux driver to avoid distorting the results.

We throttled the interrupt rate to 10000 interrupts per
second for both vhost-net and sv3. This value corresponds
to the “bulk latency” setting in Linux’ ixgbe driver.

The second scenario moves the load generator into a
virtual machine. The traffic stream is thus between two
VMs on a single host. No external traffic is involved. Be-
cause nuttcp consumes a full core for sending constant-
throughput streams, we do not show CPU utilization in this
case, because it is always equal to one.

External-to-VM Traffic Figure 6 on the next page shows
CPU utilization for TCP streams from the external source
with TCP segmentation and large receive offload enabled
(left) and disabled (right). With both offloads enabled,
nuttcp produced stable results upto 8 Gbit/s. As the re-
ceiver does not fully consume its core, the sender must be
the bottleneck.

At 8 Gbit/s, sv3 uses 30 % of its core. The CPU uti-
lization for both systems is almost identical. The reason is
that both systems use the same architecture to receive pack-
ets. The network adapter copies packets into anonymous
buffers. After receiving the IRQ, the Linux kernel wakes up
the networking subsystem or in the case of sv3 unblocks an
eventfd. The thread that is responsible wakes up and copies
the packet to the guest VM’s memory. Afterwards, the guest
is notified of their arrival. The only difference is that sv3
uses eventfds to be notified by the kernel and to notify the
guest.

The right part of Figure 6 shows the same setting, but
with TCP segmentation and large receive offloads disabled
to put more stress on the network path. Instead of large
packets the network adapter will now only deliver MTU-
sized packets. We used a standard MTU of 1500 bytes. We
did not measure vhost-net performance, as we could not
disable large receive offload. As with the measurements with
offloads enabled, the receive is the bottleneck. At 6 Gbit/s,
sv3 uses 55 % of its core.

VM-to-VM Traffic Throughput results for our second sce-
nario, VM-to-VM traffic, are shown in Figure 7 on the fol-
lowing page. With offloads enabled (left), we get stable re-
sults with nuttcp up to about 30 Gbit/s. For throughput be-
low 10 Gbit/s, sv3 is slightly more efficient compared to
vhost-net. With throughput beyond 10 Gbit/s, this effect
is more pronounced. Between 12 and 13 Gbit/s the receiving

 0

 20

 40

 60

 80

 100

vhost-external vhost-VM sv3-external sv3-VM

R
o

u
n

d
tr

ip
 L

a
te

n
cy

 i
n

 μ
s

Figure 8. Roundtrip latency for TCP packets between two
virtual machines (VM), a virtual machine and an external
load generator (external). Standard deviation is below 0.4µs
for all measurements.

VM starts to fully utilize its core and essentially goes into
polling mode, which is reflected in the curve.

The right diagram in Figure 7 shows VM-to-VM traf-
fic with offloads disabled. vhost-net is not able to reach
7 Gbit/s, because it fully utilizes all four cores4. For sv3, vir-
tual machines are the bottleneck at 9 Gbit/s as the switching
loop consumes only one core at 50%.

Above 7 Gbit/s, when the guest starts to fully utilize its
core, sv3’s CPU utilization drops. We attribute this to ad-
ditional batching and less frequent wakeups. The single-
threaded model with little per-packet overhead seems espe-
cially suited to this scenario.

Latency Judging from our microbenchmarks, we antici-
pated a modest increase in latency by using sv3 for external
traffic and expected a slight decrease in the VM-to-VM case
for sv3, because the packets are handled by only one thread
instead of two.

Latency results are shown in Figure 8. We observe that
with both systems latency is practically identical. We see an
increase of roughly one microsecond for sv3 compared to
vhost-net.

5. Discussion
5.1 Userspace Switching vs. Driver Domains
Our design shares aspects with the Driver Domain model
as it is used in Xen [17]. In particular, it isolates packet
processing in a separate component, which is in our case
a process in the host system and in Xen’s case a dedicated
virtual machine.

The overhead of a dedicated virtual machine has lead
to architectures, such as Hyper-Switch [21], that optimize
network performance by moving the data plane into the
hypervisor and leaving only the control plane isolated.

