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Abstract. In this paper, we present an approach for learning a visual
representation from the raw spatiotemporal signals in videos. Our rep-
resentation is learned without supervision from semantic labels. We for-
mulate our method as an unsupervised sequential verification task, i.e.,
we determine whether a sequence of frames from a video is in the cor-
rect temporal order. With this simple task and no semantic labels, we
learn a powerful visual representation using a Convolutional Neural Net-
work (CNN). The representation contains complementary information to
that learned from supervised image datasets like ImageNet. Qualitative
results show that our method captures information that is temporally
varying, such as human pose. When used as pre-training for action recog-
nition, our method gives significant gains over learning without external
data on benchmark datasets like UCF101 and HMDB51. To demonstrate
its sensitivity to human pose, we show results for pose estimation on the
FLIC and MPII datasets that are competitive, or better than approaches
using significantly more supervision. Our method can be combined with
supervised representations to provide an additional boost in accuracy.

Keywords: Unsupervised learning · Videos · Sequence verification ·
Action recognition · Pose estimation · Convolutional neural networks

1 Introduction

Sequential data provides an abundant source of information in the form of audi-
tory and visual percepts. Learning from the observation of sequential data is a
natural and implicit process for humans [1–3]. It informs both low level cognitive
tasks and high level abilities like decision making and problem solving [4]. For
instance, answering the question “Where would the moving ball go?”, requires
the development of basic cognitive abilities like prediction from sequential data
like video [5].
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In this paper, we explore the power of spatiotemporal signals, i.e., videos, in
the context of computer vision. To study the information available in a video
signal in isolation, we ask the question: How does an agent learn from the spa-
tiotemporal structure present in video without using supervised semantic labels?
Are the representations learned using the unsupervised spatiotemporal informa-
tion present in videos meaningful? And finally, are these representations com-
plementary to those learned from strongly supervised image data? In this paper,
we explore such questions by using a sequential learning approach.

Sequential learning is used in a variety of areas such as speech recognition,
robotic path planning, adaptive control algorithms, etc. These approaches can be
broadly categorized [6] into two classes: prediction and verification. In sequential
prediction, the goal is to predict the signal given an input sequence. A popu-
lar application of this in Natural Language Processing (NLP) is ‘word2vec’ by
Mikolov et al. [7,8] that learns distributional representations [9]. Using the con-
tinuous bag-of-words (CBOW) task, the model learns to predict a missing word
given a sequence of surrounding words. The representation that results from this
task has been shown to be semantically meaningful [7]. Unfortunately, extend-
ing the same technique to predict video frames is challenging. Unlike words that
can be represented using limited-sized vocabularies, the space of possible video
frames is extremely large [10], eg., predicting pixels in a small 256 × 256 image
leads to 2562×3×256 hypotheses! To avoid this complex task of predicting high-
dimensional video frames, we use sequential verification.

In sequential verification, one predicts the ‘validity’ of the sequence, rather
than individual items in the sequence. In this paper, we explore the task of deter-
mining whether a given sequence is ‘temporally valid’, i.e., whether a sequence
of video frames are in the correct temporal order, Fig. 1. We demonstrate that
this binary classification problem is capable of learning useful visual represen-
tations from videos. Specifically, we explore their use in the well understood
tasks of human action recognition and pose estimation. But why are these sim-
ple sequential verification tasks useful for learning? Determining the validity of a
sequence requires reasoning about object transformations and relative locations
through time. This in turn forces the representation to capture object appear-
ances and deformations.

We use a Convolutional Neural Network (CNN) [11] for our underlying fea-
ture representation. The CNN is applied to each frame in the sequence and
trained “end-to-end” from random initialization. The sequence verification task
encourages the CNN features to be both visually and temporally grounded.
We demonstrate the effectiveness of our unsupervised method on benchmark
action recognition datasets UCF101 [12] and HMDB51 [13], and the FLIC [14]
and MPII [15] pose estimation datasets. Using our simple unsupervised learning
approach for pre-training, we show a significant boost in accuracy over learning
CNNs from scratch with random initialization. In fact, our unsupervised app-
roach even outperforms pre-training with some supervised training datasets. In
action recognition, improved performance can be found by combining existing
supervised image-based representations with our unsupervised representation.
By training on action videos with humans, our approach learns a representation
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Fig. 1. (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffled
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.

sensitive to human pose. Remarkably, when applied to pose estimation, our rep-
resentation is competitive with pre-training on significantly larger supervised
training datasets [16].

