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Switzerland
16 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Davos, CH-7260, Switzerland
17 School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, UK
18 Research Centre for Applied Alpine Ecology, Department of Botany, La Trobe University, Bundoora, VIC,

3086, Australia
19 Woods Hole Research Center, Falmouth, MA 02540-1644, USA
20 Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
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Abstract

Recent research using repeat photography, long-term ecological monitoring and

dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra
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ecosystems. Here, we (1) synthesize these findings, (2) present a conceptual framework that

identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and

implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines

of investigation for future research. Satellite observations from around the circumpolar Arctic,

showing increased productivity, measured as changes in ‘greenness’, have coincided with a

general rise in high-latitude air temperatures and have been partly attributed to increases in

shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered

disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or

changes in herbivory intensity are all contributing to observed changes in shrub abundance.

A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter

energy fluxes, regional climate, soil–atmosphere exchange of water, carbon and nutrients, and

ecological interactions between species. In order to project future rates of shrub expansion and

understand the feedbacks to ecosystem and climate processes, future research should

investigate the species or trait-specific responses of shrubs to climate change including: (1) the

temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new

individuals, and (3) the relative influence of the positive and negative feedbacks involved in

shrub expansion.

Keywords: shrubs, vegetation, tundra, Arctic, alpine, climate change, feedbacks, ecosystem

structure, ecosystem function, disturbance

1. Introduction

High-latitude ecosystems have experienced warmer temper-
atures in recent decades, and are projected to continue to
warm in the future [1]. The implications of this warming for
tundra ecosystems are widespread and diverse [2], including
permafrost thaw [3], more frequent tundra fires [4] and
changing tundra vegetation [5]. Climate change is projected
to alter ecosystem boundaries between the various tundra
vegetation communities by increasing the relative abundances
and cover of shrub species (such as birch, willow and alder:
Betula, Salix and Alnus spp. respectively).

Shrubs are woody plants with diverse growth forms
including tall multi-stemmed shrubs (0.4–4.0 m), erect dwarf
shrubs (0.1–0.4 m) and prostrate dwarf shrubs (<0.1 m)
that grow laterally along the ground surface. In this paper
we refer to erect dwarf shrubs and prostrate dwarf shrubs
simply as dwarf shrubs. Shrub species are often the tallest
plants occupying tundra ecosystems upslope or northward
of the treeline ecotone, and can form dense thickets with
closed canopies in suitable habitats. Shrub species differ
in their potential to gain dominance in tundra ecosystems,
and some shrub species have a competitive advantage over
other tundra plants. In warming and fertilization experiments,
woody deciduous shrubs have been reported to increase in
canopy cover and height to dominate treatment plots [6–9].
Certain shrub species such as the dwarf birch Betula nana can
take advantage of more favorable growing conditions, such
as an increase in air temperature and nitrogen availability, by
rapidly elongating ‘short shoots’. These increases in cover and
height potentially restrict the growth of other plant species
by limiting light availability [6, 7, 10, 11]. The formation of
a closed shrub canopy can drastically alter the structure and
function of tundra ecosystems.

Changes to tundra vegetation structure, such as an
increase in tall shrub species, may either mitigate or

exacerbate warming in tundra ecosystems [10]. Shrubs

modify a wide range of ecosystem processes including snow

depth and associated hydrologic dynamics, nutrient exchange

and associated net carbon balance, as well as albedo and

associated energy fluxes. At present there is considerable

uncertainty about the magnitude and direction of these

feedbacks, and it is likely that different processes will drive

feedbacks in opposite directions. However, dramatic changes

to shrub abundance in tundra ecosystems could result in

significant alterations to the global carbon cycle [9], surface

reflectance [12] and tundra disturbance regimes [4]. In this

review, we document current observations of changes in

tundra shrubs, explore ecosystem processes modified by the

shrub increases, and outline research priorities to advance a

more synthetic understanding of the implications of increased

tundra shrub cover.

2. Observations of shrub increase

Increases in shrub biomass, cover and abundance (colloquially

termed shrubification) have been observed in many Arctic,

high-latitude and alpine tundra ecosystems over the past

century (table 1, figure 2) [13], including in northern Alaska

(primarily alder) [14, 15], the western Canadian Arctic

(primarily alder and willow) [16–19, 26], the Canadian High

Arctic (dwarf willow and evergreen shrub species) [20, 21],

northern Quebec (primarily birch) [22] and Arctic Russia

(primarily willow) [23]. Studies in high-latitude mountain and

other alpine ecosystems indicate the upslope advancement

of willow and alder species in Alaska [24], the Yukon

Territory [25], juniper in subarctic Sweden [27] and a variety

of shrub species in the Alps [28–30]. In addition to these

published studies, northern peoples are observing increases in

shrub cover in their traditional lands [31, 32].
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a) b) c)

Figure 1. The three general categories of shrub increase including (a) infilling of existing patches, (b) increase in growth and (c) an
advancing shrubline.

