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Nonlinear silicon photonic devices have attracted considerable attention thanks to their ability to show 

large third-order nonlinear effects at moderate power levels allowing for all-optical signal processing 
functionalities in miniaturized components. Although significant efforts have been made and many 
nonlinear optical functions have already been demonstrated in this platform, the performance of 

nonlinear silicon photonic devices remains fundamentally limited at the telecom wavelength region 

due to the two photon absorption (TPA) and related effects. In this work, we propose an alternative 
CMOS-compatible platform, based on silicon-rich silicon nitride that can overcome this limitation. 

By carefully selecting the material deposition parameters, we show that both of the device linear and 

nonlinear properties can be tuned in order to exhibit the desired behaviour at the selected wavelength 

region. A rigorous and systematic fabrication and characterization campaign of different material 
compositions is presented, enabling us to demonstrate TPA-free CMOS-compatible waveguides with 

low linear loss (~1.5 dB/cm) and enhanced Kerr nonlinear response (Re{γ} = 16 Wm−1). Thanks to these 

properties, our nonlinear waveguides are able to produce a π nonlinear phase shift, paving the way for 

the development of practical devices for future optical communication applications.

Over the last decade, Silicon Photonics has established itself as a mature technology for the fabrication of low-cost, 
scalable integrated optical components1. Silicon-On-Insulator (SOI) has been widely accepted as the ideal fabrica-
tion platform for silicon photonics components, allowing the implementation of high-index contrast waveguides 
using CMOS-compatible processes. A wide range of highly performing SOI-devices aimed at applications for 
next-generation optical networking have already been demonstrated, such as ultra-low loss waveguides and opti-
cal �lters1, high-speed optical transceivers2, as well as components for all-optical signal processing3,4. Nonlinear 
optical processing applications have also been demonstrated, including all-optical wavelength converters5,6, signal 
regeneration7, parametric gain8 as well as high-speed switching3. �ese applications bene�t both from the high 
nonlinear refractive index of silicon and the tight �eld guidance achieved within SOI waveguides. However, they 
su�er at a fundamental level from the very large two-photon absorption (TPA) coe�cient of silicon at telecom-
munication wavelengths4,9–12. As a result, TPA-related e�ects become signi�cant in typical strip waveguides in 
silicon, even at power levels of a few mWs, thereby preventing the widespread adoption of silicon as a nonlinear 
medium at these wavelengths (unless some active means for suppressing TPA is adopted5).

A number of works have emerged in recent years that explore alternative materials, suitable for the implemen-
tation of nonlinear integrated optical devices. �ese materials include amorphous silicon that possesses enhanced 
nonlinear performance with respect to its crystalline counterpart exhibiting an increased Kerr coe�cient and a 
reduced TPA e�ect at telecoms wavelengths13–17 and Hydex ®18 which exhibits exceptional low linear loss at the 
1550-nm wavelength region (α < 0.06 dB/cm) and high Kerr nonlinearity19, showing no signs of TPA even at 
relatively high power levels20. AlGaAs21–25, Ta2O5

26,27 and SiGe28,29 have also been studied recently and proposed as 
CMOS-compatible alternative platforms for the development of integrated nonlinear components. Compatibility 
with existing SOI technologies is still a primary consideration in these studies. Among the various alternatives, 
silicon nitride Si3N4 (where Si3N4 replaces silicon in the core of the waveguide) has recently been investigated by 
several research groups19,30–33, showing both remarkable linear and nonlinear performance. Silicon nitride also 
exhibits low absorption in the visible wavelength range (down to 500 nm), adding functionalities that are not pos-
sible to achieve with SOI, such as integration with light sources emitting in the visible range, spectroscopic func-
tions and signal up-conversion from the telecom wavelength range30. On the other hand, as a material platform, 
silicon nitride also su�ers from certain limitations, such as a reduced waveguide core/ cladding index contrast 
(0.5, as opposed to 2 for SOI) that may require the use of Watt-level optical powers in order to give rise to high 
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enough nonlinear phase shi�s for nonlinear optical applications, as well as fabrication challenges when relatively 
thick wafer layers are required (thicker than 400 nm)30,34,35. In order to enhance the nonlinear response of the 
material, and thus reduce the optical power required to achieve the desired nonlinear phase-shi�, modi�ed com-
positions of silicon nitride have been recently proposed36–38, leading to silicon-rich silicon nitride, which exhibits 
enhanced Kerr response with respect to the standard, stoichiometric Si3N4 material composition. However, very 
high propagation losses (10 dB/cm) were observed in refs 36,37, while the lower-loss device in ref. 38 showed 
only a modest Kerr response. In this work, we systematically study the optical properties of di�erent composi-
tions of SixNy employing exclusively low temperature (<350 °C) Back End of Line (BEOL) CMOS compatible 
processes. �e proposed engineered platform provides a high index contrast, low-stress material, facilitating 
TPA-free operation that can be integrated with the existing SOI technology to allow for the implementation of 
crucial functionalities.

