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Abstract

The recent success of convolutional neural networks has

led to the development of a variety of new effective and ef-

ficient architectures. However, few of them have been de-

signed for the specific case of face recognition. Inspired on

the state-of-the-art ShuffleNetV2 model, a lightweight face

architecture is presented in this paper. The proposal, named

ShuffleFaceNet, introduces significant modifications in or-

der to improve face recognition accuracy. First, the Global

Average Pooling layer is replaced by a Global Depth-wise

Convolution layer, and Parametric Rectified Linear Unit is

used as a non-linear activation function. Under the same

experimental conditions, ShuffleFaceNet achieves signifi-

cantly superior accuracy than the original ShuffleNetV2,

maintaining the same speed and compact storage. In addi-

tion, extensive experiments conducted on three challenging

benchmark face datasets, show that our proposal improves

not only state-of-the-art lightweight models but also very

deep face recognition models.

1. Introduction

Deep neural networks (DNNs) have recently achieved

a series of breakthroughs in many computer vision tasks,

including unconstrained face recognition [33]. However,

modern highly-accurate face recognition methods are usu-

ally built upon very deep convolutional neural networks

(CNNs) [6, 26, 39] which means that they comprise a long

sequence of convolutional layers. As a result, the models

require a high amount of computational resources such as

large memory and powerful GPUs in order to achieve high-

performance results. For example, the widely used VGG-

Face network [26] involves 138 million parameters, more

than 500 MB memory size and over 15G floating-point op-

erations (FLOPs) to classify a single 224 × 224 image.

Therefore, this kind of models is usually unable to deploy

on real-time applications or computationally limited plat-

forms such as robots, smart phones and, mobile devices.

In order to overcome these limitations, recent develop-

ments have focused on building small and efficient neu-

ral networks without significantly deteriorating their per-

formance. Some approaches have tried to compress or ac-

celerate pre-trained networks by using techniques such as

pruning [9], knowledge distillation [11], low-rank approx-

imation [41] and quantization [16]. In the last few years,

developing lightweight deep neural networks is one of the

most promising solutions to obtain better speed-accuracy

trade-off [14, 40, 19, 27]. SqueezeNet [14], MobileNets

[27] and ShuffleNets [40, 19] are among the most popular

ones for common visual recognition tasks, showing impres-

sive results. However, just a few works have proposed accu-

rate lightweight architectures specifically designed for face

recognition [2, 4, 7, 36, 37], so this topic deserves further

attention.

In this paper, we propose a new lightweight architecture

named ShuffleFaceNet, that extends the extremely efficient

network ShuffleNetV2 [19] to the domain of face recogni-

tion. Firstly, we replace the Global Average Pooling layer

for a Global Depth-wise Convolution layer in order to ob-

tain a more discriminative face representation. Secondly,

we use Parametric Rectified Linear Unit (PReLU) as a non-

linear activation function due to its accuracy improvement

over the Rectified Linear Unit (ReLU) function. As a re-

sult, we designed four ShuffleFaceNet models with different

complexity levels that use less than 4.5 millions parameters,



with a maximum computational complexity and model size

of 1.05G FLOPs and 18 MB, respectively. The experiments

conducted on images and videos benchmark datasets show

that our proposal improves both state-of-the-art lightweight

and very deep CNNs for face recognition. The major con-

tributions of this work are summarized as follows:

• We ensure not only speed and compact storage space,

but also significant improvements on face recogni-

tion accuracy, by using a Global Depth-wise Convo-

lution layer to output a discriminative feature vector

and PReLU as a non-linear activation function.

• We design an efficient and accurate lightweight face ar-

chitecture, with four different complexity levels. The

resulting ShuffleFaceNet models are less than 20 MB

of size and have an actual inference CPU time of about

37 ms, which is suitable for deploying on real-time ap-

plications, as well as, mobile and embedded devices.

• We demonstrate that the proposal achieves better per-

formance than state-of-the-art lightweight CNNs as

well as very deep CNNs, on two popular face recogni-

tion benchmarks and on a recently released lightweight

face recognition challenge.

The paper is organized as follows. Section 2 reviews the

existing lightweight CNNs for face recognition. Section 3

introduces the lightweight ShuffleFaceNet architecture pro-

posed for face recognition. Experimental results are given

in Section 4, and finally, we conclude in Section 5.