We argue that processes offer a lighter-weight abstrac-
tion than virtual machines, which still allows the full soft-

4 As explained earlier, the sending VM’s utilization is not shown, because it
is always fully utilizing one core.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

C
P
U

 U
ti

li
za

ti
o

n

GBit/s

vhost, tso
sv3, tso
sv3 only

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

C
P
U

 U
ti

li
za

ti
o

n

GBit/s

sv3, no tso
sv3 only

Figure 6. CPU utilization for receiving a TCP stream from an external source. We measured utilization of the whole system,
except for the switch-only measurement, which only shows CPU utilization of the software switch itself. The left diagram
shows the default configuration with all offloads enabled, the right measurement was done with TSO and LRO disabled. The
Linux driver did not support disabling LRO, so it is not shown in the right diagram.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

C
P
U

 U
ti

li
za

ti
o

n

GBit/s

vhost, tso
sv3, tso
sv3 only

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9

C
P
U

 U
ti

li
za

ti
o

n

GBit/s

vhost, no tso
sv3, no tso

sv3 only

Figure 7. CPU utilization for receiving a TCP stream from another VM. CPU utilization of the load generator VM is excluded.
The maximum load of the vhost-net configuration is three, when the receiver’s vCPU thread and both vhost threads are
compute bound. For sv3, the maximum load is two.

ware switch to run isolated from the hypervisor without spe-
cial privileges. We detail sv3’s memory consumption in Sec-
tion 4.2.

5.2 Multiserver Operating Systems and SMP
One of the reasons for implementing performance critical
functionality in the kernel (or hypervisor) is performance. In
a monolithic kernel, components can simply call each other
with a function call. Yet the example of vhost-net in Fig-
ure 1 shows that in realistic scenarios multiple threads inter-
act through asynchronous communication even in a mono-
lithic kernel.

On a modern system with a multicore CPU, each of those
threads will execute on a different core, unless the system
is overcommitted. Frequent context switches between dif-
ferent address spaces do not happen. In the ideal case, each
core executes a single thread in a single address space. The

cost of switching an address space becomes meaningless to
the overall performance of the system. Isolating subsystems
in separate address spaces is practically for free. The per-
formance difference of components running in kernelspace
compared to userspace now depends on the efficiency of
asynchronous notifications.

By consolidating work onto a single thread, our network
switch tries to stay active as long as possible compared to the
thread-per-VM model employed by vhost-net. sv3 avoids
the need for frequent notifications when possible and thus
mitigates even this source of potential inefficiency. In return,
we get a high-performance subsystem running in userspace.

We believe that this reasoning also applies to other com-
ponents that are typically implemented in a monolithic ker-
nel. A case in point is the use of asynchronous system calls
as in the FlexSC system [27], where system calls are used
via shared memory and asynchronous notifications. sv3 can

be considered an application of this idea with the twist that
our “system call handler” is not running in the kernel.

The design of our userspace network switch is applicable
to and inspired by microkernel-based multiserver systems [9,
15, 28].

5.3 A Monolith in Userspace
It seems as if we are just exchanging a monolithic ker-
nelspace component with a monolithic userspace compo-
nent, but there are important differences compared to the
kernel solution.

sv3 can be started multiple times, each time creating
an isolated network switch. Errors in sv3 do not propagate
to other instances assuming that the underlying kernel is
correct. More importantly failures in sv3 do not interfere
with kernel subsystems.

The robustness of a single sv3 instance can, of course,
be increased. We currently run NIC drivers in the context
of the switching loop. A malfunctioning device or bugs in
the driver code can potentially wreak havoc on all connected
VMs. By making the driver a separate process that speaks
the same interfaces as VMs, this scenario can be avoided at
the expense of performance.

6. Future Work
6.1 Scalability and NUMA
As demonstrated in Section 4.4, sv3 compares favorably to
vhost-net for VM-to-VM and external-to-VM communi-
cation, because those workloads rarely cause the switching
loop itself to be the bottleneck. Especially for high packet
rates, such as the measurement in Figure 7 on the facing
page with TCP segmentation disabled, the single-threaded
run-to-completion approach of sv3 clearly outperforms the
model where one virtual NIC is driven by one thread as in
vhost-net.