Figure 2. Map of sites at high latitudes where shrub change has been observed (table 1) and some examples of shrub change. (a) Shrubline
advance of Juniperus nana shrubs, with proliferating patches of Salix glauca and Betula nana in the background on a south slope in the
mountains of North Sweden about 900 m above sea level ( c©Hallinger, Abisko, Sweden, July 2008). (b) Trampling of ground cover on
caribou trails allows for establishment of Betula glandulosa seedlings (indicated with red arrows) in Northern Québec ( c©Ropars, Boniface
River, Québec, July 2010). (c) Dieback of Betula nana growing on previously ice-rich palsas with shallow active layers located between wet
graminoid patches. As palsas degrade, Betula nana shrubs are gradually exposed to higher soil moisture and finally drowned in water, while
Eriophorum and Carex species invade the areas. ( c©Schaepman-Strub, Kytalyk, Indigirka lowlands, NE Siberia, July 2010.) (d) Rock
ptarmigan (Lagopus muta) standing in a patch of Betula gladulosa and next to a patch of Salix pulchra. Ptarmigan feed on buds in spring
and are one of the major herbivores on willow species in the western North American Arctic [55]. ( c©Myers-Smith, Pika Valley, Yukon
Territory, May 2007.)

Increases in shrub species can be classified into three

categories involving either a change in clonal growth or seed

recruitment (figure 1). These three categories are: (a) infilling,

an increase in shrub cover through lateral growth of currently

existing shrubs as well as recruitment between existing

patches; (b) increase in growth potential, such as a change

of growth form including an increase in the canopy height of

shrub cover; and (c) an advanced shrubline, or colonization
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Figure 3. Potential feedbacks from increased density and cover of shrubs to ecosystems processes and properties. Red arrows indicate
positive relationships, and blue arrows indicate negative relationships between the two connecting factors; gray arrows indicate as yet
undetermined influences.

of areas beyond the previous range limit. Observations of

all three types of shrub expansion have been reported in the

literature (table 1). The low Arctic transition zone between tall

and dwarf shrub tundra is predicted to respond most rapidly

to warming [26, 33]; however, advances of shrub species

northward into the high Arctic or upslope in mountainous

regions are also projected [5].

The ground-based observations of shrub increase are

supported by trends observed with satellite imagery [23,

34–36]. Multi-decadal records of the normalized difference

vegetation index (NDVI), an indicator of vegetation green-

ness, show a greening of the Arctic tundra at sites in

Alaska, western Canada and Siberia [35–42]. However, the

spatial resolution of continuous long-term satellite records

(i.e. AVHRR, MODIS or Landsat) covering timespans

relevant to climate warming is coarse (250 m–8 km) compared

to the spatial heterogeneity of shrub patches in tundra

ecosystems (1–200 m) [26]. Changes in NDVI observed

using these larger pixel sizes integrate various factors at the

landscape scale, including water bodies and changes in NPP

and biomass of all functional groups [43]. Therefore, low

resolution satellite images can provide indirect evidence of

shrub growth, but only when they are validated with high

resolution imagery and in situ ‘ground-truthed’ observations

as have been conducted at sites in Alaska [15, 44], western

Canada [26] and Siberia [23, 34].

Contemporary shrub expansion parallels past episodes

of Arctic vegetation change. Paleoecological records suggest

that shrub species are well adapted to colonize and/or extend

their presence in tundra ecosystems during periods with

favorable growing conditions. Pollen records indicate that

alder, birch and willow species were more widespread in

circumpolar mid and high Arctic ecosystems during periods

after the last glacial maximum that were warmer and wetter

than the present [13, 45–49]. The onset of relatively cool

conditions may have restricted the reproduction of shrubs,

pushing back the distributions of these species to more

southerly limits or to locally favorable environments. For

example, the dwarf birch Betula glandulosa persists clonally

in late snow melt areas at its northern limit on Baffin Island,

but it is unable to reproduce sexually due to loss of pollen

viability [50]. By contrast, as conditions warm, reproduction

can be greatly enhanced. For example, the number of

locations with Empetrum nigrum ssp hermaphroditum (an

erect dwarf evergreen shrub) is increasing markedly on

Svalbard [51] and range extension of this species is expected

with continued climate warming. Together, evidence of

higher shrub abundance and expanded northern distributions

during warmer periods in the past, combined with current

observations of increases in shrub growth and colonization

(table 1), suggest that if growing conditions continue to

improve, shrubs will become widespread across the Arctic

biome [12].