2 Related Work

Our work uses unlabeled video sequences for learning representations. Since this
source of supervision is ‘free’, our work can be viewed as a form of unsupervised
learning. Unsupervised representation learning from single images is a popular
area of research in computer vision. A significant body of unsupervised learning
literature uses hand-crafted features and clustering based approaches to discover
objects [17–19], or mid-level elements [20–24]. Deep learning methods like auto-
encoders [25–27], Deep Boltzmann Machines [28], variational methods [29,30],
stacked auto-encoders [31,32], and others [33,34] learn representations directly
from images. These methods learn a representation by estimating latent para-
meters that help reconstruct the data, and may regularize the learning process
by priors such as sparsity [25]. Techniques in [10,35] scale unsupervised learn-
ing to large image datasets showing its usefulness for tasks such as pedestrian
detection [35] and object detection [10]. In terms of using ‘context’ for learning,
our work is most similar to [10] which uses the spatial context in images. While
these approaches are unsupervised, they do not use videos and cannot exploit
the temporal structure in them. Our work is most related to work in unsuper-
vised learning from videos [36–40]. Traditional methods in this domain utilize
the spatiotemporal continuity as regularization for the learning process. Since
visual appearance changes smoothly in videos, a common constraint is enforcing
temporal smoothness of features [38,40–43]. Zhang and Tao [44], in particular,
show how such constraints are useful for action recognition. Moving beyond just
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temporal smoothness, [37] enforces additional ‘steadiness’ constraints on the fea-
tures so that the change of features across frames is meaningful. Our work, in
contrast, does not explicitly impose any regularizations on the features. Other
reconstruction-based learning approaches include that of Goroshin et al. [43] who
use a generative model to predict video frames and Srivastava et al. [45] who
use LSTMs [46]. Unlike our method, these works [38,43,45,47] explicitly predict
individual frames, but do not explore large image sizes or datasets. [48,49] also
consider the task of predicting the future from videos, but consider it as their
end task and do not use it for unsupervised pre-training.

Several recent papers [36,48,50] use egomotion constraints from video
to further constrain the learning. Jayaraman and Grauman [36] show how
they can learn equivariant transforms from such constraints. Similar to our
work, they use full video frames for learning with little pre-processing. Owens
et al. [51] use audio signals from videos to learn visual representations. Another
line of work [52] uses video data to mine patches which belong to the same
object to learn representations useful for distinguishing objects. Typically, these
approaches require significant pre-processing to create this task. While our work
also uses videos, we explore them in the spirit of sequence verification for action
recognition which learns from the raw video with very little pre-processing.

We demonstrate the effectiveness of our unsupervised pre-training using two
extensively studied vision tasks - action recognition and pose estimation. These
tasks have well established benchmark datasets [12–15]. As it is beyond the scope
of this paper, we refer the reader to [53] for a survey on action recognition,
and [54] for a survey on pose estimation.

3 Our Approach

Our goal is to learn a feature representation using only the raw spatiotemporal
signal naturally available in videos. We learn this representation using a sequen-
tial verification task and focus on videos with human actions. Specifically, as
shown in Fig. 1, we extract a tuple of frames from a video, and ask whether the
frames are in the correct temporal order. In this section, we begin by motivating
our use of sequential tasks and how they use the temporal structure of videos.
We then describe how positive and negative tuples are sampled from videos, and
describe our model.

3.1 Task Motivation

When using only raw videos as input, sequential verification tasks offer a promis-
ing approach to unsupervised learning. In addition to our approach described
below, several alternative tasks are explored in Sect. 5.2. The goal of these
tasks is to encourage the model to reason about the motion and appearance
of the objects, and thus learn the temporal structure of videos. Example tasks
may include reasoning about the ordering of frames, or determining the rel-
ative temporal proximity of frames. For tasks that ask for the verification of
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temporal order, how many frames are needed to determine a correct answer? If
we want to determine the correct order from just two frames, the question may
be ambiguous in cases where cyclical motion is present. For example, consider a
short video sequence of a person picking up a coffee cup. Given two frames the
temporal order is ambiguous; the person may be picking the coffee cup up, or
placing it down.