For multiple senders, vhost-net eventually scales bet-
ter, because it can distribute packet processing to different
cores, whereas sv3 in its current design faces a wall when
packet processing chokes a single core, even when virtual
network throughput is far from the theoretical maximum dic-
tated by the memory bandwidth of the system. Another is-
sue is that systems with NUMA configurations might exhibit
poor performance, if sv3 needs to read and write packet data
from distant memory.

One idea to address scalability is to start multiple sv3 in-
stances, one per NUMA domain. VMs are connected to sv3
instances with the same NUMA affinity and, depending on
the system, share a last-level cache. Each sv3 instance would
still be able to switch packets on the same NUMA node with-
out additional copies. The sv3 instances themselves are con-
nected to each other and use a shared memory region for
each connection to forward packets destined to “remote” vir-
tual machines.

Advantages of such a configuration are that performance
scales with the number of NUMA nodes, without introduc-
ing complexity in sv3 in the form of multithreading. Ad-
ditionally, service disruption caused by a crash of one sv3
instance is confined to a handful of VMs.

6.2 Integrating Advanced Interconnects
Cui et al. [6] propose to offer virtual TCP offload engines
to VMs and use advanced interconnects, such as InfiniBand,
to optimize the networking performance between VMs on
different hosts. The implications of this approach are appeal-
ing, because what a VM initiates as a TCP connection can be
mapped to the most efficient network technology or protocol
between two virtual machine hosts, if these hosts cooper-
ate. Instead of speaking TCP between two VMs on the same
host, plain memcpy with primitive congestion control can be
used. For remote connections, data transfer can be imple-
mented using RDMA. The transport mechanism can even be
transparently switched, if VMs are migrated. We plan to in-
tegrate such functionality in sv3.

7. Related Work
Our paper touches the areas of I/O scalability in the context
of virtualization, network stack performance optimizations
and operating system design. Additionally, it relates to OS
and hypervisor disaggregation efforts.

VALE [23] is a software switch for virtual machines
that achieves impressive packet forwarding rates. It reduces
per-packet overhead by using a more efficient interface to
transmit packets [22], removing VM exits, batching, and the
reduction of mutex acquisitions. VALE is implemented in
the kernel and shares the same security considerations as the
standard vhost-net networking path.

Ram et al. [21] present Hyper-Switch, a scalable software
switch for virtual machines with a split design to reduce the
TCB, which we have already discussed in Section 5.1.

Shalev et al. [25] move the TCP/IP stack of a general
purpose operating system onto a dedicated core. The isolated
stack (IsoStack) uses queues to communicate with the rest of
the system. We adopted design ideas of IsoStack for sv3,
specifically the idea to have a main loop that serves all
clients, is lockless, and does not need atomic instructions.
sv3 shares the major drawbacks with IsoStack. In such a
design, it is hard to scale network processing to two or more
cores.

With their system ELVIS, Gordon et al. [10] try to remove
VM exit and interrupt generation overhead by modifying
vhost-net to run a single thread polling all guests similar
to sv3. ELVIS runs in kernel space and is effective at reduc-
ing exits, but fully utilizes a core even for light load. The au-
thors present a heuristic to distinguish latency-sensitive from
throughput-oriented workloads that is applicable to sv3 as
well. Given the experiences from building sv3, we believe

that it is possible to port or reimplement ELVIS in userspace
with similar performance to the in-kernel version.

SnabbSwitch [26] is a userspace packet switching and
routing framework written in Lua. Its intent is to enable the
rapid creation of software-defined networking functionality
running on Linux in userspace. Our modifications to Qemu
are applicable to SnabbSwitch and may improve its perfor-
mance significantly.

With their Factored Operating Systems, Wentzlaff and
Agarwal [32] rethink the operating system for a many-core
system as fleets of servers, where each fleet implements an
operating system service. The individual servers in a fleet
are bound to particular processing cores and do not directly
compete with applications for hardware resources. A future
version of sv3 consisting of multiple cooperating instances
may be seen as an incarnation of such a service fleet.

