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Shrunken Locally Linear Embedding for Passive

Microwave Retrieval of Precipitation
Ardeshir M. Ebtehaj, Rafael L. Bras, and Efi Foufoula-Georgiou

Abstract—This paper introduces a new Bayesian approach to
the inverse problem of passive microwave rainfall retrieval. The
proposed methodology [called the shrunken locally linear em-
bedding algorithm for retrieval of precipitation (ShARP)] relies
on a regularization technique and makes use of two joint dictio-
naries of coincident rainfall profiles and their corresponding up-
welling spectral radiative fluxes. A sequential detection–estimation
strategy is adopted, which basically assumes that similar rain-
fall intensity values and their spectral radiances live close to
some sufficiently smooth manifolds with analogous local geometry.
The detection step employs a nearest neighbor classification rule,
whereas the estimation scheme is equipped with a constrained
shrinkage estimator to ensure the stability of retrieval and some
physical consistency. The algorithm is examined using coincident
observations of the active precipitation radar and the passive mi-
crowave imager onboard the TRMM satellite. We present promis-
ing results of instantaneous rainfall retrieval for some tropical
storms and mesoscale convective systems over ocean, land, and
coastal zones. We provide evidence that the algorithm is capa-
ble of properly capturing different storm morphologies including
high-intensity rain cells and trailing light rainfall, particularly
over land and coastal areas. The algorithm is also validated at an
annual scale for calendar year 2013 versus the standard (version 7)
radar (2A25) and radiometer (2A12) rainfall products of the
TRMM satellite.

Index Terms—Data processing, inverse problem, radar, radiom-
etry, rainfall passive retrieval, regularization.

I. INTRODUCTION

IN THE mathematical sense, rainfall retrieval from remotely

sensed observations is an inverse problem in which we

aim to estimate the rainfall intensity from its indirect and

noisy measurements. The passive retrieval of rainfall from

upwelling spectral radiances is one of the most challenging
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atmospheric retrieval problems chiefly because rainfall spectral

signatures are often undersampled, significantly corrupted with

the background radiation, and are nonlinearly related to the

rainfall vertical profile. The retrieval of rainfall from visible and

infrared observations typically relies on empirical approaches

as the measurements only respond to the radiative fluxes from

the upper portion of the cloud layers (e.g., see [1]–[8]). In mi-

crowave wavelengths (∼6–200 GHz), the hydrometeor vertical

profile alters the upwelling radiation in the entire atmospheric

column through absorption–emission and scattering processes.

Over ocean, the absorption–emission of the atmospheric liquid

water can be well distinguished from the cold background by

the physical laws of radiative transfer [9], [10]. In addition,

the attenuation of the polarized ocean surface emission by

atmospheric hydrometeors (see [11]–[14] and the references

therein) and scattering by ice particles [10], [15] give rise to

a high signal-to-noise ratio in the rainfall spectral signatures,

making the retrieval problem more straightforward over ocean

than over land. Over land, the radiation from highly emissive

heterogeneous land surfaces often masks the hydrometeor emis-

sion signal, forcing the retrieval approaches to mostly rely on

the complex scattering effects of the ice particles in the raining

clouds [16]–[18]. As a result of these major differences over

ocean and land, two classes of physically based and empirical

microwave retrieval algorithms have emerged. The empirical

approaches have been predominantly used for retrieval over

land, whereas the physically based methods have been used

over ocean.

Over ocean, the physically based methods typically fol-

low two distinct strategies. The first family of these algo-

rithms [9] simplifies the basic radiative transfer equation for

atmospheric constituents under axially symmetric scattering

and the Rayleigh–Jeans approximation. Given the observed

spectral radiative fluxes with minimal scattering effect, the

simplified equations make it possible to obtain atmospheric

absorptivity, the drop-size distribution, and, thus, the rainfall

intensity profile. The second class of methodologies (e.g., see

[12] and [19]–[25]), which is known as the Bayesian retrieval

approaches, exploits a statistically representative a priori gener-

ated database that encodes the correspondence between spectral

brightness temperatures and rainfall profiles. In physically gen-

erated databases, the causal relationships between the precipita-

tion profiles and their upwelling spectral radiances are modeled

using a combination of cloud resolving and radiative transfer

models. Sophisticated numerical cloud resolving models (e.g.,

the Goddard Cumulus Ensemble model) are used to produce a

large collection of raining and nonraining cloud structures with

distinct hydrometeor profiles. Then, for all of these profiles, a
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radiative transfer model is employed to obtain their spectral

radiances at the top of the atmosphere. Finally, this database

is utilized to retrieve rainfall profiles from observed microwave

radiances using an inversion scheme. This approach has been

the cornerstone of the Goddard Profiling Algorithm (GPROF)

[23]–[25] used to produce the TRMM operational passive re-

trieval products. On the other hand, over land, empirical meth-

ods typically rely on a scattering index [26], [27], which relates

the depression in the high-frequency channels (e.g., 85 GHz)

to the surface rainfall, in response to the frozen hydrometeors

commonly found in the raining clouds. The magnitude of the

high-frequency depression is naturally not independent of the

land surface emissivity. As a result, prior to the rainfall estima-

tion, different screening approaches are commonly employed

to properly exclude depressions caused by the background

noise (e.g., snow and desert surfaces). Among these, the early

version of the GPROF [23], [24] suggests static thresholding

(22–85 GHz > 8 K) to detect the raining signatures of the

spectral brightness temperatures measured by the TRMM mi-

crowave imager (TMI). A more involved scattering index has

been also suggested in [28] and [29], which has been partly used

to develop the launch version of the land retrieval algorithm for

the Advanced Microwave Scanning Radiometer–Earth Observ-

ing System (AMSR-E) [18].

Since the successful launch of the TRMM satellite, a major

body of research has been also devoted to developing rainfall

retrieval algorithms by exploiting the coincident observations

provided by the TMI and the TRMM precipitation radar (PR)

(e.g., see [30]–[36]). The basic idea has been focused on

combining, in an optimal sense, the information content of

both sensors for obtaining improved estimates of the rainfall

profile and, perhaps, the microphysical properties of the atmo-

spheric constituents. Typically, these methods use a variational

cost function to reconcile the observations provided by both

instruments [33]–[36]. Recently, Kummerow et al. [25] have

combined the PR data with the physically driven database of

the GPROF algorithm to make the database more observation-

ally consistent. Using coincident TMI and PR observations

and principal component analysis (PCA), a low-dimensional

approximation method is introduced in [14] and [37], which

is known as the University of Wisconsin algorithm. This al-

gorithm suggests a PCA-based approach to project the nine

TMI channels onto three pseudochannels for filtering the back-

ground noise and reducing redundancies in the TMI channels.

These pseudochannels are then used within a matching process

to efficiently retrieve surface rain rates using a compactly

designed a priori database in a Bayesian context.