Fabrication and Results
Sample fabrication and material characterization. In order to assess the linear and nonlinear optical 
properties of silicon nitride waveguides, a set of three SixNy materials with di�erent stoichiometric ratios were 
developed and deposited on a thermally-grown SiO2 layer (2 µm thickness) on a 150-mm diameter Si substrate 
wafer using Plasma Enhanced Chemical Vapour Deposition (PECVD). �e three PECVD processes were opti-
mized in order to provide a repeatable deposition thickness, refractive index and uniformity levels across the 
wafers. A standard SOI wafer was also used to compare the achieved results to the state of the art, SOI technology. 
A schematic of the layer composition of each wafer is shown in Fig. 1. �e material properties and compositional 
structures of each SixNy were assessed using di�erent characterization techniques: ellipsometry (carried out by 
means of a M2000DI ellipsometer) was employed to determine the thickness uniformity and refractive index of 
the layers at 632.8 nm, 1310 nm and 1550 nm and Fourier Transform Infrared Spectroscopy FTIR spectroscopy 
was used to determine the compositional structure of each fabricated layer, including their bond concentration, 
atom concentration and hydrogen content. �e results collected by ellipsometry (at a wavelength of 1550 nm) are 
outlined in Table 1. By using these data and the following equation, it is possible to estimate the N/Si ratio within 
each wafer39,40:
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where n is the measured layer refractive index and nSi is the refractive index of silicon. Results are presented in 
Fig. 2(a) showing an increased silicon content in the Wafer_02 and Wafer_03 compositions with respect to the 
stoichiometric Si3N4. Knowledge of the bond compositions for each di�erent SixNy layer is useful in order to 
understand the optical behaviour of the fabricated material, since they strongly in�uence the material quality, 
and subsequently the optical material loss. High concentration of Si-H and Si-Si bonds have been shown to be 
responsible for the formation of undesired grains, pores and columnar microstructures that can cause additional 
scattering and absorption losses41,42. �e bond compositions were extracted using the method described by Tin 
and Smith41 and the following proportionality factors: K(N-H) = 8.2 × 1016 cm−1, K(Si-H) = 5.9 × 1016 cm−1 and 
K(Si-N) = 2.4 × 1016 cm−1 (as provided by Landford and Rand43 and Bustarret et al.39) while the hydrogen, nitro-
gen and silicon content (atom concentrations [H], [N] and [Si]) were extracted using the following equations40,41:

Figure 1. Schematic representation of the wafer composition.

Wafer ID
SixNy layer refractive 
index (at 1550 nm)

SixNy layer thickness (measured 
at the centre of the wafer)

Wafer 01 2.01 300.5 ± 0.3 nm

Wafer 02 2.49 297.2 ± 0.2 nm

Wafer 03 2.71 308.1 ± 0.4 nm

Table 1. Wafer description and speci�cation.
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where [N-H], [Si-H] and [Si-N] represent the N-H, Si-H and Si-N bond concentrations, respectively. Results 
are reported in Fig. 2(b) and the hydrogen content (in atomic %) is shown in Fig. 2(c). Si-Si bonds signi�cantly 
increase when the layer is rich in silicon (Fig. 2(b)), while reach their lowest level when the material composition 
is close to the stoichiometric Si3N4. �is is due to the fact that back bonded Si atoms are dominant when N/Si is 
decreased, while they tend to decrease in favour of N bonds (Si-N or N-H) when N/Si approaches the value of 
1.33 (stoichiometric Si3N4)

42.
A number of strip waveguides were patterned on each of the three wafers. �e widths of the waveguides var-

ied from 500 nm to 1500 nm (with a 100 nm step) and their lengths from 0.1 cm to 1.1 cm (with a 0.1 cm step). 
Inductively Coupled Plasma (ICP) etching was used to form waveguide patterns, by performing a single full-etch 
step down to the underlying SiO2 layer, thus forming the desired strip waveguide structures. In order to access 
each photonic structure, both grating couplers and butt coupling tapers were fabricated. Photonic structures 
incorporating grating couplers were employed in experiments involving continuous-wave (CW) beams, whereas 
structures with wide- bandwidth spot size converters for butt-coupling were utilized for pulsed-light experiments, 
thus avoiding any spectral shaping on the input pulse trains. Every waveguide was patterned 100 times across each 
wafer and all waveguides were tested, thus enabling statistically consistent optical characterization measurements.