To reduce such ambiguity, we propose sampling a three frame tuple, and
ask whether the tuple’s frames are correctly ordered. While theoretically, three
frames are not sufficient to resolve cyclical ambiguity [55], we found that combin-
ing this with smart sampling (Sect. 3.2) removes a significant portion of ambigu-
ous cases. We now formalize this problem into a classification task. Consider
the set of frames {f1, . . . , fn} from an unlabeled video V. We consider the tuple
(fb, fc, fd) to be in the correct temporal order (class 1, positive tuple) if the
frames obey either ordering b < c < d or d < c < b, to account for the direc-
tional ambiguity in video clips. Otherwise, if b < d < c or c < b < d, we say that
the frames are not in the correct temporal order (class 0, negative tuple).

3.2 Tuple Sampling

A critical challenge when training a network on the three-tuple ordering task
is how to sample positive and negative training instances. A naive method may
sample the tuples uniformly from a video. However, in temporal windows with
very little motion it is hard to distinguish between a positive and a negative
tuple, resulting in many ambiguous training examples. Instead, we only sample
tuples from temporal windows with high motion. As Fig. 2 shows, we use coarse

Fig. 2. (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the fc7 layer. Each stack takes a frame as input, and
produces a representation at the fc7 layer. The concatenated fc7 representations are
used to predict whether the input tuple is in the correct temporal order.
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frame level optical flow [56] as a proxy to measure the motion between frames.
We treat the average flow magnitude per-frame as a weight for that frame, and
use it to bias our sampling towards high motion windows. This ensures that the
classification of the tuples is not ambiguous. Figure 1(b) shows examples of such
tuples.

To create positive and negative tuples, we sample five frames (fa, fb, fc, fd, fe)
from a temporal window such that a < b < c < d < e (see Fig. 2(a)). Posi-
tive instances are created using (fb, fc, fd), while negative instances are created
using (fb, fa, fd) and (fb, fe, fd). Additional training examples are also created
by inverting the order of all training instances, eg., (fd, fc, fb) is positive. During
training it is critical to use the same beginning frame fb and ending frame fd

while only changing the middle frame for both positive and negative examples.
Since only the middle frame changes between training examples, the network is
encouraged to focus on this signal to learn the subtle difference between positives
and negatives, rather than irrelevant features.

To avoid sampling ambiguous negative frames fa and fe, we enforce that the
appearance of the positive fc frame is not too similar (measured by SSD on RGB
pixel values) to fa or fe. These simple conditions eliminated most ambiguous
examples. We provide further analysis of sampling data in Sect. 4.1.

3.3 Model Parametrization and Learning

To learn a feature representation from the tuple ordering task, we use a simple
triplet Siamese network. This network has three parallel stacks of layers with
shared parameters (Fig. 2). Every network stack follows the standard CaffeNet
[57] (a slight modification of AlexNet [58]) architecture from the conv1 to the fc7
layer. Each stack takes as input one of the frames from the tuple and produces
a representation at the fc7 layer. The three fc7 outputs are concatenated as
input to a linear classification layer. The classification layer can reason about
all three frames at once and predict whether they are in order or not (two
class classification). Since the layers from conv1 to fc7 are shared across the
network stacks, the Siamese architecture has the same number of parameters as
AlexNet barring the final fc8 layer. We update the parameters of the network
by minimizing the regularized cross-entropy loss of the predictions on each tuple.
While this network takes three inputs at training time, during testing we can
obtain the conv1 to fc7 representations of a single input frame by using just
one stack, as the parameters across the three stacks are shared.

4 Empirical Ablation Analysis

In this section (and in the Appendix), we present experiments to analyze the
various design decisions for training our network. In Sects. 5 and 6, we provide
results on both action recognition and pose estimation.

Dataset: We report all our results using split 1 of the benchmark UCF101 [12]
dataset. This dataset contains videos for 101 action categories with ∼9.5 k videos
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for training and ∼3.5 k videos for testing. Each video has an associated action
category label. The standard performance metric for action recognition on this
dataset is classification accuracy.

Details for Unsupervised Pre-training: For unsupervised pre-training, we
do not use the semantic action labels. We sample about 900k tuples from the
UCF101 training videos. We randomly initialize our network, and train for 100 k
iterations with a fixed learning rate of 10−3 and mini-batch size of 128 tuples.
Each tuple consists of 3 frames. Using more (4, 5) frames per tuple did not show
significant improvement. We use batch normalization [59].

