
Received February 27, 2020, accepted March 8, 2020, date of publication March 13, 2020, date of current version March 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980767

SHyLoC 2.0: A Versatile Hardware Solution for
On-Board Data and Hyperspectral Image
Compression on Future Space Missions

YUBAL BARRIOS 1, ANTONIO J. SÁNCHEZ1, LUCANA SANTOS 2,
AND ROBERTO SARMIENTO 1
1Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain
2European Space Research and Technology Centre, European Space Agency, 2220 AG Noordwijk, The Netherlands

Corresponding author: Yubal Barrios (ybarrios@iuma.ulpgc.es)

This work was supported in part by the ESA through the project CCSDS Lossless Compression IP-Core for Space Applications under ESA

Contract 4000113182/15/NL/LF, and in part by the Spanish Government through the project PLATINO under

Grant TEC2017-86722-C4-1-R.

ABSTRACT In this paper, we present the design, implementation and results of a set of IP cores that

perform on-board hyperspectral image compression according to the CCSDS 123.0-B-1 lossless standard,

specifically designed to be suited for on-board systems and for any kind of hyperspectral sensor. As entropy

coder, the sample-adaptive entropy coder defined in the 123.0-B-1 standard or the low-complexity block-

adaptive encoder defined by the CCSDS 121.0-B-2 lossless standard could be used. Both IPs, 123.0-B-1 and

121.0-B-2, are part of SHyLoC 2.0, and can be used together for compression of hyperspectral images, being

also possible the compression of any kind of data using only the 121-IP. SHyLoC 2.0 improves and extends

the capabilities of SHyLoC 1.0, currently available at the ESA IP Cores library, increasing its compression

efficiency and throughput, without compromising the resources footprint. Moreover, it incorporates new

features, such as the unit-delay predictor option defined by the CCSDS 121.0-B-2 standard, and burst

capabilities in the external memory interface of the CCSDS 123-IP, among others. Dedicated architectures

have been designed for all the possible input image sample arrangements, in order to maximise throughput

and reduce the hardware resources utilization. The design is technology-agnostic, enabling the mapping

of the VHDL code in different FPGAs or ASICs. Results are presented for a representative group of

well-known space-qualified FPGAs, including the newNanoXplore BRAVE family. Amaximum throughput

of 150 MSamples/s is obtained for Xilinx Virtex XQR5VFX130 when the SHyLoC 2.0 CCSDS-123 IP is

configured in Band-Interleaved by Pixel (BIP) order, using only the 4% of LUTs and less than the 1% of

internal memory.

INDEX TERMS Hyperspectral imaging, compression algorithms, field programmable gate arrays, hardware

implementations, space missions, on-board data processing.

I. INTRODUCTION

Nowadays, high-resolution hyperspectral imaging sensors

are becoming more common in Earth Observation (EO)

satellite missions due to their multiple applications for

identification, surveillance and navigation purposes, among

others. The Multispectral Instrument (MSI) on-board

Sentinel-2 supported by ESA, the Hyperion imaging spec-

trometer integrated in the EO-1 NASA satellite or PRISMA,

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewskis .

a mission fully funded by the Italian Space Agency (ASI) that

combines a hyperspectral sensor with a medium-resolution

panchromatic camera, are just a few examples of the use

of multispectral and hyperspectral technology in the space

environment [1]. This trend continues in the near future with

the launch of new hyperspectral instruments, such as the

Hyperspectral Infrared Imager (HyspIRI) mission, supported

by NASA in order to provide critical information on natural

disasters and vegetation health [2]; or the CHIME mission,

planned as part of the new Copernicus 2.0 EO program

supported by ESA [3].

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 54269

https://orcid.org/0000-0001-6186-9971
https://orcid.org/0000-0001-5191-2673
https://orcid.org/0000-0002-4843-0507
https://orcid.org/0000-0001-6829-2263


Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

The large amounts of data acquired on satellites need to

be either transmitted, stored or processed. Due to the limited

computational and memory resources available in on-board

hardware systems, processing or storing hyperspectral data

on the satellite is not feasible. The limited downlink band-

width with ground in comparison with the data size consti-

tutes an additional bottleneck for missions that integrate this

kind of sensors. This limitation will becomemore stringent in

the near future with the progressive increase in the resolution

of hyperspectral sensors [4], making on-board data compres-

sion mandatory.

Compression can be either lossless or lossy. Lossless com-

pression preserves the information presented in the original

data, being able to fully recover it during the decompression

step. For that reason, this compression technique is interesting

for the scientific community, maintaining the fidelity of the

data captured by the sensor and useful for applications such as

classification, and target and anomaly detection. On the other

hand, lossy compression yields higher compression ratios

than lossless techniques introducing losses in the compressed

image; this is, the recovered information is not identical to

the original one [5]. Lossy compression is a key enabler for

deep space missions with high-resolution sensors on-board,

in order to exchange information with ground.

Compression algorithms are normally based on two stages:

decorrelation of the information acquired by the instrument

and entropy coding. Decorrelation is done either using trans-

form or prediction techniques. Transform-based methods,

such as the widely used JPEG2000 [6] or the most recent

Karhunen-Loeve Tranform (KLT) [7] and Pairwise Orthog-

onal Transform (POT) [8], are most focused on standard

(2D) images compression and they are preferred for lossy

compression because of the high compression ratios they

achieve. The implementation of compression algorithms in

space missions still supposes a challenge, taking into account

hardware limitations Hence, transform-based algorithms are

in general too complex to be implemented on-board satel-

lites. Therefore, prediction-based techniques are preferred

because they represent a good trade-off between compression

efficiency (compression ratio achieved) and computational

complexity [9].

With the aim of implementing efficient data compres-

sion algorithms with a reduced computational complexity,

well suited for on-board systems, the Consultative Com-

mittee for Space Data Systems (CCSDS), an international

organization comprised by the main space agencies in the

world to define a common way for developing space data

and information systems, has published different data com-

pression standards specifically designed for space applica-

tions. Among these standards, the CCSDS 123.0-B-1 [10]

focuses on the compression of multispectral and hyper-

spectral images, while the CCSDS 121.0-B-2 [11] consti-

tutes a universal compressor applicable to any kind of data.

Both standards are prediction-based compression standards,

well suited for low-complexity implementations. The ESA

IP Cores library [12] has recently incorporated a hardware

solution for compressing data and hyperspectral images,

named as SHyLoC 1.0 [13], [14]. This solution includes two

different IP cores, compliant with the CCSDS 123.0-B-1 and

CCSDS 121.0-B-2 lossless compression standards. These

two IP cores have been designed with standard interfaces

allowing its connection to the rest of the hardware platform

in a plug & play manner.

SHyLoC 1.0 is a technology-agnostic and low-complexity

hardware solution, favouring the design reusability between

applications or projects, but specifically optimized for

Field-Programmable Gate Arrays (FPGAs). Radiation-

Hardened by Design (RHBD) FPGAs are becoming increas-

ingly employed for space applications in comparison to

Application-Specific Integrated Circuits (ASICs) because

their lower cost, high performance and low-power consump-

tion [15]. FPGAs allow the efficient implementation of low-

complexity architectures on-board satellites, including the

capability of changing dynamically all or some parts of the

functionality of the on-board system during mission lifetime

in order to adapt it to new requirements.

NanoXplore FPGAs devices have special interest for the

European Space Agency because they offer a family of

radiation-hardened reprogrammable FPGAs developed in

Europe, avoiding the dependencies with foreign technolo-

gies that have dominated the space market during the last

decades. The youngest and smallest device of the Big Repro-

grammable Array for Versatile Environments (BRAVE)

family, named NG-MEDIUM, is based on 65nm CMOS

technology and includes 35k 4-input Look-Up Tables (LUTs)

and D type Flip-Flops (DFFs), 2.8 Mb of dedicated RAM

and 112 Digital Signal Processing (DSP) blocks, among

other elements. With higher offer of logic resources, the

NG-LARGE is almost four times bigger than the

NG-MEDIUM (137k LUTs and 129k DFFs), 9.4 Mb of

embedded RAM and 384 dedicated DSPs, together with an

ARM Cortex-R5 core [16]. Different radiation hardening

techniques are combined in the BRAVE FPGA family, such

as an specific manufacturing process, Error Detection And

Correction (EDAC) for dedicated memory blocks, Triple

Modular Redundancy (TMR) flip-flops, Double Modular

Redundancy (DMR) clock-tree, or a background scrubber to

preserve the integrity of the FPGA memory configuration.

SHyLoC 1.0 lacks optional functions and configura-

tion parameters defined by the standards and hence is not

fully standard compliant. Moreover, it is optimized for low

area footprint, and therefore it presents limited throughput

in some configurations. This paper presents SHyLoC 2.0,

an improved hardware solution for data and hyperspec-

tral image compression on-board satellites, fully compliant

with the CCSDS 123.0-B-1 and CCSDS 121.0-B-2 loss-

less compression standards. These IP cores are described in

VHDL focusing on low-complexity and fitting on available

on-board hardware resources. New features not presented

in current state-of-the-art implementations are included,

such as the optional unit-delay predictor defined by the

CCSDS 121.0-B-2 standard or the burst transfers in the

54270 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

communication with external memory on the CCSDS 123-IP

in order to improve both throughput and memory bandwidth,

among others. The implementation of prediction architec-

tures that store intermediate results in an external memory

allows to manage images with bigger size both in the spatial

and the spectral domain and even with higher bit resolution,

together with a reduction of the internal resources utilization.

Moreover, the designed IP cores are technology-independent,

being possible to implement them on ASICs and on a high

variety of space-qualified FPGAs, including the new and

aforementioned BRAVE family, entailing a novelty regarding

other FPGA-based compression solutions. They also allow

to select the suitable values for all the configuration param-

eters included in both standards, making possible to config-

ure them for the specific necessities of a target application.

The rest of the paper is structured as follows. Section II

provides a brief description of both CCSDS 121.0-B-2 and

CCSDS 123.0-B-1 lossless compression standards. Then,

Section III details the hardware implementation of each IP,

highlighting the new features introduced with respect to

SHyLoC 1.0. Next, Section IV analyses the mapping results

for different space-qualified FPGA technologies, comparing

themwith the existing implementations in the state-of-the-art.

Finally, Section V summarizes the main conclusions about

this work.