Linear optical properties. �e waveguide propagation loss is an important factor in determining the non-
linear e�ciency of a photonic device. �is is because the e�ective device length Le� that contributes to its nonlin-
ear response is a function of its propagation loss α. In the extreme of a high-loss waveguide, the e�ective length 
approaches 1/α, i.e. it is the propagation loss rather than the physical device length L that determines Le� 44. In 
high index contrast waveguides (e.g. ∆n > 0.5) it is typically in�uenced by three main factors: a) the quality of 
the optical material, b) the material absorption and c) surface roughness on the sidewalls and its interaction 
with the optical mode. Experimental measurements of the propagation loss were carried out by employing the 
cut-back technique, using the experimental set-up shown in Fig. 3. A tuneable CW laser source was used to carry 
out measurements across the 1500 nm–1590 nm wavelength region. Light coupling, both in and out of the wave-
guides, was achieved by grating couplers whose bandwidth was centred at λ = 1550 nm (with a 3-dB bandwidth 
of 40 nm). �e polarization of the input beam was set to the TE state and was maintained through a fully polari-
zation maintaining set-up.

Loss measurements were carried out on each sample, for each silicon nitride composition, thus assessing the 
e�ect of di�erent silicon contents, within the SixNy material. �e results of these measurements are presented in 
Fig. 4, where each point on the graphs represents the average propagation loss value (over 100 samples) measured 
for each waveguide width con�guration. Error bars are also shown, which take into account systematic errors 
(due to the measurement procedure) as well as loss uniformity across the whole wafer (please refer to the Methods 
section for more information).

Both Wafers 01 and 02, exhibiting the lowest refractive indices, show the typical exponential dependence of 
loss versus waveguide width, with narrower waveguides experiencing higher losses due to a greater interaction 
between the optical mode and the sidewalls. �e higher refractive index contrast Wafer 03 does not show this 
behaviour, and we believe this to be because the optical mode is well con�ned within the waveguide core even at 
waveguide widths as small as 500 nm.

�e results highlight that PECVD Si-rich silicon nitride waveguides with propagation losses approaching 
1.5 dB/cm were realized. Increased propagation losses were measured for waveguides grown on Wafer 03 (6 dB/

Figure 2. (a) N/Si ratio as a function of the SixNy layer refractive index; (b) Bond concentrations for each SixNy 
layer con�guration; (c) Hydrogen content (in atomic %) for each SixNy layer con�guration.
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cm, see Fig. 4(c)) showing that an excessive Si content in the material composition leads to reduced material 
quality. Since loss results presented in Fig. 4(c) do not show a signi�cant dependence on the waveguide width, we 
believe that the majority of the optical losses observed are material losses. PECVD-grown SixNy layer losses, at 
λ = 1550 nm, are typically in�uenced by three main factors: (a) the hydrogen content that signi�cantly increases 
the number of both N-H bonds, which cause an absorption peak at a wavenumber of 3350 cm−1 (�rst overtone 
corresponds to λ ~ 1500 nm with low energy tails to 1545–1560 nm) and Si-H bonds, with an absorption peaking 
at a wavenumber of 2300 cm−1 (second overtone corresponding to λ ~ 1490 nm with low energy tails extending to 
the C-band wavelength region)45–47; (b) Si-Si and Si-H bond concentrations that have been identi�ed as a possible 
cause for the generation of additional silicon dangling bonds which are responsible for additional absorption; (c) 
material microstructure that may show grains, pores, defects, cluster and voids generated by high concentrations 
of [H]48, [Si-Si] and [Si-H] bonds42. Wafer_03 material composition showed the highest concentration of both 
Si-Si and Si-H bonds (Fig. 2) and an increased concentration of hydrogen with respect to Wafer_02 and Wafer_01. 
We believe that the high concentration of Si-Si and Si-H bonds are contributing to the formation of unwanted sil-
icon dangling bonds and the formation of undesired defects within the material (such as pores clusters and grains 
that can act as scattering centres)42,49 that are also favoured by the highest presence of both silicon and hydrogen 
(Fig. 2). All of these factors contribute to compromise the optical quality of Wafer_03 composition, leading to a 
relatively high loss material.

Nonlinear optical properties. A systematic characterization of the nonlinear optical properties of the 
waveguides, fabricated in the three di�erent wafer compositions is presented in this section. As discussed previ-
ously, one of the main drawback of silicon-based nonlinear devices is the strong presence of TPA-related e�ects 
that restrict the use of such devices to relatively low power levels, practically reducing the device nonlinear e�-
ciency. Here we show that silicon nitride layers can be properly engineered to show a high Kerr nonlinearity 
response, with no TPA-related e�ects, allowing waveguides to be operated at Watt-power levels.