2. Related Work

Deploying efficient and lightweight deep face recogni-

tion architectures remains a challenge for real-world ap-

plications. A light CNN framework was proposed in [37]

to obtain a compact and low dimensional face representa-

tion. For this, the authors introduce an alternative of ReLU

function, named Max-Feature-Map (MFM), to suppress the

low-activation neurons in each convolutional layer. Also,

small convolution filters, Network in Network layers, and

Residual Blocks are used to reduce parameter space and

improve performance. Three architectures for light CNNs

were evaluated, showing better performance in terms of

speed and storage space compared with state-of-the-art big

face models. However, their most accurate architecture

(light CNN-29) has 12.6 million parameters and about 3.9G

FLOPs, which make it not-so-suitable for mobile and em-

bedded platforms. An alternative to spatial convolutions,

named shift operation was presented in [36], which requires

zero FLOPs and zero parameters and can be easily and

efficiently implemented. To demonstrate the shift opera-

tion’s effectiveness in the face recognition task, the authors

take the original FaceNet [28] and propose a new Shift-

FaceNet model that reduces the parameter size by 35×,

with at most 2% drop of accuracy in above three verifica-

tion benchmarks. LMobileNetE [4] is an improved version

of MobileNet [27] that achieves comparable face verifica-

tion accuracy with the lowest running time, but the model

size is 112MB, which is a larger-sized model rather than

lightweight.

Recently, MobileFaceNets [2] were introduced for high-

accuracy and real-time face verification on mobile and em-

bedded devices. Experiments on the Labeled Faces in the

Wild (LFW) database showed that MobileFaceNets achieve

an accuracy similar to that of state-of-the-art large size mod-

els, with faster inference speed. However, in the case of the

MegaFace dataset, accuracy decreases slightly. MobiFace

[7] is another lightweight CNN designed for face recogni-

tion on mobile devices, which adopts fast downsampling

and bottleneck residual block with the expansion layers and

achieves high performance with 99.7% on LFW database

and 91.3% on MegaFace database.

Regardless of the few works focused on highly efficient

and lightweight architectures specifically designed for face

recognition, there are other lightweight CNNs [14, 40, 19]

that have shown excellent performance in image classifi-

cation tasks and deserve further attention in face recogni-

tion. For example, SqueezeNet [14] is a very small CNN

architecture that achieves AlexNet-level accuracy on Ima-

geNet with 50× fewer parameters. Its success is given by

three main strategies: first, replace 3×3 filters with 1×1 fil-

ters, which has 9× fewer parameters; second, decrease the

number of input channels to 3×3 filters and finally, down-

sample late in the network so that convolution layers have

large activation maps. Zhang et al. [40] proposed an ex-

tremely computational efficient CNN architecture named

ShuffleNet, which utilizes point-wise group convolution

and channel shuffle operations. Compared with MobileNet,

it achieves superior performance by a significant margin on

ImageNet classification. ShuffleNetV2 [19] was inspired by

ShuffleNet, but considering some practical aspects in its de-

sign to get a more efficient network architecture while main-

taining high levels of accuracy. For this, a simple operator,

named channel split, was introduced, allowing to maintain a

large number and equally wide channels with neither dense

convolution nor too many groups.

3. ShuffleFaceNet Architecture

In this section, we detail the lightweight ShuffleFaceNet

architecture designed for face recognition. The proposal is

inspired by the state-of-the-art network ShuffleNetV2 [19],

but adding some strategies aimed at improving its robust-

ness on this task.

Most of the deep networks designed for image classifica-

tion, including ShuffleNetV2, use the output of the Global



Name Kernel/Stride Output Size
Output Channels

0.5× 1× 1.5× 2×

Image - 112 × 112 3 3 3 3

Conv1 3× 3/2 56 × 56 24 24 24 24

Stage2 - 28 × 28 48 116 176 244

Stage3 - 14 × 14 96 232 352 488

Stage4 - 7 × 7 192 464 704 976

Conv5 1× 1/1 7 × 7 1024 1024 1024 2048

GDConv 7×7/1 1 × 1 1024 1024 1024 1024

LinearConv 1×1/1 1 × 1 128 128 128 128

Table 1. ShuffleFaceNet architecture for four different levels of complexity.

