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Abstract: Smart materials and structures have attracted a significant amount of attention for their

vibration control potential in engineering applications. Compared to the traditional active technique,

shunt damping utilizes an external circuit across the terminals of smart structure based transducers

to realize vibration control. Transducers can simultaneously serve as an actuator and a sensor.

Such unique advantage offers a great potential for designing sensorless devices to be used in

structural vibration control and reduction engineering. The present literature combines piezoelectric

shunt damping (PSD) and electromagnetic shunt damping (EMSD), establishes a unified governing

equation of PSD and EMSD, and reports the unique vibration control performance of these shunts.

The schematic of shunt circuits is given and demonstrated, and some common control principles

and equations of these shunts are summarized. Finally, challenges and perspective of the shunt

damping technology are discussed, and suggestions made based on the knowledge and experience

of the authors.
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1. Introduction

Some smart materials and structures that possess unique electromechanical characteristics

have been widely used for active vibration control, such as magneto-rheological fluid damper [1],

piezoelectric damper [2–5], shape memory alloy [6,7] and eddy current damper [8–11]. The active

vibration control system consists of actuators, controllers, and sensors. The controllers regulate the

vibration response measured by sensors, and the output control signal is the feedback to the actuators

after power amplifying. The active method can be adapted online, and the control efficiency and

accuracy are higher than the passive one. The key work of the active control is the design of the control

algorithm, such as, velocity feedback [12,13], PID [14,15], the feedforward [16–18], etc.

With the development of the computer and analog integrated circuit technology, some advanced

and intelligent algorithms have been widely used in vibration control engineering, such as, the

adaptive [19,20], fuzzy-logic algorithm [21], genetic algorithm [22–25], ant colony optimization

algorithm [26], etc. The hybrid intelligent algorithms can also be employed to optimize parameters of

the controller, so that better vibration control performance and robust can be achieved. However, these

intelligent algorithms inevitable increase the requirement of the processing speed and memories of the

controller. Furthermore, the stability, reliability and robust of the control system should be taken into

consideration when complicated and intelligent algorithms are used.
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The shunt damping technique involves the connection of an electrical impedance to the terminals

of a transducer. Over the past several years the shunt damping vibration control technique has

been widely studied [27], and it can be mainly classified into two categories shown in Figure 1.

The first one is piezoelectric shunt damping (PSD) [28]. The piezoelectric transducer is bonded to

a host structure. As the host structure vibrates, the transducer produces an electricity. An external

shunt circuit dissipates the electrical energy thereby dissipating the mechanical vibration energy, and

the vibration of the host structure is suppressed. Figure 1a shows a simplified model of the PSD.

The property of the shunt circuit determines the vibration control principle of the shunt damping.

A resistor connected to the transducer dissipates the kinetic energy like a viscoelastic damper [29].

If the shunt consists of an inductor and a resistor in series, the shunt combined with the inherent

capacitance of the piezoelectric transducer creates a damped electrical resonance that can be tuned so

that the PSD acts as a damped vibration absorber [28].

Electromagnetic transducers can be used as actuators, sensors, or both. When current is applied

to terminals of the electromagnetic transducer, a force is generated. Conversely, when a transducer

experiences a velocity, an electromotive force (emf) is induced. Electromagnetic transducers exhibit

these similar electromechanical properties but have considerably different physical and electrical

characteristics compared to piezoelectric transducers. They have a much greater stroke, typically in

the millimeter range. Consequently, in applications where piezoelectric transducers cannot be used,

electromagnetic transducers may serve as an alternative choice [30]. Similar to PSD, when a shunt is

connected across the terminals of the electromagnetic transducer, the kinetic energy of the vibrating

structure can be dissipated through the coupling of the mechanical and electrical fields, the method

is electromagnetic shunt damping [31], and a simplified model is shown in Figure 1b. After years of

exploration, the parallel RLC shunt [32,33], the current flowing shunt [34], the synthetic shunt [35], the

adaptive shunt [36] and the negative impedance shunt [37,38] have been studied to improve vibration

control performance.
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Figure 1. Simplified model of (a) piezoelectric shunt damping (PSD) and (b) electromagnetic shunt

damping (EMSD).

Similar to the electromagnetic transducer, the magnetostrictive transducer consists of a rod of

magnetic material and a coil surrounding it. If a high magnetostrictive material, such as Terfenol-D,
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is used as a rod, the dynamic strain can be increased by 0.2%. Based on this characteristic,

Fukada et al. [39] extended the shunt damping method from PSD to that of magnetostrictive

transducers, and results implied that the stiffness can be controlled by connecting an external negative

inductance circuit. Scheidler et al. [40,41] used this shunt as an electrically-controlled element to

develop a variable stiffness spring based on magnetostrictive transducers.

After years of development, shunt damping technology can be classified as passive and active

shunts according to the requirement of the external energy. Basically, passive shunts do not need an

external energy, and these shunts mainly use the resistor, inductor, capacitor, and diode. However,

active shunts require the external energy to drive and implement. In contrast to the traditional vibration

control method, shunt damping is implemented using the same transducer.

The shunt damping technique has become a remarkable achievement after years of development

and research. The fundamentals of shunt damping have been evaluated analytically and experimentally.

The objective of the present review is to provide a comprehensive outline of the recent shunts to

encompass the breadth of the work accomplished and provide sufficient attention to the critical results

of these studies. In the following sections, this review displays a variety of the research investigations

in shunt damping technique based on passive and active classification, either PSD or electromagnetic

shunt damping (EMSD).

2. Fundamentals of the Piezoelectric and Electromagnetic Transducers

Shunt damping vibration control technology is a multi-physics coupling problem. It contains a

transducer and a shunt circuit. This section summarizes the electrical fundamentals of the piezoelectric

and electromagnetic transducers.

2.1. Piezoelectric Transducer

Since Pierre and Jacques Curie found the piezoelectric effect in 1880, piezoelectric ceramics has

been widely applied to engineering structure. The phenomenon where a volume material undergoes

shape transformation when exposed to an electric field is known as the piezoelectric effect. Conversely,

the piezoelectric materials generate force or displacement output as the external charge is applied,

which is the inverse piezoelectric effect. Therefore, piezoelectric ceramics is used as a sensor and an

actuator in adaptive structures [42].

The electro-mechanical coupling of a piezoelectric transducer is [43,44],

εi = SE
ijσj + dmiEm

Dm = dmiσi + ςmkEk

(1)

where the indices i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 refer to different directions within the material

coordinate system. ε, σ, D and E are the strain, stress, electrical displacement (charge per unit area) and

the electric field, respectively. SE, d and ς denote the elastic compliance, piezoelectric strain constant,

and material permittivity, respectively.

The piezoelectric strain constant dmi is defined as the free strain developed in the ith direction per

unit (going from 1 to 6) of applied electric field in the mth direction (going from 1 to 3). Assuming that

a piezoelectric transducer is polarized along the z direction, the z directional strain is [45],

ε3 = d33
V

h
(2)

where V and h are the external voltage and the thickness of the piezoelectric ceramics. By definition, a

voltage of the same polarity as the poling orientation leads to a positive strain or elongation. Elongation

in the z direction implies a contraction in the x and y directions, thus d31 and d32 are opposite in sign to

d33. The developed x and y directional strain are as



Appl. Sci. 2017, 7, 494 4 of 31

ε1 = d31
V
h

ε2 = d32
V
h

(3)

In electrical field, we have Dm = emiSi + ςmkEk. Solving it for the electric field (the index

subscripts have been dropped because this is now a scalar equation) results in E = D/ς − eS/ς.

Multiplying by the thickness t of the piezoelectric results in an expression for the voltage across the

piezoelectric material

v = Et =
Dt

ς
− eSt

ς
(4)

v is the voltage across the piezoelectric element. Define qc/A = D as the free charge area on

the piezoelectric element, and qp/A = eS the piezoelectric polarization charge per electrode area.