�e waveguide nonlinear response can be generally described by the nonlinear parameter γ which is de�ned 
by the following expression50

γ ω
ω

ε
χ=

c A n
( )

3

4 (6)eff eff0
2 2

(3)

where ε0 is the vacuum permittivity, χ(3) the third order susceptibility, ne� is the modal e�ective refractive index at 
frequency ω and Ae� is the mode area of the considered waveguide. It is important to note that, in general, χ(3) is a 
complex number and, therefore, γ also has a real and an imaginary part and can be written as:
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Figure 3. Propagation loss experimental scheme. PM: Polarization Maintaining; DUT: Device Under Test.

Figure 4. Waveguide propagation losses for (a) Wafer 01, (b) Wafer 02 and (c) Wafer 03.
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where n2 represents the nonlinear refractive index and βTPA is the TPA coe�cient de�ning the strength of the 
nonlinear loss of the waveguiding device.

Re{γ} can be assessed by adopting a CW-FWM-based scheme22. As presented in the experimental set-up 
of Fig. 5, a pump laser (set at a wavelength of λp = 1550.11 nm, power ranging from 20 mW to 2 W before the 
waveguide input grating coupler) was ampli�ed by a polarization maintaining Erbium-doped �bre ampli�er 
(PM-EDFA) and was sent to an optical band pass �lter to remove the ampli�ed spontaneous emission (ASE), 
originated by the EDFA. �e band pass �lter (BPF) showed a 3 dB bandwidth of 0.078 nm and a 10 dB band-
width of 0.145 nm. A �bre coupler (50:50) was used to combine the pump signal with a weaker CW light beam 
originated from a tuneable external cavity laser (ECL) and set at a wavelength of λs = 1549.99 nm. �e optical 
power of the signal beam (λs) was always kept at least 10 dB lower than the pump signal (λp) power level. �e 
two waves were coupled to the waveguide under test by means of grating coupler devices, as depicted in Fig. 5 
(bottom panel). Light polarization was set to TE for both pump and signal beams, and maintained constant 
along the experimental scheme by utilizing PM �bre components. FWM in the waveguide generated an idler at 
a new frequency and all waves were coupled back to a PM �bre through the output grating coupler. Spectra were 
recorded for di�erent pump power levels, allowing the Re{γ} coe�cients of the fabricated devices to be extracted, 
according to the following formula:

γ
η

=

P L P L

P L
Re{ }

( )/ ( )

(0) (8)

i s

p eff

where Pi(L) and Ps(L) are the idler and signal power levels, measured at the output of the waveguide under test, 
respectively; Pp(0) represents the pump power measured at the input of the waveguide, Le� is the nonlinear e�ec-
tive length44 and η accounts for the phase-mismatch induced by chromatic dispersion. By placing the signal 
and pump beams relatively close to each other in wavelength (∆λ < 0.15 nm) the e�ect of dispersion can be 
neglected, thus allowing to consider η = 1. �e experimental scheme was calibrated and validated by measuring 
a set of standard silicon waveguides fabricated in our cleanroom starting from a commercial SOI wafer (chan-
nel waveguides, width = 500 nm, height = 220 nm). Figure 5(a) shows a typical recorded spectrum (Wafer_02, 
W = 1000 nm, Pp = 320 mW) while an example of a FWM efficiency-vs-pump power curve (Wafer_01, 
W = 1000 nm) is shown Fig. 5(b), revealing the typical quadratic behaviour of such e�ects44.

�e graph in Fig. 6 compares the values of Re{γ} for the waveguides in the three di�erent wafers. �e error 
bars were calculated through measurements on the 100 di�erent waveguides of the same dimension that were 
written on each wafer.

Blue dots represent Re{γ} coe�cients obtained from the waveguides fabricated on Wafer 01, thus showing 
results for the standard, stoichiometric Si3N4. Green and purple dots represent data from Wafer 02 and Wafer 
03 compositions, respectively. Re{γ} is in�uenced by the optical mode con�nement achieved in each waveguide, 
which in turn depends on the waveguide dimensions. We calculated the e�ective area (Ae�) for each waveguide 
con�guration using the following equation44,51:

∫ ∫
= −∞

∞

∬
( )

A
a S dxdy

S dxdy (9)
eff

NL z

NL z

Figure 5. CW-FWM experimental set-up; BPF: Band Pass Filter. (a): example of CW-FWM spectrum recorded 
at the output of the waveguide (Wafer_02, W = 1000 nm, Pp = 320 mW); (b): example of FWM-e�ciency curve 
versus optical power used to calculate the Re{γ} coe�cients (Wafer_01, W = 1000 nm).
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where =
→