Passive rainfall retrieval remains a challenge particularly for:

1) the detection and estimation of light rainfall over land and

adjacent to coastlines; 2) the unbiased estimation of rainfall

over highly emissive and nonhomogeneous land surfaces; and

3) the probabilistic recovery of the small-scale features of

rainfall extremes both over land and ocean (see [14] and [38]

and the references therein). In this paper, motivated by these

continuous challenges, we introduce a new Bayesian retrieval

algorithm, which is called the shrunken locally linear embed-

ding algorithm for retrieval of precipitation (ShARP). This

retrieval algorithm is guided by a priori collections of spectral

radiances and their corresponding rainfall profiles, which are

the so-called spectral and rainfall “dictionaries.” The core part

is inspired by the concept of locally linear embedding [39],

which assumes that “similar” spectral radiances and their cor-

responding rainfall profiles live close to two joint smooth

manifolds, allowing locally linear approximations. To retrieve

rainfall, ShARP uses a k-nearest-neighbor classification (de-

tection step) coupled with a modern shrinkage regularization

scheme (estimation step). For an observed spectral radiance, the

detection step finds similar signatures in the spectral dictionary

and decides whether the observed spectral radiance is nonrain-

ing or raining. For a raining spectral radiance, the estimation

step uses a shrinkage estimator to obtain its representation

coefficients in the spectral dictionary. Then, the representation

coefficients are used to combine the corresponding rainfall pro-

files from the rainfall dictionary to retrieve the rainfall values of

interest.

In summary, the main contribution and advantageous fea-

tures of this algorithm for addressing the aforementioned re-

trieval challenges are as follows. First, the use of a supervised

nearest neighbor classification results in minimal sensitivity

to the variability of the underlying land surface emissivity.

This property promises improved retrieval over troublesome

surfaces and coastal zones without any dependence to other

ancillary data. Second, the core estimation step makes use

of a modern constrained regularization scheme, giving rise to

sufficiently stable retrievals with reduced error compared with

the classic least squares solutions. Third, by design and due to

the used regularization scheme, the algorithm is flexible and

robust enough to employ dictionaries populated empirically, via

physically based modeling, or a combination of them. Fourth,

the algorithm allows us to approximate the posterior probability

density function of the retrieved rainfall, which is particularly

useful for the hazard assessment of rainfall extremes and their

hydrogeomorphic impacts. It is important to note that the

current implementation of our algorithm is fully empirical as

we only populate the rainfall and spectral dictionaries with

the coincident observations of the TRMM-PR and the TMI.

Therefore, in the absence of any independent ground-based

validation, all of the presented retrieval results are bounded by

the accuracy of the PR sensor/algorithm [40]. Clearly, as we

validate our results with 2A25, improved retrievals do not often

come as a surprise; however, they remain of significant impor-

tance as the passive retrieval methods are currently empirical

over land and coastal areas.

Section II is devoted to explaining the rainfall data set and

studying the rainfall spectral patterns relevant to the design

of the presented algorithm. Section III explains the details of

ShARP. Using the TRMM data, in Section IV, some retrieval

results are presented and compared with the currently opera-

tional PR-2A25 and TMI-2A12 retrieval products (version 7).

Conclusions are drawn and future lines of research are pointed

out in Section V.

II. TRMM RAINFALL DATABASE

Before we embark upon a detailed algorithmic discussion,

we provide a brief explanation of the data set used and some
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relevant insights into the structure of raining and nonraining

microwave spectral patterns, which are essential to the devel-

opment of our algorithm.

The TRMM-PR is a Ku-band radar that operates in a sin-

gle polarization mode at a frequency of 13.8 GHz. After the

TRMM boost, the PR provides direct measurements of rainfall

reflectivity at a grid size of ∼5 km every ∼250 m of the

troposphere at nadir, over a swath width of 247 km. On the other

hand, the TMI is a dual-polarized multichannel radiometer that

operates on central frequencies of 10.65, 19.35, 21.3, 37.0, and

85.5 GHz. All of the channels are horizontally and vertically

polarized, except the vertical water vapor channel at 21.3 GHz.

During the postboost era, the TMI provides spectral brightness

temperatures over a swath width of 878 km, with different

spatial resolutions of 72 km × 43 km, 35 km × 21 km, 26 km ×
21 km, 18 km × 10 km, and 8 km × 6 km at the aforementioned

central frequencies, respectively. By design, the TMI and PR

sensors provide overlapping observations over the inner swath

within the radar field of view at different resolutions. A thor-

ough exposition of the TRMM sensor packages can be found

in [41].

Here, we use the coincident 2A25 (level II) product of the

radar profiling algorithm [42] and the 1B11 (level I) product of

the radiometer to construct the rainfall and spectral dictionaries.

To register all of the data onto a single grid of latitude/longitude,

we used nearest neighbor interpolation and mapped the TMI

spectral temperatures onto the reported PR grids. Note that, in

this case, we neither lose nor add any information and retrieve

rainfall at the native resolution of the 1B11 product at the

85-GHz high-frequency channel. Clearly, in this resolution, the

lower frequency channels provide redundant spectral informa-

tion over neighboring grid boxes, whereas their combinations

with higher frequency channels may still provide distinct mul-

tispectral information. Accordingly, throughout this paper, we

use a large collection of collocated TMI and PR data, which is

hereafter called the “rainfall database” over the TRMM inner

swath for all orbital tracks in calendar years 2002, 2005, 2008,

2011, and 2012.

Using the collected rainfall database, Fig. 1 shows the condi-

tional expectations of the TMI spectral brightness temperatures

for different ranges of the PR rainfall intensities and their

coefficients of variation. Specifically, each column of the shown

images demonstrates the conditional mean of the TMI channels,

whereas each row shows the average response of the channels

to the underlying rainfall variability. The stem plots represent

the coefficients of variation of the brightness temperatures for

each channel. Over ocean (top panel), we see that almost all

frequencies are relatively responsive to the underlying surface

rainfall variability. Horizontal channels of 10 and 19 GHz

show the maximum normalized variations, whereas the vertical

polarizations in frequencies of 21 and 37 GHz are the least

responsive channels. This observation is consistent with the fact

that the ocean surface is less emissive in horizontal polariza-

tions for the TMI view angle, giving rise to a colder background

and, thus, a larger signal-to-noise ratio of the raining signatures

[43]. On the contrary, over land, almost all of the low-frequency

channels below 21 GHz show relatively small coefficients of

variation compared with the higher frequencies. It will be clear

Fig. 1. Expected values of the spectral brightness temperatures for different
intervals of the surface rainfall intensity over (top panel) ocean and (bottom
panel) land. The images are inferred from coincident pairs of the TMI-1B11
and PR-2A25 products obtained from 1000 randomly chosen orbits in our
rainfall database. The stem plots demonstrate the coefficients of variation for
each spectral band in response to the underlying rainfall variability. Note that
the rainfall intervals on the x-axis are logarithmically spaced between 0.2 and
200 mm/h.

later on that these coefficients of variation can be used to prop-

erly weight each channel to better guide the proposed retrieval

approach. Therefore, for each sampled y, it can be naturally

concluded that a properly chosen statistic of {rk(y)}
K
k=1

in the

following form may be adopted as a stable estimator of x:

x̂ =

K
∑

k=1

ck rk(y) (1)

where ck denotes some optimal coefficients.