II. ALGORITHM DESCRIPTION

A. CCSDS 121.B-0-2

The CCSDS 121.0-B-2 standard [11] describes a low-

complexity universal lossless data compressor, specifically

designed to work on-board satellites It consists in two main

stages: a preprocessing stage and an entropy coder, as shown

in Fig.1.

The preprocessor removes correlation between consecutive

input samples and maps them into unsigned values which are

then passed to the block-adaptive entropy coder in order to be

properly encoded. The CCSDS 121.0-B-2 standard defines a

simple and reversible unit-delay predictor, which uses just the

previous sample as an estimator of the current one. Reference

samples must be periodically inserted in the output bitstream

in order to be able to regenerate the input image during the

decompression step. In any case, this preprocessor can be

FIGURE 1. CCSDS-121 standard- Block-adaptive coder with preprocessing
stage.

omitted, working the CCSDS 121.0-B-2 algorithm only as

entropy coder.

The entropy coder of the CCSDS 121.0-B-2 is based in

adaptive Rice coding, a subset of Golomb codes that uses

a power of two value as tunable parameter. This parameter

makes Rice coding efficient for hardware implementations,

because multiplication and division by powers of two can be

easily implemented using binary arithmetic as logic shifts.

This entropy encoder achieves efficient performance over

different overlapping ranges of entropy. The incoming pre-

processed samples are grouped into blocks of size J, param-

eter defined by the user. In this encoder, all the possible

compression options are concurrently applied to a block of J

consecutive input samples. Finally, each block is coded with

the option which produces the shortest output, among the

available ones:

• Fundamental sequence (FS). Each input sample δi is

encoded as δi zeroes followed by a one.

• Sample splitting. First, each input sample is split

by removing the k least significant bits. The MSBs

of δi are coded with the FS, while the LSBs are left

uncompressed.

• Second-extension. Each pair of input samples δi and δi+1

is transformed into a new symbol γ , according to the

formula γ = (δi + δi+1)(δi + δi+1 + 1)/2 + δi+1, and

then coded using FS.

• Zero-block. This option is thought for low-entropy

images and it denotes one or more consecutive blocks of

all-zeroes. It is the only case where a single codeword

may represent more than one compressed block.

• No compression. Input samples are outputted without

compressing them (i.e. the entropy coder is bypassed).

A unique identifier is attached to each compressed block

for all the aforementioned compression options, in order to

know which one of these options has been used.

B. CCSDS 123.B-0-1

The CCSDS 123.0-B-1 [10] is a lossless data compres-

sion standard specifically devised for multispectral and

hyperspectral images, which is based on a predictive pre-

processing stage as a way to reduce correlation among

input samples. Experimental results in terms of compres-

sion ratio show that the CCSDS 123 standard is competi-

tive with other state-of-the-art algorithms, providing the best

trade-off between coding performance and computational

complexity [17].

The CCSDS 123.0-B-1 standard has several options and

configurable parameters, which may be tuned to modify the

compression efficiency. The characteristics of the acquired

images and the sensor should be taken into account when con-

figuring these parameters. Depending on the hyperspectral

sensor on-board, samples can be arranged in Band Sequen-

tial (BSQ) order (for snapshot or rotational filters, where

the samples in a band are handled before processing the

next one) or Band interleaved (BI) order. In the latter case

VOLUME 8, 2020 54271



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

two arrangements are distinguished, Band Interleaved by

Pixel (BIP), typical of whisk broom scanners, where a sample

is acquired in all its bands before capturing the adjacent pixel,

and Band Interleaved by Line (BIL), used by push broom

sensors, obtaining a line of samples in the spatial domain for

all the bands before acquiring the next one.

This standard also defines a header to allow a proper

decompression, which is appended at the beginning of each

compressed image, where the selected values for all the con-

figuration options are specified.

1) PREDICTOR

The preprocessor stage of the CCSDS 123.0-B-1 standard

estimates the value of each input sample using a set of sam-

ples in the vicinity of the current one, counting on samples in

the same band as well as in previously processed bands, as it

is shown in Fig. 2. Hence, the ordering of the input samples

does not affect the compression efficiency, as opposed to the

CCSDS 121.0-B-2 standard. The number of bands P used

for prediction can be configured between 0 and 15, although

it has been observed that no significant improvements are

achieved when setting values of P higher than 3 [18].

The predictor processes the input image in a single pass,

independently of the order in which the input samples are

arranged. The compression algorithm is illustrated in Fig. 3,

and summarized in the following lines. For each input sample,

first a local sum σz,y,x for the current band as well as the

previous P bands is computed, by combining the values of

the neighbour samples in the same band.

The set of samples which are used to compute these

local sums is determined by the selected local sum type: in

the neighbour-oriented mode, all the previously processed

adjacent samples are used, while in the column-oriented

mode just the sample right above is used. Equation 1

describes the way of computing the local sums with the

neighbour-oriented mode, while equation 2 does the same

for the column-oriented mode, both covering also the corner

cases.

Then, the local differences are computed, by subtracting

the neighbour sample values from the previously computed

FIGURE 2. Set of samples used for prediction.

FIGURE 3. Scheme of the CCSDS 123 compression algorithm.

local sums. The local differences are defined for every pixel

except for the first one (with x = 0 and y = 0). The

central difference is computed as dz,y,x = 4sz,y,x − σz,y,x ,

while the directional differences are computed according to

the equations 3, 4 and 5, as the standard defines [10]. More

details about the theoretical basis behind these equations

can be found in [19]. These are then grouped in the local

differences vector Uz,y,x , which is built depending on the

selected prediction mode. If the reduced mode is chosen, just

the central differences of the P previous bands are included in

the local differences vector. On the other hand, the directional

differences of the current band are also included with the full

mode.

In order to analyze the performance of the CCSDS

123.0-B-1 algorithm in terms of achieved bit per pixel per

band (bpppb) depending on the combination of local sum

and prediction mode used, a corpus of 7 representative mul-

tispectral and hyperspectral images (whose main features are

summarized in Table 1) are used.

These results are shown in Table 2, observing that the opti-

mal prediction scheme in terms of bpppb is highly dependent

of the targeted sensor and the acquired image nature (e.g.

if streaking artifacts are present or if the image is calibrated).

The selection of the local sum and predictionmodes should

achieve a tradeoff between the compression performance and

the resources utilization. The use of the full prediction mode

with respect to the reduced one supposes a slightly higher

memory usage, due to the increased size of weight vectors

(P + 3 elements versus P). On the other hand, when using

neighbour-oriented local sums instead of the column-oriented

TABLE 1. Corpus of images used for performance analysis.

54272 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

TABLE 2. CCSDS123 performance in terms of bit per pixel per band
(bpppb), depending on the selected local sum and prediction modes and
using the sample-adaptive encoder.

mode, a slight increment in the logic resources consumption

is observed, because of the additional calculations resulting

of extending the neighbourhood for the prediction.

σz,y,x =



























































sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1,

y > 0, 0 < x < Nx − 1

4sz,y,x−1,

y = 0, x > 0

2(sz,y−1,x + sz,y−1,x+1),

y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x ,

y > 0, x = Nx − 1

(1)

σz,y,x =

{

4sz,y−1,x , y > 0

4sz,y,x−1, y = 0, x > 0
(2)

dNz,y,x =

{

4sz,y−1,x − σz,y,x , y > 0

0, x > 0, y = 0
(3)

dWz,y,x =











4sz,y,x−1 − σz,y,x , x > 0, y > 0

4sz,y−1,x − σz,y,x , x = 0, y > 0

0, x > 0, y = 0

(4)

dNWz,y,x =











4sz,y−1,x−1 − σz,y,x , x > 0, y > 0

4sz,y−1,x − σz,y,x , x = 0, y > 0

0, x > 0, y = 0

(5)

Then, a weighted sum of the elements in the local differ-

ences vector is computed, which is in turn used to compute

the predicted sample ŝz,y,x . This summakes use of an internal

weight vector,Wz,y,x .

A weight vector is separately maintained for each band,

and their components are updated with each new sample

based on the prediction residual, the local differences and

some user-defined parameters. Finally, the prediction residual

is mapped into an unsigned integer δz,y,x , which is passed to

the entropy coder.

The CCSDS 123.0-B-1 standard defines two possible ways

of setting the initial values for the components of the weight

vectors. With the default initialization, the components of the

weight vectors are set to fixed values, equal for all the bands.

With the custom weight initialization, the initial weights are

provided by the user, and each band may have different

values.

2) SAMPLE-ADAPTIVE ENCODER

With respect to the entropy coding, the CCSDS 123.0-B-1

standard allows two alternatives. On the one hand, it is

possible to use the block-adaptive coder defined in the

CCSDS 121.0-B-2 standard [11] described in Section II-A.

On the other hand, a sample-adaptive coder is also proposed,

which is a more sophisticated version of an adaptable Rice

coder. With this encoder, samples are compressed individu-

ally instead of in blocks. The code used for each particular

sample depends on the image statistics, which are updated

with every new sample depending on the chosen compressor

configuration. Statistics are computed for each separate band

independently.

The performance in terms of compression efficiency of

the CCSDS 123.0-B-1 algorithm for the instruments detailed

in Table 1 has been evaluated depending on the selected

option for the entropy coding stage [20], obtaining the results

summarized in Table 3. For this comparison, the best combi-

nation of local sum calculation and predictionmode is consid-

ered for each targeted sensor, taking into account the results

shown in Table 2. In general, the sample adaptive encoder

offers better performance for hyperspectral and multispec-

tral data. This is mostly noticeable in BIP order, where the

block-adaptive coder under-performs, as it forms the blocks

in theway the samples arrive, evenmixing spatial and spectral

information. Sample adaptive is also less complex than the

block-adaptive one.

III. HARDWARE IMPLEMENTATION

SHyLoC 2.0 is comprised by two IP cores that implement

the CCSDS 121.0-B-2 and CCSDS 123.0-B-1 lossless com-

pression standards. The aim of these cores is to provide

to the user a versatile solution for compressing hyperspec-

tral images (3D), extended to any kind of uni-dimensional

data acquired on-board satellites. A general overview of

SHyLoC 2.0 is shown in Fig. 4.