The voltage can be written as [46]

v =
qc

Cs
−

qp

Cs
(5)

where Cs = ζA/t. The charge qp is proportional to the strain of the piezoelectric transducer and the

charge qc is the applied or free charge. There is no charge applied on the piezoelectric transducer

as to the shunt damping technology. Hence, the electrical circuit model is shown in Figure 2.

The piezoelectric transducers is equivalent to a capacitor Cp with a voltage source vp as the structure

vibrates [47].

Piezoelectric material

vp

Cp

Electrical model
 

Figure 2. Equivalent electrical model of piezoelectric material.

2.2. Electromagnetic Transducer

Since Faraday discovered electromagnetic induction in 1831, electromagnetic devices have been

widely used in engineering applications. The electromagnetic transducer consists of a coil and

permanent magnets. An electromotive force (emf) is produced when there is the relative motion

between the coil and magnets [48]. Inversely, the electromagnetic transducer generates the output

force or displacement when the external controlled current is exerted. Under this circumstance,

the transducer will be an actuator. The parameter design and optimization can improve the

electromechanical coupling feature of an electromagnetic transducer, which will improve the vibration

control performance [49,50]. The electromagnetic coupling coefficient can be obtained by theoretical

analysis or experimental test.

As to a permanent magnet, the magnetic moment can be represented in terms of the volume

current density jm and the surface current density km as [51]

jm = ∇× M

km = M × n
(6)

where M is the magnetization vector, n is the unit vector normal to the surfaces of the magnet. Note

that the volume current vanishes and some surface current densities that are normal to M become zero
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if the permanent magnet is uniformly magnetized. The magnetic flux density at any point P outside

the magnet is the sum of the magnetic flux densities Bpi produced by each km,

Bp =
N

∑
i=1

Bpi (7)

where N is the number of km, and each Bpi can be obtained by the Biot–Savart law.

According to Faraday’s law, the induced emf can be obtained [52]

Ve =
∫

(v × B)·dl (8)

The electromagnetic force of the current-carrying element Idl can be obtained as [53]

Fe =
∫

Idl × B (9)

Disregarding the shape of the permanent magnet and coil, the emf and electromagnetic force can

be formulated as [30,31,54]
Ve = Cev

Fe = Cm I
(10)

where Ce and Cm are the electromagnetic coupling coefficient, and Cm = Ce. v, I and Fe denote the

relative velocity, the current flowing in the circuit, and the control force, respectively. Cm of the

rectangle-shaped can be found in [52,53,55,56], the cylinder-shaped in [48,57], and the annular-shaped

in [8,58–61].

It is suggested by (9) and (10) that an electromagnetic transducer can be electrically equivalent to

an emf Ve, an inherent inductance Le and a resistance Re. The electrical model is shown in Figure 3.







Ve

Le

Electrical model

Re

Electromagnetic 

tranducer
 

Figure 3. Equivalent electrical model of the electromagnetic transducer.

2.3. Governing Equations of the Coupled System

For a single degree of freedom system, a discrete multimode degree of freedom system and a

continuous system, it is easy to obtain the corresponding governing equation according to vibration

theories [62–64]. The dynamic equations of the discrete systems are easy to analyze. However,

methods for solving continuous structures are complicated. Some simple structures, such as an

Euler-Bernoulli beam, a Kirchhoff plate and a shell, the governing equations can be derived if the

boundary conditions are simple. In many cases, engineering structures are complicated and it is hard

to obtain the theoretical model. Finite element method (FEM) can provide a feasible solution to obtain

their modal characteristics. Either with the theoretical model or the finite element model, the system
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can be reduced to several single mode vibrations. Then the response of the system can be approximated

using the modal superposition method. The process can be found in many professional books.

Because the shunted electromagnetic transducer adds a control force to the host structure, the

governing equation can be obtained by combining the electrical equation of the circuit with the

mechanical equation [28]. The governing equation presented by Neubauer et al. [65] and Kim et al. [66]

can be used,

[

M + Mp 0

0 L

][ ..
q
..
Q

]

+

[

C + Cs 0

0 R

][ .
q
.

Q

]

+

[

K + Kp Θ

0 C−1
P

][

q

Q

]

=

[

F

vP

]

(11)

where the M, C and K denote the mass, damping and stiffness matrix of the host structure, respectively.

Mp, Cs and Kp are the mass, damping and stiffness of piezoelectric transducers. F is the external force.

Θ is the electromechanical coupling matrix. The q and Q are the displacement vector of the host

structure and the electrical charge vector. Cp is the inherent capacitance vector. L and R are the total

inductance and resistance vector of the electrical circuit.

The governing equation of EMSD can be obtained by combing the structural and electrical

equation together [34],

[

M + ME 0

0 L

][ ..
q
..
Q

]

+

[

C + CE 0

0 R

][ .
q
.

Q

]

+

[

K Cm

0 C−1
p

][

q

Q

]

=

[

F

Ve

]

(12)

where ME and CE are the additional mass of the electromagnetic transducer and the electromagnetic

shunt damping coefficient. M, C and K are same as that in (11). Then (11) and (12) can be unified as

[

M + ME 0

0 L

][ ..
q
..
qE

]

+

[

C + CE 0

0 R

][ .
q
.
qE

]

+

[

K ΘE

0 C−1

][

q

qE

]

=

[

F

Ve

]

(13)

where subscript index E denote the electrical domain. Veg and Θ are the generalized voltage and

electromechanical coupling coefficient. q and qE are the generalized displacement vector of structures

and the charge vector.

3. Passive Shunt

The passive shunt mainly utilizes passive electronics, such as a resistor, a capacitor, and an

inductor. Single mode and multimode vibration control can be achieved by designing the external

shunt circuit. Piezoelectric and electromagnetic transducers are complementary with each other,

which means that the series resonant shunt for the piezo is comparable to the parallel shunt of the

electromagnet (and vice versa). In general, damping of dominant vibration modes of a flexible structure

and their efficiency relies very much on the precise choosing of the shunt components. This section

summarizes these linear shunts and calibration process.

3.1. Single Modal Vibration Control

In 1979, Forward [27] carried out a preliminary experimental demonstration of the feasibility of

using external electronic circuits to damp mechanical vibrations in optical systems. If the shunt is a

simple resistor, the piezoelectric device will act similarly to viscoelastic damping treatment. Hagood

and von Flotow [29] discussed two shunting circuits: the case of a resistor alone (shown in Figure 4a)

and that of a resistor and inductor (in Figure 4b). The resistive shunt is a one-order electrical circuit nd

the energy is dissipated at the resistor in form of heat. Therefore, the shunt is equivalent to an extremely

light viscoelastic damping treatment that offers very little mechanical damping [67]. The piezoelectric

transducer shunted with a resistor and an inductor [29] or the electromagnetic transducer shunted

with a resistor and a capacitor [31] are the two-order circuit that can generate an electrical resonance.

If the resonance of the electrical circuit is equal to that of the mechanical system, the circuit will be in
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resonance and a considerable control force will be generated to resist the vibration of the mechanical

system. Then vibration is controlled. In principle, the two-order shunt is like a vibration absorber.

Then fixed point theory can be used to optimize the parameters of the shunt. Kim et al. [68] used

the electrical impedance model to tune the RL circuit. The optimal resistance of series shunt was

obtained [69], which is Ropt = ωsLe; ωs =
√

(2kLe + φ2)/2mLe, where m, k, and φ are the mass,

stiffness, and the electromechanical coupling coefficient of the electromagnetic transducer, respectively.

As to the piezoelectric transducer, Kozlowski et al. [70] studied RL shunted piezoelectric transducer

and optimized the parameters. The optimal inductance and resistance are

Lopt =
1

G + Cpωn

Ropt = 2Lωn

√

3LG

8(1 − 0.5LG)

(14)

where G is a modal constant. Soltani et al. [71] proposed an exact closed-form solution to the H∞

optimization of the piezoelectric material shunted with inductive-resistive circuits. This solution

imposes exactly two equal peaks in the receptance function that are associated with the smallest

possible vibration amplitude of the host structure. The single mode vibration control using a two-order

shunt can generate an antiresonance effect to reduce the vibration of the host structure, and it has been

successfully employed to reduce an HDD disk-spindle system [72,73], see Figure 5. The results showed

that a RL shunt circuit can reduce the target mode vibration by 60%. Schoeftner and Irschik [74]

established a passive smart beam using a shaped piezoelectric transducer and an RL circuit.