Furthermore, to better understand the correspondence be-

tween the neighboring raining spectral brightness temperatures,

in the Euclidean sense, and their surface rainfall intensities,

we independently collected two learning sets of the form L =
{(bi, ri)}

M
i=1

over ocean and land. Each set contains M ≅ 106

of coincident 1B11 spectral brightness temperatures b ∈ R
9

and their corresponding 2A25 surface rainfall r ∈ R estimates.

From a mathematical standpoint, a simple nearest neighbor

search reveals that the spectral temperatures over ocean and
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Fig. 2. (Top panels) Two arbitrary sampled raining vectors of the TMI-IB11 spectral brightness temperatures (dotted black lines with circles) over (left) ocean
and (right) land. The gray lines are the 50-nearest spectral neighbors in the Euclidean sense, which are obtained from an independent learning set of the TMI-1B11
observations. (Bottom panels) PR-2A25 surface rainfall probability histograms of the 50 spectral neighbors, as shown in the top panels. In the top and bottom
panels, the red squares and the blue solid lines with diamonds show the 1-nearest neighbor in the spectral (1-nnT) and rainfall (1-nnR) spaces, respectively.

land are not uniquely related to the estimated surface rainfall

intensities in the Euclidean sense (for more discussion, see

[44]). Nevertheless, in the known lack of uniqueness, a basic

question arises: How can we obtain “stable” estimates of the

surface rainfall using neighboring spectral brightness temper-

atures in a properly collected learning set? To this end, let

us assume that a spectral vector of brightness temperature is

denoted by y and that its scalar surface rainfall value of interest

is x. The top panels from left to right in Fig. 2 demonstrate two

arbitrary vectors of the 1B11 raining brightness temperatures

y ∈ R
9 (black dashed lines) over ocean and land, together

with their 50 nearest neighbors {bk(y)}
K=50

k=1
(gray solid lines)

obtained from the collected learning sets. The bottom panels

show the corresponding surface rainfall values {rk(y)}
K=50

k=1

and their probability histograms. It turns out that all of the 50

nearest spectral brightness temperatures were raining, except

for only one of them over land. This observation implies that

a supervised nearest-neighbor classification, using coincident

TMI and PR data, might be a very powerful approach for

the rain/no-rain discrimination problem. Furthermore, it can be

seen that the first nearest neighbor in the spectral space (1-nnT)

does not necessarily relate to the nearest neighbor (1-nnR) in

the rainfall space. However, in both cases, the surface rainfalls

of the neighboring spectral vectors are bounding the rainfall

values x of interest. These bounds, both in the spectral and

rainfall spaces, are clearly tighter over ocean than over land

mainly due to the stronger signal-to-noise ratio of the rainfall

signatures.

III. ShARP

A. Rainfall Retrieval as Inverse Problem

Passive rainfall retrieval in the microwave bands can be

considered a nonlinear inverse problem, where its solution

shall be constrained by the underlying laws of atmospheric

thermal radiative transfer in a weak or strong sense [45]. By

a strong sense, we mean that the retrieved rainfall profile shall

be exactly consistent with the underlying physics, whereas in

a weak sense, some bounded errors are admissible. To recast

the microwave rainfall retrieval in a standard form of a discrete

inverse problem, let us assume that each vector of the spectral

brightness temperatures and their corresponding rainfall pro-

files are y = (y1, y2, . . . , ync
)T and x = (x1, x2, . . . , xnr

)T ,

respectively, where nc and nr denote the number of spectral

channels and the number vertical layers of the rainfall intensity

profile, respectively. As a result, in a finite dimension, spectral

observations might be related to the rainfall intensity profile

through the following nonlinear observation model:

y = F(x) + v (2)

where F(·) : x → y can be considered a functional represen-

tation of the radiative transfer equations that maps the rainfall

intensity profiles onto the space of the spectral brightness

temperatures, and v ∈ R
nc represents the observation error

with finite energy. Obviously, the goal of the retrieval is to

obtain an estimate of rainfall profile x, given spectral brightness
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temperatures y, the radiative transfer functional F(·), and the

a priori information about the error. The search for a stable

closed-form solution to the aforementioned inverse problem

seems infeasible, at least for now, given the fact that F(·) is

extremely nonlinear, particularly under the scattering dominant

regime. In the following section, it will be clear that our

algorithm provides a solution to this complex inverse problem

in a weak sense.

B. Algorithm

Motivated by our observations in Section II, to bridge

the explained complexities in the rainfall retrieval prob-

lem, our algorithm relies on an a priori collected database

denoted by L = {(bi, ri)}
M
i=1

. This set is populated by a

large number of coincident brightness temperatures bi =
[b1i, b2i, . . . , bnci]

T ∈ R
nc and their corresponding rainfall

profiles ri = [r1i, r2i, . . . , rnri]
T ∈ R

nr . For notational con-

venience, let us stack these pairs according to a fixed or-

der in two joint matrices B = [b1| . . . |bM ] ∈ R
nc×M and

R = [r1| . . . |rM ] ∈ R
nr×M , which are called the spectral and

rainfall “dictionaries,” respectively. In our notation, each of

these pairs are called elementary “atoms” to be used for the

reconstruction of the rainfall fields from their observed spectral

signatures. As is evident, these dictionaries can be populated

either by observational or physically based generated pairs.

In the detection step, we simply use a supervised nearest-

neighbor classification rule, which is guided by the dictionar-

ies. In particular, for a given observation vector of spectral

brightness temperature y ∈ R
nc and dictionary pair (B,R), let

us assume that S denotes the set of K column indexes of B

that contain the nearest spectral atoms to y in the Euclidean

sense. Given this set, the algorithm forms two joint subdic-

tionaries (BS ∈ R
nc×K ,RS ∈ R

nr×K), which are generated

by those K = |S| nearest spectral {bk}
K
k=1

∈ B and their

corresponding rainfall atoms {rk}
K
k=1

∈ R. Assuming that the

last row of rainfall subdictionary RS contains the near-surface

rainfall intensity values, the algorithm simply makes use of a

probabilistic vote rule to declare y as raining or nonraining. In

other words, choosing a probability threshold p, the algorithm

labels y as raining if more than pK number of {rk}
K
k=1

are

raining at the surface. In the estimation step, motivated by the

results in Fig. 2, we assume that the true rainfall profile x of the

given spectral observation y can be well explained by the RS

atoms through the following linear model:

x = RSc+ e (3)

where c ∈ R
K is a vector of the representation coefficients that

linearly combines the atoms of the rainfall subdictionary, and

e ∈ R
nr denotes a zero mean error with finite energy. As a

result, given an estimate of the representation coefficients ĉ, the

conditional expectation of the rainfall profile x̂ can be obtained

as follows:

x̂ = E(x|ĉ) = RS ĉ. (4)

Obviously, the estimation of the representation coefficients

solely from (3) is ambiguous as both sides of the equation

are unknown. To find a solution, as previously explained, we

assume that the neighboring rainfall profiles and their spectral

signatures live close to two smooth manifolds with analogous

geometric structures and, thus, similar locally linear represen-

tations. Therefore, the algorithm assumes a spectral observa-

tion model with the same linear representation coefficients as

follows:

y = BSc+ v (5)

where v ∈ R
nc denotes a zero mean error with finite energy.

