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Abstract: Constraint-based models of metabolism have
been used in a variety of studies on drug discovery,
metabolic engineering, evolution, and multi-species
interactions. These genome-scale models can be gener-
ated for any sequenced organism since their main
parameters (i.e., reaction stoichiometry) are highly con-
served. Their relatively low parameter requirement makes
these models easy to develop; however, these models
often result in a solution space with multiple possible flux
distributions, making it difficult to determine the precise
flux state in the cell. Recent research efforts in this
modeling field have investigated how additional experi-
mental data, including gene expression, protein expres-
sion, metabolite concentrations, and kinetic parameters,
can be used to reduce the solution space. This mini-
review provides a summary of the data-driven computa-
tional approaches that are available for reducing the
solution space and thereby improve predictions of
intracellular fluxes by constraint-based models.

This is an ‘‘Editors’ Outlook’’ article for PLOS Computational

Biology.

Introduction

Genome-scale constraint-based metabolic models can be used

to predict or describe cellular behaviors, such as growth rates,

uptake/secretion rates, and intracellular fluxes. These models have

been used for a variety of applications, involving studies on drug

discovery [1], metabolic engineering [2], evolution [3], genome

annotation [4–6], and multi-species interactions [7–10]. Con-

straint-based metabolic models are developed by integrating

genomic, biochemical, and physiological information for an

organism, in a process that has been recently reviewed [11].

Computational and database efforts facilitate the construction of

such models by automating some of the steps in the development

process; for example, mapping genes to biochemical reactions or

adding/removing reactions based on physiological data [4,5,12–

14].

The variables used in constraint-based models include the fluxes

through transport and metabolic reactions, and model parameters

include reaction stoichiometry, biomass composition, ATP

requirements, and the upper and lower bounds for individual

fluxes. A common misconception is that these metabolic models

rely on detailed kinetic parameters; however, such kinetic

parameters are not required and are generally absent from most

constraint-based models. Because there are often more variables

(i.e., fluxes) than equations, no unique solution exists. The large

number of solutions that satisfy the model’s constraints define the

model’s solution space, which can be queried using a number of

approaches [15]. Most of these constraints-based approaches

utilize optimization to identify a subset of solutions of interest from

within the solution space that are predicted to be physiologically

relevant. For example, flux balance analysis (FBA) is often used to

identify flux distributions that maximize biomass yields [16].

Given the non-uniqueness of constraint-based model solutions,

a growing number of methods have focused recently on

incorporating additional constraints to reduce the solution space

and thereby improve the precision and accuracy of model

predictions. This editorial reviews recent methods that utilize

additional biological information (e.g., gene or protein expression,

metabolite concentrations, and kinetic parameters) to further

restrict metabolic fluxes, many of which are available in a variety

of software packages [17–20]. A brief description of the standard

constraints used in all constraint-based models is first presented,

followed by a survey of how additional constraints have been

included into models that often make use of additional types of

experimental data (Figure 1).

Standard Constraints

All constraint-based models use two types of fundamental

constraints. Steady-state mass-balance constraints ensure that for

each metabolite in the network the net production rate equals the

net consumption rate. Additional inequality constraints are used to

place restrictions or bounds on the values of individual fluxes

based on measured rates (e.g., metabolite uptake/secretion rates)

or reaction reversibility, where irreversible fluxes have a zero lower

bound. Most models to date base reversibility on biochemical

characterization of enzymes or consideration of network properties

(e.g., no free ATP production). In standard models, none of these

constraints limit metabolic fluxes based on metabolite, mRNA, or

protein concentrations; however, a variety of additional constraints

can be included based on thermodynamic, molecular crowding,

gene expression, and regulatory and kinetic considerations.
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Thermodynamic Constraints

Thermodynamic constraints are used to place restrictions on the

directionality of reactions by considering metabolite concentra-

tions and Gibbs energies of formation. From thermodynamics, the

change in Gibbs free energy for a reaction (DG) depends on the

temperature, concentrations of substrates and products, and

change in Gibbs free energies in a reference state (DGO). If a

reaction is to proceed, the change in Gibbs free energy for a

reaction must be negative. A few different approaches for

incorporating these types of thermodynamic-based directionality

constraints have been proposed. One of the first methods,

network-embedded thermodynamic (NET) analysis, uses the

directionality of reactions (based on pre-existing knowledge,

experimental flux measurements, or constraint-based model

results) to calculate DG or metabolite concentration ranges [21].

In NET analysis the reaction directions are determined a priori

and a set of concentrations are found that are consistent with the

thermodynamic constraints. However, analysis of thermodynamic

constraints can also be done to identify reaction directionalities

using specified metabolite concentrations (or concentration rang-

es). The results can then be used to limit the directionality of

reactions in constraint-based models. Given the uncertainty in the

Gibbs free energies of formation and metabolite concentrations,

many reactions can operate in either direction and so probabilities

can be used to assign uni-directional reactions [22]. Another

approach, thermodynamic metabolic flux analysis (TMFA),

directly imbeds the thermodynamic constraints into the models.