The previous studies on the single mode shunt focused on the design and optimization of the

circuit, such as the parallel shunt, series shunt, and series-parallel shunt. Wu [75] proposed the

parallel RL shunt circuit shown in Figure 4c, the similar shunt can be found in [76–78]. Guo and

Jiang [79] utilized the R-L shunt to construct a modal piezoelectric transducer to control vibrations

of a truss-cored sandwich panel. The series and parallel resonant shunts can obtain similar vibration

control performance, but the parallel one is less sensitive to the optimal resistance. Figure 4d is an

RL-C parallel shunt circuit [47]. Sun et al. [80] studied vibration suppression of a hard disk driver

actuator arm by using serial RL and parallel R-L shunts. Al these results showed that a good one mode

vibration can be achieved using the resonant shunt.

R
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R R

R R

L
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C

C

Piezoelectric 

materials

Electromagnetic 
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Figure 4. Single mode shunts, (a) resistive, (b) series, (c) parallel, and (d) RL-C parallel.
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Figure 5. An Hard-Disk Drive (HDD) disk-spindle vibration control using piezoelectric bimorph shunt

damping, (a) schematic diagram, reproduced with permission from [72], IOP Publishing, 2007 and

(b) photograph, reproduced with permission from [73], IOP Publishing, 2007.

Yamada et al. [81] derived governing equations according to the equilibrium of force principle

and used an equivalent mechanical model of a piezoelectric transducer. Series RL circuit (see Figure 4b)

and parallel LR circuit (see Figure 4c) are used. According to fixed points theory, the analytical

optimal natural frequency ratio and the resistance ratio of the RL shunts are determined in terms of

displacement, velocity, and acceleration. The optimum tuning parameters in terms of displacement are

fCopt =







√

1 + β (series)
√

2 − β

2
(parallel)

ςCopt =























1

2

√

3β

2 + β
(series)

√

3β

2 − β
(parallel)

(15)

The optimum tuning parameters in terms of velocity are

fMopt =











(1 + β)

√

2

2 + β
(series)

1 (parallel)

ςMopt =



















1

4

√

β(24 + 24β + 5β2)

(1 + β)(2 + β)2
(series)

1

2

√

3β

2
(parallel)

(16)

The optimum tuning parameters in terms of acceleration are

fAopt =







1 + β (series)
√

2 + β

2
(parallel)

ςAopt =



















1

2

√

3β

1 + β
(series)

1

2

√

3β

2
(parallel)

(17)

where β = Θ2/KCP, Θ is the modal electromechanical coupling coefficient. The optimized inductance

and resistance can be obtained using the optimum fAopt and ζAopt. These three terms of expressions

provide a feasible way to optimize RL shunts.
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In application, piezoelectric elements dissipate some energy due to dielectric loss.

This phenomenon is caused by the relaxation time of polarization. Yamada et al. [81] considered

that dielectric loss can be expressed by a parallel resistance RC in the equivalent circuit,

RC =
1

ωCp tan δ
(18)

where δ is the dielectric loss factor. As RC is ∞, there is no energy loss. Similarly, inductors also

dissipate energy for they have not only inductance but also internal resistance that can dissipate the

energy. Figure 6 shows the improved series and parallel RL circuit considering RC. From (15)–(17),

the optimal resistance ratios in the ideal models are almost equal even although these expressions are

significantly different. It suggests that the ratio does not rely on the position of the resistance. Hence,

the total resistance ratios in the practical models should be tuned to be close to that in the ideal models.

Θ
ζ

δ ∞

(a) (b)

RL

L

RC

L

RC

R

R

RL

series LR circuit parallel LR circuit
 














s p p

Figure 6. (a) Series RL and (b) parallel RL shunt circuits considering dielectric loss of piezoelectric elements.

The abovementioned series and parallel RL shunts mainly used fixed points theory to find

the optimal maximum modal damping. However, the former is suboptimal near resonance due to

constructive interference of the two modes with identical frequency, and the latter leads to reduced

implemented damping. Hogsberg and Krenk [82–84] proposed an explicit pole placement–based

design procedure that relies on equal modal damping and sufficient separation of the complex poles to

avoid constructive interference of the two modes. The optimal parameters are [82]

LCω2
n =







1

(1 + κ2)2
series

1 parallel

RCω2
n =



















√

2κ2

(1 + κ2)3
series

√

1

2κ2
parallel

(19)

where κ2 = θ2/Cω2
s , θ = vθp, v = wTu. θp, w and u are the piezoelectric coupling coefficient, the

deformation of the piezoelectric transducer and the modal shape vector. Compared with fixed points

theory, the explicit pole calibration leads to a balanced compromise between large modal damping

and effective response reduction with limited damping effort. Furthermore, Krenk and Hogsberg [85]

provided a unified presentation using the equal modal damping principle and calibrated the resonant

control for different control formats, based on velocity, acceleration–position or position feedback.

By extending the local piezoelectric transducer displacement by two additional terms, the

flexibility and inertia contributions from the residual vibration modes that are not directly addressed

by the shunt damping, Hogsberg and Krenk [86] improved the calibration principle.
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3.2. Multimodal Vibration Control

In most cases, the single mode shunt is not enough for a multimode system. Hollkamp [28]

expanded the single mode shunt damping theory and discussed the effect of the resonant circuit

shunted piezoelectrics on a beam, so that a single piezoelectric element can be used to suppress

multiple modes. Additional electronic components have been added to the shunt to increase the

number of electrical resonances. A capacitor-resistor-inductor shunt is added for each additional

structural resonance, as shown in Figure 7a. The electrical impedance of the shunt is

Z
EL
i (ω) =

jωCT
pi

N
∑

k=0

1
Zk

Z0 = 1/(jωCT
pi)

Z1 = jωL1 + R1

Z2 = jωL2 + R2 + 1/(jωC2)
...

ZN = jωLN + RN + 1/(jωCN)

(20)

It is difficult to tune the circuit without analytical predictions, since each individual branch of

shunt cannot be considered an individual single-mode shunt. Tuning one electrical resonance to

suppress a particular mode will detune the rest of the circuit. This shunt is applied to a cantilevered

beam and is demonstrated experimentally as a two-mode device. Peak reductions in the second and

third bending modes are reduced by 19 dB and 12 dB, respectively. This kind of shunt is called a

Hollkamp shunt. However, the optimal inductances for the first mode (L1 = 43.4H, L2 = 33.5H) are too

big and make them hard to implement.

Another multi-mode shunt that employs a blocking circuit in series with one parallel

resistor-inductor shunt circuit is designed to control one modal vibration [75,87,88]. The blocking

circuit consists of one parallel antiresonant circuit or a series of them. The number of antiresonant

circuits determines the modes of structural vibration to be controlled. Figure 7b shows the schematic

of two mode shunt damping at ω1 and ω2. The first branch, with shunt inductor L̂1 and resistor R̂1,

is inserted with a blocking circuit that consists of a parallel capacitor and inductor C2 – L2, whose

electrical impedance is designed to approach infinity at the second branch frequency ω2, where

ω2
2 = 1/L2C2. The second branch also utilizes an antiresonant circuit, and ω2

1 = 1/L1C1. In this way,

the remaining branch is effectively open circuit at the resonance frequency of each parallel branch.

The total inductance in each branch circuit has to remain the same after the blocking circuit is

inserted since the branch circuit has to shunt-damp the corresponding modal vibration. Consequently,

the inductance value L
′
1and L

′
2 of the new shunt has to be adjusted,

L
′
1 = L1 − L̂2/(1 − ω2

1 L̂2Ĉ2)

L
′
2 = L2 − L̂1/(1 − ω2

2 L̂1Ĉ1)
(21)
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Figure 7. Multimode shunts, (a) Hollkamp shunt; (b) current-blocking shunt; (c) current-flowing shunt;

and (d) series-parallel shunt.