×

→

⋅ ˆS E H z( )z  is the time averaged z component of the Poynting vector, z is the unit vector along the 
waveguide axis, aNL is the core cross section area and NL denotes the integration over the nonlinear region. A 
Finite Di�erence Method (FDM) solver was used to calculate the electrical and magnetic �eld distributions. 
Using the following equation:

λ

π
γ=n A

2
Re{ }

(10)eff2

and taking into account the calculated Ae�, the nonlinear refractive index of each wafer con�guration can be 
extracted from the experimental data. Results are presented in Fig. 7 and the average calculated n2 values, for each 
SixNy con�guration, are shown in Table 2 along with the value obtained by testing crystalline silicon waveguides. 
�e calculated Ae� values (star symbols connected by red lines) show that the optical con�nement is maximized 
at W = 1100 nm, W = 700 nm and W = 500 nm for Wafer 01, Wafer 02 and Wafer 03, respectively. �ese trends 
are re�ected in the experimental data (Fig. 6) for which the Re{γ} values are maximized when Ae� values are at 
their lowest points.

�e value of n2 shown for Wafer 01 is in good agreement with data already reported in the literature for silicon 
nitride waveguides30. Wafers 02 and 03 show enhanced nonlinear refractive index (by an order of magnitude with 
respect to Wafer 01), con�rming that the large enhancement observed in terms of Re{γ} (Fig. 6) is mainly due to 
the nonlinear properties of the material. �erefore, by properly tuning the silicon content in the SixNy layers the 
Re{γ} coe�cient can be made to approach values close to 30 (Wm)−1. Finally, It is worth noting that the n2 value 
obtained for the crystalline silicon (calibration waveguides) is in good agreement with data reported by Lin et al.12.

Figure 6. Main panel: Re{γ} measured for each waveguide con�guration, on each silicon nitride composition. 
Inset: zoom of Wafer 01 Re{γ} measurements, to clearly show the extent of the error bars.

Figure 7. Calculated e�ective area and calculated n2 values for each waveguide width for each SixNy 
composition.

Wafer ID n2 [m2/W]

Silicon WG–calibration (2.21 ± 0.1) × 10−18

Wafer 01 (2.3 ± 0.3) × 10−19

Wafer 02 (1.61 ± 0.2) × 10−18

Wafer 03 (2 ± 0.15) × 10−18

Table 2. Extracted n2 values for 220-nm SOI, Wafer 01, Wafer 02 and Wafer 03 con�gurations.
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�e imaginary part of the nonlinear coe�cient γ(ω) can be assessed by means of pulsed laser experiments, 
by following the procedure detailed in ref. 14. �e experimental set-up is shown in Fig. 8; a �bre mode-locked 
laser centred at 1550 nm (model Calmar Mendocino Laser), with pulse duration of 0.5 ps, and repetition rate 
of 20 MHz was used as the signal source. In order not to impose any spectral shaping on the input pulses, a 
butt-coupling scheme was employed (see Fig. 8); a pair of lensed �bres (MDF = 3 µm) was used to couple light in 
and out of the waveguides under test. Coupling losses of 11 ± 0.5 dB/facet were estimated by means of low power 
CW transmission experiments. Polarization was set by means of �bre polarization controllers, placed at the out-
put of the �bre laser.

By measuring the average power at the output of the sample under test as a function of the input peak power, 
the TPA-coe�cients of the various waveguides were assessed. By assuming a hyperbolic-secant pulse temporal 
pro�le (which is the nominal pulse shape of our source), the average output power can be related to the input peak 
power through the following equation14:

δ δ

δ δ
=

+ +

+

α−P L P e( )
ln( 1 )

( 1)
(0)

(11)

L

where P L( )and P(0) are the average output power and the average input power, respectively and

δ
α

=

A
L P(0)

(12)

TPA

eff
eff peak

TPA-coe�cients (thus Im{γ}) were assessed by using equations (11) and (12). In order to con�rm that reason-
able values for the TPA coe�cients were obtained with our experimental procedure, we also carried out meas-
urements on standard Si-waveguides (calibration set) and we obtained a value of (0.8 ± 0.06) cm/GW which is in 
good agreement with values reported in the literature10.