3. Factors influencing shrub increase

Although growth of tundra plants is limited by temperature

in Arctic and alpine environments [52, 53], many other

factors influence shrub growth (figure 3). Incoming solar

radiation, precipitation, soil moisture, nutrient availability,

CO2 concentrations, disturbances, snow pack and melt timing,

active layer depth, soil temperatures, and growing season

length interact, making it difficult to pinpoint which specific

factors control the growth and recruitment of shrub species at

a given location. Biotic interactions with herbivores [54, 55],

pollinators [56], pathogens [57] or soil mycorrhizae [58], and
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competing tundra plants [59, 60] add even greater complexity.

In the following sections we explore three key drivers of shrub

change in tundra ecosystems: temperature, soil disturbances

and herbivory.

3.1. Temperature

Temperature limits both the reproduction and growth of shrub

species in tundra ecosystems. Growing season temperatures

are increasing in northern North America and northwestern

Russia [12, 61, 62], and, concurrent with this, the conditions

for recruitment and growth of shrub species are also likely

changing. Observations of low pollen or seed viability in

populations of alder (Alnus viridis subsp. fruticosa), dwarf

birch (Betula glandulosa) and willows (Salix spp.) near

their range limits suggest that temperature limitation of

reproduction may determine the northern extent of many

shrubs in the low Arctic [16, 50, 63]. Studies of age

distributions of shrub species in tundra ecosystems indicate

that recruitment has increased in recent years at sites in the

western North American and European Arctic [16, 25, 27, 64].

However, there are currently few studies that link warming

and new recruitment to shrub increase in tundra ecosystems.

Several recent studies have documented significant

positive correlations between ring widths or shoot lengths and

early and mid growing season temperatures for some of the

most common tall [23, 25, 27, 34, 65] and dwarf [66–70]

shrub species found in tundra ecosystems. In some studies,

winter temperatures and snow have been found to correlate

with growth in the following summer [27, 71–73]. Snow

melt timing determines the length of the growing season and

the snowpack provides protection from frost damage during

the winter and spring [74–76]. These analyses suggest that

warmer conditions are likely to promote shrub growth either

directly by altering physiological processes or indirectly by

enhancing soil microbial activities that supply nutrients for

shrub uptake, as long as other factors are not limiting [77].

Also, increased summer temperatures are often accompanied

by greater summer moisture deficits, which could offset

the expected growth increase created by higher summer

temperature alone, as has been observed in boreal trees [78].

3.2. Soil disturbance

Tundra disturbances caused by fire, permafrost degradation,

stream channels, animal burrowing or trampling, or human

activities create and maintain microsites where tall shrubs

can establish and remain dominant for decades to centuries.

Recent evidence indicates that many of these disturbances,

such as fire [4, 79] and permafrost degradation [3, 80–84], are

increasing in high-latitude ecosystems. Increased abundance

and growth of tall shrubs on thaw slumps [17], drained lake

basins [85], pingos [18], tundra fires [16], vehicle tracks [86]

and drilling mud sumps [87] suggest that increases in

natural and anthropogenic disturbance could be contributing

to increased shrub abundance and distribution.

In the low Arctic, disturbances that expose mineral soils

and deepen active layers show rapid changes in functional

group abundance, and after several decades are typically

dominated by tall shrubs [16, 17, 87, 88]. In the short-term,

landscape and soil disturbances are likely to stimulate

more rapid recruitment than warming alone [16, 17]. The

rate of shrub expansion on recently burned tundra sites is

twice as fast as on comparable undisturbed surfaces (Lantz

et al unpubl. data). Caribou and other animal species can

create disturbances by trampling ground cover [89], creating

trails that erode soils resulting in either damaged biomass

and reduced shrub cover or the provision of sites for the

recruitment of shrub seedlings [90]. Soil disturbances could

also be a precondition for shrubs to take advantage of

improved climate conditions and increase in abundance across

the landscape. In contrast, in some ecosystems, landscape

disturbances can also reduce shrub abundance. Decreases in

shrub cover were observed in northwestern Arctic Russia

where willows failed to regenerate in vehicle tracks two

decades after the initial disturbance, due to the development

of a graminoid-dominated sward [91]. Landscape-scale fires

have set back potential shrub increase in Australian alpine

areas for 5–20 yr, except in burn scars where species are

able to re-sprout [92]. In addition, permafrost degradation of

ice-rich palsas in northeast Siberia has resulted in dieback

of large Betula nana patches and a conversion to graminoid

cover (figure 2). Thus, future disturbances and recovery after

disturbance in tundra ecosystems could lead to both increases

and decreases in shrub abundance.

3.3. Herbivory

Herbivores can reduce the survival of shrubs and limit

or reduce shrub patch expansion, as shown by enclosure

and exclosure experiments [54, 93]. Animals such as

sheep, reindeer, muskoxen, lemmings, ptarmigan, moose and

hares have been shown to decrease tundra tree and shrub

abundance and canopy structure in Scandinavia, Greenland

and Alaska [54, 55, 93–96]. However, current knowledge of

the influence of different herbivores on seedling recruitment

is limited, and little is known about the influence of insect

herbivory and seed predation.