Figure 7c is the current-flowing shunt, which needs one parallel branch to control each structural

mode. The current flowing shunt is similar in nature to the current blocking shunt. Instead of

preventing the current flowing at the natural frequency ωn, the current flowing shunt allows the

current to flow [89]. The shaded current flowing network L̂i − Ci in ith branch is tuned to approximate

a short circuit at the target resonance frequency whilst approximating an open circuit at the frequencies

of adjacent branches. The remaining inductor and resistor in each branch Li − Ri are tuned to damp

the ith target structural mode in a manner analogous to single-mode shunt damping. Theoretically, the

flowing shunt can achieve n mode vibration control as n branch circuits connect to the piezoelectric

patches. The inductance of the shunt branches is

L1 =
1

ω2
1Cp

, L2 =
1

ω2
2Cp

, · · · , LN =
1

ω2
nCp

(22)

If the capacitance of the current flowing branches is C1, C2, · · · , Cn, the inductance of the current

flowing branches is

L̂1 =
1

ω2
1C1

, L̂2 =
1

ω2
2C2

, · · · , L̂N =
1

ω2
nCn

(23)

The current-flowing shunt can be modified and simplified by combining values of series inductor

together, e.g., Lsumi = Li + L̂i [90]. The current-flowing network decouples the multi-mode problem

into a number of approximately independent single-mode problems. Unlike the current-blocking

technique, the order of each current-flowing branch does not increase, with the number of modes to be

controlled simultaneously increasing. Moreover, the current-flowing shunt requires less components

and gracefully extends to damp a large number of modes simultaneously. The vibration control

performance of a plate shows that the current-flowing shunt can suppress the first five resonant

amplitudes by 3.8, 10.1, 12.8, 13.2, and 14.7 dB, respectively. The corresponding optimal inductance of

the first five mode vibration are 1986.3H, 491.1H, 259.2H, 142.2H, and 71.1H, respectively. Fleming and

Moheimani [91] considered a controlled source that establishes the relationship between the controlled

current and voltage. The impedance of the controlled source can be regarded as the equivalent

impedance of the shunt circuit. Hence, an arbitrary impedance can be realized.

Cheng and Oh [34] extended the current flowing shunt damping from the piezo to the

electromagnetics. An electromagnetic coil was bonded on the beam and a fixed permanent magnet was

placed under the bottom of the coil. The terminals of the coil connected to the current-flowing shunt

circuit to control two modal vibrations. Similar to the piezoelectric shunt, the current-flowing shunted
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electromagnetic of a single mode branch is the series of capacitor-inductor-resistor. The multiple mode

vibration can be controlled by adding parallel shunts. The optimal frequency γopt and the optimal

inductance of the shunt Lopt were obtained according to fixed points theory, which are

γopt =

√

2 − ψ

2

Lopt =
2Mi + C1φ2

2KiC1

(24)

where ψ = φ2/Mi(L + L1)ω
2
i is the electromagnetic coupling coefficient. Mi, Ki and φ are the modal

mass, stiffness and shape vector of the system, respectively. L1 is the inductance of the shunt for mode

one. The experiment results showed that the first and second mode amplitudes were reduced by

25 and 10 dB.

The passive multimode shunts mainly use electrical resonant characteristics to produce the

multimode vibration control performance, e.g., current-flowing, current-blocking. Figure 7d presents

another multimode shunt using a series-parallel circuit, which can reduce inductance of the shunt [92].

Each network in series L̂i − Ĉi − Li − Ri contains two sub-networks: a current-blocking network

L̂i − Ĉi, and a parallel single-mode damping network Li − Ri. The two networks are tuned to the same

target resonance frequency ωi. Under this frequency, the current-blocking network has an extremely

large impedance. All of the remaining current-blocking networks, tuned to other structural resonance

frequencies, have a low impedance at ωi. The voltage applied at the terminals results in a current that

flows freely through the detuned current-blocking networks but is forced to flow through the active

damping network. In this way, the circuit is decoupled so that each damping network Li − Ri can be

tuned individually to a target resonance frequency. Li can be calculated according to (22), and L̂i (23).

The series-parallel shunt offers no great advantage over comparable techniques. Benefits arise

from a suitable choice in the arbitrary capacitances Ci. The recommended capacitance value is

10–20 times that of the piezoelectric capacitance. In this case, the current blocking inductors become

significantly smaller than the damping inductors. When the circuit is simplified by combining

current-blocking inductors in each series network, the resulting single inductor is a fraction of that

required in other single- or multi-mode circuits.

It should be noted that there is another piezoelectric transducer with shaped electrodes that has

attracted attention. Modal control and spatial filtering technologies can filter out undesirable and

uncontrollable modes over the bandwidth to increase the robustness and stability of the controlled

structural system. The idea provides a novel approach to design a resonant shunt. Vasques [93]

employed shaped electrodes to develop a two-layered RL shunted piezo smart Euler–Bernoulli beam.

The results demonstrated that the capacitance for the modal case is mode dependent and is always

lower than that for uniform electrodes. As a consequence, the optimal resistor and inductance

values are higher than those needed for the uniform electrode cases, which is a shortcoming of the

modal approach.

In summary, the passive shunts mainly utilized a resonant circuit to construct an electrical

absorber to reduce the structural vibration. Either PSD or EMSD used fixed points theory to optimize

the parameters of the shunt, such as the inductance, the capacitance, and the resistance. All of them

are efficient and capable of suppressing the target mode vibration of a flexible structure. However,

problems arise when the lower resonant frequencies of a flexible structure are too small. In this case the

optimal inductance [90] or capacitance will have a bigger value and make it impossible to implement.

On the other hand, there is a common drawback for a resonant type shunt circuit: the structural

natural frequencies shifts as there is a stiffness variation, which will evitable make the shunt circuit

detune either the single mode or a multimode. Therefore, active shunts are essential to compensate for

these uncertainties.
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4. Active Shunt

Active shunts are those where external electrical energy is needed. Compared to the passive shunt,

the active one utilizes controlled electronics, e.g., operational amplifiers, transistors, electronic switches,

to realize vibration control. In the view of the control system, the shunt circuit can be regarded as a

controller that establishes the relationship between the control current and voltage, Vz(s) = Z(s)I(s).

An arbitrary impedance Z(s) can be constructed using a controlled current I(s) or voltage source Vz(s),

thus, the design problem is reduced to a standard linear regulator problem enabling the application

of standard synthesis techniques. Fleming et al. [94,95] proposed active LQR, H2, and H∞ shunt

control, which can be easily applied to achieve a suitable impedance. These kinds of impedances are

unrestricted in structure, and can be designed to meet any performance specification set within the

flexibility of the synthesis process. The active shunt impedances are remarkably insensitive to variation

in the structural resonance frequencies. The schematic of the LQR and H∞ shunts can be found in [95].

These algorithms can be implemented by using a dSPACE controller. However, it has turned out that a

very well identified model of the system is needed and the control design is not straightforward due to

the highly reactive impedance of the transducer.

The main advantage of the active shunt is to achieve broadband or multimode vibration control.

The negative impedance shunt circuit is able to cancel the inherent electrical impedance of the smart

transducer. Figure 8a shows a kind of negative impedance converter (NIC) [96,97]. The equivalent

impedance is

Zin = −Z1

Z2
Z3 (25)

If Z1 = Z2= R, Z3 = CS, the shunt will be a negative capacitance converter, where R and CS denote

the resistance and the capacitance of the shunt, respectively. Behrens et al. [98] studied the effect of a

negative capacitance controller theoretically and then validated it experimentally on a piezoelectric

laminated simply supported plate. A single piezoelectric transducer was used to dampen multi-mode

vibration. Experimental resonant amplitudes for the first to sixth modes were successfully reduced by

5.8 dB, 20.1 dB, 18.2 dB, 3.8 dB, 16.7 dB, and 17.2 dB. Park et al. [99] considered the stiffness ratio and

loss factor with respect to the non-dimensional frequency to describe the characteristic behaviors of

a piezoelectric damper connected to a series and a parallel resistor-negative capacitor shunt circuit.