As is evident, the estimation of the representation coefficients

from (5) is no longer an ill-defined problem. To estimate the

representation coefficients in this linear model, the weighted

minimum-mean-square-error estimator, which is constrained to

the probability simplex, seems to be the first choice as follows:

minimize
c

∥

∥

∥
W1/2(y −BSc)

∥

∥

∥

2

2

subject to c � 0, 1T c = 1 (6)

where the ℓ2-norm is ‖c‖2
2
= Σic

2

i , c � 0 implies the element-

wise nonnegativity, and the positive definite W ≻ 0 in R
nc×nc

determines the relative importance or weights of each channel.

These weights may be chosen to relatively encode the signal-

to-noise ratio of the spectral raining signatures. Note that the

nonnegativity constraint is required to be physically consistent

with the positivity of the brightness temperatures in degree of

Kelvin. Furthermore, the sum to one constraint assures that the

estimates are locally unbiased. More importantly, this equality

constraint makes the solution invariant to the rotation, rescaling,

and translation of the neighboring spectral observations [39].

For a similar concept in rainfall downscaling, see [46] and [47].

However, problem (6) is likely to be severely ill posed due to

the observation noise, particularly when the column dimension

of BS is larger than that of spectral bands nc. To make the

problem well posed and sufficiently stable, we suggest the

following regularization scheme:

minimize
c

∥

∥

∥
W1/2(y −BSc)

∥

∥

∥

2

2

+ λ1‖c‖1 + λ2‖c‖
2

2

subject to c � 0, 1T c = 1 (7)

where the ℓ1-norm is ‖c‖1 = Σi|ci|, and λ1, λ2 are nonnegative

regularization parameters. Obviously, by obtaining ĉ as the

solution of the aforementioned problem, we can retrieve the

rainfall using expression (4) as x̂ = RS ĉ.

Note that problem (7) is a nonsmooth convex problem.

It is nonsmooth as the ℓ1-norm is not differentiable at the

origin. Convexity arises as it uses a conic combination of two

well-known convex penalty functions to regularize a classic

weighted least squares problem over a convex set. These two

regularization functions have been widely used to properly

narrow down the solution of ill-posed inverse problems. In an

underdetermined system of equations, the ℓ1-norm penalty has

proven to be an effective regularization for obtaining “sparse”

solutions. In other words, it turns out that this regularization

promotes sparsity in the solutions as it uses a minimal number

of atoms of BS while retaining the maximum amount of infor-

mation (e.g., see [48]–[51]). On the other hand, the ℓ2-norm

penalty is the most widely used regularization approach to
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Fig. 3. Flowchart of ShARP. See Algorithm 1 for a more detailed explanation.

stabilize the solutions of “dense” ill-posed inverse problems

while incorporating all the atoms of BS in the solution (e.g.,

see [52] and [53]). Solely confining the regularization in (7) to

the ℓ1-norm (λ2 = 0) is restrictive for rainfall retrieval in the

current setting of our algorithm for two main reasons. First,

the number of selected columns of BS or, e.g., the nonzero

elements of the representation coefficients will be bounded

in this case by the number of available spectral bands nc.

Second, the spectral atoms in subdictionary BS are likely to

be highly correlated and clustered in groups. In this case, the

ℓ1-norm regularization typically fails to take into account

the contribution of clustered atoms. On the other hand, all of

the spectral atoms in BS will be taken into account if we solely

rely on the ℓ2-norm penalty, which can lead to the selection of

irrelevant atoms and overly smooth rainfall retrieval. However,

the proposed mixed penalty removes the explained limitations

of each individual regularization scheme through stabilizing the

problem regularization path, encouraging grouping effects by

shrinking the clusters of correlated atoms, and averaging their

representation coefficients [54]. In addition, from a practical

point of view, this mixed regularization increases the flexibility

of the algorithm to cope with the ill conditioning arising due to

the presence of very similar and correlated atoms in the spectral

subdictionary. This property is extremely desirable particularly

for the future developments of our algorithm to accommodate

both observationally and physically generated dictionaries.

Throughout this paper, we consider a convex combination

of regularization penalty functions by assuming that λ2 = λα

and λ1 = λ(1− α) for all α ∈ (0, 1). As we use the concept

of locally linear embedding together with the aforementioned

mixed shrinkage estimation, we call our retrieval technique

Shrunken locally linear embedding Algorithm for Retrieval

of Precipitation (ShARP). The details are summarized in

Algorithm 1 and sketched in Fig. 3. The given induced non-

negativity constraint in problem (7) allows us to solve it via

constrained quadratic programming (QP) as follows:

minimize
c

cT
(

BT
SWBS + λ2I

)

c+
(

λ11− 2BT
SWy

)T
c

subject to c � 0, 1T c = 1 (8)

where 1 = [1, . . . , 1]T ∈ R
K .

Algorithm 1 Shrunken Locally Linear Embedding Algorithm

for Retrieval of Precipitation (ShARP).

Input: Spectral observations Y containing {yi = [y1i, y2i,
. . . , ynci]

T ∈ R
nc}Ni=1

vectors of spectral brightness temper-

atures, spectral B ∈ R
nc×M and rainfall R ∈ R

nr×M dic-

tionaries, weight matrix W ∈ R
nc×nc , detection probability

p, the number of nearest neighbors K, and regularization

parameters λ1 and λ2.

Output: Precipitation field X containing {xi ∈ R
nr}Ni=1

pix-

els of rainfall intensity profiles.

For i := 1 to N (step 1) do

• Find subdictionaries BS ∈ R
nc×K and RS ∈ R

nr×K ,

where S is the set of the column indexes of B that

contains the k-nearest neighbors of yi.

• Let RS(end, :) denote the last row of RS containing the

neighboring surface rainfall.

• If |supp(RS(end, :))| ≥ pK,

— Standardize yi and the atoms of BS , such that
∑nc

j yji = 0,
∑nc

j bjk = 0, and
∑nc

j b2jk = 1,

for k = 1, . . . ,K.