Minix 3 [11] uses userspace drivers and components and
argues that restartable system components can greatly en-
hance the reliability of the whole system. Especially, compo-
nents without or with little state should be easily restartable.
sv3 falls into the latter category.

Userspace drivers have been shown to have negligible
overhead compared to drivers running in the kernel [16].
Since then, the interfaces for userspace drivers in Linux have
been vastly improved [30]. Our switch uses these interfaces.

Hruby et al. [12] agree that dedicating cores to I/O func-
tionality is worthwhile and rearchitect a TCP/IP stack by
putting the different layers onto different cores. In contrast to
sv3, which follows the run-to-completion philosophy, each
networking stack layer is a single threaded program. The au-
thors argue that this is a good design choice for robustness as
the layers themselves cannot include concurrency bugs and
each layer can be restarted individually.

Colp et al. [5] decompose Xen’s monolithic and privi-
leged Domain 0 into several virtual machines according to
the principle of least authority. sv3 achieves the same for the
networking path in KVM with processes instead of virtual
machines with a much lower memory footprint.

8. Conclusion
We have shown that it is possible to reimplement high per-
formance components from an existing monolithic kernel
in an unprivileged user process without sacrificing perfor-
mance. sv3, our userspace network switch for virtual ma-
chines, replaces Linux’ vhost-net subsystem, the in-kernel
packet switch, and the device driver for the upstream net-
work adapter. It relies only on basic virtualization functions
in the Linux kernel, such as event forwarding and IRQ in-
jection via event file descriptors. No networking code needs
to run in privileged mode to achieve high performance net-
working.

By tightly coupling NIC drivers with the switch, we see
identical CPU utilization compared to the in-kernel network-
ing path and negligable latency increase for external-to-VM

traffic. VM-to-VM traffic is handled particularly efficient in
our implementation, especially at high packet rates, because
we reduce per-packet overhead with our design.

The limiting factor of sv3 is that it cannot yet utilize mul-
tiple cores for packet processing. For a large number of VMs
and sufficient computational resources, it will eventually be
outperformed by systems, such as vhost-net that use one
thread per VM. However, given our microbenchmarks, we
are confident that a thread-per-VM design can be adopted
for a userspace switch as well.

The source code of sv3 and our Qemu patches are avail-
able at https://os.inf.tu-dresden.de/~jsteckli/

sv3.html.

Acknowledgments
The author would like to thank Björn Döbel for invalu-
able input on drafts of this paper and Luke Gorrie and the
snabb.co team for the occasional dose of motivation and time
spent discussing the ideas presented in this paper.

References
[1] Memtest86+ - an advanced memory diagnostic tool. URL

http://www.memtest.org/.

[2] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster.
viommu: Efficient iommu emulation. In Proceedings of the
2011 USENIX Conference on USENIX Annual Technical Con-
ference, USENIX ATC’11, pages 6–6, Berkeley, CA, USA,
2011. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=2002181.2002187.

[3] F. Bellard. Qemu, a fast and portable dynamic translator.
In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’05, pages 41–41, Berkeley, CA,
USA, 2005. USENIX Association. URL http://dl.acm.

org/citation.cfm?id=1247360.1247401.

[4] T. Benson, A. Akella, and D. A. Maltz. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement,
IMC ’10, pages 267–280, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0483-2. . URL http://doi.acm.org/

10.1145/1879141.1879175.

[5] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Dee-
gan, P. Loscocco, and A. Warfield. Breaking up is hard to
do: Security and functionality in a commodity hypervisor. In
Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles, SOSP ’11, pages 189–202, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. . URL
http://doi.acm.org/10.1145/2043556.2043575.

[6] Z. Cui, P. G. Bridges, J. R. Lange, and P. A. Dinda. Vir-
tual TCP offload: optimizing ethernet overlay performance on
advanced interconnects. In Proceedings of the 22nd inter-
national symposium on High-performance parallel and dis-
tributed computing, HPDC ’13, pages 49–60, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-1910-2. . URL http:

//doi.acm.org/10.1145/2462902.2462912.