Fig. 9 shows transmission experiment results for three selected waveguide-width con�gurations (W = 500 nm, 
700 and 1000 nm), for the three di�erent SixNy layer compositions. No TPA power saturation can be observed 
in waveguides fabricated on Wafer 01, suggesting negligible αTPA. Wafer 02 waveguides also do not exhibit any 
TPA (second column), while relatively small TPA-induced losses are seen in the waveguides fabricated on Wafer 
03, suggesting that the TPA threshold has been exceeded and that a further increase in the Si percentage in the 
material might cause additional nonlinear losses.

By combining results obtained for each waveguide-width con�guration, the αTPA coe�cient of each SixNy 
composition was determined and these results are shown in Table 3.

Discussion
�e nonlinear phase shi� caused by the interaction between a light beam and a third-order nonlinear device 
(which determines the e�ciency of the device as a nonlinear medium) can be expressed as follows50:

φ
γ

γ
γ∆ = + L P

1

2

Re{ }

Im{ }
ln(1 2Im{ } )

(13)
eff 0

where P0 represents the peak optical power at the input of the waveguide.
A phase shi� of π is typically required to implement optical processing functionalities such as optical mod-

ulation, wavelength and format conversion and optical regeneration52. In order to evaluate the overall perfor-
mance of our SixNy nonlinear waveguides we have numerically calculated equation (13) for speci�c waveguide 
dimensions (width = 1000 nm, height = 300 nm L = 0.1 m) for the three SixNy di�erent material compositions 
studied here. �e results are shown in Fig. 10 and are contrasted against our internally fabricated Si waveguide 

Figure 8. TPA experimental scheme.
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of cross-sectional dimensions 500 nm × 220 nm (black line). As expected, even at a relatively low pump power 
levels (~1 W), TPA greatly reduces the nonlinear e�ciency of the Si waveguide, showing a maximum saturated 
nonlinear phase shi� of ~π/2. �e blue line shows results achievable using a waveguide grown on Wafer 01 (stoi-
chiometric silicon nitride Si3N4); thanks to the absence of TPA, no saturation e�ect is observed on the achievable 
phase shi�, even at high power levels (>10 W). On the other hand, the relatively low Kerr coe�cient, strongly 
limits the achievable amount of nonlinear phase shi� in these waveguides, making this con�guration not suitable 
for practical nonlinear applications. By greatly increasing the silicon content in the SixNy composition, the Kerr 

Figure 9. Pulsed transmission graph for Wafer 01 ((a) W = 500 nm, (d) W = 700 nm and (g) W = 1000 nm), 
Wafer 02 ((b) W = 500 nm, (e) W = 700 nm and (h) W = 1000 nm) and Wafer 03 ((c) W = 500 nm, (f) 
W = 700 nm and (i) W = 1000 nm).

Wafer ID αTPA [cm/GW] at λ = 1550 nm

Silicon WG (0.8 ± 0.06)

Wafer 01 Negligible

Wafer 02 Negligible

Wafer 03 (0.1 ± 0.01)

Table 3. TPA coe�cients measured at 1550 nm.
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response can be enhanced as shown in Fig. 10. Wafer 03 is the richest in silicon content and the achievable non-
linear phase shi� provided by waveguides grown on this material is represented by the magenta line. No notice-
able TPA e�ects can be observed within the plotted range of powers, however the additional linear loss (Fig. 4, 
right-hand panel) introduced by the excess silicon limits Le�, thus reducing the overall nonlinear e�ciency; a 
maximum, non-saturated, nonlinear phase shi� of π/2 can be achieved in 0.1-m-long waveguides of this con�gu-
ration. �e green line shows results obtained for the Wafer 02 waveguide. �anks to the absence of TPA, no phase 
shi� saturation e�ect is observed; moreover, due to the enhanced Kerr response (see Fig. 10) and low linear loss 
(see Fig. 4(b)), the achievable nonlinear phase shi� at these power levels, exceeds π, making this material suitable 
for the realization of practical telecom applications.

It is also worth noting that in the presence of strong TPA (i.e. in standard silicon waveguides, see black curve 
in Fig. 10), Free Carrier Absorption (FCA) also becomes signi�cant, further reducing the nonlinear e�ciency of 
these devices, making them unsuitable for operation at high power levels. �e developed SixNy material compo-
sition does not su�er from any additional losses caused by FCA, and is therefore well suited both for high- and 
low-power applications.