Average Pooling (GAP) layer as a feature vector in the em-

bedding process. However, in the case of face recognition,

this strategy has shown to be less accurate [37, 2, 4]. This

is due to GAP layer treats each unit of the output feature

map equally, which is not consistent with the theory that

different kinds of units bring more or less discriminative in-

formation for extracting a face feature vector. Using a Fully

Connected (FC) layer instead, allows us to learn different

weights to these units and project the information embed-

ded into a compact face feature vector. Nevertheless, the FC

layer ended up having a large number of weights, which not

only requires more computational power but also increases

the model size. Recently, a Global Depth-wise Convolution

(GDC) layer was used in [2] to treat different units of the

output feature map with different importance, showing be

an efficient structure for face recognition. In this work, we

replace the GAP layer of ShuffleNetV2 with a GDC layer.

On the other hand, ShuffleNetV2 model is based on the

ReLU activation function [24] that offers usually high di-

mensional and sparse features. To alleviate this problem,

several activation functions have been proposed [37, 10, 20,

38]. We choose PReLU [10] as the non-linearity rather than

ReLU which has shown to be better for face recognition

[1, 2, 7] since it allows negative responses that in turn im-

proves the network performance.

In addition, we use a fast downsampling strategy at the

beginning of our network and a linear 1 × 1 convolution

layer following a GDC layer, as the feature output layer.

Consequently, a compact 128-dimensional face representa-

tion is obtained.

The detailed structure of the proposed ShuffleFaceNet

architecture is shown in Table 1, the number of channels in

each block is scaled to generate networks of different com-

plexities, denoted as 0.5×, 1×, 1.5× and 2×. The building

blocks in Stages 2-4 consist of DenseNet blocks [12].

4. Experimental evaluation

In this section, we assess the performance of our

lightweight ShuffleFaceNet architecture from the aspects

of accuracy, speed, and model size. The proposal is com-

pared with several state-of-the-art models on three bench-

mark datasets for face recognition.

4.1. Training and Network settings

We use as training set the cleaned MS1M dataset [8],

which contains 5.1 million face images of 93K identities.

We take Labeled Faces in the Wild (LFW) [13], Celebrities

in Frontal Profile (CFP) [29] and Age Database (AgeDB)

[23] as the validation sets. All face images are re-aligned to

the size of 112×112 by using the RetinaFace detector [5],

and each pixel (ranged between [0; 255]) in RGB images is

normalized by subtracting 127.5 then divided by 128. All

feature embedding dimensions are set to 128.

We set the batch size as low as 256 and train models

on two Nvidia GeForce GTX 1080Ti (11GB) GPUs. The

learning rate starts from 0.1, and it is divided by 10 at the

100K, 140K, 160K iterations. The total iteration step is set

as 200K. We used a Stochastic Gradient Descent optimizer,

setting the momentum at 0.9 and weight decay at 5e-4. The

parameter initialization for convolution is Xavier with ran-

dom sampling from a Gaussian normal distribution. All ex-

periments are implemented on the MxNet framework [3].

We trained ShuffleFaceNet with four complexity levels

and different loss functions such as SoftMax, CosFace [32]

and ArcFace [4]. Table 2 shows the verification accuracy

obtained on the LFW, CFP-FP, and AgeDB datasets for

each model, as well as the number of parameters, the model

sizes, and the complexity in terms of FLOPs.

As we can see, in the case of LFW, the performance im-

provement for each ShuffleFaceNet with a different com-

plexity level is not significant, since this dataset is almost

saturated. In contrast, both CosFace and ArcFace outper-

form SoftMax, especially under large pose and age varia-

tions. In addition, we find that CosFace and ArcFace per-

form very similar; however, this last one is slightly better.