Fig. 4a shows the SHyLoC configuration to perform hyper-

spectral image compression using the CCSDS 123.0-B-1

standard with the sample-adaptive encoder. The prediction

stage of the CCSDS 123.0-B-1 standard can be also com-

bined with the block-adaptive encoder defined by the CCSDS

121.0-B-2 standard (Fig. 4b). If the input data is acquired by

any other sensor, the IP that it is fully compliant with the

TABLE 3. CCSDS123 performance in terms of bit per pixel per band
(bpppb), depending on the selected entropy coder.

VOLUME 8, 2020 54273



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

FIGURE 4. General overview of SHyLoC 2.0.

CCSDS 121.0-B-2 standard is implemented for compressing

purposes, as shown in Fig. 4c.

Regarding input and output interfaces, both IPs imple-

ment a simple handshake protocol (not shown in Fig. 4 for

simplicity). The data flow is handled through the ForceStop

(it forces the stop of the compression) and the Ready signals

at the input side, being the latter asserted when the IP is

configured correctly and it is able to receive new samples

for compression. On the output side, the Ready_Ext signal

can be used by the external module responsible of managing

the output data to inform the IP that it is ready to receive the

compressed samples. Additionally, there are other signals that

are part of the input interface to manage data control, such as

FIFO_full, EOP (indicates that the compression of the last

sample has started) or Finished, which is asserted when the

compression has ended. Besides, both data input and output

signals have their associated Valid flag.

A. SHyLoC 2.0 CCSDS121-IP

As it was aforementioned in Section II-A, the CCSDS

121.0-B-2 data compression standard defines two main

stages, a predictive decorrelation and an entropy coding.

The SHyLoC 1.0 CCSDS-121 IP developed as previous

work [14] presents an implementation of the entropy coding

stage and includes a configuration engine to enable the setting

of parameters allowed by the standard. The EN_RUNCFG

parameter is provided to enable or disable the setting of

configuration parameters at runtime. In case of disabling,

the parameters are set at compile-time, reducing the over-

all complexity of the design. This module is reused in

SHyLoC 2.0, denoted here as block-coder, with slight

modifications.

The SHyLoC 2.0 CCSDS-121 IP extends the functionality

of the previous IP by including an optional unit-delay pre-

dictor before the block-coder. The predictor, when present,

is set-up by the configuration core of the block-coder itself,

thus avoiding the replication of the configuration interface.

This is depicted in Fig. 5. The overall functionality of the

CCSDS-121 IP is summarised as follows.

First, the CCSDS-121 IP receives the runtime configura-

tion values through the AMBA Advanced High-performance

Bus (AHB) slave interface and after that, a valid flag is

asserted to inform it is ready to receive new samples. The

received configuration is stored in internal registers, read

by the IP and then made available for all the modules that

request them. The input samples are received through an

ad-hoc parallel interface, designed with the purpose of easily

connecting the module with an external pre-processing stage

when its unit-delay predictor is not included (this is con-

trolled with the parameter PREPROCESSOR_GEN different

from 2), performing only the encoding step. If the

CCSDS-121 predictor is enabled (PREPROCESSOR_

GEN= 2), the input samples are pre-processed prior to being

coded. The inclusion or absence of the unit-delay predictor

does not affect the external interfaces but the data path inside

the IP, as shown in Fig. 5, making it transparent for the user.

If the unit-delay predictor is not implemented, the samples to

be encoded may come from an external pre-processing stage,

or directly from an Analog-to-Digital Converter (ADC),

a SpaceWire interface or a mass memory.

1) UNIT-DELAY PREDICTOR

The unit-delay predictor core consists of a register that holds

the value of the previously processed sample, a subtracting

module to generate the prediction residuals (i.e. the difference

between the current sample and the previous one) and a map-

per, used to transform the prediction residuals to unsigned

values prior to send them to the entropy coder. The top mod-

ule of the CCSDS-121 IP unit-delay predictor core, depicted

in Fig. 6, includes the necessary logic to bind the components

that perform the reception of input samples, the prediction

step and the flow control of the output of mapped prediction

residuals, as well as periodic reference samples.

Efforts are made to respect the interfaces and configuration

method already present in SHyLoC 1.0, so that the new mod-

ule becomes transparently available for prospective users.

FIGURE 5. Schematic of the SHyLoC CCSDS121-IP.

54274 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

FIGURE 6. Simplified block diagram of the unit-delay predictor top
module.

FIGURE 7. Simplified block diagram of the entropy coder core.

In this way, the runtime configuration is received from the

block encoder module together with a valid flag, because this

component is the one that has access to the AHB slave inter-

face in SHyLoC 1.0. According to the received configuration,

a Finite State Machine (FSM) module controls the operation

of the rest of the modules in the design. The components

module performs the preprocessing step itself. It contains the

unit-delay predictor which computes the predicted samples

based on the input data, and the mapper module.

Moreover, the unit-delay predictor includes input and out-

put FIFOs in order to adapt the data transfers between mod-

ules. The input FIFO stores the incoming input data until they

are preprocessed, while the output FIFO stores the prepro-

cessed data in groups of size J until the block-adaptive coder

requires them to continue with the compression flow.

2) BLOCK-ADAPTIVE ENCODER

On the other hand, the block-adaptive encoder includes,

in addition to the encoding functionality, the necessary logic

to receive the runtime configuration values through the AHB

slave and the input samples, using an ad-hoc dedicated inter-

face. In addition, the flow control of the output compressed

bitstream is managed by this module. The block-coder core

is shown in Fig.7.

First of all, the int module reads the runtime configu-

ration values, after being adapted to the IP clock domain.

The int module also validates the configuration provided,

arising an error if the configuration values are out of range.

If runtime configuration is disabled (EN_RUNCFG = 0),

the IP uses the configuration values defined during compile

time.

Then, the configuration values are sent to the header_gen

module, which generates the different header fields according

to the configuration provided, including prediction fields if

the unit-delay predictor is implemented, and transmitting

them to the packing_final module. This module splits the

output bitstream in words with a size specified by the user

through the W_BUFFER parameter. Every time the output

buffer is full with a word with a size of W_BUFFER bits,

a valid flag indicates that the output value can be captured by

an external module.

The rest of the modules constitute the compression

engine itself, implementing the block-adaptive entropy coder

described in Section II-A. The snd_extension module com-

putes the length of a block encodedwith the second-extension

option. The compute_l_k module computes the length of

a block encoded with the FS, as well as all the sample

splitting options. The number of options to be evaluated

depends on the dynamic range of the input samples and the

user-selected configuration parameters. Besides, this module

identifies if a block contains all zeroes, selecting in this case

the zero-block option. The option that generates the codeword

with the minimum length is stored in a register named as

Lk (winner), and it is compared with the lengths obtained from

the second-extension and no compression modules using the

optioncoder module, which selects the best coding option

in terms of minimum size. Once the encoding option is

selected, the fscoder module encodes the stream according

to the FS sequence, joined with the option identifier. Finally,

the sequence encoded by the fscoder, as well as the uncom-

pressed sample splits, are sent to the final packer to be out-

putted.

If the unit-delay predictor is included, its fsm module

may bypass the preprocessing step by activating the Bypass

signal, in order to periodically insert the reference sample.

This step is necessary to recover the original image dur-

ing the decompression step. The entropy coder must man-

age these reference samples, and for this reason, it is nec-

essary to apply some modifications in its structure. First

of all, it should be able to identify which blocks of sam-

ples include a reference sample. This process is done intro-

ducing a new state in the block-coder FSM. In addition,

the snd_extension and the compute_l_k modules have been

modified in order to compute correctly the length of the

compressed block for each compression option when a ref-

erence sample is introduced, following the rules detailed

below:

• Fundamental sequence. The reference sample is not

compressed, so its contribution to the length of the com-

pressed block is the dynamic range of the input samples

rather than its value. The rest of the samples in the block

are compressed as usual.

VOLUME 8, 2020 54275



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

• Sample splitting. Same case as the FS; the reference

sample is uncompressed and no changes are presented

in the management of the rest of the block samples.

• Second-extension. The reference sample is indepen-

dently coded without compression. Then, the first sam-

ple of the block is replaced by a zero value when com-

puting the gamma values.

• Zero-block. The reference sample is not taken into

account when the zero-block condition is evaluated. This

is, a block of all zeroes except for the first sample will be

coded with this option if it includes a reference sample.

• No compression. No changes are presented with respect

to version 1.0.

In all the aforementioned options, the reference sample

is coded after the unique identifier for each coding option.

In order to do so, the block-coder FSM has been properly

modified.

In addition to the implementation of the unit-delay pre-

dictor, the SHyLoC 2.0 CCSDS-121 IP includes other new

features, such as the management of input samples with a

dynamic range up to 32 bits, instead of the maximum 16 bits

supported by version 1.0. Endianness handling is the main

change to apply in order to extend the dynamic range. Finally,

signed samples are supported too. These two features are only

supported by the CCSDS-121 IP if the unit-delay predictor is

included.

Both the new configuration parameters introduced for the

SHyLoC 2.0 CCSDS-121 IP and the modified ones are sum-

marized in Table 4.

B. SHyLoC 2.0 CCSDS123-IP

The SHyLoC 2.0 CCSDS-123 IP includes both the predictor

and the sample-adaptive entropy coder which are defined

in the CCSDS 123.0-B-1 compression standard. As for the

CCSDS-121 IP, constants and runtime configuration param-

eters are detailed in [14], including the local sum calculation

and predictionmodes, or the number of previous bandsP used

by the prediction stage, among others. The option of imple-

menting EDAC to the internal embeddedmemories is offered,

relevant to provide robustness in critical environments.

This IP can work either independently or jointly with the

CCSDS-121 IP counterpart, which implements the block-

coder of the CCSDS 121.0-B-2 standard (ENCODING_

TYPE = 0 and ENCODER_SELECTION_GEN = 2).