[7] M. Desnoyers, P. McKenney, A. Stern, M. Dagenais, and
J. Walpole. User-level implementations of read-copy update.

https://os.inf.tu-dresden.de/~jsteckli/sv3.html
https://os.inf.tu-dresden.de/~jsteckli/sv3.html
http://www.memtest.org/
http://dl.acm.org/citation.cfm?id=2002181.2002187
http://dl.acm.org/citation.cfm?id=2002181.2002187
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/2043556.2043575
http://doi.acm.org/10.1145/2462902.2462912
http://doi.acm.org/10.1145/2462902.2462912

Parallel and Distributed Systems, IEEE Transactions on, 23
(2):375–382, 2012. ISSN 1045-9219. .

[8] K. Elphinstone and G. Heiser. From L3 to seL4 – what have
we learnt in 20 years of L4 microkernels? In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), pages
133–150, Farmington, PA, USA, November 2013.

[9] genode. Genode operating system framework. URL http:

//www.genode.org/.

[10] A. Gordon, N. Har’El, A. Landau, M. Ben-Yehuda, and
A. Traeger. Towards exitless and efficient paravirtual i/o. In
Proceedings of the 5th Annual International Systems and Stor-
age Conference, SYSTOR ’12, pages 10:1–10:6, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1448-0. . URL
http://doi.acm.org/10.1145/2367589.2367593.

[11] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanen-
baum. Minix 3: A highly reliable, self-repairing operating
system. SIGOPS Oper. Syst. Rev., 40(3):80–89, July 2006.
ISSN 0163-5980. . URL http://doi.acm.org/10.1145/

1151374.1151391.

[12] T. Hruby, D. Vogt, H. Bos, and A. S. Tanenbaum. Keep
net working - on a dependable and fast networking stack.
In Proceedings of Dependable Systems and Networks (DSN
2012), Boston, MA, June 2012.

[13] A. Kantee. Rump file systems: kernel code reborn. In Pro-
ceedings of the 2009 conference on USENIX Annual technical
conference, USENIX’09, pages 15–15, Berkeley, CA, USA,
2009. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1855807.1855822.

[14] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux virtual machine monitor. In Proceedings of
the Linux Symposium, volume 1, pages 225–230, 2007.

[15] A. Lackorzynski and A. Warg. Taming subsystems: capa-
bilities as universal resource access control in L4. In Pro-
ceedings of the Second Workshop on Isolation and Integra-
tion in Embedded Systems, IIES ’09, pages 25–30, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-464-5. . URL
http://doi.acm.org/10.1145/1519130.1519135.

[16] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray,
L. Macpherson, D. Potts, Y.-T. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance.
Journal of Computer Science and Technology, 20(5):654–664,
2005. ISSN 1000-9000. . URL http://dx.doi.org/10.

1007/s11390-005-0654-4.

[17] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing net-
work virtualization in Xen. In Proceedings of the annual con-
ference on USENIX ’06 Annual Technical Conference, ATEC
’06, pages 2–2, Berkeley, CA, USA, 2006. USENIX As-
sociation. URL http://dl.acm.org/citation.cfm?id=

1267359.1267361.

[18] J. Nakajima. Enabling optimized interrupt/APIC virtualiza-
tion in KVM. In KVM Forum, 2012.

[19] netperf. netperf. URL http://www.netperf.org/.

[20] nuttcp. nuttcp network performance measurement tool. URL
https://www.nuttcp.net/.

[21] K. K. Ram, A. L. Cox, M. Chadha, and S. Rixner. Hyper-
Switch: A scalable software virtual switching architecture.

In Proceedings of the 2013 USENIX conference on Annual
Technical Conference, USENIX ATC’13, Berkeley, CA, USA,
2013. USENIX Association.

[22] L. Rizzo. Netmap: a novel framework for fast packet I/O.
In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, pages 9–9, Berke-
ley, CA, USA, 2012. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=2342821.2342830.

[23] L. Rizzo and G. Lettieri. VALE, a switched ethernet for vir-
tual machines. In Proceedings of the 8th international con-
ference on Emerging networking experiments and technolo-
gies, CoNEXT ’12, pages 61–72, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1775-7. . URL http://doi.acm.

org/10.1145/2413176.2413185.

[24] R. Russel. virtio: towards a de-facto standard for virtual I/O
devices. SIGOPS Operating Systems Review, 42(5):95–103,
2008.