As expected, the higher the complexity, the higher the

accuracy. However, there is not a significant difference be-

tween levels 1.5× and 2×. Thus, in order to get a better



Method
Complexity # Params. Model size Loss Accuracy Accuracy Accuracy

FLOPs (M) (MB) Function LFW CFP-FP AgeDB

SoftMax 96.87 ± 1.2 88.60 ± 1.4 78.33 ± 2.0

ShuffleFaceNet 0.5× 66.9M 0.5 1.9 CosFace 99.23 ± 0.5 92.59 ± 1.4 93.22 ± 1.4

ArcFace 99.07 ± 0.5 91.87 ± 1.5 92.45 ± 1.7

SoftMax 96.91 ± 0.8 90.42 ± 2.0 80.40 ± 1.5

ShuffleFaceNet 1× 275.8M 1.4 5.6 CosFace 99.42 ± 0.3 95.07 ± 0.7 95.13 ± 1.0

ArcFace 99.45 ± 0.4 96.04 ± 0.9 96.33 ± 0.7

SoftMax 96.37 ± 0.9 90.57 ± 1.0 80.37 ± 2.7

ShuffleFaceNet 1.5× 577.5M 2.6 10.5 CosFace 99.62 ± 0.2 96.79 ± 0.6 96.75 ± 0.7

ArcFace 99.67 ± 0.3 97.26 ± 0.7 97.32 ± 0.8

SoftMax 97.15 ± 0.7 91.57 ± 1.0 81.95 ± 2.9

ShuffleFaceNet 2× 1.05G 4.5 18 CosFace 99.58 ± 0.3 97.33 ± 0.6 97.08 ± 0.9

ArcFace 99.62 ± 0.4 97.56 ± 0.6 97.28 ± 0.8

Table 2. Verification results (%) on LFW, CFP-FP and AgeDB databases for different loss functions.

Method
LFW CFP-FP AgeDB Complexity #Params. Model Size GPU Speed

Accuracy Accuracy Accuracy (FLOPs) (M) (MB) (ms)

ShuffleNetV2∗ 1.5× 99.52 ± 0.4 96.21 ± 1.1 94.78 ± 1.1 577.3M 2.5 10.1 0.77

ShuffleFaceNet 1.5× 99.67 ± 0.3 97.26 ± 0.7 97.32 ± 0.8 577.5M 2.6 10.5 0.77

Table 3. Performance comparison between our ShuffleFaceNet and the original ShuffleNetV2 on LFW, CFP-FP and AgeDB databases.

speed-accuracy trade-off, we have decided to use in the re-

maining experiments, the ShuffleFaceNet 1.5× trained with

ArcFace loss function.

4.1.1 Comparison with ShuffleNetV2 architecture

We compare our ShuffleFaceNet 1.5× with the original

ShuffleNetV2 1.5× [19] in order to show the advantages

of the proposal for the case of face recognition. For a fair

comparison, ShuffleNetV2 1.5× is trained from scratch by

ArcFace loss function under the same training setting as our

ShuffleFaceNet. In the rest of this paper we will refer to the

resulting model as ShuffleNetV2∗ 1.5×.

Table 3 presents the verification accuracy of the tested

models on LFW, CFP-FP and AgeDB datasets. In addition,

it shows the number of parameters, the model size and the

inference time. It can be seen that the proposal outperforms

the original ShuffleNetV2 model on the three datasets. On

the other hand, although the model size and number of pa-

rameters increase a little bit, the inference time remains the

same. This means that the guidelines considered in the de-

sign of the efficient ShuffleNetV2 were maintained [19].

4.2. Performance assessment

In order to evaluate the effectiveness of ShuffleFaceNet

1.5×, we conducted several experiments on two popular

benchmarks as well as on a recently released Lightweight

Face Recognition Challenge. Note that, we do not re-train

or fine-tune the ShuffleFaceNet model on any training set of

the testing database. Thus, we directly extract the features

of the ShuffleFaceNet learned on the cleaned MS1M dataset

described previously, and perform the comparison of these

features by a metric.

4.2.1 MegaFace Challenge 1 on FaceScrub

Method Rank-1 VR@FAR=10−6

Vocord-DeepVo1 75.1 67.3

Deepsense-large 74.8 87.8

CenterLoss [34] 65.2 76.5

FaceNet [28] 70.5 86.5

CosFace [32] 82.7 96.7

ResNet50-ArcFace [4] 77.5 92.3

ResNet100-ArcFace [4] 81.0 97.0

Light CNN-4 [37] 60.2 62.3

Light CNN-9 [37] 67.1 77.5

Light CNN-29 [37] 73.5 84.7

MobileFaceNet [2] - 90.2

ShuffleNetV2∗ 1.5× 69.6 84.1

ShuffleFaceNet 1.5× 77.4 93.0

Table 4. Performance evaluation on the MegaFace Challenge 1 us-

ing FaceScrub as test set. Rank-1 refers to face identification ac-

curacy (%) at first position with 1 million distractors, and VR (%)

corresponds to the verification TAR for a FAR value of 10−6.