— Solve the following minimization:

ĉi = argmin
ci�0,1T ci=1

{

∥

∥

∥
W1/2(yi −BSci)

∥

∥

∥

2

2

+ λ1‖ci‖1 + λ2‖ci‖
2

2

}

.

— x̂i = RS ĉi

else

— x̂i = 0

End If

End For

It is important to note that problem (7) is, in effect, a

constrained Bayesian MAP estimator under the following prior:

p (c) ∝ exp
(

−λ1‖c‖1 − λ2‖c‖
2

2

)

(9)

which is a conic combination of the Gaussian and Laplace

densities [54]. Therefore, the posterior density of the estimated
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Fig. 4. Different Earth surface classes used in the current version of ShARP, i.e., inland water body (In), coastal zone (c), land (l), and ocean (o). The classification
is adopted based on the available data (version 7) of the PR-1C21 product, which are mapped onto a 0.05◦ regular grid.

coefficients and, thus, the rainfall values are not Gaussian. As

a result, the closed-form uncertainty analysis of the retrieved

rainfall is not trivial and may be addressed through random-

ization or ensemble analysis. To this end, one can simply see

that the rows of subdictionary RS contain K samples of the

posterior probability density function (pdf) of the neighboring

rainfall intensity profiles. Thus, depending on the selected

number of nearest neighbors, the whole posterior pdf of the

ShARP estimator can be empirically approximated by counting

the relative frequency of the rainfall occurrence. This strategy

will be used in the sequel to estimate the uncertainty of the

retrieved rainfall.

IV. EXPERIMENTS USING TRMM DATA

As previously explained, in the current implementation of

ShARP, we confine our consideration to empirical rainfall and

spectral dictionaries collected from the coincident PR-2A25

and TMI-1B11 products and only retrieve surface rainfall.

Therefore, the 2A25 product can be used as a reference to

validate the results of ShARP. To further examine the pros and

cons of its performance, all of the retrieval experiments are also

compared with the surface rainfall obtained from the standard

passive TMI-2A12 retrieval product.

A. ShARP Setup

In the current implementation of ShARP, we defined four

different earth surface classes, i.e., ocean, land, coast, and

inland water (see Fig. 4). In other words, we collected four

dictionaries over each surface class and use them in Algorithm 1

depending on the geolocation of a given pixel of the observed

spectral brightness temperatures. This surface stratification is

obtained from standard surface data in the PR-1C21 product

(version 7) at a ∼5 km × 5 km grid box. To construct the

spectral and rainfall dictionaries, we randomly sampled 750

orbits from our rainfall database. In these sampled orbits, more

than 25× 106 pairs of raining and nonraining signatures were

used to construct the required dictionaries.

1) Detection Step: As previously explained, rain/no-rain

classification from microwave observations and its induced

error on the quality of rainfall retrieval have been addressed

in numerous studies [21], [27], [29], [54]–[56] and reported as

a challenging problem that is not easy to mitigate, particularly

over land [25]. Therefore, in developing rainfall retrieval tech-

Fig. 5. Rainfall ROC curve over (left panel) ocean and (right panel) land for
different probabilities of detection p ∈ [0, 1] and numbers of nearest neigh-
bors K ∈ {5, 10, 20, 40, 100} of ShARP. The blue circles show the 2A12
(version 7) product, and the red dash-dotted lines show the 0.95 probability
of hit as a datum.

TABLE I
PROBABILITY OF HIT AND FALSE ALARM FOR 20 NEAREST NEIGHBORS

K = 20 AND A PROBABILITY THRESHOLD OF p = 0.5. THE RESULTS

ARE OBTAINED BY COMPARING ShARP WITH 2A25

niques, we naturally have a choice to either first detect the storm

raining areas and then estimate the rainfall intensities or just use

an estimation scheme that automatically recovers the raining

areas. In general, rainfall retrieval with a sequential rain/no-rain

detection and estimation scheme may be advantageous in the

sense that it allows us to control the probability of false alarm

while only confining the computational expense of estimation

to the detected raining areas.

Considering 2A25 as a reference rainfall field for the vali-

dation of ShARP, Fig. 5 shows the receiver operating charac-

teristic (ROC) curve for the rain/no-rain detection step of our

algorithm, as the classification parameters are varied. The ROC

curve encodes the estimated probability of hit (PrH ) versus

the probability of false alarm (PrF ). As is evident, the best

classification algorithm yields a point at the upper left corner

with PrH = 1 and PrF = 0. Here, the results are obtained by

applying the detection step to more than 3× 105 randomly cho-

sen pixels of spectral observations from our rainfall database.
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TABLE II
DIAGONAL ELEMENTS OF THE WEIGHT MATRIX W ∈ R9×9 USED IN ShARP FOR THE CHOSEN EARTH SURFACE CLASSES

Note that these spectral pixels are randomly selected from our

rainfall database and have not been used in construction of the

retrieval dictionaries. In Fig. 5, we can see that the ShARP

classification rule is not very sensitive to the number of chosen

nearest neighbors as all of the curves are hardly distinguishable

from each other. The ShARP rain/no-rain detection quality for

K = 20 and the majority vote rule, i.e., p = 0.5, is presented

in Table I. This table explains that, over ocean and land, our

algorithm matches the raining pixels of the 2A25 product in

96% and 90% of the cases, whereas the false alarm rate does not

exceed 8% and 6%, respectively. Fig. 5 also shows the position

of the 2A12 retrieval product. It is seen that given that 2A25

is raining over ocean, 2A12 is raining in 95% of the cases.

On the other hand, we see that, in 20% of the cases, 2A12

detects raining areas that may have been missed by 2A25 and,

thus, ShARP. Although the interpretation of this discrepancy is

not central to the thrust of this paper, this result seems to be

consistent with the recent evidence from the CloudSat satellite

suggesting that the PR underestimates the extent of light rain

over ocean [57], which may reach up to 10% of the rainfall

volume on average over the tropics [58]. Conversely, over land,

we see that if 2A25 is raining, ShARP is raining in 90% of

the cases, whereas 38% of these raining pixels are not captured

in 2A12.