The influence of herbivory on shrub abundance in tundra

ecosystems will depend on the size and density of the

herbivore populations, intensity of grazing, palatability of the

shrub species, and plant and herbivore phenologies [95]. Wild

herbivores can migrate over large areas and exhibit cyclic

population dynamics; therefore the influence of herbivory on

shrub populations will likely change over time and space [5].

Shrub abundance has been reduced by mammalian herbivores

in low Arctic Greenland [93] and Norway [96], while no

evidence of reduction in shrub expansion by mammalian

herbivores was found on the Arctic coast of the Yukon [19].

In tundra ecosystems, the dominant herbivores can be

either wild or domesticated. In Fennoscandia and Siberia, land

use is dominated by extensive grazing by reindeer and sheep,

and this has strongly influenced the abundance of woody

species in tundra environments [23, 54, 96, 97]. In northern

Scandinavia, herbivory by sheep or reindeer is thought to be

the primary factor determining the elevational position of the

treeline ecotone [94, 95, 98], and declined use of pastures has

7
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Table 2. Observed impacts of shrub canopies on tundra ecosystem function.

Ecosystem function Influence of canopy observed References

Energy exchanges Higher sensible heat fluxes during melt, and reduced
sublimation in winter, from tall shrub canopies

[102, 109]

Reflectance Lower albedo over shrub tundra [12, 102–106, 110], Ménard et al unpubl. data
Snow melt Faster snow melt in areas with shrub canopies extending

above the snowpack
[12, 102–104]

Soil temperature
dynamics

Snow trapping and soil warming in winter, shading and soil
cooling in summer under shrub canopies relative to tundra
plots

[25, 102, 107, 110, 120], Lévesque unpubl. data

Nitrogen cycling Greater N availability or faster N-cycling in tall shrub versus
low shrub tundra plots

[114, 119, 142]

No difference in NO3 and NH4 availability during summer
between shrub and tundra plots

[25]

No influence of shrub canopies and snow on winter
N-mineralization rates, greater summer N-mineralization
from soils under a high shrub canopy and with snow addition
differences in SOM quality can drive larger differences in net
N-mineralization than changes in soil microclimate

[120]

Carbon storage Greater carbon storage in shrub versus tundra plots [9, 25, 143]
Carbon flux No difference in CO2 soil respiration between shrub and

tundra plots
[25]

Decomposition More recalcitrant litter from shrub species than other tundra
plants

[113]

Greater decomposition rates in tall shrub versus low shrub
tundra plots

[143]

Little difference in decomposition rates between shrub and
tundra plots

[25]

Biodiversity Lower biomass and diversity of species under shrub canopies [122], Myers-Smith and Hik unpubl. data

resulted in increases in shrubs in the Alps [28]. Herbivores

can also influence seed production and seedbed size [89, 99],

transport seeds [100] and fertilize soils, which can in turn alter

recruitment, dispersal, growth and potential rates of shrub

increase.

4. Feedbacks and impacts of shrub increase

Interactions among shrubs, microclimate, litter inputs, carbon

storage, nutrient cycling, organic matter decomposition,

surface reflectance, erosion, ground temperatures, thaw

depth and disturbance have been hypothesized to result in

positive and negative feedbacks to further shrub expansion

(figure 3, table 2) [12]. In the following sections, we explore

feedback mechanisms involving shrubs and albedo, snow

cover, soil temperatures, thaw depth, nutrient availability and

biodiversity.

4.1. Surface energy exchange and soil temperatures

Tundra shrubs can significantly influence the exchange of en-

ergy among the atmosphere, vegetation and soils [101–103].

With an increasing canopy height and density, a higher

fraction of the incoming shortwave radiation is absorbed

by the canopy and less is reflected to the atmosphere and,

therefore, albedo decreases [12, 104–106]. Lower spring

and summer albedo has been observed over shrub versus

shrub-free tundra in Arctic Alaska [12, 105], alpine areas

of the Yukon Territory [102], upland tundra north of Inuvik,

NWT (Lantz et al unpubl. data) and across the tundra

biome [105]. Shrub expansion can therefore significantly alter

the interaction of the atmosphere with vegetation, soil and

permafrost through changes in energy fluxes.