Additionally to the modules performing the compression

operations, i.e. the predictor and sample-adaptive encoder

TABLE 4. CCSDS121 IP-new and modified parameters.

blocks, the CCSDS-123 IP implements additional com-

ponents which take care of control, configuration and

interface management. Standard interfaces are provided to

ease the interaction with other co-processors. In particular,

the CCSDS-123 IP includes two AHB interfaces: one acts as

a configuration port (slave interface), while the other (master

interface) is used to communicate with an external memory

to store intermediate values during the compression, which

is exploited by certain compressor architectures to reduce the

embedded block RAM (BRAM) usage. However, the AHB

master interface in SHyLoC 1.0 does not have burst trans-

fers capabilities, which limits the compressor performance

when the external memory is used, forcing to use only single

transfers. The ad-hoc data input and output interfaces are

complemented with input and output control signals. The

IP also includes a configuration block, which receives the

user-defined configuration parameters from the AHB slave

interface, validates it and disseminates it to the rest of mod-

ules, adapting clock frequencies between external and inter-

nal domains and generating the compressor header according

to the CCSDS standard. Finally, a dispatcher module collects

and packs all the output data [21].

1) PREDICTION STAGE

SHyLoC 1.0 was originally designed focusing on versatility,

and because of that, all data arrangements in multispectral

and hyperspectral applications are supported: BIP, BIL and

BSQ. A specific architecture of the CCSDS-123 IP predictor

has been designed for each ordering with the aim of optimiz-

ing computations, taking into account the data dependencies

present on each case. The use of dedicated predictor archi-

tectures for each image order allows a better coupling with

the targeted sensor, processing the samples on-the-flywithout

any previous extra reordering step. Memory requirements

and data dependencies for each predictor architecture are

also analysed in [14]. In addition, for the BIP ordering two

different architectures are offered: with and without access to

an external memory. The use of an external memory to store

intermediate results allows to manage images with bigger

size both in the spatial and the spectral domain and even

with higher bit resolution. Therefore, architectures that use

an external memory are suitable for reducing the IP resources

utilization when the memory demand is too high, at the cost

of reduced throughput.

In summary, a total of 4 predictor architectures were

devised in SHyLoC 1.0, named BIP, BIP-MEM (BIP with

external memory), BIL and BSQ. The architecture must be

selected at implementation time, determining which predictor

design is implemented, defined by the PREDICTION_TYPE

constant.

Nevertheless, all these predictor architectures share the

same internal structure, represented in Fig. 8, which is then

customized for each scenario.

A set of FIFOs allows arranging the input samples in such

a way that, for every sample, the neighbour samples used

in the prediction are available at the output of each FIFO.

54276 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

This means that the size of the FIFOs may vary depending

on the compressor configuration, including the maximum

allowed input image dimensions. Then, the predictor esti-

mates the current sample, maps the prediction residual and

updates the weights, all according to the CCSDS 123.0-B-1

compression standard. In order to save resources, the local

differences are stored to be reused in subsequent bands.

Additional memory is required for the Band-Interleaved

architectures to store and retrieve the weight vectors when

changing between bands. SHyLoC 1.0 only supports the

default weight initialization defined in the CCSDS 123.0-B-1

standard, because of the high complexity of implementing the

custom mode in comparison with the limited improvement

in the compression ratio. Finally, there are storage elements

which are placed in external memories depending on the

selected architecture: in the BIP-MEM architecture, the input

FIFO corresponding to the top right neighbour is moved

outside; furthermore, the local differences are stored in an

external memory when the samples arrangement is BSQ.

Assuming that the spectral dimension of the hyperspec-

tral image to be compressed is large enough to fill a

pipeline (dependent on the hypercube size and the number of

bands P used for prediction), the BIP architecture is the one

that achieves a throughput of one sample per clock cycle,

taking advantage of performing both the dot product needed

by the predictor and the weights update operations concur-

rently. Although the BIP-MEM architecture works internally

in the sameway than the BIP one, the communicationwith the

external memory used to store and retrieve intermediate val-

ues during the compression introduces a slight performance

penalty. The throughput of the BIP-MEM architecture can be

improved taking advantage of the burst transfer capabilities

offered by the AMBA AHB interface [22], a feature intro-

duced in SHyLoC 2.0.

On the other hand, the BSQ ordering presents strong data

dependencies between adjacent input samples, preventing

parallelism among operations and thus, imposing a noticeable

throughput limitation. Because of this, this architecture works

in a serial manner, in order to reduce resources utilization.

FIGURE 8. CCSDS-123 IP - Predictor block diagram [21].

Additionally, in this architecture it is required to store a com-

plete vector of local differences per sample. As the memory

demand can be too high, the storage of these elements is

moved to an external memory, accessed through the AHB

master interface [14].

Finally, the BIL architecture is a combination of the BIP

and BSQ architectures. It takes most of the components of

the BIP architecture, but uses a dedicated set of FIFOs in

order to store the local differences internally. Regarding data

dependencies, there are two possible situations, depending on

whether the next sample is in the same band or not. There-

fore, a specific operation scheduling was designed for the

BIL architecture, taking into account this duality.

2) NEW FEATURES INTRODUCED TO THE PREDICTOR

Although SHyLoC 1.0 offers a efficient compression solu-

tion for hyperspectral images in terms of compression ratio

and resources utilization, its throughput shall be improved,

specially for the architectures that use an external memory

to store intermediate results. In addition, the CCSDS-123 IP

does not implement some of the optional features present

in the compression standard, which can be of interest to

further increase the compression performance in terms of data

reduction in some applications.

SHyLoC 2.0 includes design optimizations for improv-

ing the throughput, as well as standard-compliant features

which were not included in SHyLoC 1.0. The use of burst

transfers through the AHB interface to increase the memory

bandwidth, and the design of a new architecture to process

samples in BIL ordering with the aid of an external memory,

named as BIL-MEM, are considered to efficiently enhance

compression performance in terms of latency.

In addition, we have studied the viability of implementing

the custom weights initialization, analyzing its impact in

the current predictor architectures. It is not a functionality

completely included in SHyLoC 2.0, though parameters to

do it in an efficient way have been defined.

a: BURST TRANSFERS AND BIL-MEM ARCHITECTURE

In the BIP-MEM architecture, the input samples are written

in the external memory by the AHB master interface of

the CCSDS-123 IP, which controls when the intermediate

samples are read and written, properly setting the address

and control signals of the transaction and avoiding any data

losses. Asynchronous FIFOs are placed between the predictor

and the AHB master, in order to adapt data rates between

both modules. During the processing, stores and reads are one

spectral line apart, i.e. only after all samples in a line (with

all its bands) are stored, they are required to be read. From

that point onward, reads and stores are required, until the last

spectral line, where only read operations are performed.

SHyLoC 1.0 supports only single transfers, forcing the

AHB master to request the control of the bus on every single

sample, which may impact the overall performance. How-

ever, in SHyLoC 2.0, the AHB master interface has been

redesigned to support incremental burst transactions with a

VOLUME 8, 2020 54277



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

maximum of 16 beats per burst, with a scheme where read

and write bursts are interleaved. In this way, the potential

delays because of the control requests to the bus arbiter are

noticeably reduced, as they only take place once per burst, and

they can be masked if the bus control is not requested by any

other peripheral. The maximum size of the burst transfers is

established at compile time using theHMAXBURST constant,

but the AHB master is able to manage shorter bursts to meet

certain checkpoints along the execution (e.g. when the end of

the image is reached).

In addition, a new architecture has been implemented,

which processes input samples in BIL arrangement, but uses

the AHBmaster interface to store the contents of the top right

FIFO in an external memory (similarly as in the BIP-MEM

architecture). Hence, this new architecture, denoted as

BIL-MEM, allows to process images in BIL ordering even

if the target device does not have enough memory resources

for the demands of the target configuration. The same opti-

mizations of the AHB master interface from the BIP-MEM

architecture are applied here, including the communication

with the external memory in burst mode.

b: CUSTOM WEIGHT INITIALIZATION

The CCSDS 123.B-0-1 compression standard optionally

allows to use a set of custom weight vectors instead of the

default initialization values, even band-independent vectors

for a fine grain adjustment. According to [20], a compression

data rate reduction up to 4% can be achieved with the custom

weight initialization if their values are properly tuned. This

motivates the analysis of the weights initialization mode,

revealing the trade-offs to be considered for its implementa-

tion. In particular, additional storage resourcesmay need to be

allocated in order to support the configuration of the custom

initial weights, the configuration of the IP may be longer and,

according to [10], custom weight values have to be coded in

the header of the compressed image, which puts into question

the benefits in terms of compression efficiency.

Being the SHyLoC CCSDS-123 IP designed with the goal

of full compliancy with the CCSDS 123.B-0-1 compression

standard, the implementation of the custom weight initial-

ization mode must be taken into account, considering the

implementation complexity and the identification of new

configuration options. At the same time, its implementation

must be transparent to the user, preserving all the modules

and architectures developed for SHyLoC. Reusing already

existing components would be desirable, thus reducing the

resource utilization penalties.

Taking all these factors into account, the proposed solution

consists in preloading the weight FIFOs with custom initial

values at the beginning of the compression process. If the

custom weight initialization mode is used (WEIGHT_INIT_

GEN = 1), these values would be received by the AHB con-

figuration port and loaded into the weight FIFOs by means of

a dedicated logic. In the case of the BSQ architecture there

is no internal memory storage for weight vectors, as there is

no need to maintain more than one weight vector at any given

time. Therefore, it would be required to implement an extra

memory to store the custom initial weights, and load them one

by one with each new band. The size of this memory would

depend on the compressor configuration, with a maximum of

Nz · (P+ 3) elements.

The specification of custom weight vectors must be sup-

ported at runtime through the AHB configuration interface.

Two configuration modes are foreseen: different weight vec-

tors for each band (fine-grain adjustment, high configuration

penalty) and the same vector for all the bands (coarse-grain

adjustment, low configuration penalty), selected through

a new parameter CWI_GEN. In order to reduce the

configuration time penalty, implementing an extra memory

is suggested to store the weight vectors received from the

configuration port (which is in any case mandatory for the

BSQ architecture), so they can be reused in consecutive runs.

Alternatively, this memory could be preloaded, allowing to be

configured at implementation time. This feature could help

in reducing the design complexity when the nature of the

images to be processed has little variability and it is known

beforehand.

The coding of the custom initial weights in the header is

done at the same time they are loaded into the weight FIFOs,

for a minimum performance penalty. The exception is the

BSQ architecture, where custom weights are progressively

loaded along the compression process. In order to reduce the

compression efficiency penalties, two non-standard solutions

are proposed: if the same weight vector is used for all bands,

then coding a single vector in header would be enough,

signaled with appropriate flags. Alternatively, there is the

possibility of not including them in the header, although in

that case the decompressor must know a priori the initial

weight values.