The MegaFace database [17] is one of the largest pub-

licly available testing benchmarks for evaluating the perfor-

mance of face recognition algorithms at the million scale of

distractors. MegaFace includes a gallery set and a probe set.

The gallery set consists of a subset of Flickr photos from

Yahoo [31], containing more than one million images from

690K different individuals. The probe sets are two exist-

ing databases: FaceScrub and FGNet. In this work, we use

FaceScrub [25] as the probe set that contains 100K photos

of 530 unique individuals.

Table 4 summarizes the results obtained by the proposed

ShuffleFaceNet 1.5× and the original ShuffleNetV2∗
1.5×

compared with state-of-the-art methods reported for both

the identification and verification tasks. True Acceptance

Rate (TAR) under False Acceptance Rate (FAR) of 10−6 is

used to report the verification results, while the Rank-1 face

accuracy is employed to the case of identification. Since our

training set has more than 0.5 million images, it is regarded

as large.

As we can see, on this large database, ShuffleFaceNet

outperforms ShuffleNetV2∗ by almost 9% for both Rank-1

and VR@FAR=10−6 evaluation measures and shows its su-

periority with respect to the rest of light models such as Mo-

bileFaceNet and Light CNNs -4,-9 and -29. The obtained

results are even better than existing very deep models such

as Vocord and Deepsense, which are provided as baseline

methods on the benchmark [17]. Other very deep models

which provide better results need higher computational re-

sources and storage space, as we will analyze later. For

example, the LResNet100E model, that obtains the best re-

sults in this benchmark database, has a size of 250 MB.

4.2.2 Evaluation on YouTube Face database

The YouTube Faces (YTF) database [35] is a large video

dataset for unconstrained face recognition in videos. It con-

tains 3,425 videos of 1,595 subjects with significant vari-

ations on expression, illumination, pose, resolution, and

background. An average of 2.15 videos are available for

each subject. The average length of a video is 181.3 frames.

For the standard protocol of the YTF database, a pair-

matching benchmark corresponding to 5000 video pairs is

provided. Specifically, these pairs are divided into ten splits,

each one containing 250 positive pairs and 250 negative

ones.

For each YTF video, we selected the 50 most frontal

frames and compute the corresponding face descriptors. Fi-

nally, the video is represented by the average of the 50 face

descriptors, and cosine similarity is used for comparison.

We compare the performance of our SuffleFaceNet 1.5×
with ShuffleNetV2∗ 1.5× and state-of-the-art methods re-

ported on this database. Table 5 presents the obtained veri-

fication results, in terms of the three metrics that are usually

considered to report the verification results: the mean accu-

racy, the area under the curve (AUC) and the equal error rate

(EER). It can be seen that the proposal achieves state-of-the-

art results and also, in this case, outperforms the original

ShuffleNetV2∗ for the three used metrics.

Method Accuracy AUC EER

LBinVF2 [21] 83.3 93.2 14.6

DeepFace-single [30] 91.4 96.3 8.6

ShiftFaceNet [36] 90.1 96.1 -

NAN [39] 95.7 98.8 -

FaceNet [28] 95.1 - -

Light CNN-29 [37] 95.5 - -

SphereFace [18] 95.0 - -

VGG-Face [26] 97.3 - -

CosFace [32] 97.6 - -

CenterLoss [34] 94.9 - -

TBE-CNN [6] 95.0 - -

ShuffleNetV2∗ 1.5× 93.3 97.7 7.0

ShuffleFaceNet 1.5× 95.7 98.2 5.3

Table 5. Verification results (%) on YouTube Face database.

Recently, new relevant evaluation protocols were pro-

posed for the YTF database: REP-YTF [22], containing

open/closed-set identification for both video-to-video and

video-to-image comparisons. Under these protocols, the

YTF database is divided into ten random trials of training

and test sets. On each trial, for both open and closed-set

identification protocols, three different configurations of the

test set are obtained by using the openness values: 0.2, 0.5,

and 0.9, resulting in different gallery sizes. Performance

metrics are computed and averaged over the ten random tri-

als, and the standard deviation is also reported.