2) Estimation Step: After finding the storm raining areas,

our algorithm moves toward the estimation of the rainfall inten-

sities. Recall that we use a positive-definite weight matrix W

in problem (7) that determines the relative importance of each

channel over different surface classes. To design this weight

matrix, we use the normalized coefficients of variation for each

channel, as reported in Fig. 1. In particular, the relative weight

of the ith channel for a specific surface class is obtained by

normalizing its coefficient of variation as wi = civ/max
i

(civ),

i = 1, . . . , 9 (see Table II). The weight matrix is then assigned

to be W = diag(wi). Using these weights allows us to make

the least squares term in problem (7) invariant to temperature

translations among spectral channels and more responsive to

a stronger rainfall signal-to-noise ratio. In other words, these

weights reduce the saturation of the cost due to some exces-

sively cold and/or warm channels while remaining sensitive

to their relative variability. To solve problem (7), we use a

primal–dual interior point method [59, Ch. 11]. Basically, in

this class of convex optimization techniques, the inequality-

constrained QP problem (8) is reformulated into an equality-

constrained problem to which an iterative Newton’s method

can be applied. Specifically, we employed a QP interior-point-

method solver in the MATLAB optimization package, which is

based on a variant of the algorithm in [60]. In this optimization

subalgorithm, the maximum number of iterations in Newton’s

steps is set to 200, and the termination tolerance on the function

value and the magnitude of relative changes in the optimization

variable are both set to 1e− 8. We set the algorithm regular-

ization parameters to be λ = 0.001 and α = 0.1, which appear

to work well for a wide range of rainfall retrieval experiments.

This setting permits the algorithm to perform full orbital rainfall

retrieval on the order of 10–15 min on a contemporary desktop

machine.

B. Instantaneous Retrieval Experiments

Figs. 6–8 demonstrate the results of few instantaneous re-

trieval experiments over ocean, land, and coastal areas, respec-

tively. Here, we confined our consideration to some important

storms recorded in the TRMM extreme event archives (http://

trmm.gsfc.nasa.gov/publications_dir/extreme_events.html).

Over ocean, we used the TMI snapshots of hurricane

Danielle (08/29/2010), super typhoon Usagi (09/21/2013), and

tropical storm Helene (09/15/2006) (see Fig. 6). Over land, we

focused on a few thunderstorms and mesoscale convective sys-

tems. These events include a squall line over Mali (08/29/2010),

a local thunderstorm over Nigeria (06/28/1998), and a spring

season squall line containing tornadic activities over Georgia,

USA (01/30/2013) (see Fig. 7). Over coastal areas, we re-

trieved the TMI overpasses of tropical storm Fernand over the

eastern coast of Mexico (08/26/2013), of hurricane Issac over

Mississippi Delta, USA (08/28/2013 and 08/29/2012), and of

typhoon Kai-tak over the Gulf of Tonkin, coastlines of Vietnam

and southern China (08/17/2012) (see Fig. 8).

In general, our experiments in Figs. 6–8 demonstrate good

agreement between the ShARP retrieval and the standard

TRMM products. As previously noticed, we typically see that

2A12 retrieves much larger areas of light rain over ocean

compared with 2A25 and, thus, with the current implementation

of ShARP. We see that ShARP can properly recover the storm

morphology and high-intensity and light rainfall both over

ocean and land. For example, in the retrieval experiments of

the tropical cyclones over ocean (see Fig. 6), the high-intensity

rainfall cells, curvature, and multiband structure of the studied

storms are well captured. Over land, in the retrieved thunder-

storm over Nigeria (see the first row in Fig. 6) and the frontal

system over Georgia (see the bottom row in Fig. 6), we see

that the ordinary cells and stratiform trailing behind the leading

edge of the squall line are well captured. Visual inspections of

the retrieved rainfall at the ocean–land interface also confirm

that the ShARP retrievals remain coherent over the interface

and are in good agreement with the 2A12 and 2A25 products.
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Fig. 6. (Left to right) TMI-2A12, PR-2A25, and ShARP retrievals. (Top to bottom panels) Hurricane Danielle in 08/29/2010 (orbit no. 72840) at 09:48
coordinated universal time (UTC), super typhoon Usagi in 09/21/2013 (orbit no. 90277) at 02:09 UTC, and tropical storm Helene in 09/15/2006 (orbit
no. 50338) at 14:34 UTC.

Fig. 7. (Left to right) TMI-2A12, PR-2A25, and ShARP retrievals. (Top to bottom panels) Thunderstorm over Mali, Africa, in 08/29/2010 (orbit no. 72841) at
10:30 UTC, summertime thunderstorm over Nigeria, Africa, in 06/28/1998 (orbit no. 03357) at 17:43 UTC, and spring season squall line of precipitation supercells
and tornadoes over Georgia, USA, in 01/30/2013 (orbit no. 86639) at 16:22 UTC.
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Fig. 8. (Left to right) TMI-2A12, PR-2A25, and ShARP retrievals. (Top to bottom panels) Tropical storm Fernand in 08/26/2013 (orbit no. 89874) at
05:30 UTC, hurricane Isaac in 08/28/2012 (orbit no. 84227) at 22:12 UTC, and typhoon Kai-tak in 08/17/2012 (orbit no. 84050) at 13:35 UTC.

Fig. 9. Pixel-level probability histograms of the instantaneous rainfall retrievals (> 1e+ 6 points for each product) for the TMI-2A12, PR-2A25, and ShARP
products over the (top panel) ocean and (bottom panel) land–coast surface classes.

Fig. 9 compares the histogram of the retrieved rainfall values

at the pixel level obtained from 100 randomly sampled TRMM

orbits in calendar year 2013. Overall, it is shown that the

distribution of ShARP and 2A25 are matched well. However,

ShARP tends to retrieve more rain around the mode and falls

a bit short over the tail. This behavior is expected as ShARP

uses a MAP estimator that implicitly seeks the mode of the

rainfall distribution. As previously noticed, over ocean, 2A12

retrieves much lower rain rates than the other two products.

In 2A12, the highest probable range of rainfall intensity falls

below 0.02 mm/h. In effect, more than 75% of the raining cases

are reported to be below 0.25 mm/h, whereas the probability of

rainfall at this range is almost zero in the other two products.

In 2A25 and ShARP, 63% and 71% of the raining cases are

within the range of 0.25–0.5 mm/h, respectively, whereas this

probability is around 0.2 in 2A12. We see that the distribution of
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TABLE III
RETRIEVAL DIFFERENCE METRICS OBTAINED BY COMPARING

(a) ShARP VERSUS 2A25, (b) ShARP VERSUS 2A12, AND (c) 2A12
VERSUS 2A25 FOR 100 RANDOMLY CHOSEN ORBITAL TRACKS IN 2013.