Finally, in the Band-Interleaved architectures it is possible

to reuse the final state of weight vectors as custom weights

for the next compression, reducing the communication needs

in case of image partitioning along the Y axis. This feature,

enabled withWR = 0, would require a previous compression

run with any of the standard initialization modes. This mode

would not be available for the BSQ architecture.

The new parameters defined for the predictor stage of the

SHyLoC 2.0 CCSDS-123 IP, as well as the ones modified

regarding its first version, are shown in Table 5.

3) SAMPLE-ADAPTIVE ENCODER

The sample-adaptive encoder is formed by two main mod-

ules, the compression engine and the bit packer, together with

a FSM that manages the complete coding process, as shown

in Fig. 9. As soon as the mapped residuals are received

from the predictor, the compression engine calculates the

code for each input sample using the createcdw module,

taking into account the counter and accumulator values. Then,

these image statistics are updated in the update_counters

module. For that purpose, two FIFOs are needed when some

of the available Band-Interleaved architectures are selected

for the prediction stage, in order to store the accumulator

54278 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

TABLE 5. CCSDS123 IP-new and modified parameters.

FIGURE 9. CCSDS-123 IP - Sample-adaptive block diagram.

values of a specific sample with all its spectral components

(i.e. in all the bands), necessary to compress the next one.

The last part of the encoding flow is the bit_pack module,

which packs the generated codewords according to the value

of the W_BUFFER_GEN constant. Every time the output

buffer is full, a valid flag is asserted to indicate that the output

bitstream can be captured.

IV. EXPERIMENTAL RESULTS

This section summarizes the verification stage and the

synthesis results obtained for both SHyLoC 2.0 IPs on

different space-qualified FPGA technologies, detailing also

the selected parameters for each test. Concretely, the tar-

get devices under study in this work are the Xilinx Vir-

tex5QR XQR5VFX130, the Microsemi RTG4 150 and

the NanoXplore devices, NG-MEDIUM and NG-LARGE.

More comprehensive results for other FPGA technolo-

gies (including antifuse) and ASICs are included in the

SHyLoC datasheet [13], [21].

For the BRAVE FPGA family, the NG-LARGE device

is selected as implementation target for the CCSDS123-IP,

since it provides enough resources to map the IP in most con-

figurations, including the most complex ones, that can be too

demanding for smaller devices such as the NG-MEDIUM.

The synthesis results for both IPs have been obtained

using Synopsys Synplify Premier N-2018.03 for the different

FPGA technologies under study, applying pipelining opti-

mization synthesis attributes in order to obtain better results

in terms of timing. Similarly, the NanoXplore NXmap soft-

ware suite (version 2.9.2) was used to obtain mapping results

for the BRAVE family, setting the synthesis options Tim-

ingDriven and UseSynthesisRetiming to Yes and the option

MappingEffort to Medium, in order to achieve the maximum

clock frequency possible without compromising the logic

resources utilization.

A. SHyLoC 2.0 CCSDS121-IP

The SHyLoC 2.0 CCSDS121-IP has been widely verified by

simulation prior to obtaining synthesis results. The verifica-

tion methodology is based in comparing the output of the

IP for each one of the tests performed with the golden ref-

erence compressed streams generated using the CCSDS-121

reference software, provided by ESA [23]. Concretely, a total

of 85 tests were executed successfully, including basic sanity

tests to verify the main functionality and corner cases. A total

of 24 different configuration sets (10 in compile time and

14 in runtime) and 29 images with different number of sam-

ples, samples distribution and dynamic range were used.With

this large testbench, all the possible situations the compressor

can face during its functional lifetime are taken into account.

The baseline configuration used for mapping purposes is

summarized in Table 6. The parameters that change among

configurations are PREPROCESSOR_GEN, which specifies

if the unit-delay predictor is included or not; and the dynamic

range, using 16 and 32 for analysing the impact of the bit

depth extension. As it is shown, we have fixed the maximum

cube size of the IP to 1024 for each one of the coordinates.

The same constraint in terms of data size is applied to the

CCSDS-123 IP. This constraint is specified for synthesis

purposes. The maximum cube size supported by both IPs is

65535 for each coordinate, restricted by the precision used

(16 bits).

Synthesis results for the SHyLoC 2.0 CCSDS-121 IP on

Virtex5QR XQR5VFX130, RTG4 150 and NG-MEDIUM

are shown in Table 7, Table 8, and Table 9, respec-

tively. Results for BRAVE technology are shown on the

NG-MEDIUM device because the CCSDS-121 IP fits well

in the available resources. Each table includes the resources

TABLE 6. CCSDS121 IP-baseline configuration for synthesis results.

VOLUME 8, 2020 54279



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

utilization in terms of memory blocks, arithmetical units and

logic resources, as well as the estimated maximum through-

put. As the SHyLoC 2.0 CCSDS121-IP is able to process

one sample per clock cycle, the maximum throughput will

be equal to the maximum clock frequency achieved.

The results show that best outcome in terms of throughput

is obtained for the Virtex5QR XQR5VFX130, achieving a

maximum value of 106.3 MSamples/s when the IP works

only as block-adaptive encoder and limiting the maximum

dynamic range to 16.

However, it must be taken into account that Vir-

tex5QR architecture uses larger logic elements than the

rest of the technologies analysed, integrating 6-input LUTs

while RTG4 and NG-MEDIUM use 4-input LUTs. The

NG-MEDIUM performance is also limited by the novel

NanoXmap synthesis tool, which is evolving with each new

version. In general, best throughput results are obtained for

all the technologies analysed when the unit-delay predictor is

not implemented as part of the design and consequently the

dynamic range is up to 16 bits, as it was expected. Aminimum

penalty is observed in timing results when the unit-delay

predictor is introduced, going from the 2% for Virtex5QR

to the 16% for RTG4 150. For all the technologies analysed,

the extension of the dynamic range up to 32 bits when the

predictor is implemented implies a significant impact in

TABLE 7. CCSDS121 IP- Synthesis results on Xilinx Virtex5QR
XQR5VFX130.

TABLE 8. CCSDS121 IP- Synthesis results on Microsemi RTG4 150.

TABLE 9. CCSDS121 IP- Synthesis results on NanoXplore NG-MEDIUM.

timing performance, reducing throughput results an average

of 20%.

In terms of resources utilization, the maximum logic usage

for Virtex5QR is approximately the 9% of the available

LUTs, without using any embedded memory block. These

results are obtained when the predictor is included and the

dynamic range is set to 32 bits, the most critical configura-

tion in terms of resources consumption. This maximum area

occupation is repeated forMicrosemi RTG4 150, using in this

case the 7% of memory resources.

This situation is probably due to the fact that in Virtex5QR

the synthesis tool exploits the possibility of using LUTs as

distributed memory when not so much storage is needed,

while for RTG4 the tool tries to achieve a trade-off between

the use of BRAMs and logic resources.

Occupation results for NG-MEDIUM are in the line with

the rest of FPGA technologies analysed. A maximum usage

of the 32% of LUTs and the 36% of Block RAMs (BRAMs)

is shown again when predictor is included and the dynamic

range is set to 32 bits. In this case, it is remarkable the high

usage of Carry Cells (amaximumof 70%) due to the extended

resolution in the arithmetic operations.

As it can be observed, the bit depth extension and the

inclusion of the unit-delay predictor imply an increment of

the logic resources utilization for the different FPGA tech-

nologies analysed. In addition, though for the included results

the block size generic J_GEN was fixed to 16, the increment

of this parameter also supposes a boost of the logic resources

utilization, as it is shown in [21].

B. SHyLoC 2.0 CCSDS123-IP

The SHyLoC 2.0 CCSDS-123 IP has been also verified by

means of an extensive validation campaign, in the same

way than the CCSDS-121 IP. A corpus of 18 multispectral

and hyperspectral images have been tested, including both

synthetic images to verify corner cases and images from

sensors used in the space and aircraft industries, such as

the Atmospheric Infrared Sounder (AIRS), the Airbone Visi-

ble/Infrared Imaging Spectrometer (AVIRIS) or theModerate

Resolution Imaging Spectroradiometer (MODIS), whose fea-

tures were mentioned in Table 1. The IP has been tested using

up to 22 different sets of configuration parameters (11 in

compile-time and 11 in runtime), trying to cover a broad

range of cases and verifying all the predictor architectures.

Table 10 shows the values used during the synthesis step

for some relevant configuration parameters, excluding image

dimensions which are image-dependent. A total of 110 dif-

ferent tests were passed, whose results have been compared

against golden references generated by a reference software

implementing the CCSDS 123.0-B-1 compression standard,

provided by ESA [23].

1) TIMING RESULTS

Results for the SHyLoC 2.0 CCSDS-123 IP on Virtex5QR

XQR5VFX130, RTG4 150 and NG-LARGE are shown

in Table 11, Table 12, and Table 13, respectively. As it was

54280 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

TABLE 10. CCSDS123 IP-baseline configuration for synthesis results.

TABLE 11. CCSDS123 IP- Maximum frequency on Xilinx Virtex5QR
XQR5VFX130.

TABLE 12. CCSDS123 IP- Maximum frequency on Microsemi RTG4 150.

aforementioned, results for BRAVE technology are shown in

this case on the NG-LARGE device, because NG-MEDIUM

does not have enough resources to fit Band-Interleaved archi-

tectures where only internal memory resources are used. The

group of the images presented on Table 1 has been consid-

ered for the synthesis step, including multispectral (Landsat,

6 bands), hyperspectral (AVIRIS, 224 bands) and ultraspec-

tral (AIRS, 1501 bands) images. Additionally, the AVIRIS

sensor was also used to obtain results when runtime configu-

ration is enabled.

The system clock frequency achieved for Virtex-5QR

is above 105 MHz for all the configurations implemented

(see Table 11). For the Landsat configuration, which takes

the least resources, some architectures can go even faster,

achieving up to 153.3 MHz for the BIP-MEM architec-

ture. However, not all the architectures provide the same

TABLE 13. CCSDS123 IP- Maximum frequency on NanoXplore NG-LARGE.

throughput, being BIP the one that can reach the maximum

throughput of one sample per clock cycle, provided enough

bands in the input image to be compressed. Besides, the

CCSDS-123 IP has been designed in such a way that the AHB

clock is faster than the system clock in order to avoid delays in

the processing due to the communications with the external

memory, a condition that is fulfilled in all the implemented

architectures.

