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Abstract: Surface plasmons at an interface between

dielectric and metal regions can in theory be made arbi-

trarily compact normal to the interface by introducing

extreme anisotropy in thematerial parameters.Wepropose

a metamaterial structure comprising a square array of gold

cylinders and tune the filling factor to achieve the material

parameters we seek. Theory is compared to a simulation

wherein the unit cell dimensions of the metamaterial are

shown to be the limiting factor in the degree of localisation

achieved.

Keywords: metamaterials; surface plasmons; trans-

formation optics.

Surface plasmons exist at an interface between a metal,

εm < 0, and dielectric, εd > 0 [1–3]. If these surface states

have in-plane wave vectors kx, they are confined normal to

the surface by imaginary wave vectors,

kz = +i
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where we assume that the dielectric occupies the space

z > 0, ωsp is the surface plasmon frequency and c0 is the

velocity of light in free space. We have assumed isotropic

media: εd, εm are the permittivities of the dielectric and

metal, respectively. They are in general dependent on fre-

quency. At lower values of kx, the surface plasmon is rather

diffuse in extent, but at large values of k, the surface

plasmon becomes compact and increasingly electrostatic

in nature: kz → ±ikx and is confined to the surface region.

This compact nature results in a high density of states in

the immediate vicinity of the surface, which is exploited in

many applications. In this letter, we show how by

exploiting transformation optics theory, surface plasmons

can in principle be made arbitrarily compact, depending

only on the availability of suitable materials. We propose a

new metamaterial designed to address the latter issue.

Transformation optics [4–7] is a theory that relates

distortions of geometry to redefined values of permittivity

and permeability. For example, in our case, we seek to

compress the surface plasmon normal to the surface. In the

study by Kundtz et al. [7], we learn that if we compress the

wave fields by a factor β (β < 1) so that the new imaginary

wave vectors increase by a factor β−1, in order that the

compressed wave fields continue to obey Maxwell’s

equations, wemust introduce new values of permittivity as

follows,

εd‖ = β−1εd, εm‖ = β−1εm  ,
εdz = βεd, εmz = βεm  ,

(2)

with analogous formulas for the permeability. This formula

solves our problem at a stroke, always provided of course

that we can find suitably anisotropic materials. It is also

possible to expand the surfaceplasmonbychoosing β > 1 [8].

To solve the problem of finding permittivities tunable in

the fashion required, we turn to metamaterials [9–13]. These

are composite materials structured on a scalemuch less than

the relevant wavelengths in the problem, whose properties

owe more to their structure than to their chemical composi-

tion. Tuning the magnetic response is more of a problem

because even metamaterials struggle with magnetism at

optical frequencies. However, here, we appeal to the mainly

electrostatic nature of the surface plasmonat higher values of

kx and show that a high degree of compression can be ach-

ieved by tuning the electrical response alone.

Our target metamaterial structure is shown in Figure 1.

In the first instance, we use a simple approximation to find

the effective medium parameters of our structure, which

we then check against COMSOL simulations. The Maxwell

Garnett theory gives the following formula for the meta-

material parameters [14, 15],

ε∥ = εd
(1 + fm)εm + (1 − fm)εd
(1 + fm)εd + (1 − fm)εm

, εz = fmεm + (1 − fm)εd  ,

(3)

where fm is the metal volume filling fraction of the cylin-

ders. Wemodel themetal with a Drude permittivity and the

dielectric as vacuum,
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εm = 1 −
ω2

p

ω(ω + iγ), ωp = 8.95 eV, γ = 0.329 eV, εd = 1 ,

(4)

with themetal parameters chosen tomodel gold. In the first

instance, we shall neglect losses, γ = 0, but later when

comparing to COMSOL simulations, loss is taken into

account.

Although (3) is an approximation, it can be shown to be

highly accurate [16]. Figure 2 compares aCOMSOL simulation

of transmission and reflection coefficients for the structure

shown in Figure 1, with an effective medium calculation

using the parameters given by the Maxwell Garnet formula.

The challenge is to design twometamaterials eachwith

huge anisotropies, but one pair taking negative values and

the other taking positive values. This will realize our re-

quirements for compression of a surface plasmon at the

interface between the two.

Recognizing that εd, εmhave opposite signs, inspection

of (3) shows that we can make the real part of εz very small

by choice of fm = εd/(εd + |εm|). The imaginary part of εm
will be a limiting factor in how close we can come to our

ideal. Having chosen fm, we can solve for,

ε∥ �
−εd|εm|(εd + |εm|)

2|εd|2 + |εm|εd − |εm|2
 , (5)

where we have recognized that εm < 0. We can arrange that

the denominator takes a very small value by adjusting

|εm|/εd = 2 and hence fm = 1/3. Thus, by exploiting the

Figure 1: A two-dimensional square array of

metallic cylinders much smaller than the

relevant wavelengths, embedded in a

dielectric. In the plane z = 0, there is an

interface between two sets of cylinders.

This is where the interface plasmon forms.

We tune the volume fraction to achieve the

desired properties of an effective medium

shown on the right.