Details for Action Recognition: The spatial network from [60] is a well-
established method of action recognition that uses only RGB appearance infor-
mation. The parameters of the spatial network are initialized with our unsu-
pervised pre-trained network. We use the provided action labels per video and
follow the training and testing protocol as suggested in [60,61]. Briefly, for train-
ing we form mini-batches by sampling random frames from videos. At test time,
25 frames are uniformly sampled from each video. Each frame is used to generate
10 inputs after fixed cropping and flipping (5 crops × 2 flips), and the prediction
for the video is an average of the predictions across these 25×10 inputs. We use
the CaffeNet architecture for its speed and efficiency. We initialize the network
parameters up to the fc7 layer using the parameters from the unsupervised pre-
trained network, and initialize a new fc8 layer for the action recognition task.
We finetune the network following [60] for 20k iterations with a batch size of
256, and learning rate of 10−2 decaying by 10 after 14k iterations, using SGD
with momentum of 0.9, and dropout of 0.5. While [60] used the wider VGG-
M-2048 [62] architecture, we found that their parameters transfer to CaffeNet
because of the similarities in their architectures.

4.1 Sampling of Data

In this section we study the impact of sampling parameters described in Sect. 3.2
on the unsupervised pre-training task. We denote the maximum distance between
frames of positive tuples by τmax = |b−d|. This parameter controls the ‘difficulty’
of positives: a very high value makes it difficult to see correspondence across the
positive tuple, and a very low value gives almost identical frames and thus very
easy positives. Similarly, we compute the minimum distance between the frames
fa and fe used for negative tuples to the other frames by τmin = min(|a− b|, |d−
e|). This parameter controls the difficulty of negatives with a low value making
them harder, and a high value making them easier.

We compute the training and testing accuracy of these networks on the tuple
prediction task on held out videos. This held out set is a union of samples using
all the temporal sampling parameters. We show results in Table 1(a). We also
use these networks for finetuning on the UCF101 action recognition task. Our
results show that the tuple prediction accuracy and the performance on the
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Table 1. We study the effect of our design choices such as temporal sampling para-
meters, and varying class ratios for unsupervised pre-training. We measure the tuple
prediction accuracy on a held out set from UCF101. We also show action classification
results after finetuning the models on the UCF101 action recognition task (split 1).

(a) Varying temporal sampling

τmax τmin Tuple Pred. Action Recog.

30 15 60.2 47.2
60 15 72.1 50.9
60 60 64.3 49.1

(b) Varying class ratios

Class Ratio Tuple Pred. Action Recog.
Neg Pos

0.5 0.5 52.1 38.1
0.65 0.35 68.5 45.5
0.75 0.25 72.1 50.9
0.85 0.15 67.7 48.6

action recognition task are correlated. A large temporal window for positive
sampling improves over a smaller temporal window (Rows 1 and 2), while a
large window for negative sampling hurts performance (Rows 2 and 3).

4.2 Class Ratios in Mini-batch

Another important factor when training the model is the class ratios in each
mini-batch. As has been observed empirically [63,64], a good class ratio per
mini-batch ensures that the model does not overfit to one particular class, and
helps the learning process. For these experiments, we choose a single temporal
window for sampling and vary only the ratio of positive and negative tuples per
mini-batch. We compare the accuracy of these networks on the tuple prediction
task on held out videos in Table 1(b). Additionally, we report the accuracy of
these networks after finetuning on the action recognition task. These results show
that the class ratio used for unsupervised pre-training can significantly impact
learning. It is important to have a larger percentage of negative examples.