Neubauer et al. [65] analyzed the effect of negative capacitance shunted piezoelectric transducers

in damping and absorbing systems. L-network, R-network, RL-network, C-network, LC-network,

RC-network, and LRC-network were investigated theoretically, and the corresponding optimal tuning

frequency and resistance were listed. It can be shown that the damping performance is increased

significantly by adding a negative capacitance to the system. Marneffe and Preumont [37] discussed

series and parallel negative capacitance, shown in Figure 8b. The open-loop frequency response

function was used to draw a Nyquist plot to judge the stability of the two kinds of negative capacitance

shunts. The experimental results showed that the parallel and series negative resistance can reduce the

vibration of the struct by 18.4 dB and 21.9 dB. The series one has a relatively better robustness than the

parallel one. Manzoni et al. [100] discussed the values of electric elements composing the negative

capacitance to improve vibration reduction efficiency and to avoid instability at low frequency.
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Figure 8. (a) Schematic of the negative impedance converter (NIC), (b) negative capacitance shunt for

the vibration control of a truss structure, reproduced with permission from [37], IOP Publishing, 2008.

Ji et al. [38] used a negative capacitance in synchronized switching damping (SSD) instead of

an inductance in the traditional SSD technique. Therefore, there was no resonance in the circuit.

The equivalent circuit of a synchronized switch damping technique based on negative capacitance

system (SSDNC) is purely capacitive. Moreover, the voltage applied on the piezoelectric element is

inverted by the negative capacitance. Mokrani et al. [101] also added a negative capacitance to the

resonant circuit to enhance the performance of the SSD. Considering the sensitivity and instability

of the negative capacitance circuit, measurement and quantification of the power within the shunt

has been difficult to obtain. The method was verified using a cantilever beam. The results showed

that a pure SSD shunt can reduce the vibration by 25.2 dB, and SSD with negative capacitance can

reduce the vibration by 31 dB. Beck et al. [102] discussed the power output and efficiency of a negative

capacitance shunt for vibration control of a flexural system. The power can be expressed in terms of

the shunt impedance and the strain-induced voltage Ve

Pshunt = V2
e

Zs
[

(iωCP)
−1 + Zs

]2
(26)

where Zs is the total impedance of the shunt.

In recent years, research on the negative capacitance shunted piezoelectric transducer has been

increasing. Qureshi et al. [103] studied the negative capacitance–inductance shunt and modeled the

behavior of a negative capacitance–inductance shunt in terms of power output and efficiency. Hereafter,

a new self-powered SSD technique was proposed in which the inductance in the previous self-powered

SSD techniques was replaced with a negative capacitance thus making the circuit capacitive without

generating resonance. The optimum damping performance is obtained by keeping the value of negative

capacitance slightly greater than the inherent capacitance of the piezoelectric patch. Rogerio et al. [104]

proposed a new tuning method for shunt damping with a series resistance, inductance and negative

capacitance shunted piezoelectric transducer.

The part above summarizes the negative capacitance shunt in piezoelectric shunt damping

vibration control. As to the electromagnetic transducer, the moving coil in the magnetic field can be

electrically equivalent to an emf Ve, a resistance Re and an inductance Le. Therefore, the negative

resistance can be used to cancel out the inherent resistance of the coil to improve the vibration

control performance of the electromagnetic transducer. The vibration control principle of the negative

resistance electromagnetic shunt damping (NR-EMSD) is similar to that of the negative capacitance

piezoelectric shunt damping. However, NR-EMSD has special features for the difference between

electromagnetic and piezoelectric transducers.
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A negative impedance converter can be used to realize a negative resistance. Shown in Figure 8a,

the shunt will be a negative resistance as Z1 = Z1 = R, Z3 = RS. The negative resistance can be changed

by changing the resistance of Z3. On the other hand, a synthetic impedance is able to construct an

arbitrary impedance [35,105]. Based on this traditional negative resistance converter, Stabile et al. [106]

developed a 2-collinear-DoF strut for the micro-vibration isolation of a spacecraft.

Figure 9a shows a kind of synthetic shunt impedance converter. The circuit works in three

stages: the first is a current sensing stage; the current is multiplied by the desired impedance Zs that

is defined by a digital controller dSPACE. The voltage V0 = R0 I is then added to give the voltage

across the terminals of the coil. This voltage is passed through an additional power amplifier and

input to terminals of the electromagnet in the physical system [107]. Figure 9b presents a prototype of

the shunt.

 

 
 
 

Figure 9. (a) Schematic of a synthetic shunt impedance converter; (b) photograph, reproduced with

permission from [53], IOP Publishing, 2012.

Using the synthetic shunt impedance shown in Figure 9a, Niu et al. [52] proposed a capacitor-

matching-inductance method and a negative resistive capacitor-matching-inductance method. In the

work, Zs was replaced by the transfer function Rt + 1/sCt, and the electrical governing equation of the

EMSD system is

Ve =

(

1

sCt
+ Rt + Re + Le

)

I (27)

where the transfer function Rt + 1/sCt of the analog impedance was implemented using the dSPACE

system. Therefore, Rt and Ct can be adjusted conveniently. If Rt is negative, the analog shunt

impedance will produce negative resistance. Using this shunt, Yan et al. [53] designed a negative

resistance shunted electromagnetic isolator by replacing Zs with Rs. Fully theoretical modeling and

experimental investigation of a single degree of freedom system have been carried out. It was found

that negative resistance shunted electromagnetic damping has both electromagnetic damping CEMSD

and electromagnetic stiffness KEMSD [107]. The two coefficients are

CEMSD = − CmCe(Re + Rs)

(Re + Rs)
2 + L2

e ω2

KEMSD = − CmCeLe

(Re + Rs)
2 + L2

e ω2

(28)

Rs cancels the inherent resistance of the coils Re, and as a result CEMSD will increase, which make it

feasible to suppress the vibration. Furthermore, the natural frequency will shift toward a higher value

with the increase of KEMSD. Herein, the vibration of the beam [55] and plate [108] were also discussed.

The results pointed out that the negative resistance shunt is capable of isolating multimode vibrations.
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In order to reduce the electromagnetic shunt stiffness KEMSD brought by the negative resistance,

Zhang et al. [56] proposed negative inductance negative resistance shunted electromagnetic damping.

The negative inductance cancels the inherent inductance of the coil, and the impedance of the

circuit consisting of the coils and shunt will be a pure resistance. Then, the current of the closed

circuit will be frequency independent as the inductance of the shunt and the coil are equal to each

other. The experimental result demonstrated that this negative inductance negative resistance shunt

attenuated the multimodal vibration of the plate. Moreover, the electromagnetic shunt stiffness

decreased when negative inductance was used. Furthermore, the negative resistance shunt can

generate a relative broadband damping effect. Yan et al. [60,61] applied the negative impedance

shunt to an electromagnetic absorber and discussed the multimodal vibration absorption of this

shunt. The experimental results implied that the first three mode vibrations can be reduced by 15.11,

16.08, and 11.45 dB using negative resistance (NR) absorber, and 20.57, 21.75, and 15.33 dB amplitude

reductions were achieved using negative inductance negative resistance (NINR) absorber. Both the

two shunts are capable of suppressing multimode vibration efficiently. The negative inductance

negative resistance shunt has a better absorption effectiveness at high frequency than the pure negative

resistance shunt. It also demonstrated that the negative impedance is less sensitive to the frequency

shift than resonant shunts.

