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Si microwire-array solar cells with Air Mass 1.5 Global conversion

efficiencies of up to 7.9% have been fabricated using an active

volume of Si equivalent to a 4 mm thick Si wafer. These solar cells

exhibited open-circuit voltages of 500 mV, short-circuit current

densities (Jsc) of up to 24 mA cm-2, and fill factors >65% and

employed Al2O3 dielectric particles that scattered light incident in

the space between the wires, a Ag back reflector that prevented the

escape of incident illumination from the back surface of the solar

cell, and an a-SiNx:H passivation/anti-reflection layer. Wire-array

solar cells without some or all of these design features were also

fabricated to demonstrate the importance of the light-trapping

elements in achieving a high Jsc. Scanning photocurrent microscopy

images of the microwire-array solar cells revealed that the higher Jsc

of the most advanced cell design resulted from an increased

absorption of light incident in the space between the wires. Spectral

response measurements further revealed that solar cells with light-

trapping elements exhibited improved red and infrared response, as

compared to solar cells without light-trapping elements.
Vertically aligned arrays of crystalline-Si (c-Si) microwires may

enable the fabrication of flexible c-Si solar cells with near unity

internal quantum yield that are capable of absorbing >85% of the
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Broader context

Driven by the restructuring of Germany’s Renewable Energy Sour

dously, demonstrating an average compound annual growth rate o

growth and the subsequent development of the industry, the cost o

next 6–10 years (without significant technological advances.) How

electricity, costs must be further reduced such that energy storage s

can be implemented. Recently, Si microwire-array solar cells have e

potential for dramatically reduced Si consumption and flexible modu

demonstrate the fabrication of Si microwire-array solar cells with h

factors. These solar cells exhibit photovoltaic efficiencies of up t

improvements in cell design.

This journal is ª The Royal Society of Chemistry 2010
day-integrated (above band gap) direct solar illumination using

a volume of Si equivalent to a 2.8 mm thick Si film.1 Two advantages

conferred by the three-dimensional geometry of vertically aligned,

high-aspect ratio Si microwires are: (1) the ability to create high-

quality single crystal Si structures with passivated surfaces via a vapor

growth process;2–4 and (2) enhanced absorption relative to planar c-Si

absorbers.1 These two advantages, in combination with the ability to

grow arrays of Si microwires over large areas (>1 cm2),5 to peel the

wire arrays from the growth substrate in a flexible polymer,6 and to

re-use the growth substrate,7 offer the potential to fabricate flexible,

high efficiency c-Si solar cells.8,9

Wire solar cells have been fabricated using c-Si,10–20 amorphous-

Si,21 GaAs,22 III-nitride,23 and InP,24 via a variety of growth

techniques, including vapor-liquid-solid (VLS) growth,10–16,19,20

metal-catalyzed chemical etching,17,21 molecular beam epitaxy,22

metal–organic chemical vapor deposition,23,24 and deep reactive-ion-

etching.18 In particular, the VLS growth method offers a materials-

efficient and scalable route for the synthesis of semiconducting wires.

However, the efficiencies of VLS-grown, c-Si, single-wire13,14,16 and

wire-array10–12,15,19,20 solar cells, up to 3.4%13 and 1.8%15 respectively,

have fallen short of the �15% photovoltaic efficiency predicted from

simple considerations.8,9 In particular these solar cells have failed to

demonstrate open-circuit voltages (Voc) in excess of 300 mV, possibly

indicative of significant recombination within the depletion region

and/or at the surfaces of the cells.8,12,25 We report c-Si microwire-array

solar cells that have exhibited 7.9% conversion of simulated Air Mass

(AM) 1.5 Global (G) solar illumination to electrical energy with

negligible photovoltaic response from the growth substrate.