4.3 What Does the Temporal Ordering Task Capture?

Nearest Neighbor Retrieval. We retrieve nearest neighbors using our unsu-
pervised features on the UCF101 dataset and compare them in Fig. 3 to retrievals
by the pre-trained ImageNet features, and a randomly initialized network. Addi-
tional examples are shown in the supplementary materials. We pick an input
query frame from a clip and retrieve neighbors from other clips in the UCF101
dataset. Since the UCF101 dataset has clips from the same video, the first set of
retrievals (after removing frames from the same input clip) are near duplicates
which are not very informative (notice the random network’s results). We remove
these near-duplicates by computing the sum of squared distances (SSD) between
the frames, and display the top results in the second row of each query. These
results make two things clear: (1) the ImageNet pre-trained network focuses on
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Fig. 3. We compute nearest neighbors using fc7 features on the UCF101 dataset. We
compare these results across three networks: pre-trained on ImageNet, pre-trained on
our unsupervised task and a randomly initialized network. We choose a input query
frame from a clip and retrieve results from other clips in the dataset. Since the dataset
contains multiple clips from the same video we get near duplicate retrievals (first row).
We remove these duplicates, and display results in the second row. While ImageNet
focuses on the high level semantics, our network captures the human pose.

scene semantics (2) Our unsupervised pre-trained network focuses on the pose
of the person. This would seem to indicate that the information captured by our
unsupervised pre-training is complementary to that of ImageNet. Such behavior
is not surprising, if we consider our network was trained without semantic labels,
and must reason about spatiotemporal signals for the tuple verification task.

Visualizing pool5 Unit Responses. We analyze the feature representation of
the unsupervised network trained using the tuple prediction task on UCF101.
Following the procedure of [65] we show the top regions for pool5 units alongwith
their receptive field in Fig. 4. This gives us insight into the network’s internal
feature representation and shows that many units show preference for human
body parts and pose. This is not surprising given that our network is trained on
videos of human action recognition, and must reason about human movements
for the tuple ordering task.
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Fig. 4. In each row we display the top image regions for a unit from the pool5 layer.
We follow the method in [65] and display the receptive fields (marked in red boxes) for
these units. As our network is trained on human action recognition videos, many units
show preference for human body parts and pose. (Color figure online)

5 Additional Experiments on Action Recognition

The previous experiments show that the unsupervised task learns a meaningful
representation. In this section we compare our unsupervised method against
existing baseline methods and present more quantitative results. We organize our
experiments as follows: (1) Comparing our unsupervised method to learning from
random initialization. (2) Exploring other unsupervised baselines and comparing
our method with them. (3) Combining our unsupervised representation learning
method with a supervised image representation. Additional experiments are in
the supplementary material. We now describe the common experimental setup.

Datasets and Evaluation: We use the UCF101 [12] dataset which was also
used for our ablation analysis in Sect. 4 and measure accuracy on the 101 action
classification task. Additionally, we use the HMDB51 [13] dataset for action
recognition. This dataset contains 3 splits for train/test, each with about 3.4k
videos for train and 1.4k videos for testing. Each video belongs to one of 51 action
categories, and performance is evaluated by measuring classification accuracy.
We follow the same train/test protocols for both UCF101 and HMDB51 as
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described in Sect. 4. Note that the UCF101 dataset is about 2.5× larger than
the HMDB51 dataset.

Implementation Details for Pre-training: We use tuples sampled using
τmax = 60 and τmin = 15 as described in Sect. 4. The class ratio of positive
examples per mini-batch is 25%. The other parameters for training/finetuning
are kept unchanged from Sect. 4.

Action Recognition Details: As in Sect. 4, we use the CaffeNet architecture
and the parameters from [60] for both training from scratch and finetuning.
We described the finetuning parameters in Sect. 4. For training from random
initialization (or ‘scratch’), we train for 80 k iterations with an initial learning
rate of 10−2, decaying by a factor of 10 at steps 50 k and 70 k. The other training
parameters (momentum, batch size etc.) are kept the same as in finetuning. We
use the improved data augmentation scheme (different aspect-ratio, fixed crops)
from [61] for all our methods and baselines. Note that we train or finetune all
the layers of the network for all methods, including ours.

5.1 Unsupervised Pre-training or Random Initialization?

In these experiments we study the advantage of unsupervised pre-training for
action recognition in comparison to learning without any pre-training. We use
our tuple prediction task to train a network starting from random initialization
on the train split of UCF101. The unsupervised pre-trained network is finetuned
on both the UCF101 and HMDB51 datasets for action recognition and compared
against learning from scratch (without pre-training). We report the performance
in Table 2. Our unsupervised pre-training shows a dramatic improvement of