Shrub canopies and snow cover interact to influence

soil and permafrost temperatures. Tundra shrubs can

significantly modify the accumulation, timing and physical

characteristics of snow, thereby influencing the exchanges

of energy and moisture between terrestrial ecosystems and

the atmosphere [101–103]. In winter, snow cover protects

plant buds and tissue from the effects of extreme cold [74,

75]. Shrubs trap snow, leading to localized increases in

snowpack, and also reducing the thermal conductivity of the

snowpack by preventing the formation of highly conductive

wind-compacted snow layers [110]. As a consequence,

winter soil temperatures can be up to 30 ◦C warmer than

air temperatures under shrub canopies [108], whereas soil

temperatures may be almost equal to air temperatures in

adjacent shrub-free sites [25]. The effect of tall shrubs

on snow trapping and albedo can also be moderated by

shrubs bending and being buried in the snowpack under

the weight of snow [102–104]. In spring, snow melt is first

accelerated as a result of the lowered albedo around shrub

branches that protrude above the snowpack, but subsequent

shading by shrub canopies may promote longer duration snow

patches [103, 107, 109]. In summer, shading under shrub

canopies decreases soil temperatures [103] and active layer

depths [107]. Removal of the Betula nana shrub canopy in

experimental plots in Siberia resulted in greater active layer

depths due the loss of soil shading, despite the increase

in surface albedo accompanying shrub removal [107]. Near

surface soil temperatures under shrub canopies were found

8
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to be ∼2 ◦C cooler in summer and ∼5 ◦C warmer in winter

in an experimental canopy manipulation conducted in alpine

tundra of the Kluane Region [25]. The results of these studies

suggest that both the summer soil cooling effect of shading

and the winter soil warming effect of snow trapping must be

considered to determine the year-round effect of changes in

shrub cover on soil temperatures and permafrost conditions.

4.2. Nutrient cycling

Interactions between the abiotic and biotic influences of

shrub canopies can alter tundra nutrient cycling. Fertilization

experiments show that vascular plant productivity is nutrient

limited in tundra ecosystems, as demonstrated by an

increase in shrub biomass after nitrogen and phosphorus

fertilization [6, 9, 111, 112]. Increases in canopy cover

and height of shrub species can increase litter inputs to

soils [113], nitrogen mineralization rates [114] and the amount

of carbon stored in above and below ground biomass [9].

Although deciduous shrub species produce more litter than

other tundra species, this litter is relatively recalcitrant; thus,

increases in shrubs could reduce overall decomposition rates

in tundra soils [113]. In winter, snow trapped by shrub

canopies insulates soils and has been hypothesized to increase

decomposition and nutrient release [108]. Experimental

manipulations demonstrate that greater snow depth and

warmer winter soils under shrub canopies can increase litter

decomposition [115] and nitrogen cycling [114, 116–119].

Recent work at Toolik Lake, Alaska showed a positive effect

of winter snow addition on summer, but not winter, nitrogen

mineralization rates [120]; however, there have not been

experimental tests of the influence of summer canopy shading

on nutrient cycling and decomposition rates. Carbon dioxide

and methane fluxes are likely also altered by shrub canopies.

Differences in growing season carbon dioxide effluxes were

not explained by the presence of a half-meter-tall willow

canopy in alpine tundra in the Kluane region, Yukon

Territory [25]. However, increased evapotranspiration from

greater shrub biomass could dry soils, and has been suggested

to reduce methane emissions and increase carbon dioxide

fluxes in areas with expanding shrub cover [121]. This same

mechanism of soil drying from increased evapotranspiration

when combined with the greater fuel load in shrub tundra

could result in increased frequency and intensity of tundra

fires with increases in shrubs [48].

4.3. Biodiversity and ecosystem services

Increases in shrub abundance could have negative effects on

tundra species richness, through the loss of shade-intolerant

species under shrub canopies [122]. At tundra sites in

northwestern Fennoscandia and the Yamal Peninsula in

Russia, the species richness of vegetation declined with

increasing shrub height and cover [122]. The richness of

herbaceous species decreased significantly over 20 yr with

increasing dwarf shrub cover on an Arctic mountainside in

northern Sweden [123]. Fewer species and lower biomass

of tundra plants, excluding tall shrub canopies, were found

in shrub versus adjacent shrub-free plots in alpine tundra of

the Kluane Region in the Yukon Territory [25]. The loss of

particular species or functional groups may have implications

for tundra food webs and ecosystem services. Lichens have

been shown to decline with increases in shrub cover [8,

124, 125]. As important forage species, lichen decline could

negatively impact caribou and reindeer populations, and thus

influence hunting or herding activities. Increased shrub cover

could also reduce moss biomass, which is an important

soil insulator. Thus, the loss of the moss layer may alter

soil temperatures, active layer depths, and rates of soil

decomposition [126]. Willows are an important forage species

for caribou, moose, ptarmigan and other wildlife species [55,

127, 128], and either increases or decreases in willow cover

may influence the populations of these species. In addition

to the potential impacts on biodiversity, ecosystem function

and wildlife, altered vegetation structure in tundra ecosystems

might influence human access to traditional travel routes,

berry harvesting, reindeer herding or hunting of wildlife

species.