For the Microsemi RTG4 technology, the system clock

frequencies range from 69 to 85 MHz approximately, with

some of the Landsat configurations going even slightly faster.

Finally, clock frequencies between 28 and 45 MHz are

obtained for the NG-LARGE, and in this case the AHB clock

frequency can be slightly slower than the system clock in

certain configurations.

The throughput of the different compressor architectures

has been measured by means of simulation using the Mentor

QuestaSim software. In order to provide a fair comparison,

the same test image (in different arrangements) has been com-

pressed with all the compressor architectures, using always

the same set of configuration parameters (with P = 3).

In addition, for the BIP-MEM and BIL-MEM architectures,

different values of the HMAXBURST parameter have been

tested, in order to study the impact of the burst length as well

as the presence or absence of bursts in the compressor perfor-

mance. TheAHB data and address interfaces were configured

with a width of 32 bits. The bus clock is always twice the

IP clock frequency for the three cases analysed in Table 14,

in order to avoid a bottleneck on the data transfers. Finally,

coupling FIFOs placed between the IP core and the AHB

interface have a width equal to D and a depth of 16, the max-

imum burst size allowed. These FIFOs include a control flow

protocol, including empty/full flags.

The image used for these measurements was a small image

from the CCSDS dataset, with dimensions of 75 × 78 × 80

pixels. The results are summarized in Table 14.

According to these results, the performance for the

BIP-MEM architecture improves slightly more than 1.5 times

with respect to using just single transfers when bursts of

size 4 are used, and by a factor of almost 2.2 with bursts

of size 16. If we compare against the BIP-base architecture,

the fastest one, the performance penalty incurred by com-

municating with the external memory is 15% with bursts of

size 16. This is a significant improvement to SHyLoC 1.0,

VOLUME 8, 2020 54281



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

TABLE 14. CCSDS123 IP- Throughput in Msamples/s of the compressor
architectures for different burst sizes and clock frequencies.

where the penalty was 60% for BIP-MEM, since it did not

support burst transfers. These results confirm the benefits

of implementing burst transactions in order to speed up the

compressor performance when the BIP-MEM architecture is

used.

The same tests have been performed for the BIL-MEM

architecture, although in this case all the configurations

reported exactly the same execution times, roughly an 87%

slower than BIP-base, also identical to the BIL-base archi-

tecture.

This means that in the BIL-MEM architecture the pro-

cessing bottleneck is not related to the communications with

the external memory, but with the data dependencies present

in the prediction computation (i.e. the previous sample in

the same band). Therefore, for this architecture it is prefer-

able to use the memory controller without support for burst

transfers already present in SHyLoC 1.0, as it is simpler and

lighter. Finally, the BSQ is the slowest architecture in terms of

throughput, due to its pure sequential scheduling, and about a

89% slower than BIP-base. This is consistent with the idea of

designing a BSQ architecture optimized for low-complexity,

in order to balance the performance penalty introduced by its

limited throughput [24].

2) RESOURCES UTILIZATION

Synthesis results in terms of resources utilization are sum-

marized in Figs. 10, 11 and 12 for the different target FPGA

technologies. In general, the compressor makes a low utiliza-

tion of logic resources in all the FPGAs under study, which

proves the low complexity of the compression algorithm.

The usage of DSP units, LUTs, registers and carry cells is

almost constant for each target FPGA technology, with slight

differences depending on the implemented compressor archi-

tecture, the target image size or if the run-time configuration

is enabled or not. However, these differences are noticeable

in the case of memory usage, which is mainly determined

by the predictor architecture. For those architectures without

external storage (BIP and BIL), the image size has also a great

impact on memory resources.

The parameter that has a higher impact in the resources

utilization is the the size of an spectral line (NxNz). Con-

cretely, this feature determines the use of BRAMs because

it fixes the size of different memory elements, such as the

FIFOs that store the adjacent samples for the local sum and

differences calculation during the prediction, or the dimen-

sion of the accumulator array used if the sample-adaptive

encoder is selected. The number of P previous bands used for

prediction also has an influence in the BRAMs consumption,

since it specifies the weights vector size and the number

of elements to be considered during the local differences

calculation.

Regarding the logic resources consumption (i.e. LUTs

and FFs), the dynamic range D supposes the main constraint,

since it defines the bit width of different internal elements,

such as the local differences values. In addition, the weight

resolution� has also a slight influence in the LUTs consump-

tion, because it specifies the precision of each element of the

weights vector.

For Xilinx Virtex-5QR (Fig. 10), up to 40% of memory

resources are used with the largest image in the implemented

configurations, so the resource utilization is not a prob-

lem for any of the configurations considered. With respect

to the DSP units and LUTs utilization, all the architec-

tures and configurations provide similar results, with ranges

between 1.5% and 4.7% for DSPs, and between 4.5% and 9%

for LUTs. However, the DSP utilization tends to be lower

for the BSQ architecture, due to its serial implementation,

and higher for the BIP-MEM and BIL-MEM ones, due to the

parallelized implementation of some operations and the AHB

interface with the external memory. In addition, the BIP and

BIL architectures use less LUTs compared with the others,

due to the absence of the AHB interface to communicate

with the external memory, and the LUT utilization slightly

increases with the image dimensions. Comparing both syn-

thesized configurations for the AVIRIS sensor, it can be

observed that the inclusion of the AHB configuration inter-

face increases the LUT utilization in only about 1%.

For Microsemi RTG4 (Fig. 11), the memory demands on

certain configurations with the largest image are so high that

they exceed the FPGA resources, forcing to use an external

memory. However, for the BIP-MEM and BIL architectures

a better balance in the utilization of both kinds of memory

could solve the problem, as in these cases just one of the

internal memory resources is overused, while utilization of

the other remains low. Regarding the rest of logic resources,

they are kept almost constant for each one of the target

configurations (between 1.3% and 3.5% for carry cells and

DSPs, 1.8% - 3.4% for sequential cells, and 3.5% - 7.2% for

LUTs). The implementation of the runtime configuration port

increases the reource usage of all these elements in about 1%.

Finally, in the case of NG-LARGE (Fig. 12), the mem-

ory usage grows up to a maximum of 80% for the AIRS

image, reason why this implementation does not fit on the

NG-MEDIUM device. Regarding logic resources, LUTs con-

sumption is in the range of 2.5% - 6%, while DSPs are

under the 2% for all the cases. With these results, we demon-

strate that this novel FPGA technology is suitable to execute

complex designs, such as the targeted hyperspectral image

compressor.

54282 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

FIGURE 10. CCSDS123 IP- Synthesis results on Xilinx Virtex5QR XQR5VFX130.

FIGURE 11. CCSDS123 IP- Synthesis results on Microsemi RTG4 150.

FIGURE 12. CCSDS123 IP- Synthesis results on NanoXplore NG-LARGE.

C. COMPARISON WITH STATE-OF-THE-ART

IMPLEMENTATIONS

The comparison of the SHyLoC 2.0 CCSDS-123 IP with

different FPGA implementations available in the state-of-the-

art is not easy, because SHyLoC 2.0 allows a high quantity

of architectures and configurations that results in different

performance capabilities. This flexibility to adapt the IPs

to the target application is not generally present in other

implementations that focus the attention in obtaining the best

architecture generally in terms of either maximum throughput

or minimum resources utilization. Moreover, the different

FPGA implementations of the CCSDS 123-0-B-1 standard

do not target the same technologies, using even in some

cases commercial devices as target implementation. It is also

VOLUME 8, 2020 54283



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

possible to find some implementations of this algorithm on

Graphics Processing Units (GPUs) [25], [26]. GPUs can

achieve high throughputs in applications that are inherently

data-intensive. However, their higher consumption and lack

of tolerance to ionising radiation makes them unfit to be used

in space. A direct comparison with a GPU implementation is

not possible and could be misleading, and therefore we think

it is not appropriate to incorporate them to the comparison

presented here.

In the case of SHyLoC 2.0, both IPs are technology-

independent and consequently they have been mapped for

a high variety of FPGA technologies (including the new

European BRAVE family) and even for ASICs.

Despite this fact, we consider the architecture of

SHyLoC 2.0 CCSDS123-IP that achieves the best throughput

for the AVIRIS sensor (D = 16), in order to provide a fair

comparison with the existing FPGA implementations [14],

[24], [27]–[33]. Besides, resources utilization (if available) is

analyzed for the mentioned implementations. This compari-

son is summarized in Table 15.

The implementation proposed by Santos et al. [24] focuses

on obtaining a low-complexity architecture in terms of

resources utilization, in order to fit in older generations

of space-grade FPGA technologies. BSQ was selected as

processing order, compromising the throughput due to data

dependencies in the prediction stage. In addition, local dif-

ferences are recomputed when needed to optimize area,

requiring non-sequential accesses to the external memory

and decreasing timing performance. In [27], the authors pro-

posed a BIP architecture for pushbroom instruments, fit-

ting well in different Xilinx FPGA technologies. Never-

theless, the possibilities of parallelism that the algorithm

allows are not exploited, incurring in a penalty in terms of

throughput.

The implementation proposed by Bascones et al. [28]

works also in BIP order and it is optimized to use only

internal memory storage, proposing the use of FIFOs to store

the weights values, together with the local sum and differ-

ences calculations, being available when the next sample is

processed. Using this scheme, they achieve a throughput of

almost 48 Msamples/s when it is implemented on a Xilinx

Virtex-7 XC7VX690T. In a later development by the same

authors [29], a parallel implementation is proposed, defin-

ing multiple copies of the compressor working simultane-

ously and using a shared memory to resolve data dependen-

cies between consecutive samples. In this case, a maximum

throughput of 179.7 MSamples/s is obtained targeting a Xil-

inx Virtex-5 XQR5VFX130, when 7 compression instances

are working in parallel. However, the resources utilization

is incremented significantly, consuming almost the 60% of

BRAMs available in this device.

To the best of our knowledge, the fastest implementation

available in the state-of-the-art using only one compression

instance is the proposed by Tsigkanos et al. [30]. In this

work, the authors exploit the parallelism under BIP ordering

and implement a fine-grained pipeline in critical feedback

loops based on C-slow retiming, achieving up to 213 MSam-

ples/s on a Xilinx Virtex-5 FX130T, the equivalent commer-

cial version of the space-qualified Virtex-5 XQR5VFX130.