Furthermore, Fukada et al. [39] presented the basic designs of the magnetostrictive actuator

connected to the negative inductance shunt. The shunt is implemented using the NIC that can be

found in Figure 8a. An improved circuit has been constructed shown in Figure 10. The inductance

ratio βm is given as

βm = −(R1/R2)[Ls(1 − itanδ)/Le(1 − itanδ)] (29)

Under dynamical vibration, the actuator should have a loss factor and the inductance can be

expressed by the complex quantity Ls(1 − itanδ), where tan δ = R0/ωL0. It is observed that the

resonant frequency of the system decreases or increases, depending on the type of negative inductance

shunt. After that, Scheidler et al. [40] used a negative inductance shunt as an electrically-controlled

element to develop a variable-stiffness spring based on magnetostrictive transducers.

GND

+

_

R1 R2

R0

Ls

Figure 10. Improved negative inductance circuit.

There is an alternative active shunt called the active elasticity control (AEC) method proposed by

Date et al. [109]. It is another name for the active shunt, but it has special design analysis procedures.

The AEC is realized by connecting the piezoelectric element to an external feedback circuit. The induced

voltage of piezoelectric transducers generates secondary deformation due to the inverse effect. Because
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the induced voltage depends on the internal and external impedances, the change of the external

impedance affects the additional deformation of the transducer due to the inverse effect. Then the

total deformation can be controlled by controlling the impedance of the external shunt. The parameter

that controls the effective stiffness of the piezoelectric transducer is the capacitance. If the external

shunt circuit with impedance Zext connects to a piezoelectric transducer, the ratio of the impedance of

the inherent capacitance Cp and Zext is α = 1/(iωCpZext) Date et al. [109] suggested that the elastic

compliance s(α) can be deduced according to (1),

s(α) = sE[1 − k2/(1 + α)] (30)

where k2 = d2/(sEςT). If a negative capacitance shown in Figure 9 is used, the dynamic elastic constant

of piezoelectric transducers will be modified. When the negative capacitance shunt was used, the

elastic constant increased significantly, and decreased when the equivalent capacitance of the circuit

was equal to that of the transducer. When an inductance shunt was used, the elastic constant exhibits

resonance and anti-resonance against frequency around the electrical resonant frequency of the circuit.

The elastic loss was significantly modified by changing the compensatory resistance.

The AEC method that controlled the elastic property of piezoelectric transducers has become the

basis of smart structural vibration control, and it provides a possibility to design new vibration and

noise control devices. Morky et al. [110,111] carried out the theoretical analysis of AEC devices, and

the result of negative capacitance shunted AEC showed that a 35 dB transmission loss reduction in the

frequency range from 100 Hz to 2 kHz was achieved. After that, various applications of AEC were

demonstrated by Fukada et al. [112]. Sluka et al. [113] designed a vibration isolation system utilizing

AEC to control the effective elastic stiffness of piezoelectric transducer. An additional feedback control

was introduced to realize the automatic stabilization and adjustment of the negative capacitance.

Based on this work, Sluka et al. [114] proposed an adaptive negative capacitance shunt to enhance

operational stability of a sound-shielding system. Steiger and Mokrý [115] established the effective

anisotropic Young’s modulus of negative capacitance using finite element modeling. The AEC method

provides an alternative approach to the design shunt damping devices and can be very efficient in

solving complicated vibration and noise problems.

Resonant shunts reduce the vibration by generating electrical antiresonance, while active shunts

suppress structural vibrations by increasing the actuating force that is validated by decreasing the total

impedance of the electrical circuit. Active shunts overcome the high sensibility of the tuning frequency

of the control circuit, and are possible in suppressing a broadband vibration.

5. Nonlinear Shunt

In some special conditions, the mass, stiffness or damping of a mechanical system may be

state-switchable when a structural system suffers irrespective instantaneous changes. This state will

result in a large response. Davis et al. [116] presented a kind of switchable capacitor shunt that can

change the stiffness of the actuator so as to change the natural frequency of the system. Thus, the

vibration control can be achieved by avoiding the resonance shown in Figure 11a. Cunefare et al. [117]

proposed a switchable stiffness element that is obtained through control of the termination impedance

of piezoelectric stiffness elements. The change of the stiffness results in the change of the resonant

frequencies of the system by incorporating piezoelectric stiffness elements as part of the spring

element of a vibration absorber [118]. Using two discrete stiffness states, ks1 and ks2, with ks1 < ks2,

two resonance frequencies of the absorber ωs1 and ωs2 are obtained. Consequently, this switch

impedance shunt can change the stiffness of the absorber to change the vibration control performance.

Corr et al. [119] developed a switching R-L shunted piezoelectric vibration control method, which

works by briefly connecting a series resistor inductor shunt to the piezoelectric actuator to apply the

necessary signed charge to allow energy dissipation (shown in Figure 11b). As with introducing the
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RL shunt, the magnitude of the charge applied to the piezoelectric actuator can be greater than the

magnitude of the generated charge.

The state switching shunt vibration control technique utilizes the concept of energy dissipation

through electromechanical materials, which have the ability to change their equivalent effective

stiffness. For example, as the piezoelectric transducer is in an open circuit state, it possesses a particular

stiffness. Conversely, as the transducer is in short state, it possesses a different stiffness, particularly,

a relatively low stiffness. Consequently, many other state switchable shunts were investigated to

switch the stiffness or the damping of the system. Figure 11 shows some kinds of switchable shunt

circuits that have been thoroughly discussed: synchronized switched damping on a resistance (SSDS),

synchronized switched damping on an inductance (SSDI), synchronized switched damping on a

voltage source (SSDV), synchronized switched damping on negative capacitance (SSDNC), and

synchronized switched damping on negative capacitance and inductance (SSDNCI) [120]. The classical

SSD remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt

circuit at every extremum displacement. These researches pointed out that the switch timing was only

optimal for excitation exactly at resonance. Christopher et al. [121] proposed a self-tuning approach

that implemented the more general optimal switch timing for synchronized switch damping on an

inductor without needing any knowledge of the system parameters. In order to improve the damping

performance, Han et al. [122] connected SSDI circuit in parallel to a negative capacitance.

(a) switch capacitor

C

LR

(b) switch R-L

R

(c) SSDS

CR

(d) SSDNC

L

R

(e) SSDNCI    

C

Figure 11. Switchable shunts, (a) switch capacitor, (b) switch R-L, (c) synchronized switched damping

on a resistance (SSDS), (d) synchronized switched damping on negative capacitance (SSDNC) and

(e) synchronized switched damping on negative capacitance and inductance (SSDNCI).

The implementation of the nonlinear switchable shunts seem not to require external power for

operation for the switches can be realized with MOSFETs that require almost no power to be switched.

An additional piezoelectric transducer can supply the small amount of power required to switch

the MOSFETs.

6. Adaptive Shunt

According to the previous summaries above, it can be deduced that shunt damping technology

is a simple and effective vibration control method that can be applied for the various situations.

However, in practical applications, the change of the temperature and the stiffness can result in

significant movement of the structural resonance frequencies. Moreover, the capacitance of a piezo

and the inductance of the electromagnetic transducer may have variation. Such variations can severely
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reduce shunt damping performance because the electrical impedance remains tuned to the nominal

resonance frequencies.

Niederberger et al. [123] presented an adaptation R-L shunted piezoelectric transducer to

compensate variation of the natural frequency. The adaptation law was based on the phase match,

shown in Figure 12a. The tuning direction of this adaptation law was obtained by detecting the phase

shift between the velocity of the mechanical structure and the current in the shunt circuit. The phase

of this transfer function is φ = − tan−1( ωR/L
1/(LC)−ω2 ). ω = 1/

√
LC is the optimal tuning for the modal

frequency, the phase will be π/2. The tuning adaptation law was obtained by detecting the phase

shift between the velocity of the mechanical structure and the current in the shunt circuit. As the

exact value of the phase for this technique is not required, one can reduce the adaptation problem to

multiplication and integration of current and velocity. The adaptive R-L resonant shunt overcomes the

sensitivity of the traditional resonant shunt to the structural natural frequency. The results showed

that: (1) when the temperature of piezo was changed from 27◦ Celsius to 15◦ Celsius, the adaptive

R-L shunt can keep the same amplitude reduction (−11 dB). Conversely, vibration reduction drops

by 6.5 dB when an R-L shunt was used; (2) When the natural frequency was changed from 383 Hz to

375 Hz, a considerable amplitude reduction was also obtained. These results showed the robustness of

the adaptive shunt when subjected to a variable situation.