TMFA uses integer variables to identify flux distributions that are

consistent with thermodynamic constraints. In TMFA, fluxes and

metabolite concentrations are variables in the models and

constraints ensure that non-zero fluxes and DG values have

opposite signs [23].

Molecular Crowding Constraints

Recent efforts have used spatial constraints to place upper limits

on a sum of fluxes, rather than individual fluxes. Molecular

crowding constraints were first proposed by Beg et al. to restrict

the total amount of enzyme that could be packed into a cell [24].

An upper limit on total enzyme volume was used and the volume

of enzyme needed to sustain a given flux value was based on each

enzyme’s properties (e.g., kinetics and size). This molecular

crowding constraint results in a restriction on the weighted sum

of the fluxes, where the weights (wj) depend on an enzyme’s

volume and activity (less active, larger protein will have higher

weights). Molecular crowding constraints have been used to

predict cellular growth rates and acetate production in Escherichia

coli [24,25], to predict enzyme activities and metabolite concen-

trations in yeast [26], and to explain the Warburg effect of

inefficient glucose catabolism in cancer cells [27]. Zhuang et al.

recently extended this concept to impose limitations on the

Figure 1. Experimental data and numerical constraints. Shown on the left are the different types of experimental data that can be accounted
for in the models using the different types of metabolic flux constraints, shown on the right. Here, v denotes the metabolic fluxes, C denotes the
metabolite concentrations, and k represents different kinetic parameters.
doi:10.1371/journal.pcbi.1002662.g001
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amount of enzymes that could reside in the cell membrane [28],

thus placing restrictions on the weighted sum of fluxes through

reactions that take place at the cell membrane. The authors

investigated how this crowding constraint imposes a trade-off

between glucose transport and respiratory pathways and showed

that it was able to explain acetate production by E. coli under

glucose aerobic conditions.

Gene Expression Constraints

Gene expression is one of the most widely accessible measure-

ments that can provide a global snapshot of a cell’s metabolic state.

A number of studies have compared constraint-based model flux

predictions to expression data, to find consistencies and inconsis-

tencies (e.g., [29–31]). For example, genes associated with

reactions predicted to be essential for growth were found to have

higher expression than those associated with reactions predicted to

be inactive in E. coli [31]. On the other hand, fluxes predicted to

be inactive in Shewanella oneidensis but whose genes were expressed

identified pathways that were reducing biomass yields [29]. In

these cases, the expression data are not used to help predict flux

values, but instead are compared against flux predictions. As an

alternative, a number of computational tools have been developed

to integrate expression data into constraint-based models and

restrict metabolic fluxes directly (Table 1).

Most current methods for incorporating gene expression data

into the models compare gene expression levels in a single

condition and disfavor fluxes through reactions that are associated

with lowly expressed genes. The E-flux method uses gene

expression values to set upper limits on metabolic fluxes, where

reactions associated with more highly expressed genes will be

allowed to take on higher flux values [32]. While E-flux places

hard constraints on fluxes based on expression data, other methods

instead use soft constraints that can be violated. GIMME tries to

minimize the total inconsistency between fluxes and gene

expression, where inconsistency depends on the flux value and

the difference between a gene’s expression value and a chosen

threshold [33]. In this case, GIMME will try and reduce fluxes

through reactions whose associated gene’s expression falls below

the threshold. Another method, developed by Shlomi et al. [34],

tries to encourage flux through reactions whose associated genes

are highly expressed and discourage flux through reactions whose

associated genes are lowly expressed. With this method, high and

low expression thresholds are chosen and used to assign reactions

to high, low, or moderate groups. Using optimization, fluxes are

then favored through reactions belonging in the high group and

disfavored through reactions belonging to the low group.

All of these previous methods typically use expression data from

a single condition to constrain fluxes. A more recent approach

(MADE) uses expression data from multiple conditions (or a time-

series) to identify patterns of increased/decreased expression based

on significant changes in expression across conditions [18]. With

MADE, the measured patterns of expression increases and

decreases are used to find gene on/off patterns in the model

across all conditions, where more significant expression changes

are weighted more heavily. In another study, Moxley et al. used

expression changes between two conditions to predict flux changes

[35]. Using two global parameters they were able to accurately

predict flux changes from gene expression changes using non-

linear functions that account for metabolite-enzyme interaction

densities.

Transcriptional Regulatory Constraints

The methods described above for using gene expression-based

constraints require expression data under the condition(s) of

interest. In other words, to predict flux in a particular condition

the methods would need gene expression data from that condition.