5. Future research needs

Our analysis of the literature indicates that the following

questions must be addressed in order to determine future

patterns and impacts of shrub encroachment on tundra

ecosystems.

5.1. How will shrub species vary in response to climate and
environmental change in tundra ecosystems?

Our review highlights the growing number of observations

of shrub increase around the circumpolar Arctic and in

high-latitude and alpine tundra ecosystems (figure 2 and

table 1); however, the differences in species specific responses

to warming have yet to be adequately quantified within

and between sites. The International Tundra Experiment

(ITEX) tested the response of tundra plots to warming

across the Arctic [129, 130]; however, warming experiments

with larger plots encompassing larger statured shrub species

have only been conducted at a few locations [9, 111, 131].

Understanding the key differences among shrub species

responses to climate warming could improve predictions of

vegetation change across the Arctic. Birch has been the

focus of many experimental field studies [6, 50, 58, 107],

but the potential responses of willow, alder and other shrub

species to changes in environmental conditions are less well

characterized. Furthermore, a whole host of species-level

interactions may determine future shrub distributions, with,

for example, caribou preferentially browsing willow over

birch or alder, birch roots forming an association with

an ectomycorrhizal fungal partner, or alder forming a

symbiosis with nitrogen-fixing bacteria. Species-level studies

are urgently required to evaluate and interpret current patterns

of shrub change, as well as to predict future change.
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5.2. To what extent is the potential expansion of shrubs
across Arctic landscapes constrained by landscape position?

Many of the observations of increasing shrubs are from

discrete locations, and variation in rate of shrub change

is seldom quantified across the landscape (figure 2 and

table 1). Studies that have conducted landscape-level analyses

of shrub change find both increasing and more stable patches

sometimes located in close proximity [15, 132]. Tall shrubs

generally occur in patches across the tundra landscape where

conditions favor enhanced nutrient cycling and productivity,

such as areas of preferential water flow, or areas where snow

accumulates and protects the shoots from winter damage [15].

Topography therefore is likely to be an important constraint on

the potential for increased shrub growth and expansion as the

climate warms. Thus, landscape-scale studies are required to

parameterize realistic models of shrub proliferation and close

examination of the current patterns of shrub expansion for

key species in relation to local hydrology and wind protection

are needed. New applications of remote sensing to measure

shrub distributions and changes in shrub cover and associated

ecosystem processes in greater detail over large areas will

facilitate these avenues of research.

5.3. What controls the recruitment of new individuals that
will lead to range expansion of shrub species?

Much of the current research on shrub expansion focuses on

the factors that control shrub growth (figure 2 and table 1), and

only a few studies have addressed changes in recruitment of

shrub species [16, 17, 99]. Since shifts in abundance and range

expansions will be mediated primarily by the establishment of

new individuals, future research should focus on the factors

controlling pollination, germination, recruitment and survival.

The interactions between warming, disturbance and increased

recruitment of shrub species should also be further explored so

that we can better project future shrub increase. Seed viability

experiments, demographic studies of shrub populations and

experimental studies of seedling establishment would all

contribute to our understanding of shrub recruitment in tundra

ecosystems.

5.4. Can shrubs growing at the latitudinal or elevational
range edge form more dominant and tall canopies if growing
conditions improve?

A growing number of studies have identified increases in

shrub cover at low Arctic sites, but few have investigated

change at the range edge of shrub species (figure 2

and table 1). Many tundra shrub species have very large

geographic ranges, and at higher latitudes these species have

a more diminutive growth form with lower canopy heights

and reduced ground cover [26]. Little is known about whether

individuals growing at the range edge have the ability to

form larger more dominant canopies if growing conditions

improve. The current size and growth form of northern or

high-elevation populations of tall shrub species may represent

genetically-based local adaptation to extremely harsh growing

conditions. The ITEX experiments [129, 130] examined

phenological variation in rates of plant growth between

warmed and control plots. Common garden experiments or

reciprocal transplants [133, 134] have tested how individuals

from different sites at different latitudes grow under the

same conditions. However, further work exploring phenotypic

plasticity, local adaptation and latitudinal clines in size and

fecundity should be conducted to improve our understanding

of future shrub change at the range edge of tundra shrub

species.

5.5. What is the balance between summer and winter
feedbacks to shrub encroachment?

Feedbacks of shrub expansion to abiotic processes remain

poorly understood (figure 3). Several studies have proposed

hypotheses and experimentally tested ecosystem impacts

of increasing shrub cover (table 2); however, studies that

integrate processes across the entire year have yet to

be conducted. Winter biological processes were initially

hypothesized to create positive feedbacks to future shrub

encroachment [108, 109]; however, recent studies have also

highlighted the importance of the summer season [25, 107].