THE SHOWN STATISTICS ARE THE RMSD (IN MILLIMETERS PER

HOUR), THE MAD (IN MILLIMETERS PER HOUR), AND SPEARMAN’S

CORRELATION (ρ). THE STATISTICS ARE OBTAINED FOR

INSTANTANEOUS RAINFALL ESTIMATES AT THE PIXEL-LEVEL OVER

THE INTERSECTION OF THE RAINING AREAS OF ALL

THREE RETRIEVAL PRODUCTS

2A25 over ocean has the thickest tail among the others. In this

product, the probability of rainfall exceeding 10 mm/h is ∼5%,

whereas only 1.5% and 0.7% of the raining cases are in this

range for ShARP and 2A12, respectively. Note that, as the PR

is not the best indicator of light rainfall over the tropical ocean

(e.g., see [61] and [62]), the interpretation of the recovered

rainfall below the PR accuracy and its distribution in 2A12

cannot be explained in this paper and requires more thorough

investigation. Over land and coastal areas, the rainfall distribu-

tions of all three products are more or less similar. The mode of

the rainfall is around 0.9 mm/h in ShARP and 2A25, whereas

the highest probable rainfall values are concentrated around

1.9 mm/h in 2A12. It is also apparent that 2A25 and, thus,

ShARP detect more lower rain rates < 1 mm/h, whereas the

detection of higher rain rates > 10 mm/h is more probable

in 2A12 over land. It is important to note that, as the extent

of raining areas are different in the studied retrievals, the

observed differences in the probability distribution of instan-

taneous rainfall do not necessarily lead to large differences in

the volumetric retrieved rainfall. In effect, we will show later on

that the total annual estimates of rainfall match well in all three

products.

To further validate the instantaneous retrieval of ShARP,

we report the RMS difference (RMSD), the mean absolute

difference (MAD), and Spearman’s correlation ρ for each pair

of the studied products. The computation of these proximity

measures for instantaneous rainfall is not straightforward as

these products do not share identical sets of raining areas.

Table III shows the pixel-level estimates of these measures over

the intersection of raining areas in the 100 randomly sampled

orbits discussed in Fig. 9. As is evident, ShARP is closer

and more correlated with 2A25 than with 2A12. Evaluating

the pixel-level differences of the rainfall samples among the

studied products shows that, typically, a large number of those

deviations are very small, whereas a small number of them

are typically very large. For instance, more than 55% of the

differences between ShARP and 2A25 are less than 1 mm/h,

whereas less than 5% of them are greater than 8 mm/h. This

can be the main reason why the RMSD is almost twice that

of the MAD metric in Table III. In effect, the RMSD can be

easily saturated by a few large deviations as it quadratically

penalizes them. On the other hand, the MAD linearly penalizes

the differences and seems to be a more robust measure against

a few numbers of large deviations.

As we explained, the posterior density of the ShARP re-

trievals can be empirically approximated via counting the

frequency of rainfall occurrence in the atoms of the rainfall

subdictionaries. Table IV reports a static estimation of the key

percentiles of the posterior pdf for the examined 100 orbits. For

brevity, we only present the results for the rainfall values falling

between 0.1, 0.2, 0.5, 1, 2, 5, 10, 25, and 50 mm/h. Fig. 10

also shows some dynamic probability maps of the posteriori

pdf for the snapshot of hurricane Danielle shown in Fig. 6.

Clearly, this important feature of ShARP allows us to prob-

abilistically perform rainfall retrieval and track the high-risk

areas of the extreme rainfall based on a certain probability of

exceedance.

C. Cumulative Experiments

To validate the results of our algorithm in a cumulative

sense, we focus on all the orbital observations of the TRMM

in 2013. To unify the sampling rate, we only use the available

observations over the inner swath, where both sensors pro-

vide overlapping and validated rainfall observations. Fig. 11

demonstrates the annual rainfall estimates, which are mapped

onto a 0.1◦ × 0.1◦ grid. In general, we see good agreement

between ShARP and the standard TRMM products. Here, as

2A25 potentially provides one of the best spaceborne estimates

of the total rainfall volume over the tropics [58], we also study

the deviations of the passive retrievals from this active product.

At a 0.1◦ resolution, the normalized RMSD (RMSDn)1 is

about 36% and 48% for ShARP (see the bottom panel in

Fig. 11) and 2A12 (see the top panel in Fig. 11), respectively. At

a coarser resolution of the 1◦ × 1◦ grid box, this metric reduces

to 17% and 31% (see Fig. 12), whereas the overall correlation

with 2A25 is 0.92 and 0.97 for 2A12 and ShARP, respectively

(see Fig. 13). Zonal mean values are also presented in Fig. 14,

with quantitative explanations in Table V. Over ocean, except

in the North Atlantic midlatitude storm tracks, both ShARP

and 2A12 slightly overestimate the total rainfall obtained from

2A25; most of the underestimation regions occur over land, par-

ticularly near coastal zones, islands, and peninsulas, although

some overestimation can be seen in Central Africa and South

America in both 2A12 and ShARP.

Fig. 12 shows that passive retrieval products overestimate

(∼300–400 mm) 2A25 on the narrow ridge of high precip-

itation in the Intertropical Convergence Zone (ITCZ) across

the Pacific Ocean. As is evident, over the South Pacific,

Atlantic, and Indian Ocean convergence zones, we also see

some overestimation in ShARP, whereas the positive difference

is relatively mitigated compared with the standard 2A12 prod-

uct. In the North Atlantic midlatitude storm tracks, both passive

retrievals slightly underestimate the annual rainfall, whereas the

deviations are smaller in 2A12 compared with ShARP.

Some promising results of our algorithm seem to be over

land and coastal zones. Over the subtropical hot desert, arid,

1RMSDn is the RMSD, which is normalized by the square root of the sum
of squared of the reference field at a pixel level.
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TABLE IV
STATIC ESTIMATION OF KEY PERCENTILES (IN MILLIMETERS PER HOUR) OF THE POSTERIOR PDF OF THE ShARP RAINFALL RETRIEVALS

FOR 100 SAMPLED ORBITS IN CALENDAR YEAR 2013. THE SECOND COLUMN DENOTES THE MEAN (IN MILLIMETERS

PER HOUR) VALUES OF THE RETRIEVED RAINFALL WITHIN EACH BIN

Fig. 10. Probability maps showing different segments of posterior pdf pX(x|y) for the (top left panel) ShARP retrieval of hurricane Danielle (orbit no. 72840)
at 09:48 UTC.

and semiarid climates (e.g., Sahara, Arabian, Syrian deserts,

and central Iran Plateau), we see that ShARP retrieves well

the low rainfall amounts seen by the PR. Over Central Africa,

both 2A12 and ShARP overestimate the 2A25 annual rainfall,

whereas the gap seems to be smaller in ShARP. Over North

America, it is seen that 2A12 shows good agreement with

the PR estimates over the East Coast and Midwest of the

USA. However, ShARP approximates well the PR over the

West Coast and Southwest, where the rainfall signatures are

predominantly corrupted with noise due to the highly emissive

desert surfaces. Over South America, ShARP shows improved

retrieval over Brazil and southern Amazon, whereas compared

with 2A12, notable underestimation can be seen over the north-

ern Amazon basin, Colombia, and Venezuela. Some improved

results of our algorithm are over the snow-covered Tibetan

highlands and Himalayas. We can see that ShARP can distin-

guish well the background noise from the rainfall signatures,

and it reduces some overestimation seen in 2A12. Note that we

have used the minimal number of Earth surface classifications

and have not used any ancillary data (e.g., surface temperature)

over the Tibetan Plateau. Indeed, due to the 9-D nearest neigh-

bor selection of the spectral subdictionaries, our algorithm is

apparently capable of robustly eliminating a large portion of the

physically inconsistent spectral candidates in the detection step.