Square-tiled arrays of vertically aligned Si microwires (2–3 mm in

diameter on a 7 mm pitch) were grown on p++ (resistivity, r, <0.001 U

cm) Si(111) wafers using the VLS growth method, as described

previously.5 P-type doping of the Si microwires was achieved during

growth using BCl3 as a gaseous dopant source.4 Four-point electrical

measurements performed on individual Si wires from arrays grown
ces Act in 2000, the photovoltaics industry has grown tremen-

f 56% in the five-year period prior to 2008. As a result of this

f photovoltaic electricity will likely reach grid-parity within the

ever, for photovoltaics to generate an appreciable fraction of

ystems (batteries, hydrogen production coupled with fuel cells)

merged as a promising new type of low-cost solar cell with the

les, while offering c-Si photovoltaic efficiencies. In this work we

igh open-circuit voltages, short-circuit current densities and fill

o 7.9% and should achieve efficiencies of �15% with known
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under nominally identical conditions indicated that the wires were

p-type with r¼ 0.05 U cm, which corresponds to an electrically active

dopant concentration (NA) of 7 � 1017 cm�3, assuming a bulk hole

mobility of 1.8� 102 cm2 V�1 s�1 for Si.

Radial p–n junctions were fabricated within each wire, as illus-

trated in Fig. 1. First, the as-grown wire arrays (Fig. 1a) were

chemically etched to remove the Cu-catalyst and to remove a thin

layer (�50 nm) of surface Si, prior to the growth of a 200 nm thick

thermal oxide (Fig. 1b). The thermal oxide was then selectively

removed in a hydrofluoric acid (HF) solution (aq.), using poly-

dimethylsiloxane (PDMS) as an etch barrier for the thermal oxide

located at the bases of the microwires (Fig. 1c). After removal of the

PDMS,26 radial p–n junctions were formed in the upper region of the

Si microwires during a phosphorus diffusion (junction depth of

�80 nm in a planar control), while the thermal oxide functioned as

a phosphorus diffusion barrier for the lower region of the wires

(Fig. 1d). We note that by appropriate choice of the PDMS layer

thickness, the p–n junction could be defined to approximate either

a radial or an axial p–n junction, or some combination of the two.

Three different types of Si microwire solar cells were fabricated.

The As-Grown cell contained no light trapping elements or surface

passivation. The Scatterer cell incorporated light-scattering Al2O3

particles (nominally 80 nm in diameter) in-between the wires. The

PRS cell utilized an a-SiNx:H passivation layer to minimize surface

recombination and to serve as an anti-reflection coating, a Ag back

reflector to prevent the loss of incident illumination into the growth

substrate, and Al2O3 particles to scatter light incident between the Si

microwires. Following the inclusion of the selected light-trapping

elements (see ESI†), each wire array was filled to the tips of the wires

with mounting wax (a transparent, non-conducting,

thermoplastic polymer). Indium tin oxide (ITO) (120–150 nm thick,

r z 7 � 10�4 U cm) was then sputtered through a shadow mask to

form a top-contact pad and to define individual cells.

Fig. 2 displays cross-sectional scanning electron microscope (SEM)

images of a wire array after p–n junction formation and of a micro-

wire solar cell for each cell type. As seen in Fig. 2a, the height of the

thermal oxide (and thus the extent of the radial p–n junction) was

uniform across the wire array. Wire heights ranged from 57–63 mm,

71–78 mm, and 43–49 mm for the As-Grown (Fig. 2b), Scatterer

(Fig. 2c), and PRS (Fig. 2d) microwire solar cells, respectively. The

thermal oxide covered the lower 27–32 mm of the wires in the

As-Grown and Scatterer solar cells, but was removed prior to the

desorption of the a-SiNx:H layer in the PRS solar cells. For both

the Scatterer and PRS solar cells, the 80 nm Al2O3 particles were

observed to form micron-sized agglomerates that were located near
Fig. 1 Schematic of the radial p–n junction fabrication process. (a) VLS-g

growth of a thermal oxide and deposition of a PDMS layer. (c) Removal of th

phosphorus diffusion to complete the fabrication of a radial p–n junction.