Table 4 compares the properties of di�erent platforms for integrated nonlinear optical devices that can be 
found in the literature to those of typical Si waveguides and the Wafer 02 waveguides of this work. Hydex® 
shows a record low loss of only 0.06 dB/cm and a remarkable nonlinear Kerr coe�cient and no TPA at telecom 
wavelengths; the fabrication of this doped glass only requires low temperature process making it BEOL-CMOS 
compatible18. However, relatively long waveguides (in the orders of meters) are required to achieve a π-phase 
shi� thus increasing the total device footprint. Silicon-based nonlinear devices have been widely studied dur-
ing the last 10 years. As already discussed previously, silicon exhibits a very large Kerr coe�cient that makes 
it attractive for the implementation of nonlinear devices; unfortunately, this is also typically accompanied by 
a relatively high nonlinear loss (TPA and FCA) that can prevent the operation of such waveguides in the high 
power regime (>500 mW). Amorphous silicon has also been intensively investigated by researchers, showing 
reduced TPA compared to c-Si. �e main issues regarding this material seem to be the increased linear loss value 
(due to presence of silicon dangling bonds14,15,48 ,mitigated by hydrogen passivation) and material instability and 
degradation reported a�er high intensity light exposure53. A number of Si-based devices are reported in Table 4, 
showing that Re{γ} and Im{γ} can be signi�cantly modi�ed by a careful choice of fabrication conditions and 
waveguide geometries. Silicon germanium has also emerged in the last years as possible alternative to silicon28,29, 

Figure 10. Calculated nonlinear phase shi� for a L = 0.1 m waveguide.

Re{γ}[W−1m−1] Im{γ}[W−1m−1] α [dB/cm] 1/α [cm]
CMOS-BEOL 
compatibility

Hydex ®19,20 0.23 Negligible 0.06 138.15 Yes

Si-based4,9–12,14,15,17,54–62 60–1100 20–90 1–6 0.5–5 Yes

Silicon Germanium28 25 3.3 1.4 3.10 Yes

AlGaAs22,23,25,63,64 10–600 Negligible 1.2–6 3.61–0.72 No

Ta2O5
26,27 0.1–5 Negligible 0.15–1.5 2.8–28 No

Low loss silicon nitride19,31,33,34,65 0.1–1.5 Negligible 0.02–1 4–200 No

Si-WG (500 nm × 220 nm)–�is 
work, used as calibration medium

70 35 3 1.44 Yes

Si-rich SixNy–T Wang et al.36 550 Negligible 10 0.43 Yes

Si-rich SixNy L. Xing et al.38 5.7 Negligible 1.35 3.22 No

�is Work (Wafer 02 
Con�guration, W = 1000 nm)

16 Negligible 1.5 2.9 Yes

Table 4. Key parameters for di�erent nonlinear waveguide technologies.
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however TPA and FCA are increased at telecom wavelength due to the presence of germanium, making this 
material a better choice for longer wavelengths. AlGaAs and Ta2O5 are also reported in Table 4, showing remark-
able performance. Although these materials show very good nonlinear performance at telecoms wavelengths 
and are fully CMOS-compatible, they usually need high temperature annealing steps to reduce their linear loss, 
making them unsuitable for BEOL fabrications. Finally we report a number of devices based on silicon nitride. 
Record low loss have been demonstrated by Bauters et al.33 (high aspect ratio waveguides) and several nonlin-
ear waveguides have been shown in the literature19,34,37. However they are usually fabricated using LPCVD that 
requires high temperature steps. �is reason has pushed research towards the development of PECVD SixNy 
devices that may o�er comparable performance without the need for high temperature treatment. A very large 
Re{γ} has been demonstrated in ref. 36, however this was also accompanied by a high propagation loss (10 dB/
cm) that limits the maximum e�ective waveguide length to a mm scale. Low losses were demonstrated in ref. 
38, however the nonlinearity of these waveguides was rather low, thus limiting the achievable phase shi� when 
cm-scale waveguides are used. Furthermore, the material used in ref. 38 required high temperature processing, 
which makes it not suitable for BEOL-CMOS-compatible processes. In contrast, the nonlinear coe�cient Re{γ} 
of the waveguides presented herein has increased by about 3 times with respect to38, while at the same time, low 
loss and BEOL-CMOS-compatibility has been ensured, providing a novel platform, suitable for nonlinear optical 
processing experimentation.

Conclusion
We presented a complete characterization of the linear and nonlinear properties of BEOL-CMOS-compatible 
SixNy waveguides. We showed that the material can be engineered such that it can exhibit properties that are 
well-suited for operation at either low of high power levels. �e fabrication of Si-rich silicon nitride waveguides 
based on the PECVD technique at relatively low temperatures (350 °C), with a propagation loss of approximately 
1.5 dB/cm was reported. We also demonstrated that the nonlinear Kerr response can be engineered and increased 
by an order of magnitude increase, in terms of n2, by optimizing the fabrication parameters. TPA can be kept 
negligible at 1550 nm, enabling high power operation, which is normally prevented in typical Si waveguides. A 
nonlinear phase shi� of π can be obtained by using the developed SixNy material composition, making it suitable 
for the realization of telecom devices for advanced nonlinear applications in next generation optical networks.