Further observational and experimental work is required to

answer questions, such as what the overall effect is of shrubs

on soil nutrient availability, integrating the influence of soil

temperatures in the summer, winter and shoulder seasons.

5.6. How do feedbacks to shrub encroachment vary across
different densities and canopy heights of shrub cover?

The influence of shrub canopies on ground shading, snow

depth, soil temperatures and biological processes varies

with the cover, height, density and structure of the shrub

canopy [135, 136], but additional research is required

to characterize the nature of these linear or non-linear

relationships. For example, we do not yet know whether shrub

expansion is accelerated by positive feedbacks involving

snow cover and thickness, surface albedo and atmospheric

heating. Nor do we know whether the strength of these

potential feedbacks varies with shrub density, cover and

canopy height. Future investigations using canopy removals,

artificial canopies and other experimental techniques across

variation in shrub cover, density and canopy heights will

improve our understanding of the relative balance of positive

and negative feedbacks to shrub encroachment.

6. Conclusions

Our review highlights the growing number of observations

of increases in shrub species in tundra ecosystems at sites

around the circumpolar Arctic, high-latitude and alpine areas.

These changes are likely to cause significant modifications to

the structure and functioning of tundra ecosystems. Recent

research highlights that: (1) growth in shrub species is

often strongly correlated with growing season temperatures;

(2) disturbances such as fire and permafrost thaw can enhance

shrub expansion; (3) herbivory can control shrub canopy

architecture and limit expansion rates; (4) shrub canopies can

10
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alter surface albedo and increase atmospheric heating; and

(5) shrub canopies can trap snow and insulate soils in the

winter, yet shade soils and maintain shallower active layer

depths during the summer. There is growing recognition that

increasing rates of shrub encroachment in tundra ecosystems

will be determined by large-scale factors such as atmospheric

heating, regional factors such as altered disturbance regimes

or herbivore populations and site specific factors such as soil

moisture conditions or snow insulation. The prediction of

future shrub patterns in the tundra biome requires continued

monitoring of changes in shrub abundance and research to

identify key drivers of this change. Much of the current

evidence for increasing shrub cover comes from low Arctic

sites in the western North American Arctic, Subarctic

Scandinavia and the eastern European Arctic (figure 2).

Further research on the patterns of shrub increase and the

impacts on ecosystem function at sites across the Arctic biome

will improve circumpolar projections of shrub abundance in

tundra ecosystems and their role in land–surface feedbacks to

climate change.
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Vegetation change in southeast Greenland? Tasiilaq
revisited after 40 years Appl. Veg Sci. 14 230–41

[139] Hallinger M and Wilmking M 2011 No change without a
cause—why climate change remains the most plausible
reason for shrub growth dynamics in Scandinavia New