1038 | Energy Environ. Sci., 2010, 3, 1037–1041
the base of the wires, as evidenced by the granular texture of the

mounting wax near the bottom of the wire array (Fig. 2c and d) and

at the wire tips and sidewalls (Fig. 2c and d, inset). In the PRS solar

cells, the 1000 nm thick Ag back reflector covered the growth

substrate and the tapered base of the wires (Fig. 2d and S1†). The a-

SiNx:H anti-reflection/passivation layer in the PRS cell is not visible

in Fig. 2d. However, the a-SiNx:H layer conformally coated the wires

and substrate prior to selective removal of the a-SiNx:H from the tips

of the wires, which allowed for the ITO to contact the n-Si emitter

(Fig. S2†). For all devices, the mounting wax uniformly infilled the

wire array, and the ITO conformally coated the mounting wax and

the wire tips, thereby providing a continuous top contact despite the

highly textured surface.

An important consideration for measurements of the photovoltaic

performance of wire-array solar cells is the contribution from the

growth substrate to the observed photocurrent. Though the fabrica-

tion of an appropriate control cell is not straightforward (even if the

emitter doping compensated the substrate doping, the n+ emitter and

p++ substrate would form a tunnel junction) significant photocurrent

from the substrate can be ruled out in our microwire-array solar cells.

For the As-Grown and Scatterer solar cells, scanning photocurrent

microscopy measurements indicated an effective minority-carrier

diffusion length < 0.5 mm for electrons in the thermal-oxide-coated

bases of the wires.3 Consequently, neither the growth substrate nor the

lower 27–32 mm of the wires contributed significantly to the observed

photocurrent of the As-Grown and Scatterer solar cells. For the PRS

microwire solar cells, the removal of the thermal oxide, followed by the

deposition of the a-SiNx:H passivation layer, produced an effective

electron minority-carrier diffusion length [30 mm in the p-type bases

of the wires.3 Taken together, these results suggest that the bulk

minority-carrier diffusion length is [30 mm throughout the wire but

that the thermal-oxide-coated bases of the wires, for the Scatterer and

As-Grown cells, exhibited very high surface recombination velocities,

limiting the effective diffusion length in the oxide-coated wire bases to

<0.5 mm. Hence, a photovoltaic response from the entire length of the

wires was possible for the PRS solar cells. However, the photovoltaic

contribution from the substrate for the PRS cells should be negligibly

small, as the optically thick Ag back reflector coated the entire

substrate except for where the wires had grown, ensuring that only the

light guided through the Si microwires was able to reach the substrate.

Consequently, 95% of the illumination #800 nm should have been

absorbed over the 43–49 mm length of the wires, by a simple Beer–

Lambert law analysis. The remaining illumination entered the p++ Si

substrate (r < 0.001 U cm), which has been shown to exhibit an

external quantum yield <0.05 for 800–1100 nm illumination.1,2
rown, p-Si microwire array. (b) Microwire array after catalyst removal,

e unprotected thermal oxide. (d) Removal of the PDMS and subsequent

This journal is ª The Royal Society of Chemistry 2010
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Fig. 2 Si microwire array solar cell device geometry. (a) Cross-sectional

scanning electron microscope (SEM) image of a Si microwire array after

radial p–n junction formation. The white arrow denotes the height of the

thermal oxide (used as a phosphorus diffusion barrier in the radial p–n

junction fabrication process). Inset: top-down SEM image of the same Si

microwire array illustrating the pattern fidelity and slight variation in

wire diameter. Cross-sectional SEM image of (b) an As-Grown solar cell,

(c) a Scatterer solar cell, and (d) a PRS solar cell. Insets: higher magni-

fication SEM images of the wire tips coated with ITO. For (b) and (c) the

white arrow again denotes the height of the thermal oxide. For (d) the

white arrow denotes the presence of the Ag back reflector. For the inset of

(d) the white arrow denotes the ITO layer.
Fig. 3 Current density as a function of voltage for the champion

microwire solar cell of each cell type (a) in the dark and (b) under

simulated AM 1.5G illumination. The black line in (a) is an exponential

fit to the dark J–V data of the PRS solar cell and was used to extract an

ideality factor of 1.8.
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In total, 15 As-Grown microwire solar cells, 12 Scatterer microwire

solar cells, and 24 PRS microwire solar cells were fabricated. The area

of the fabricated cells spanned a range from 0.12 to 0.21 mm2, as
This journal is ª The Royal Society of Chemistry 2010
a result of variations in the gap between the top of the microwire

arrays and the shadow mask during the deposition of the ITO. For

each cell type, the majority of the cells were found to exhibit mutually

similar Voc and fill factor (FF) values (see Table S1†). To convert the

measured short-circuit currents to short-circuit current densities (Jsc)

and to calculate the photovoltaic efficiency (h), scanning photocur-

rent microscopy (SPCM) was used to image the perimeter of 2–3 cells

from each cell type and thus accurately determine the photoactive cell

area (see Fig. S3†).