+12.4% over training from scratch in UCF101 and a significant gain of +4.7%
in HMDB51. This impressive gain demonstrates the informativeness of the unsu-
pervised tuple verification task. On HMDB51, we additionally finetune a network
which was trained from scratch on UCF101 and report its performance in Table 2
indicated by ‘UCF supervised’. We see that this network performs worse than
our unsupervised pre-trained network. The UCF101 and HMDB51 have only 23
action classes in common [60] and we hypothesize that the poor performance
is due to the scratch UCF101 network being unable to generalize to actions

Table 2. Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datasets. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean accuracy

UCF101 Random 38.6

(Ours) tuple verification 50.2

HMDB51 Random 13.3

UCF supervised 15.2

(Ours) Tuple verification 18.1
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from HMDB51. For reference, a model pre-trained on the supervised ImageNet
dataset [16,66] and finetuned on UCF101 gives 67.1% accuracy, and ImageNet
finetuned on HMDB51 gives an accuracy of 28.5%.

5.2 Unsupervised Baselines

In this section, we enumerate a variety of alternative verification tasks that use
only video frames and their temporal ordering. For each task, we use a similar
frame sampling procedure to the one described in Sect. 4.1. We compare their
performance after finetuning them on the task of action recognition. A more
informative task should serve as a better task for pre-training.

Two Close: In this task two frames (fb, fd) (with high motion) are considered
to be temporally close if |b − d| < τ for a fixed temporal window τ = 30.

Two Order: Two frames (fb, fd) are considered to be correct if b < d. Otherwise
they are considered incorrect. |b − d| < 30.

Three Order: This is the original temporal ordering task we proposed in
Sect. 3.1. We consider the 3-tuple (fb, fc, fd) to be correct only if the frames
obey either ordering b < c < d or b > c > d.

We also compare against standard baselines for unsupervised learning from
video.

DrLim [40]: As Eq. 1 shows, this method enforces temporal smoothness over the
learned features by minimizing the l2 distance d between representations (fc7)
of nearby frames fb, fd (positive class or c = 1), while requiring frames that are
not close (negative class or c = 0) to be separated by a margin δ. We use the
same samples as in the ‘Two Close’ baseline, and set δ = 1.0 [38].

L(fb, fd) = 1(c = 1)d(fb, fd) + 1(c = 0)max(δ − d(fb, fd), 0) (1)

TempCoh [38]: Similar to the DrLim method, temporal coherence learns rep-
resentations from video by using the l1 distance for pairs of frames rather than
the l2 distance of DrLim.

Obj. Patch [52]: We use their publicly available model which was unsupervised
pre-trained on videos of objects. As their patch-mining code is not available, we
do not do unsupervised pre-training on UCF101 for their model.

All these methods (except [52]) are pre-trained on training split 1 of UCF101
without action labels, and then finetuned on test split 1 of UCF101 actions and
HMDB51 actions. We compare them in Table 3. Scratch performance for test
split 1 of UCF101 and HMDB51 is 39.1% and 14.8% respectively. The tuple
verification task outperforms other sequential ordering tasks, and the standard
baselines by a significant margin. We attribute the low number of [52] to the fact
that they focus on object detection on a very different set of videos, and thus do
not perform well on action recognition.
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Table 3. We compare the unsupervised methods defined in Sect. 5.2 by finetuning on
the UCF101 and HMDB51 Action recognition (split 1 for both). Method with * was
not pre-trained on action data.

Unsup method → Two Two DrLim TempCoh Three Order Obj. Patch*
close order [40] [38] (Ours) [52]

Acc. UCF101 42.3 44.1 45.7 45.4 50.9 40.7

Acc. HMDB51 15.0 16.4 16.3 15.9 19.8 15.6

5.3 Combining Unsupervised and Supervised Pre-training

We have thus far seen that unsupervised pre-training gives a significant per-
formance boost over training from random initialization. We now see if our
pre-training can help improve existing image representations. Specifically, we
initialize our model using the weights from the ImageNet pre-trained model and
use it for the tuple-prediction task on UCF101 by finetuning for 10k iterations.
We hypothesize this may add complementary information to the ImageNet rep-
resentation. To test this, we finetune this model on the HMDB51 [13] action
recognition task. We compare this performance to finetuning on HMDB51 with-
out the tuple-prediction task. Table 4 shows these results.