The passive multimodal shunts mainly utilize damped electrical resonance that consists of the

inherent inductance or capacitance of the transducer and RLC network to tune the structural vibration.

Niederberger et al. [124] also discussed an online adaptation of multi-mode resonant shunts based on

the phase shift method. Figure 12b is the principle of the adaptive inductance shunt that employs the

multimode current-flowing circuit. The series CFi − LFi network has zero impedance for ωi = 1/
√

LiCi

and has high impedance at all other frequencies. The plate structure results implied that considerable

control performance can be achieved despite the change of the modal frequencies and capacitance of

the piezo.
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Ri RN

Ci CN

LN
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Figure 12. Adaptive shunts, (a) for single mode, and (b) multimode.

Fleming et al. [36] introduced an online adaptation of current-blocking and current-flowing

shunts (shown in Figure 7b,c)). The system was implemented using synthetic impedance (presented in

Figure 9) along with time varying transfer functions to alter the parameters of a shunt circuit in real

time. Note that the impedance of the shunt is Z(s), the adaptive shunt synthesizes the impedance Z(s)

twice: first, to implement the shunt damping circuit, and second to reconstruct the performance signal

Vp. Experimental results showed reliable estimation of the performance functions, optimal tuning of

the circuit parameters, and satisfactory mis-adjustment. The second and third modal vibrations were

reduced by 22 and 19 dB. Although both current blocking and current flowing shunts provided similar

performance, the current flowing technique requires a lower-order admittance transfer function, and is
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easily parameterized in terms of the branch resonance frequencies. These reasons made the current

flowing technique an ideal candidate for damping a large number of modes.

Hereafter, Niederberger et al. [54] also studied the adaptive electromagnetic shunt damping.

A single mode RC resonant shunt controller was developed as shown in Figure 13. The impedance of

the shunt Z(s) is R + 1/Cs. The controller will be

K(s) =
1/Le

s2 +
Re + R

Le
s +

1

CLe

(31)

The optimal damping of the mechanical resonance ωn can be achieved if the RC shunt is tuned to

C∗ = (ω2
nLe)

−1
. The optimal capacitance is

C∗ = argmin
C>0

E
{

v2(t, C)
}

(32)

The adaptive RC shunt was verified experimentally on a single degree of freedom system.

A vibration suppression of 22.75 dB was obtained during nominal operating condition. The relative

phase adaptation was found to converge seven times faster as it is subjected to the induced changes in

operating conditions.

ω

R

C

 







 

Figure 13. Adaptive RC shunt.

Resonant shunts have been successfully used to reduce structural vibration and this kind of shunt

can be regarded as an electrical absorber. Yan et al. [53] pointed out that the negative resistance shunted

electromagnetic damper can produce electromagnetic shunt damping and electromagnetic shunt

stiffness effect to influence o the inherent inductance of the coil. On the one hand, the electromagnetic

shunt stiffness affects the vibration control effectiveness. On the other hand, it can be used to

change or adjust the stiffness of the absorber. McDaid et al. [107] introduced o electromagnetic shunt

damping into a dynamic absorber to provide controllable effective mechanical stiffness and damping.

The expression of the damping and stiffness can be found in (28). A model-based feedforward

controller was designed to adapt the resistance and capacitance to ensure the tuned frequency of the

vibration absorber. The synthetic shunt impedance circuit (shown in Figure 9) was used to implement

it. As the absorber is sensitive, the frequency can be estimated as

ω̂2 =

√

..
x

2

x2

x2 = 1
T

∫ t+T
T x2dt

..
x

2
= 1

T

∫ t+T
T

..
x

2
dt

(33)

Adaptive electromagnetic shunt damping shows a good response over a relative wide range of

excitation frequencies (90–100 Hz). The adaptive controller provides a useful way to broaden the

bandwidth of the absorber. Based on this technique, MacDaid et al. [125] used three different feedback
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algorithms, linear, nonlinear, polynomial, and fuzzy logic control, to compensate for errors in model

parameters, and estimate the excitation frequency and environmental changes. The experimental

results implied that the linear controller is unreliable, but the polynomial and fuzzy controllers work

effectively. The adaptive controller can successfully adapt the system to track a variable excitation

frequency while being robust with regard to errors or changes in system parameters and provides

guaranteed stability in operation.

The vibration reduction performance of the negative capacitance shunt may become worse when

a small discrepancy in capacitance of the external shunt and piezoelectric element exists. An example

is temperature sensitivity. Based on this possible failure of the shunt, Sluka et al. [113] proposed a

method for automatic stabilization and adjustment of the negative capacitance shunt by an additional

feedback control. Figure 14 shows a negative capacitance with a feedback control [114]. The equivalent

capacitance is

C = −
(

C0

1 + iωR0C0

)

R2

R1
(34)

This equation can be approximated as C = C′(1 − itanδ), the real part can be adjusted by R1 and

R2, C′ = C0(R2/R1). The imaginary part can be adjusted by R0, tan δ = ωR0C0. The negative capacitor

was controlled by R0 and R1.

 
 
 

GND

+

_

R1 R2

R0 C0

 
Figure 14. Controlled negative capacitance.

The vibration isolation of the shunt shown in Figure 14 was effective over a narrow frequency.

Kodejska et al. [126] proposed a broadband adaptive negative capacitance shunt circuit shown in

Figure 15. The shunt circuit was built up based on NIC. Two resistors R0 and R1 constructed as a pair

of a light-emitted diode and a photo-resistor were used to adjust the value of the negative capacitance.

An iterative control algorithm was applied, and a range of 0.5–3 KHz vibration reduction was achieved.

In general, a resonant shunt is effective to reduce a target mode vibration, but it is very sensitive

to the variation of the natural frequency and the inherent capacitance of the piezoelectric transducer.

To use a resonant shunt and make it more adaptive, Gripp et al. [127] proposed an adaptive resonant

piezoelectric vibration absorber enhanced by a negative capacitance. The resonant shunt circuit

autonomously adapts its inductance value by comparing the phase difference of the vibration velocity

and the current flowing through the shunt circuit. The negative capacitance was added to the resonant

shunted piezoelectric absorber to improve the vibration control performance. The results showed that

the vibration of the shell can be reduced by 5 dB despite the frequency varying from 191 Hz to 193 Hz.

The mechanical system becomes complicated with the development of technology. Generally, it

may contain many structures, electronics, and a control system. The stiffness and electrical features of

all these components are hard to obtain, which inevitably increase the difficulties of designing and

optimization a shunt circuit. Then an adaptive shunt provides an effective way to overcome these

uncertainties and thus to improve the vibration control performance of a mechatronic system.
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Figure 15. Adjustable negative capacitance shunt circuit.

7. Challenges in Shunt Damping Vibration Control

7.1. Noise and Acoustic Control

Noise and acoustic control from vibrating structures is a key point in various fields such as

automobiles, airplanes, ships, submarines, and buildings. There have been many attempts to reduce

or control the noise radiating from structures. Ahmadian and Jeric [128] applied the RLC resonant

shunt to increase the acoustic transmission loss of a plate shown in Figure 16. A variable inductor was

used to tune the frequency of the circuit and it was implemented based on the operational amplifier

circuit. The experimental results showed that 7 dB increase of transmission loss can be achieved for

a broad band input of 10–10,000 Hz. Kim and Lee [129] also used a resonant shunted piezoelectric

transducer on panel structures to reduce the radiated noise. Fleming et al. [130] used the passive

in-series resistor–capacitor shunt of an electrodynamic loudspeaker efficiently to realize a single

resonant mode attenuation in a narrow frequency range. However, the resonant circuit is limited to the

frequency and the absorbing bandwidth is narrow. Consequently, Kim et al. [131] employed a negative

capacitance shunt circuit for broadband noise control of a piezoelectric smart panel. The acceleration

levels at the fifth, ninth, 11th, and 21st modes were reduced by 15 dB, 7 dB, 4 dB, and 3 dB, respectively.