Figure 2: (a) Reflection from and (c) transmission through one unit cell of a nanowiremetamaterial with period 10 nm and filling ratio fm = 1/3,

calculated with effective medium theory (EMT) theory and COMSOL. The incident angle is at 45° to the z-axis, and the electric field has both Ez

and Ex components. The magnetic field has only a Hy component. (b) 1/ε∥ for various −0.6 < α < 0.6, plotted against ω/ωp. (d) εz for

various −0.6 < α < 0.6.
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properties of a plasmonicmaterial, we can achieve our goal

of extreme anisotropy. Furthermore, if we vary fm about the

singular point,

fm = (1 + α)/3 , (6)

we find that for α > 0, we have an extremely anisotropic

metal, and for α < 0, we have an extremely anisotropic

dielectric.

In Figure 2b and d, we plot the Maxwell Garnett

formula for the metallic and dielectric metamaterial

anisotropic permittivities for several values of α. When

α = 0, the curves intersect at zero and a frequency of

ω/ωp = 1/
�
3

√
= 0.5774. Somewhere in the range where the

α > 0 parameters are both negative and the α < 0 parameters

are both positive, we expect to find a surface plasmon.

Next, we present some calculations to demonstrate the

feasibility of our theory.

We also need to recognize that the metamaterial

concept only holds good on length scales greater than the

metamaterial structure, which we take to be 10 nm.

Figure 3 shows dispersion of the surface plasmon

trapped between the metametal and the metadielectric

calculated for an effective medium corresponding to two

media with filling factors defined by ±α. Shown on the

same plot is the light line for the metadielectric. Dispersion

curves to the right of this line represent surface plasmons

trapped at the surface; to the left of this line, dispersion

curves represent waves that are perfectly transmitted

across the interface in the manner of a Brewster condition.

This is a typical behaviour when a surface plasmon

dispersion curve appears to cross the light line. For

example, the α = ±0.1 surface plasmon exists between

0.56268 < ω/ωp < 0.57765. The pure metal-vacuum surface

plasmon is shown for comparison. It disperses much more

rapidly with frequency than the compressed surface plas-

mon and therefore has a much lower density of states. All

dispersion curves are degenerate at ω = ωp/
�
3

√
; increasing

α lowers the frequency at kx = 0 while increasing the

limiting frequency at kx →∞.

Figure 4a shows an interface surface state plotted as a

function of distance from the interface calculated in the

effective medium approximation. Compared to the surface

Figure 3: Dispersion of the surface plasmons for α = 0.1 and α = 0.6

together with dispersion of the pure metal-vacuum surface plasmon

plotted against kx in units of m−1. The dotted lines show the associ-

ated light lines in the dielectric.

Figure 4: (a) Modulus of the magnetic field for the interface plasmon calculated in the effective medium approximation at kx = 2.26 × 107 m−1

compared to a surface plasmon that exists between a pure metal and pure vacuum at the same frequency. (b) The same calculation but now

deploying COMSOL on the metamaterial structure, lattice spacing a = 10 nm. (c) An effective medium calculation of the magnetic field

distribution plotted in the vicinity of the interface. (d) The same calculation but now deploying COMSOL on the metamaterial structure and

plotted in a plane taken through the centre of the cylinders. The surface mode is excited by a surface current along the x-direction at the

interface, which makes the magnetic field discontinuous.
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plasmon existing between a pure metal and pure vacuum,

we can see very large compression by a factor of about 20

when α = ±0.1. Furthermore, as noted in Figure 3, the

density of states is greatly enhanced by the flattened

dispersion of the interface surface plasmon.

So far, we have worked in the effective medium

approximation, but now, we make a more realistic test by

including the microstructure of the metamaterial and the

loss parameter γ = 0.329 eV, which so far, we have taken to

be zero. Loss is also included in the effective medium

calculation in Figure 4. Figure 4b presents a COMSOL

simulation of a metamaterial structure in which the metal

permittivity includes loss as described in (4), and the lattice

period is 10 nm. At the interface, the two sets of cylinders

on either side are coaxial with one other and touch at the

interface. The pure metal/dielectric SPP is unchanged of

course, but we see spreading of the metamaterial interface

plasmon. This is mainly due to the finite dimensions of the

metamaterial unit cell: on length scales <10 nm, the

effective medium approximation breaks down. Neverthe-

less, our model metamaterial still shows substantial

compression of the surface plasmon by about a factor of 7.

In conclusion, we have shown that in theory, interface

surface plasmons can be arbitrarily compressed provided

that the specified anisotropic material parameters can be

realized. We proposed a metamaterial structure based on a

square array of gold cylinders and showed how the design

parameters can be tuned to approach the ideal anisotropic

parameters for the metamaterials on each side of the

interface. In practice, although substantial compression of

the interface surface plasmon can be achieved, the extreme

values predicted by an ideal theory are limited first by the

finite unit cell of the metamaterial, which limits compres-

sion to no less than the unit cell dimensions, and secondly

by metallic losses, which limit the compression of the

density of states and hence also of the local density of

states.
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