Our results show that combining our pre-training with ImageNet helps
improve the accuracy of the model (rows 3, 4). Finally, we compare against using
multiple sources of supervised data: initialized using the ImageNet weights, fine-
tuned on UCF101 action recognition and then finetuned on HMDB51 (row 5).
The accuracy using all sources of supervised data is only slightly better than the
performance of our model (rows 4, 5). This demonstrates the effectiveness of our
simple yet powerful unsupervised pre-training.

Table 4. Results of using our unsupervised pre-training to adapt existing image rep-
resentations trained on ImageNet. We use unsupervised data from training split 1 of
UCF101, and show the mean accuracy (3 splits) by finetuning on HMDB51.

Initialization Mean accuracy

Random 13.3

(Ours) tuple verification 18.1

UCF sup 15.2

ImageNet 28.5

(Ours) ImageNet + tuple verification 29.9

ImageNet + UCF sup 30.6
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6 Pose Estimation Experiments

The qualitative results from Sect. 4.3 suggest that our network captures informa-
tion about human pose. To evaluate this quantitatively, we conduct experiments
on the task of pose estimation using keypoint prediction.

Datasets and Metrics: We use the FLIC (full) [14] and the MPII [15] datasets.
For FLIC, we consider 7 keypoints on the torso: head, 2× (shoulders, elbows,
wrists). We compute the keypoint for the head as an average of the keypoints
for the eyes and nose. We evaluate the Probability of Correct Keypoints (PCK)
measure [67] for the keypoints. For MPII, we use all the keypoints on the full
body and report the PCKh@0.5 metric as is standard for this dataset.

Model Training: We use the CaffeNet architecture to regress to the keypoints.
We follow the training procedure in [68]1. For FLIC, we use a train/test split
of 17k and 3k images respectively and finetune models for 100k iterations. For
MPII, we use a train/test split of 18k and 2k images. We use a batch size of 32,
learning rate of 5 × 10−4 with AdaGrad [69] and minimize the Euclidean loss
(l2 distance between ground truth and predicted keypoints). For training from
scratch (Random Init.), we use a learning rate of 5 × 10−4 for 1.3M iterations.

Methods: Following the setup in Sect. 5.1, we compare against various initializa-
tions of the network. We consider two supervised initalizations - from pre-training
on ImageNet and UCF101. We consider three unsupervised initializations - our
tuple based method, DrLim [40] on UCF101, and the method of [52]. We also
combine our unsupervised initialization with ImageNet pre-training.

Our results for pose estimation are summarized in Table 5. Our unsupervised
pre-training method outperforms the fully supervised UCF network (Sect. 5.1)
by +7.6% on FLIC and +2.1% on MPII. Our method is also competitive with
ImageNet pre-training on both these datasets. Our unsupervised pre-training is
complementary to ImageNet pre-training, and can improve results after being

Table 5. Pose estimation results on the FLIC and MPII datasets.

Init PCK for FLIC PCKh@0.5 for MPII

wri elb sho head Mean AUC Upper Full AUC

Random Init 53.0 75.2 86.7 91.7 74.5 36.1 76.1 72.9 34.0

Tuple Verif 69.6 85.5 92.8 97.4 84.7 49.6 87.7 85.8 47.6

Obj. Patch [52] 58.2 77.8 88.4 94.8 77.1 42.1 84.3 82.8 43.8

DrLim [40] 37.8 68.4 80.4 83.4 65.2 27.9 84.3 81.5 41.5

UCF Sup 61.0 78.8 89.1 93.8 78.8 42.0 86.9 84.6 45.5

ImageNet 69.6 86.7 93.6 97.9 85.8 51.3 85.1 83.5 47.2

ImageNet + Tuple 69.7 87.1 93.8 98.1 86.2 52.5 87.6 86.0 49.5

1 Public re-implementation from https://github.com/mitmul/deeppose.

https://github.com/mitmul/deeppose
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combined with it. This supports the qualitative results from Sect. 4.3 that show
our method can learn human pose information from unsupervised videos.

7 Discussion

In this paper, we studied unsupervised learning from the raw spatiotemporal
signal in videos. Our proposed method outperforms other existing unsupervised
methods and is competitive with supervised methods. A next step to our work is
to explore different types of videos and use other ‘free’ signals such as optical flow.
Another direction is to use a combination of CNNs and RNNs, and to extend
our tuple verification task to much longer sequences. We believe combining this
with semi-supervised methods [70,71] is a promising future direction.
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