Phytol. 189 902–8

14

http://dx.doi.org/10.1046/j.1354-1013.2001.00416.x
http://dx.doi.org/10.1046/j.1354-1013.2001.00416.x
http://dx.doi.org/10.1002/hyp.6124
http://dx.doi.org/10.1002/hyp.6124
http://dx.doi.org/10.1002/hyp.7786
http://dx.doi.org/10.1002/hyp.7786
http://dx.doi.org/10.1029/2005JG000013
http://dx.doi.org/10.1029/2005JG000013
http://dx.doi.org/10.1088/1748-9326/6/2/024014
http://dx.doi.org/10.1088/1748-9326/6/2/024014
http://dx.doi.org/10.1088/1748-9326/6/3/035502
http://dx.doi.org/10.1088/1748-9326/6/3/035502
http://dx.doi.org/10.1111/j.1365-2486.2009.02110.x
http://dx.doi.org/10.1111/j.1365-2486.2009.02110.x
http://dx.doi.org/10.1175/1520-0442(2001)014%3C0336:SSIIAT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2001)014%3C0336:SSIIAT%3E2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2005)055%5B0017:WBPCHC%5D2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2005)055%5B0017:WBPCHC%5D2.0.CO;2
http://dx.doi.org/10.5194/hess-14-1331-2010
http://dx.doi.org/10.5194/hess-14-1331-2010
http://dx.doi.org/10.2307/1937432
http://dx.doi.org/10.2307/1937432
http://dx.doi.org/10.1046/j.0269-8463.2001.00596.x
http://dx.doi.org/10.1046/j.0269-8463.2001.00596.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01051.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01051.x
http://dx.doi.org/10.1007/s11104-009-0214-8
http://dx.doi.org/10.1007/s11104-009-0214-8
http://dx.doi.org/10.1007/s11104-009-0119-6
http://dx.doi.org/10.1007/s11104-009-0119-6
http://dx.doi.org/10.1007/s10533-010-9426-5
http://dx.doi.org/10.1007/s10533-010-9426-5
http://dx.doi.org/10.1016/j.apsoil.2007.12.010
http://dx.doi.org/10.1016/j.apsoil.2007.12.010
http://dx.doi.org/10.1007/s10021-007-9033-z
http://dx.doi.org/10.1007/s10021-007-9033-z
http://dx.doi.org/10.1016/j.soilbio.2003.09.008
http://dx.doi.org/10.1016/j.soilbio.2003.09.008
http://dx.doi.org/10.1007/s10021-011-9447-5
http://dx.doi.org/10.1007/s10021-011-9447-5
http://dx.doi.org/10.1111/j.1365-2486.2009.01962.x
http://dx.doi.org/10.1111/j.1365-2486.2009.01962.x
http://dx.doi.org/10.1111/j.1654-1103.2011.01285.x
http://dx.doi.org/10.1111/j.1654-1103.2011.01285.x
http://dx.doi.org/10.1111/j.1365-2486.2009.01896.x
http://dx.doi.org/10.1111/j.1365-2486.2009.01896.x
http://dx.doi.org/10.1111/j.1751-8369.2009.00113.x
http://dx.doi.org/10.1111/j.1751-8369.2009.00113.x
http://dx.doi.org/10.1111/j.1365-2745.2001.00625.x
http://dx.doi.org/10.1111/j.1365-2745.2001.00625.x
http://dx.doi.org/10.1007/s10021-011-9463-5
http://dx.doi.org/10.1007/s10021-011-9463-5
http://dx.doi.org/10.1016/j.baae.2007.03.005
http://dx.doi.org/10.1016/j.baae.2007.03.005
http://dx.doi.org/10.1073/pnas.0503198103
http://dx.doi.org/10.1073/pnas.0503198103
http://dx.doi.org/10.1111/j.1365-2486.2003.00719.x
http://dx.doi.org/10.1111/j.1365-2486.2003.00719.x
http://dx.doi.org/10.1890/03-4027
http://dx.doi.org/10.1890/03-4027
http://dx.doi.org/10.1016/j.tree.2009.06.007
http://dx.doi.org/10.1016/j.tree.2009.06.007
http://dx.doi.org/10.1111/j.1365-2486.2006.01184.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01184.x
http://dx.doi.org/10.1111/j.1469-8137.2010.03624.x
http://dx.doi.org/10.1111/j.1469-8137.2010.03624.x


Environ. Res. Lett. 6 (2011) 045509 I H Myers-Smith et al

[140] McDougall K L 2003 Aerial photographic interpretation of
vegetation changes on the Bogong High Plains Victoria
between 1936 and 1980 Aust. J. Bot. 51 251–6

[141] Scherrer P and Pickering C 2005 Recovery of alpine
vegetation from grazing and drought: data from long-term
photoquadrats in Kosciuszko National Park, Australia
Arct. Antarct. Alp. Res. 37 574–84

[142] Chu H and Grogan P 2010 Soil microbial biomass, nutrient
availability and nitrogen mineralization potential among

vegetation-types in a low arctic tundra landscape Plant
Soil 329 411–20

[143] Vankoughnett M 2009 Shrub expansion in the low arctic: the
influence of snow and vegetation feedbacks on nitrogen
cycling MSc thesis Queen’s University Kingston, ON,
Canada

[144] Ropars P and Boudreau S 2011 Shrub expansion at the forest
tundra ecotone: spatial heterogeneity linked to local
topography Environ. Res. Lett. at press

15

http://dx.doi.org/10.1071/BT02079
http://dx.doi.org/10.1071/BT02079
http://dx.doi.org/10.1657/1523-0430(2005)037%5B0574:ROAVFG%5D2.0.CO;2
http://dx.doi.org/10.1657/1523-0430(2005)037%5B0574:ROAVFG%5D2.0.CO;2
http://dx.doi.org/10.1007/s11104-009-0167-y
http://dx.doi.org/10.1007/s11104-009-0167-y

	Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities
	Introduction
	Observations of shrub increase
	Factors influencing shrub increase
	Temperature
	Soil disturbance
	Herbivory

	Feedbacks and impacts of shrub increase
	Surface energy exchange and soil temperatures
	Nutrient cycling
	Biodiversity and ecosystem services

	Future research needs
	How will shrub species vary in response to climate and environmental change in tundra ecosystems?
	To what extent is the potential expansion of shrubs across Arctic landscapes constrained by landscape position?
	What controls the recruitment of new individuals that will lead to range expansion of shrub species?
	Can shrubs growing at the latitudinal or elevational range edge form more dominant and tall canopies if growing conditions improve?
	What is the balance between summer and winter feedbacks to shrub encroachment?
	How do feedbacks to shrub encroachment vary across different densities and canopy heights of shrub cover?

	Conclusions
	Acknowledgments
	References