Other methods can instead use models of transcriptional

regulatory networks to predict the effects of transcriptional

regulation on metabolic fluxes. In this case, integrated models of

metabolism and regulation can predict metabolic fluxes under

conditions (e.g., gene knockout mutants) for which gene expression

data are not available. Transcriptional regulatory networks can be

reconstructed from high-throughput data, such as gene expression,

ChIP-chip, and genome sequencing datasets using a variety of

approaches (reviewed in [36–38]). To date, two different types of

approaches have been used to incorporate transcriptional regula-

tory constraints into genome-scale metabolic models. The first set

of approaches used a Boolean (on/off) representation of

transcriptional regulation, where Boolean rules are used to

determine the state of transcription factors (active or inactive)

and metabolic genes (expressed or not expressed). Based on the

expression states of metabolic genes, the reactions in the metabolic

network can (if necessary genes are expressed) or cannot (if

necessary genes are not expressed) carry flux [39]. Analysis of these

Boolean types of models can be done by solving the regulatory and

metabolic models separately in an iterative fashion (rFBA) or

simultaneously (SR-FBA) by introducing integer variables to

represent the transcription factor/gene expression/reaction on/

off states [40–42]. Not all regulation can be captured using a

Boolean approach; for example, essential genes must always be on

even though their expression may be regulated. To overcome this

limitation, another type of approach has recently been used to

formulate regulatory constraints based on a probabilistic regula-

tory model, where a continuous rather than a Boolean flux

constraint is used. Here, the regulatory model predicts the

probability that a given gene is expressed and this probability is

Table 1. Comparison of methods for incorporating gene expression data.

Method Thresholds Description of Solutions

E-Flux None Finds solutions with fluxes whose upper limits are proportional to relative expression
values

GIMME One Finds solutions with low flux through reactions associated with lowly expressed genes

Shlomi 2008 Two Finds solutions with non-zero flux through reactions associated with highly expressed
genes and zero flux through reactions associated with lowly expressed genes

MADE None Finds solutions whose gene’s on/off states most closely match significant changes in
gene expression across multiple conditions

Moxley 2009 None Finds changes in flux values based on changes in gene expression values

doi:10.1371/journal.pcbi.1002662.t001

PLOS Computational Biology | www.ploscompbiol.org 3 August 2012 | Volume 8 | Issue 8 | e1002662



used to weight the upper and lower limits that a metabolic flux can

achieve [43]. The resulting model integrates both the metabolic

and regulatory networks using a method called probabilistic

regulation of metabolism (PROM).

Kinetic Constraints

A variety of approaches have been developed to capture kinetic

limitations in the models. These approaches involve constraining

either the uptake/secretion rates using empirical rate laws that

depend on extracellular concentrations or constraining intracellu-

lar fluxes using enzymatic rate laws that depend on intracellular

and extracellular concentrations. Incorporating constraints on the

uptake or secretion rates of metabolites often requires material

balance equations for the bioreactor environment, in addition to

the standard metabolic constraints for the cells. Empirical rate

laws are found by fitting metabolite uptake/secretion rates to

measured reactor concentrations. These rate laws are then used as

additional constraints in the models. The resulting dynamic FBA

(dFBA) models can then use bioreactor concentrations to constrain

metabolic fluxes, which in turn affect the bioreactor concentra-

tions. Feng et al. recently included rate laws for the uptake and

secretion of organic acids into a genome-scale model for S.

oneidensis to evaluate tradeoffs between maximizing growth and

minimizing enzyme usage in batch culture [44]. Such empirical

constraints have also been used to restrict uptake rates in co-

culture models of environmental and industrial microbes [10,45].

Traditional kinetic models already take into account the kinetic

relationships between metabolic fluxes, metabolite, and protein

concentrations. However, such detailed models are often available

for only a few pathways in well-characterized organisms, such as

E. coli and Saccharomyces cerevisiae, since the kinetic properties of

their enzymes have been biochemically characterized. Databases,

such as BRENDA [46] and SABIO-RK [47], contain an extensive

collection of kinetic parameters assembled from the biochemical

literature, and these in vitro estimates can be used to formulate

kinetic constraints. While kinetic models exist for central

metabolism and other isolated pathways, expanding these models

to a genome scale is an active area of research [48–51]. Yizhak et

al. recently developed an approach called IOMA [52], which uses

kinetic expressions for a subset of enzymes to constrain metabolic

fluxes. By incorporating multi-omics datasets using kinetic

constraints for 11 reactions into an E. coli model, the authors

were able to improve flux predictions in 23 gene deletion strains

[52].

Conclusions

As we continue to be able to measure intracellular levels of

biological components with greater accuracy and precision, the

need for computational approaches to integrate and analyze such

large-scale datasets grows. As reviewed above, a variety of

constraint-based approaches are available that use these types of

datasets to reduce the solution space and improve model

predictions of metabolic phenotypes. Over the coming years,

more computational approaches for integrating individual and

multiple types of experimental measurements will likely appear, as

new biological measurement approaches are developed and more

data becomes available. For example, we are likely to see

integration of datasets into models of microbial communities, as

multi-species models [8,10,53] and datasets become available.

With recent advances in the ability to rapidly build genome-scale

models [12], there will also be a need to design experiments whose

results would best reduce the metabolic solution space. One of the

future challenges is then to prioritize what types of data are

important to measure and for which components. Other related

questions need to be answered as well. How important is it to have

absolute versus relative concentration measurements? What

experimental precision is needed for different types of data? The

answers to all of these questions will depend on both the biological

hypotheses that are being investigated and the desired precision

for predicted fluxes, which specifies how much the solution space

needs to shrink.
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