We compare ShuffleFaceNet 1.5× and ShuffleNetV2∗

1.5× with the three best-performing methods reported on

the REP-YTF by using open and closed-set identification

protocols. Based on the results obtained on [22], we choose

the LDA metric learning to perform the comparison. For

the open-set identification protocol, Table 6 shows the mean

Detection and Identification Rate (DIR) at rank-1 and the

corresponding standard deviation over the 10 trials for a

False Acceptance Rate (FAR) of 1% in both video-to-video

and video-to-image scenarios. In the case of the closed-set

identification protocol, the recognition rates at rank-1 are

presented in Table 7. As we can see, under this protocol,

the differences between ShuffleFaceNet and ShuffleNetV2∗

are also in general about 10% and both of them outperform

baseline methods by a great margin. For example, in the

video-to-image open set scenario, ShuffleFaceNet outper-

forms the accuracy of the popular VGG-Face model in more

than 40%.



Method
video-to-video video-to-image

Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9)

LBinVF2 + LDA 10.05 ± 2.1 8.57 ± 0.8 8.18 ± 1.0 6.58 ± 1.5 4.78 ± 0.8 4.53 ± 0.5

VGG-Face + JB 22.83 ± 3.6 18.16 ± 1.8 16.28 ± 1.5 17.33 ± 2.9 14.20 ± 2.4 13.14 ± 1.1

Dlib + LDA 25.97 ± 3.0 20.12 ± 1.2 17.99 ± 1.5 16.62 ± 4.2 14.26 ± 1.7 11.41 ± 1.0

ShuffleNetV2∗ 1.5× + LDA 51.63 ± 4.7 45.70 ± 3.5 42.90 ± 3.2 49.43 ± 3.6 43.06 ± 1.7 39.86 ±2.4

ShuffleFaceNet 1.5× + LDA 59.79 ± 5.3 54.21 ± 3.3 51.44 ± 3.8 64.33 ± 3.5 59.64 ± 2.0 57.57 ± 3.0

Table 6. Performance comparison on YouTube Face database for REP-YTF open-set identification protocol in video-to-video and video-

to-image scenarios. The results are reported as the mean DIR (%) at rank-1 and FAR = 1%.

Method
video-to-video video-to-image

Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9)

LBinVF2 + LDA 37.70 ± 3.5 30.93 ± 1.6 29.85 ± 1.3 31.55 ± 3.8 24.46 ± 1.7 24.01 ± 1.4

VGG-Face + LDA 60.60 ± 3.2 54.59 ± 1.6 52.33 ± 1.3 53.87 ± 3.3 47.49 ± 1.8 45.02 ± 1.1

Dlib + LDA 71.91 ± 2.0 66.53 ± 1.7 64.18 ± 0.8 56.78 ± 3.4 50.90 ± 2.7 48.33 ± 2.1

ShuffleNetV2∗ 1.5× + LDA 82.65 ± 2.4 79.22 ± 1.4 78.03 ± 1.2 76.88 ± 2.4 72.38 ± 1.4 71.20 ± 1.2

ShuffleFaceNet 1.5× + LDA 86.83 ± 2.1 85.52 ± 1.1 84.61 ± 1.0 84.40 ± 2.1 81.89 ± 1.1 80.36 ± 1.0

Table 7. Identification rates at rank-1 on YouTube Face database for the REP-YTF closed-set identification protocol in video-to-video and

video-to-image scenarios.

4.2.3 Lightweight Face Recognition Challenge

We conduct an additional experiment on the recently re-

leased ICCV 2019 Lightweight Face Recognition (LFR)

Challenge [15]. Specifically, we participated in the Track 1

which requires float32 solutions with a computational com-

plexity less than 1G FLOPs, a model size up to 20 MB

and feature dimension up to 512. The selected Shuffle-

FaceNet 1.5× model, based on the validation results in sec-

tion 4.1, fulfill the requirements of this track. This model

is evaluated and compared with the provided baseline Mo-

bileFaceNet in the two testing sets: large-scale images and

large-scale videos.

The Trillion-Pairs dataset (deepglint-light) is used as the

large-scale image test set, which contains about 274K face

images from 5.7K identities from celebrities in the LFW

name list and 1.58M face images from Flickr as distractors.

In the case of the large-scale video test set, the iQIYI-VID

test set (iQIYI-light) is used, that includes 200K videos of

10K identities. All test images were preprocessed to the

size of 112×112 similar to the training data.