They introduce an extra module, named as Spectral Slice

Buffer, in order to have the necessary neighbouring available

when the local sum calculation is going to take place. In a

more recent work [35], the authors also provide results on

the next-generation Xilinx XQRKU060 FPGA, achieving

a maximum throughput of 315 MSamples/s impelementing

the same architecture described in [30]. Although this work

will be useful as a reference for future developments, it is

out of our comparison because of the high technology gap

with the FPGAs selected as target device by the rest of the

implementations analysed.

In addition to implementations targeting space-grade

FPGA technologies, there is a trend of using Commercial-

Off-The-Shelf (COTS) FPGAs for space-related

applications, such as SmallSats and Low-Earth Orbit (LEO)

missions. Although the performance of this technology is

higher than the achieved by RHBD FPGAs, commercial

(generally, SRAM-based) FPGAs are vulnerable to ionizing

radiation present in harsh environments. As it is well known,

radiation may cause different kinds of Single Event Effects

(SEEs), such as bit flips at memory configuration (SEUs) or

even functional interrupts of the electronic system (SEFIs).

Therefore, mitigation techniques shall be applied to the

design in order to provide robustness against radiation, as it

has not been considered during the device manufacturing

process.

In this way, Pereira et al. [31] propose a low-complexity

implementation of the prediction stage (column-oriented

local sum and reduced prediction mode are selected), tar-

geting a Xilinx Zynq-7020 Multi-Processor System-on-

Chip (MPSoC) and achieving a maximum throughput

of 20.4 MSamples/s. This architecture works in BIP order,

storing the weights in an internal memory (implemented

with flip-flops) but out of the processing core, in order to

share these values among multiple copies of the compression

instance, if needed for higher throughput.

Rodríguez et al. propose in [34] a parallel implemen-

tation of HyLoC, previously described in this study. For

this purpose, the ARTICo3 framework is used, a hardware-

based processing architecture for high-performance embed-

ded systems developed by some the same authors. Using

the toolchain provided by ARTICo3, 16 instances of HyLoC

are implemented in parallel in a Xilinx Zynq-7100 MPSoC,

achieving a maximum throughput of 67.04 MSamples/s.

In this case, a considerable penalty is observed in terms of

resources utilization, being difficult its implementation on

current space-grade FPGAs if the number of accelerators are

not limited to lower values.

The work of Fjeldtvedt et al. [32], also targeting a

Xilinx Zynq-7020 MPSoC, proposes a BIP architecture with

a Sample Delay module that works in a similar way that the

Slice Buffer proposed by [30]. Different pipelining strategies

are applied in the prediction module in order to reduce delay,

54284 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

TABLE 15. Comparison with CCSDS-123 FPGA implementations.

splitting the critical paths located in the local sum calculation

and in the weights updating. With this scheme, they achieve a

maximum throughput of 147 MSamples/s. In [33], the same

authors propose a parallel implementation of the previous

work, sharing the Sample Delay module and the central

differences, weights and accumulator memories among the

compression instances. In this case, the design is mapped on a

Xilinx Zynq-7035 MPSoC, obtaining different performances

depending on the number of pipelining stages implemented.

For example, a maximum throughput of 750 MSamples/s is

achieved when 5 compression copies are working simultane-

ously.

Finally, the SHyLoC 2.0 is also compared against its

version 1.0 [14]. Both versions are quite similar, except for

the new features aforementioned in section III: the inclusion

of the unit-delay predictor in the CCSDS-121 IP, along with

the necessary changes in the block-coder to process reference

samples, the extension of the dynamic range and the support

of signed samples; as well as the support for burst transfers in

the CCSDS-123 IP. Regarding the CCSDS-123 IP, both ver-

sions can be easily compared except for the new BIL-MEM

architecture, which is exclusive of the SHyLoC 2.0.

As it can be observed in Table 15, SHyLoC 2.0 achieves an

improvement of the 22% in terms of throughput regarding

its predecessor, working both versions in BIP ordering and

targeting the AVIRIS sensor. At the same time, a reduction

of the logic resources utilization is achieved (around the

21% of LUTs and the 34% of FFs). Therefore, results prove

that SHyLoC 2.0 offers an improved on-board compression

solution, including also new features not present in other

state-of-the-art implementations of the CCSDS 123-0-B-1

standard.

The SHyLoC 2.0 CCSDS-123 IP proposed in this work

achieves a maximum throughput of 138.3MSamples/s target-

ing a Xilinx Virtex-5 XQR5VFX130. This IP has been also

mapped on the Xilinx Zynq-7035 MPSoC in order to com-

pare it with implementations on COTS devices, reaching a

throughput of 151.1 MSamples/s. For both cases, the AVIRIS

sensor was taken as reference, being the BIP ordering the

architecture that obtains the best results because of it is the

only one capable of processing one sample per clock cycle.

If higher throughput is required, several measures can be

taken by the user, such as breaking the critical path with

intermediate registers, or instantiating several copies of SHy-

LoC to work in parallel. Although our implementation of the

CCSDS 123-0-B-1 standard exhibits lower throughput than

the implementation presented in [30], it represents a good

trade-off among timing performance, resources utilization,

versatility and portability, based on the results provided in this

paper.

V. CONCLUSION

This work describes the SHyLoC 2.0, a novel implementation

of the CCSDS 121.0-B-2 and 123.0-B-1 lossless compression

standards in the form of two reusable IP Cores, implement-

ing respectively each one of the aforementioned CCSDS

standards. SHyLoC 2.0 offers new features and perfor-

mance improvements that were not present in its predecessor,

SHyLoC 1.0, which belongs to the portfolio of ESA IP cores

for space missions. The throughput in terms of compressed

samples per second is increased thanks to the introduction of

burst transactions with selectable burst size to communicate

with an external memory. Additionally, the compression effi-

ciency of the CCSDS 121-IP is potentially improved by offer-

ing the possibility to use a unit-delay predictor to enhance

the entropy coder performance. To ensure reusability, the IP

cores are highly configurable, offering control to the user on

all possible trade-offs, by selecting the appropriate parame-

ters that will result in an optimum implementation that fits

in a huge variety of target space-qualified FPGA devices,

ranging from small anti-fuse FPGAs to bigger and faster

devices such as the Xilinx Virtex-5 QV130T. This is demon-

strated in this paper by presenting the most remarkable results

obtained in terms of throughput, maximum clock frequency

and resources utilization. To the best of our knowledge, this

is the most complete and versatile implementation of the

CCSDS lossless compression standards, supporting most of

the configuration options described on them.

VOLUME 8, 2020 54285



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

A hardware implementation of the new CCSDS 123-0-B-2

compression standard [36] is proposed as future work. The

main feature introduced by this Issue 2 is a quantization

loop which enables near-lossless compression. In addition,

support for input samples with up to 32 bits of resolution,

the definition of a hybrid encoder for low-entropy data or

a narrow mode to avoid the use of the previous sample in

the current band for the local sum calculation are introduced,

among other new characteristics. The quantization loop

introduces new data dependencies that were not present in the

Issue 1 of the standard, thus a new schedule must be defined

in order to obtain similar throughput to the purely lossless

version.

REFERENCES

[1] J. Transon, R. d’Andrimont, A. Maugnard, and P. Defourny, ‘‘Survey of

hyperspectral Earth observation applications from space in the Sentinel-2

context,’’ Remote Sens., vol. 10, no. 3, p. 157, 2018. [Online]. Available:

http://www.mdpi.com/2072-4292/10/2/157

[2] C. M. Lee, M. L. Cable, S. J. Hook, R. O. Green, S. L. Ustin,

D. J. Mandl, and E. M. Middleton, ‘‘An introduction to the NASA hyper-

spectral InfraRed imager (HyspIRI) mission and preparatory activities,’’

Remote Sens. Environ., vol. 167, pp. 6–19, Sep. 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0034425715300419

[3] J. Nieke and M. Rast, ‘‘Towards the copernicus hyperspectral imaging

mission for the environment (CHIME),’’ inProc. IEEE Int. Geosci. Remote

Sens. Symp. (IGARSS), Jul. 2018, pp. 157–159.

[4] C. Thiebaut and R. Camarero, ‘‘CNES studies for on-board compres-

sion of high-resolution satellite images,’’ in Satellite Data Compression,

B. Huang, Ed. New York, NY, USA: Springer, 2011, ch. 2, pp. 29–46.

[5] E. Christophe, ‘‘Hyperspectral data compression tradeoff,’’ in Optical

Remote Sensing: Advances in Signal Processing and Exploitation Tech-

niques, S. Prasad, L. M. Bruce, and J. Chanussot, Eds. Berlin, Germany:

Springer, 2011, ch. 2, pp. 9–29.

[6] M.W.Marcellin,M. J. Gormish, A. Bilgin, andM. P. Boliek, ‘‘An overview

of JPEG-2000,’’ in Proc. Data Compress. Conf. (DCC), Mar. 2000,

pp. 523–541.

[7] I. Blanes and J. Serra-Sagrista, ‘‘Cost and scalability improvements

to the Karhunen–Loêve transform for remote-sensing image coding,’’

IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2854–2863,

Jul. 2010.

[8] I. Blanes and J. Serra-Sagrista, ‘‘Pairwise orthogonal transform for spec-

tral image coding,’’ IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3,

pp. 961–972, Mar. 2011.

[9] A. J. Hussain, A. Al-Fayadh, andN. Radi, ‘‘Image compression techniques:

A survey in lossless and lossy algorithms,’’ Neurocomputing, vol. 300,

pp. 44–69, Jul. 2018. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0925231218302935

[10] Lossless Multispectral and Hyperspectral Image Compression, Standard

Recommended CCSDS 123.0-B-1, CCSDS, 2015.

[11] Lossless Data Compression, Standard Recommended CCSDS 121.0-B-2,

CCSDS, May 2012.

[12] ESA. ESA HDL IP Cores Portfolio Overview. Accessed:

Jun. 11, 2019. [Online]. Available: https://www.esa.int/Enabling

_Support/Space_Engineering_Technology/Microelectronics/ESA_HDL

_IP_Cores_Portfolio_Overview

[13] ESA. SHyLoC IP Core. Accessed: Sep. 14, 2018. [Online]. Available:

https://www.esa.int/Our_Activities/Space_Engineering_Technology/

Microelectronics/SHyLoC_IP_Core

[14] L. Santos, A. Gomez, and R. Sarmiento, ‘‘Implementation of CCSDS

standards for lossless multispectral and hyperspectral satellite

image compression,’’ IEEE Trans. Aerosp. Electron. Syst., to be

published.