Fig. 3 plots the measured current density as a function of voltage

for the champion microwire solar cell of each cell type, in the dark

(Fig. 3a) and under 100 mW cm�2 of simulated AM 1.5G illumina-

tion (Fig. 3b), respectively. In the dark, the microwire solar cells

exhibited rectifying behavior with diode ideality factors between

1.7 and 2.2. The roll-off in the current density near 0.5 V in forward-

bias resulted from the series resistance of the solar cells, which ranged

from 300 to 3000 U and was dependent upon the quality of the

contact between the electrical probe and the ITO.

Under simulated AM 1.5G illumination, the champion PRS solar

cell exhibited markedly higher photovoltaic performance than the

champion Scatterer and As-Grown solar cells, as a result of a signif-

icant increase in Jsc (Fig. 3b). Table 1 displays the values of Voc, Jsc,

FF, and h for all of the microwire solar cells whose cell areas were
Energy Environ. Sci., 2010, 3, 1037–1041 | 1039
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measured by SPCM. Voc of�500 mV and FF > 65% were observed

for all three cell types. The champion PRS solar cell produced a Voc

of 498 mV, Jsc of 24.3 mA cm�2, and FF of 65.4%, for an h¼ 7.92%.

The champion Scatterer and As-Grown solar cells exhibited

h¼ 5.64% and h¼ 3.81%, respectively, with similar Voc and FF but

lower Jsc. For the PRS and Scatterer cells, the differences in h within

a cell type largely resulted from differences in Jsc, which may have

resulted from variations in the incorporation of the Al2O3 scattering

particles or from variations in the fraction of electrically contacted

wires (see Fig. 4b and c and S3†). We estimate the internal error in the

measurement of the cell area to be 5% and the internal error in the

AM 1.5G illumination intensity to be 5%, yielding a �7% internal

error in the measurement of Jsc and h.

To better understand the differences in Jsc between the PRS,

Scatterer, and As-Grown solar cells, scanning photocurrent micros-

copy was used to map the photocurrent produced by the wire-array

solar cells as a function of localized laser illumination (l ¼ 650 nm,

�1.0 mm beam waist), as seen in Fig. 4. To facilitate comparison

between the different types of cells, each scanning photocurrent image

was normalized to its maximum photocurrent. The measured

photocurrent was maximized when the laser illumination was

centered on a wire and was minimized when the illumination was

centered between four adjacent wires. The photocurrent cross-

sections shown below each scanning photocurrent image indicated

that the relative magnitude of the decay in photocurrent as the laser
Table 1 Photovoltaic performance under simulated AM 1.5G illumi-
nation. The champion solar cell from each cell type is bolded

Sample Voc/mV Jsc/mA cm�2 FF (%) h (%)

As-Grown C2R3 482 11.2 69.4 3.75
As-Grown C4R6 477 11.8 67.5 3.81
Scatterer C2R4 499 16.6 68.0 5.64
Scatterer C3R3 504 15.2 68.8 5.28
PRS C2R5 503 22.2 66.1 7.38
PRS C3R5 500 22.8 67.2 7.65
PRS C4R5 498 24.3 65.4 7.92

Fig. 4 Scanning photocurrent microscopy (SPCM) images and associated ph

a Scatterer solar cell, and (c) a PRS solar cell. The SPCM images are 90 mm �
each image. The black lines on each SPCM image denote the cross-section us

denote spots of greatly reduced photocurrent believed to result from wires th

1040 | Energy Environ. Sci., 2010, 3, 1037–1041
moved from a peak (centered on a wire) to a valley (between two

adjacent wires) clearly decreased from the As-Grown cell (Fig. 4a) to

the Scatterer cell (Fig. 4b) and from the Scatterer cell to the PRS cell

(Fig. 4c). In particular, the PRS solar cell exhibited nearly uniform

photocurrent across the array, demonstrating that the Ag back

reflector and Al2O3 dielectric scattering particles allowed for the

effective collection of light incident between the wires.