Over Southeast Asia, where the rainfall signatures are masked

by a mixture of ocean and land surface background radiation

regimes, both ShARP and 2A12 underestimate 2A25. However,

the negative differences in ShARP are slightly reduced com-

pared with 2A12, particularly over Indonesia, Malaysia, and the

Philippines.

A comparison of the total annual zonal mean values (see the

left panel in Fig. 14) shows that ShARP approximates well the

average latitudinal rainfall distribution. We can see that ShARP

reconstructs well the 2A25 product over ocean not only over

the tropics but also over the midlatitudes, where stratiform

rainfall is dominant (see the middle panel in Fig. 14). Over

land, ShARP underestimates the zonal mean within a narrow

band (latitudes 5◦ S–N) around the tropics, whereas it performs

well over the subtropical climate zones (see the right panel in

Fig. 14). This underestimation is mainly contributed by the

ShARP poor retrieval skill over the northern part of South

America. A quantitative comparison of these zonal profiles is

presented in Table V.

To briefly evaluate the intraannual performance of our algo-

rithm, particularly over land and coastal areas, we also focused

on a three-month rainfall accumulation for the period from

January to March (JFM) of 2013. We confined the spatial extent

of our evaluation within latitudes 15◦–35◦ N and longitudes

60◦–120◦ W (see Fig. 15). The rainfall in the JFM period is

mainly supplied by the moisture coming from the Pacific Ocean

through the subtropical jet stream and is intensified where

the extratropical lifting saturates the atmospheric column over

the Gulf of Mexico. This mechanism typically causes heavy

precipitation events over the southeast of the USA and the

Gulf of Mexico, whereas it leaves the southwest relatively dry.

Overall, we see that ShARP properly retrieves the high and
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Fig. 11. Annual estimates of the total rainfall (in millimeters) in 2013 mapped onto a 0.1◦ grid box. (Top to bottom panels) 2A12, 2A25, and ShARP retrieval
products.

Fig. 12. Annual estimates of the total rainfall difference (in millimeters) for calendar year 2013. (Top to bottom panels) Difference between the 2A12 and ShARP
retrievals with 2A25 at a grid size of 1◦ × 1◦. Hot (red) and cold (blue) colors denote the intensity of the positive and negative differences, respectively.
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Fig. 13. Smooth scatter plots of the annual retrieved rainfall (in millimeters)
by (top panel) 2A12 and (bottom panel) ShARP versus 2A25 at a grid size of
1◦ × 1◦. Hot (red) and cold (blue) colors denote the higher and lower densities
of the available rainfall intensity pairs, respectively. R2 denotes the coefficient
of determination, RMSDn and MADn are the normalized RMSD and MAD,
respectively, and ρ denotes the correlation coefficient.

Fig. 14. Annual rainfall zonal mean values (in millimeters) obtained from the
estimates of the annual rainfall shown in Fig. 11. (Left to right panels) Zonal
mean values computed over all surface classes, ocean, and land–coasts.

low seasonal precipitation amounts in the JFM system, and its

retrieved rainfall resembles well the standard TRMM products.

Specifically, it is seen that, in the vicinity of the coast lines

TABLE V
RETRIEVAL SKILLS INCLUDING THE RMSD (IN MILLIMETERS) AND THE

MEAN DIFFERENCE (IN MILLIMETERS) FOR THE ANNUAL ZONAL

MEAN VALUES SHOWN IN FIG. 14

Fig. 15. Intraannual rainfall accumulation for the JFM period in 2013, mapped
onto a 0.1◦ grid box.

of the Caribbean Islands and Bahamas, the lightrainfall values

are captured well by ShARP. During this period, consistent

with the instantaneous results shown in Fig. 5, the largest

amount of raining areas over the ocean is detected by the 2A12

(88% of ocean), whereas this fraction is 71% and 66% in

ShARP and 2A25, respectively. In contrast, ShARP detects

the largest raining area (69%) over land, whereas this fraction

is 63% and 50% in 2A25 and 2A12, respectively. The main

factor contributing to the overestimation of 2A25 by ShARP is

primarily due to the coarse resolution of the TMI sensor that

is unable to resolve the signatures of small-scale precipitation

events captured by the PR. A brief quantitative comparison

of the JFM rainfall system, only over land and coastal areas,

is presented in Fig. 16. As is evident, ShARP correlates well

with 2A25, whereas we see some discrepancies showing that,

for some light raining areas in 2A25, both ShARP and 2A12

retrieve high rainfall values. It turns out that some of these

anomalies are due, in part, to the misinterpretation of the

highly emissive ground as rainfall signatures. For example,

we see that, over the Baja California Desert, ShARP exhibits

overestimation spots, whereas the snow-covered land surface
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Fig. 16. Smooth scatter plots of the three-month rainfall accumulation
(in millimeters), as shown in Fig. 15. The plots show (left panel) 2A12 and
(right panel) ShARP versus 2A25 at a 0.5◦ × 0.5◦ grid box. For explanations
of the presented statistics, see the caption of Fig. 13.

in the month of January confuses the 2A12 algorithm over the

northwest of Arizona (∼110◦ W, 35◦ N).

V. CONCLUDING REMARKS

We proposed a Bayesian microwave rainfall retrieval algo-

rithm that makes use of a priori collected rainfall and spectral

dictionaries. This algorithm relies on a nearest neighbor detec-

tion rule and exploits a modern shrinkage estimator. We have

examined its performance using empirical dictionaries popu-

lated from coincident observations of the TRMM-PR and the

TMI, and we demonstrated its considerable promise to provide

accurate rainfall retrievals, particularly over land and coastal

areas. In future research, the algorithm needs to be further ver-

ified for different rainfall regimes over ocean and land. Further

efforts also need to be devoted to improving the retrieval of

rainfall extremes both over land and ocean. Although we have

confined our experiments to empirical dictionaries, the core of

our algorithm is flexible and versatile enough to exploit both

observational and physically based generated dictionaries. The

proposed implementation is very parsimonious at this stage,

and further refinements, such as smarter choices of surface

classes by considering ground emissivity patterns and adding

auxiliary state variables to the dictionaries (e.g., surface skin

temperature and total column water), can definitely improve

the performance of the proposed approach. Currently, we are

developing a new version of this algorithm that uses compact

dictionaries for faster and more accurate retrieval of the entire

rainfall profile. The particular emphasis will be on the available

spectral bands (10.65–183 GHz) of the radiometer and the

observations of the dual-frequency PR aboard the successfully

launched Global Precipitation Measuring satellites.
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