[15] S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos, and A. Plaza,

‘‘The promise of reconfigurable computing for hyperspectral imaging

onboard systems: A review and trends,’’ Proc. IEEE, vol. 101, no. 3,

pp. 698–722, Mar. 2013.

[16] NX Products Overview, 2nd BRAVE FPGA Days, NanoXplore, Ottawa,

ON, Canada, Nov. 2018.

[17] J. E. Sánchez, E. Auge, J. Santalo, I. Blanes, J. Serra-Sagrista, and

A. Kiely, ‘‘Review and implementation of the emerging CCSDS recom-

mended standard for multispectral and hyperspectral lossless image cod-

ing,’’ inProc. 1st Int. Conf. Data Compress., Commun. Process., Jun. 2011,

pp. 222–228.

[18] E. Augé, J. E. Sánchez, A. Kiely, I. Blanes, and J. Serra-Sagrisà,

‘‘Performance impact of parameter tuning on the CCSDS-123 lossless

multi- and hyperspectral image compression standard,’’ J. Appl. Remote

Sens., vol. 7, no. 1, Aug. 2013, Art. no. 074594. [Online]. Available:

https://ddd.uab.cat/record/129769

[19] M. Klimesh, ‘‘Low-complexity lossless compression of hyperspectral

imagery via adaptive filtering,’’ Jet Propuls. Lab. (JPL), Nat. Aeronaut.

Space Admin. (NASA), Pasadena, CA, USA, Progress Rep. 42-163,

Jan. 2005.

[20] Lossless Multispectral and Hyperspectral Image Compression, Informa-

tional Report CCSDS 120.2-G-1, CCSDS, 2015.

[21] University of Las Palmas de Gran Canaria. (Oct. 2017). SHyLoC Prod-

uct Datasheet. [Online]. Available: https://amstel.estec.esa.int/tecedm/

ipcores/SHyLoC_Datasheet_v1.0.pdf

[22] AMBA Specification, Rev 2.0, ARM, ARM Ltd., Cambridge, U.K.,

May 1999.

[23] ESA. Data Compression Tools. Accessed: Mar. 27, 2018. [Online]. Avail-

able: https://www.esa.int/Our_Activities/Space_Engineering_Technology/

Onboard_Data_Processing/Data_Compression_Tools

[24] L. Santos, L. Berrojo, J. Moreno, J. F. Lopez, and R. Sarmiento, ‘‘Mul-

tispectral and hyperspectral lossless compressor for space applications

(HyLoC): A low-complexity FPGA implementation of the CCSDS 123

standard,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9,

no. 2, pp. 757–770, Feb. 2016.

[25] R. L. Davidson and C. P. Bridges, ‘‘GPU accelerated multispectral EO

imagery optimised CCSDS-123 lossless compression implementation,’’ in

Proc. IEEE Aerosp. Conf., Mar. 2017, pp. 1–12.

[26] B. Hopson, K. Benkrid, D. Keymeulen, and N. Aranki, ‘‘Real-time CCSDS

lossless adaptive hyperspectral image compression on parallel GPGPU

multicore processor systems,’’ in Proc. NASA/ESA Conf. Adapt. Hardw.

Syst. (AHS), Jun. 2012, pp. 107–114.

[27] D. Keymeulen, N. Aranki, A. Bakhshi, H. Luong, C. Sarture, and D. Dol-

man, ‘‘Airborne demonstration of FPGA implementation of fast lossless

hyperspectral data compression system,’’ in Proc. NASA/ESA Conf. Adapt.

Hardw. Syst. (AHS), Jul. 2014, pp. 278–284.

[28] D. Bascones, C. Gonzalez, and D. Mozos, ‘‘FPGA implementation of the

CCSDS 1.2.3 standard for real-time hyperspectral lossless compression,’’

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 4,

pp. 1158–1165, Apr. 2018.

[29] D. Báscones, C. González, and D. Mozos, ‘‘Parallel implementa-

tion of the CCSDS 1.2.3 standard for hyperspectral lossless compres-

sion,’’ Remote Sens., vol. 9, no. 10, p. 973, 2017. [Online]. Available:

https://www.mdpi.com/2072-4292/9/10/973

[30] A. Tsigkanos, N. Kranitis, G. A. Theodorou, and A. Paschalis, ‘‘A 3.3 Gbps

CCSDS 123.0-B-1 multispectral hyperspectral image compression hard-

ware accelerator on a space-grade SRAM FPGA,’’ IEEE Trans. Emerg.

Topics Comput., to be published.

[31] L.M. V. Pereira, D. A. Santos, C. A. Zeferino, and D. R.Melo, ‘‘A low-cost

hardware accelerator for CCSDS 123 predictor in FPGA,’’ in Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[32] J. Fjeldtvedt, M. Orlandic, and T. A. Johansen, ‘‘An efficient real-time

FPGA implementation of the CCSDS-123 compression standard for hyper-

spectral images,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,

vol. 11, no. 10, pp. 3841–3852, Oct. 2018.

[33] M. Orlandić, J. Fjeldtvedt, and T. Johansen, ‘‘A parallel FPGA implemen-

tation of the CCSDS-123 compression algorithm,’’ Remote Sens., vol. 11,

no. 6, p. 673, 2019. [Online]. Available: https://www.mdpi.com/2072-

4292/11/6/673

[34] A. Rodriguez, L. Santos, R. Sarmiento, and E. De La Torre, ‘‘Scalable

hardware-based on-board processing for run-time adaptive lossless hyper-

spectral compression,’’ IEEE Access, vol. 7, pp. 10644–10652, 2019.

[35] A. Tsigkanos, N. Kranitis, and A. Paschalis, ‘‘CCSDS 123.0-B-1

multispectral & hyperspectral image compression implementation

on a next-generation space-grade SRAM FPGA,’’ in Proc. 6th Int.

Workshop Board Payload Data Compress (OBPDC), Sep. 2018,

pp. 1–8.

[36] Low-Complexity Lossless and Near-Lossless Multispectral and Hyper-

spectral Image Compression, document CCSDS 123.0-B-2, Consultative

Committee for Space Data Systems, Feb. 2019, vol. 2.

54286 VOLUME 8, 2020



Y. Barrios et al.: SHyLoC 2.0: Versatile Hardware Solution for On-Board Data and Hyperspectral

YUBAL BARRIOS was born in Las Palmas de

Gran Canaria, Spain, in 1993. He received the

degree in telecommunications engineering from

the University of Las Palmas de Gran Canaria,

in 2016, and the M.S. degree in telecommunica-

tions technologies in 2017. In 2017, he has been

funded by the Institute for Applied Microelectron-

ics (IUMA), where he has conducted his research

activities at the Integrated Systems Design Divi-

sion in the context of hardware implementations

for hyperspectral image compression on FPGAs andMPSoCs, applying both

High-Level Synthesis and Register-Transfer Level design methodologies.

He currently combines his job in the IUMA research lines with his Ph.D.

thesis. In 2019, he was invited as a Visiting Researcher by the Microelec-

tronics Section, European Space Research and Technology Centre (ESTEC),

Core of the European Agency (ESA), Noordwijk, The Netherlands. His

current research interests include the development of efficient algorithms

for on-board hyperspectral image compression and reconfigurable hardware

architectures optimized in terms of throughput, memory usage, and power

consumption.

ANTONIO J. SÁNCHEZ received the degree

in industrial engineering from the Universidad

Carlos III de Madrid (UC3M), in 2011, and the

master’s degree in advanced electronic systems

and the Ph.D. degree in electric, electronic and

automatic engineering UC3M, in 2013 and 2017,

respectively. Then, he joined the Microelectronic

Design and Applications Research Group, Elec-

tronic Technology Department, UC3M, where he

worked as an Assistant Researcher. His Ph.D. the-

sis was focused on the design of approximate logic circuits and their appli-

cation to the fault-tolerance field. He was a Visiting Researcher with the

European Space Research and Technology Centre, The Netherlands. He is

currently a member of the Integrated Systems Design Division, Institute

for Applied Microelectronics (IUMA), University of Las Palmas de Gran

Canaria. His research at IUMA is focused on the hardware implementation

of algorithms for hyperspectral image processing for space applications,

including the use of high level synthesis tools. Additionally, his research

interests include fault tolerant hardware design, approximate computing, and

formal verification methods.

LUCANA SANTOS received the degree in

telecommunication engineering from the Univer-

sity of Las Palmas de Gran Canaria, in 2008,

and the Ph.D. degree from the Integrated System

Design Division, IUMA, in 2014. She was a Visit-

ing Researcher with the European Space Research

and Technology Centre, The Netherlands. She has

participated actively in industrial projects in the

field of hardware architectures for hyperspectral

and multispectral image compression on GPUs

and FPGAs for Thales Alenia Space España and the European SpaceAgency.

Since 2018, she has been with the Data Systems and Microelectronics

Division, European Space Agency. She is currently a member of the CCSDS

Multispectral/Hyperspectral Data Compression Working Group. She has

coauthored several scientific articles and has been a Reviewer of major

international journals in her research areas. Her current research interests

include hardware architectures for on-board data processing, reconfigurable

architectures, and hardware/software co-design methodologies.

ROBERTO SARMIENTO was the Dean of the

Faculty, from 1994 to 1998, and a Vice Chancellor

of academic affairs and a Staff with ULPGC, from

1998 to 2003. He is currently a Full Professor

of electronic engineering with the Electronics and

Telecommunication Engineering School, Univer-

sity of Las Palmas de Gran Canaria, Spain. He is

also a Co-Founder of the Research Institute for

Applied Microelectronics (IUMA), where he is

also the Director of the Integrated Systems Design

Division. He has published more than 90 journal articles and more than

160 conference papers. He has been awarded with five six years research

periods by the National Agency for the Research Activity Evaluation in

Spain. He has participated in more than 60 projects and research programmes

funded by public and private organizations. His current research interest is

related to electronics system on-board satellites.

VOLUME 8, 2020 54287