The transmission loss was increased by 7–2 dB at 500–2000 Hz.

 

Figure 16. RLC shunted piezoelectric transducers for increasing the transmission loss of a plate,

reproduced with permission from [128], Academic Press, 2001.
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Mokry et al. [111] presented the general approach of noise and vibration control using piezoelectric

materials and negative capacitance circuits. The results implied that the acoustic absorption coefficient

of the sound absorption system can be controlled. The transmission loss can be reduced by 7 dB in

the broad frequency range. This method is called active elasticity control (AEC). Fukada et al. [112]

studied sound isolation also using a piezoelectric polymer film connected to a negative capacitance.

The transmission loss can be reduced by 13 dB at frequencies around 1 kHz. Kadama et al. [132] studied

the sound-induced vibration control using a piezoelectric composite sheet connected to a negative

capacitance shunt. In order to overcome the discrepancy of the external and internal capacitance,

Sluka et al. [114] proposed an adaptive negative capacitance shunted piezoelectric membrane to

improve sound shielding efficiency. The shunt circuit can be found in Figure 14.

Lissek et al. [133] presented the theory unifying passive and active acoustic impedance control

strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and

active control was formalized through the introduction of a one-degree-of-freedom acoustic resonator

accounting for both electric shunts and acoustic feedbacks. Broadband acoustic performances have

been obtained by using the resistance, negative resistance shunt and direct impedance control. Černík

and Mokry [134] considered that the real and imaginary parts of the shunt circuit impedance must be

negative in the considered system to obtain a perfect sound absorption in a broad frequency range.

The results implied that it is possible to decrease the acoustic reflection coefficient at an arbitrary

frequency by proper adjustment of the parameters of the negative resistance shunt. Zhang et al. [135]

demonstrated effective broadband sound absorption by reducing the mechanical reactance of a

loudspeaker using a negative inductance negative resistance shunt circuit through electro-mechanical

coupling, which induces reactance with different signs from that of loudspeaker. The results implied

that the sound absorption coefficient is well above 0.5 across frequencies between 150 and 1200 Hz.

Tao et al. [136] also used the negative impedance converter to realize the sound absorption of a finite

micro-perforated panel.

Because the influence of the noise and acoustic is up to several thousand hertz, the resonant shunt

is limited for such a large range bandwidth. If a piezoelectric and an electromagnetic transducer are

employed, the negative impedance shunt may provide a feasible method to reduce the transmission

loss. For an electromagnetic transducer, the influence from the inductance increases dramatically

when the frequency is up to kilohertz. In this case, the influence from the resistance is very small.

Then the negative inductance shunt can be used to control high frequency noise. Therefore, the

negative impedance and adaptive negative impedance shunts have great potential in noise and

acoustic control engineering.

7.2. Dual-Functional Energy Harvesting and Shunt Damping

In principle, shunt damping vibration control technology uses a smart transducer and a

shunt circuit to realize vibration control performance. Smart transducers can transform the kinetic

or vibrational energy into electricity, and the shunts (passive and active) regulate the electrical

signal to obtain a considerable vibration attenuation performance. In view of energy conservation,

this transformed electricity can be harvested [137]. Consequently, shunt damping technology is

dual-functional as vibration control and energy harvesting [138]. Similarly, the dual-functional feature

discussion of the shunt damping method can also be classified into passive and active.

As to the traditional passive shunts, the RC and RL circuit can be used to construct a two-order

resonant circuit to harvest vibration energy [139]. On the other hand, this kind of circuit is a single mode

shunt for control of structural vibration. Wilhelm et al. [140] presented a multimode vibration control

by using the controlled harvesting and storage of vibration energy as electrical charge. The stored

energy can then be recycled enabling the system to achieve a vibration reduction superior to that of

a traditional semi-active system and approaching that of a fully active system. An array of one or

more pre-charged capacitors is employed to provide a selection of various voltages, which may be

selected to approximate a desired control signal. The capacitors can apply a control voltage to the
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piezoelectric actuators and can also collect current generated by the actuators as the structure strains

in vibration. Zhu et al. [141] discussed the vibration damping and energy harvesting of linear motion

electromagnetic devices. Harne et al. [142] utilized a piezoelectric film spring and a distributed mass

layer suitable for the attenuation of surface vibrations and to convert a portion of the absorbed energy

into electric power. Zuo and Cui [143] investigated dual-functional energy-harvesting and robust

vibration control by integrating tuned mass damper and electromagnetic shunted resonant damping.

The mechanical energy transferred from the vibration source to the control system, and the

electrical energy flowed from the smart transducer to the active shunt circuit. For the active shunt,

there are two kinds of energy flowing and exchanging: the transformed energy from mechanical

vibrations and that provided by the external source. Vaclavik at al. [144] designed an experimental

system to determine the energy flows in the negative capacitance shunt. The result showed that the

amplitudes of the electrical power were almost 100 times higher than the amplitudes of the input

mechanical power. It was pointed out that such a high value of input mechanical and electrical

power was caused by: (1) a relatively low electromechanical factor of the piezoelectric transducer,

(2) the capacitance nature of the piezoelectric transducer, and (3) wall-plug efficiency. After that,

Vaclavik et al. [145] established an experiment to analyze wall-plug efficiency by using linear and

switching synthetic negative capacitance. The results demonstrated that more that 85% of electrical

power was dissipated on the transistors of the linear amplifier. The switching amplifier can reduce

the input electrical power by more than 90%, but it made the circuit complicated. The energy flowing

discussion on active shunts can help researchers design energy-saving devices and make the active

shunt more suitable for industrial applications.

Finally, the investigation of energy harvesting of the piezoelectric and electromagnetic transducers

and their vibration control effect have great potentials for future study. Furthermore, one should also

pay attention to self-powered shunt damping by using energy harvesting technology [137,146–149].

8. Conclusions

Shunt damping technology has been widely studied and it has shown a good potential in vibration

control engineering. The major efforts and findings of the recent literature in the field have been focused

mainly on piezoelectric shunt damping and electromagnetic shunt damping. When designing the

shunt circuit, the electrical feature of the electrical loop changes and this can produce vibration control

effectiveness of the mechanical structure. We summarized shunt damping control by combing PSD

and EMSD together to obtain some common characteristics of passive and active shunts. A common

control principle and the analytical framework of the shunt circuit were established and provide a

feasible way to deal with the coupled PSD and EMSD problem.

As the environment becomes more complicated, the traditional passive and active shunts may

not meet the requirements of a system. Consequently, the adaptive shunt may have a great potential

in future research. The adaptive negative resistance shunt can be used to change the stiffness of

an electromagnetic transducer, therefore it is worthy of further discussions for the variable stiffness

structures and absorption application. To date, research on PSD and EMSD has been carried out in

depth. Few literature references have been concerned with shunted magnetostrictive transducers.

Hence, extending shunt damping technology into other smart structures and investigating the

corresponding characteristics is also worthy of discussion.

Furthermore, a series of design and optimization methods have been developed to establish

the relationship between the electrical and mechanical impedance of passive shunts. If a system

is equivalent to an impedance, such as mechanical impedance, electrical impedance, and air and

liquid impedance, etc. by matching the impedances to a magneto-mechanic transducer, vibrations

can be reduced [150]. This technology may provide a novel method for structural vibration control

engineering. After years of research, structural vibration control using shunt damping technology has

been thoroughly developed. Active shunts can provide a suitable choice for reducing broadband noise

response. The combination of energy harvesting technology and vibration control of a shunt circuit,
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development of the corresponding theory, optimization and experimental method, and discussion of

the dual-functional characteristics of shunt damping technology may be future hotspots of this field.
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