The spots of greatly reduced photocurrent in the Scatterer and

PRS solar cells arose from wires that were not electrically contacted

by the ITO (wire vacancies would be expected to produce a photo-

current similar to the valley photocurrent, whereas, uncontacted

wires parasitically absorb incident illumination). The small fraction of

electrically inactive wires seen for the PRS and Scatterer cells likely

results from the presence of Al2O3 scattering particles at the wire tips

preventing the fabrication of a good electrical contact between the

n+-Si emitter and the ITO.

As seen in Fig. 5, the As-Grown and Scatterer solar cells exhibited

similarly shaped spectral response curves (though different in abso-

lute magnitude), both exhibiting a decline in the external quantum

yield (EQY) at wavelengths >550 nm. By comparison, the PRS solar

cell exhibited nearly constant EQY between 500 nm and 800 nm. The

increased red and infrared response of the PRS cell presumably arose

from light incident between the wires that was scattered multiple

times from the Al2O3 scattering particles and the Ag back reflector.

Integration of the observed EQY with the AM 1.5G solar

spectrum predicted Jsc values of 13.3 mA cm�2, 18.0 mA cm�2, and

23.3 mA cm�2 for the As-Grown, Scatterer, and PRS solar cells,

respectively, in good agreement with the measured Jsc values.

The three types of microwire solar cells were fabricated to facilitate

a comparison between the cell types. However, three differences

between the cells are worth noting. First, the wire length and thermal

oxide heights translated to active wire lengths of 27–33 mm,

41–48 mm, and 43–49 mm for the As-Grown, Scatterer and PRS solar

cells, respectively. Assuming no reflection losses and single-pass

absorption, the theoretical increase in Jsc from a 30 mm thick Si wafer

to a 45 mm thick Si wafer is 1.75 mA cm�2, a 5.3% increase. Applying

a 5.3% increase to the 11.8 mA cm�2 Jsc of the As-Grown champion
otocurrent line profiles from the center of (a) an As-Grown solar cell, (b)

90 mm and were normalized to the maximum measured photocurrent in

ed to produce the associated photocurrent line profiles. The black arrows

at were not in contact with the ITO.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 Spectral response of the champion Si microwire solar cell of each

cell type.
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solar cell yields a Jsc of 12.4 mA cm�2, well below the observed

16.6 mA cm�2 Jsc for the Scatterer champion solar cell. Thus, the

additional active wire length alone cannot explain the increase in Jsc

from the As-Grown solar cells to the Scatterer solar cells. Second, the

Al2O3 scattering particles were largely located adjacent to the photo-

inactive, thermal-oxide-coated, bases of the wires. Consequently, the

full effect of the Al2O3 scattering particles is unlikely to have been

seen in the Scatterer solar cells. Third, for the PRS and Scatterer cell

types,�2% of the wires in the center of the cell (Fig. 4) and 2–20% of

the wires near the perimeter of the cell (Fig. S3†) were not electrically

active. Thus, with improved contacting, the PRS and Scatterer cell

types would be expected to produce a still slightly higher Jsc and h.

Recently, we have demonstrated single-wire solar cells with Voc of

up to 600 mV and FF of up to 82%.3 Additionally, we have previ-

ously shown that wire-array photoelectrochemical cells can exhibit

near-unity internal quantum yields.1 Based on these measurements,

efficiencies for wire arrays of �15%, as compared to the simple theo-

retical expectation of 17%, could potentially be achieved by increasing

the Jsc to 32 mA cm�2 (e.g., by using longer wires and increasing the

electrically active wire fraction, while accounting for parasitic

absorption in the ITO and contact shading), by increasing the FF to

80% (through the addition of a metallic grid on the top contact), and

by increasing the Voc to 600 mV.3 Separately, the design of our p–n

junction, which does not extend to the base of the wire array, should

prevent shunting of the p–n junction at the back contact in wire-array

solar cells that have been removed from the growth wafer.
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