Methods
Wafer fabrication. �e SixNy layers were fabricated starting from a 150 mm diameter SiO2-on-Si substrate 
wafer. Nitride layers were deposited using a PECVD tool (model OIPT SYS 100), by employing the parameters 
speci�ed in Table 5. �e chamber pressure and RF power where set to 980 mTorr and 60 W, respectively. A�er 
deposition, waveguides where written using a waveguide layout designed to provide di�erent test structures, 
including straight waveguides, spiral waveguides and �bre-to-chip coupling devices. Both grating couplers and 
butt-couplers were designed on the mask in order to provide access to the waveguides using either of the two 
methods. �e mask layout was transferred to the wafers using E-beam patterning (positive electron beam resist 
ZEP 520A was used). A�er the development of photoresist, ICP etching was performed in order to de�ne the 
waveguide patterns on the light guiding layer. �e remaining resist was removed by ashing in oxygen plasma. 
�e protective, 1 µm-thick, SiO2 cladding layer was �nally deposited by PECVD using a standard recipe for the 
deposition of stoichiometric SiO2. Finally, the samples were cleaved to provide access to the butt-coupling devices. 
Standard Si- waveguides were also used as a reference. �e standard silicon waveguide fabrication started from a 
150mm SOI commercial wafer (220 nm top Si layer thickness). Waveguides were patterned and fabricated using 
the same processing steps as described above.

Error evaluation procedure. In order to provide statistically signi�cant results, each measurement pre-
sented in the paper was performed on a minimum number of 100 nominally identical waveguides. Error bars 
have been included in the graphs presented in the paper, which have taken into account both systematic errors 
and curve �tting standard deviations. �e highest and lowest measured values were excluded from the calcula-
tion of each value showed in the manuscript. �e detailed procedures adopted to evaluate the mean value of each 
measurement and its associated error are described below.

Propagation loss measurements. �e propagation losses were evaluated over the three SixNy wafer compositions, 
for di�erent waveguide widths (ranging from 500 nm to 1500 nm, with a step of 100 nm). Each propagation loss 
value was estimated using cut back measurements, performed on a set of 11 waveguides of di�erent lengths 
(0.1 cm to 1.1 cm, with a step of 0.1 cm). �e result of each cut-back measurement provided as output a �tted value 
(the propagation loss of a single waveguide width) and its associated standard deviation (αi ± σi). One hundred 
di�erent cut back measurements were performed on one hundred, nominally identical, waveguide sets, thus pro-
viding a set of one hundred measurement results as follows: [α1 ± σ1, α2 ± σ2, α3 ± σ3, ……… α100 ± σ100]. �e �nal, 
averaged, value was calculated as follows:

Wafer ID SiH4 (sccm) NH3 (sccm) N2 (sccm) Platen Temperature (°C)

Wafer 01 1.8 0 980 350

Wafer 02 3.6 0 980 350

Wafer 03 7.2 0 980 350

Table 5. PECVD deposition parameters for the three di�erent wafer composition employed in this work.
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Re{γ} measurements. Kerr coe�cients were evaluated for each waveguide width (500 nm to 1500 nm) across 
the three di�erent SixNy material wafers. According to equation (8), Re{γ} can be extracted by measuring the 
CW-FWM e�ciency, at di�erent pump power levels. For each measurement we used a minimum number of 
40 di�erent pump power levels to provide a power versus FWM-e�ciency curve that can be �tted by a second 
order polynomial curve, which provides as an output the value of Re{γ} and its standard deviation σ. For each 
waveguide-width con�guration, the measurement was repeated on one hundred nominally identical waveguides 
(L = 1 cm), providing a set of values: [Re{γ}1 ± σ1, Re{γ}2 ± σ2, Re{γ}3 ± σ3, …., Re{γ}100 ± σ100]. �e averaged 
values, for each single waveguide, along with their standard deviation values were calculated as follows:
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Im{γ} measurements. �e Im{γ} coe�cient was assessed by employing an optical pulse transmission set-up, for 
each waveguide (for each di�erent width), across the three SixNy wafers. For a single measurement we used a min-
imum of 40 input power levels. Each measurement session provided a single value of Im{γ} and its standard devi-
ation σ. We repeated the same measurement session on one hundred nominally identical waveguides (L = 1 cm), 
producing a set of values: [Im{γ}1 ± σ1, Im{γ}2 ± σ2, Im{γ}3 ± σ3, …., Im{γ}100 ± σ100]. �e averaged Im{γ} values, 
for each single waveguide, along their standard deviation values were calculated as follows:
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