Table 8 shows the results obtained on the LFR Challenge

in terms of True Positive Rate at a given False Acceptance

Rate. Compared to the MobileFaceNet baseline, it can be

seen the improvement of our ShuffleFaceNet architecture

on the image test set, while the performance is very close to

that obtained by the baseline model on the video dataset.

4.3. Performance on Speed and Storage Space

In this section, we aim at evaluating the speed and stor-

age space of the proposed architecture, in order to demon-

Method deepglint-light iQIYI-light

MobileFaceNet-baseline 64.69 47.19

ShuffleFaceNet 1.5× 75.31 44.55

Table 8. Results on the LFR Challenge reported in terms of

TPR@FAR=10−8 and TPR@FAR=10−4 for the large-scale im-

age (deepglint-light) and video (iQIYI-light) test sets, respectively.

strate its feasibility in real-time applications or computa-

tionally limited platforms.

We first compare the actual speed of our ShuffleFaceNets

models with the ShuffleNetV2 1.5× and the MobileFaceNet

model provided on the LFR Challenge [15]. The efficiency

measurements were obtained by performing inference over

12,000 images from the Labeled Faces in the Wild dataset.

We measured the inference time per image of these models

on four different devices including CPU Intel i7-7700HQ

(Mobile processor), Nvidia Quadro P2000, Nvidia GeForce

GTX 1050Ti Mobile and Nvidia GeForce GTX 1660Ti.

The obtained results are shown in Table 9. For our Shuf-

fleFaceNet architecture, similar to the accuracy behavior, as

complexity increases the inference time increases. Taking

as reference the ShuffleFaceNet 1.5×, that was selected as

the one with the better speed-accuracy trade-off, we can see

that it is clearly faster than ShuffleNetV2 1.5× and Mobile-

FaceNet models, especially on CPU, being MobileFaceNet

the slowest. Moreover, on the different GPUs, the inference

time of all evaluated models decrease considerably com-

pared to GPU’s. However, ShuffleFaceNet 1.5× is faster

than all the counterparts.



Speed (miliseconds)

Method Mobile Quadro 1050 1660

Intel i7 P200 Ti Ti

MobileFaceNet [15] 62.4 5.5 7.3 3.3

ShuffleNetV2∗ 1.5× 33.0 5.3 12.3 2.8

ShuffleFaceNet 0.5× 12.0 1.4 2.0 0.7

ShuffleFaceNet 1× 23.8 3.0 3.3 1.2

ShuffleFaceNet 1.5× 29.1 4.7 4.7 1.9

ShuffleFaceNet 2× 37.5 6.4 6.9 2.4

Table 9. Comparison of inference time in different devices.

Table 10 presents the computational complexity in terms

of FLOPs, the number of parameters and the model size

of our proposed architecture taking as reference Shuffle-

FaceNet 1.5×, compared with several state-of-the-art face

deep models that have been tested in previous sections. It

can be seen that the proposal is one of the lightest from

the evaluated models. This, together with its fast infer-

ence speed discussed above, make our ShuffleFaceNet 1.5×
highly suitable for real-time or computationally limited face

recognition applications.

Method Complexity #Param. Model

(FLOPs) (M) size

FaceNet [28] 1.6B 7.5 30

VGG-Face [26] 15G 138 526

Light CNN-4 [37] 1.5G 4.1 26

Light CNN-9 [37] 1.0G 5.6 32

Light CNN-29 [37] 3.9G 12.6 125

MobileFaceNet [2] 439.8M 1.0 4.0

MobileFaceNet [15] 933.3M 2.0 8.2

ShuffleFaceNet 1.5× 577.5M 2.6 10.5

Table 10. Storage space and complexity comparison of Shuffle-

FaceNet 1.5× with some state-of-the-art face recognition models.

5. Conclusion

In this paper, we have developed a lightweight convolu-

tion neural architecture named ShuffleFaceNet, to learn ro-

bust features for face recognition. Among the four complex-

ity levels that were considered, the ShuffleFaceNet 1.5×
model exhibits the best speed-accuracy trade-off. The ex-

tensive experiments conducted on different face recognition

benchmarks show that the proposal achieves state-of-the-art

results, maintaining extreme efficiency. Particularly, regard-

ing the complexity of the related architecture, the size and

the speed on common CPUs are consistently better. The

ShuffleFaceNet 1.5× has a model size of about 10MB and

an inference CPU time of 29 ms, which support its practi-

cal value for real-time and mobile face recognition applica-

tions.
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