[25] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
IsoStack: Highly Efficient Network Processing on Dedicated
Cores. In Proceedings of the 2010 USENIX conference
on USENIX annual technical conference, USENIX ATC’10,
pages 5–5, Berkeley, CA, USA, 2010. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1855840.

1855845.

[26] snabb. Snabbswitch. URL https://github.com/

SnabbCo/snabbswitch/wiki.

[27] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In Proceedings
of the 9th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association. URL http://dl.acm.

org/citation.cfm?id=1924943.1924946.

[28] U. Steinberg and B. Kauer. NOVA: a microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th
European conference on Computer systems, EuroSys ’10,
pages 209–222, New York, NY, USA, 2010. ACM. ISBN 978-
1-60558-577-2. . URL http://doi.acm.org/10.1145/

1755913.1755935.

[29] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M.
Martins, A. V. Anderson, S. M. Bennett, A. Kagi, F. H. Leung,
and L. Smith. Intel virtualization technology. Computer,
38(5):48–56, May 2005. ISSN 0018-9162. . URL http:

//dx.doi.org/10.1109/MC.2005.163.

[30] vfio. VFIO driver: Non-privileged user level pci drivers, 2010.
URL http://lwn.net/Articles/391459/.

[31] G. Wang and T. Ng. The impact of virtualization on network
performance of amazon ec2 data center. In INFOCOM, 2010
Proceedings IEEE, pages 1–9, 2010. .

[32] D. Wentzlaff and A. Agarwal. Factored operating systems
(fos): the case for a scalable operating system for multicores.
SIGOPS Oper. Syst. Rev., 43(2):76–85, Apr. 2009. ISSN 0163-
5980. . URL http://doi.acm.org/10.1145/1531793.

1531805.

http://www.genode.org/
http://www.genode.org/
http://doi.acm.org/10.1145/2367589.2367593
http://doi.acm.org/10.1145/1151374.1151391
http://doi.acm.org/10.1145/1151374.1151391
http://dl.acm.org/citation.cfm?id=1855807.1855822
http://dl.acm.org/citation.cfm?id=1855807.1855822
http://doi.acm.org/10.1145/1519130.1519135
http://dx.doi.org/10.1007/s11390-005-0654-4
http://dx.doi.org/10.1007/s11390-005-0654-4
http://dl.acm.org/citation.cfm?id=1267359.1267361
http://dl.acm.org/citation.cfm?id=1267359.1267361
http://www.netperf.org/
https://www.nuttcp.net/
http://dl.acm.org/citation.cfm?id=2342821.2342830
http://dl.acm.org/citation.cfm?id=2342821.2342830
http://doi.acm.org/10.1145/2413176.2413185
http://doi.acm.org/10.1145/2413176.2413185
http://dl.acm.org/citation.cfm?id=1855840.1855845
http://dl.acm.org/citation.cfm?id=1855840.1855845
https://github.com/SnabbCo/snabbswitch/wiki
https://github.com/SnabbCo/snabbswitch/wiki
http://dl.acm.org/citation.cfm?id=1924943.1924946
http://dl.acm.org/citation.cfm?id=1924943.1924946
http://doi.acm.org/10.1145/1755913.1755935
http://doi.acm.org/10.1145/1755913.1755935
http://dx.doi.org/10.1109/MC.2005.163
http://dx.doi.org/10.1109/MC.2005.163
http://lwn.net/Articles/391459/
http://doi.acm.org/10.1145/1531793.1531805
http://doi.acm.org/10.1145/1531793.1531805

	Introduction
	Networking in Qemu/KVM
	virtio
	Accelerating virtio

	sv3: Packet Switch for VMs
	Qemu Modifications
	Implementing virtio in sv3
	The Switching Loop
	External Connection with Userspace Drivers

	Evaluation
	Security
	Resource Consumption
	Microbenchmarks
	Performance

	Discussion
	Userspace Switching vs. Driver Domains
	Multiserver Operating Systems and SMP
	A Monolith in Userspace

	Future Work
	Scalability and NUMA
	Integrating Advanced Interconnects

	Related Work
	Conclusion

