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Abstract

We present Siam R-CNN, a Siamese re-detection archi-

tecture which unleashes the full power of two-stage ob-

ject detection approaches for visual object tracking. We

combine this with a novel tracklet-based dynamic program-

ming algorithm, which takes advantage of re-detections of

both the first-frame template and previous-frame predic-

tions, to model the full history of both the object to be

tracked and potential distractor objects. This enables our

approach to make better tracking decisions, as well as to

re-detect tracked objects after long occlusion. Finally, we

propose a novel hard example mining strategy to improve

Siam R-CNN’s robustness to similar looking objects. Siam

R-CNN achieves the current best performance on ten track-

ing benchmarks, with especially strong results for long-term

tracking. We make our code and models available at www.

vision.rwth-aachen.de/page/siamrcnn.

1. Introduction

We approach Visual Object Tracking using the paradigm

of Tracking by Re-Detection. We present a powerful novel

re-detector, Siam R-CNN, an adaptation of Faster R-CNN

[54] with a Siamese architecture, which re-detects a tem-

plate object anywhere in an image by determining if a re-

gion proposal is the same object as a template region, and

regressing the bounding box for this object. Siam R-CNN is

robust against changes in object size and aspect ratio as the

proposals are aligned to the same size, which is in contrast

to the popular cross-correlation-based methods [38].

Tracking by re-detection has a long history, reaching

back to the seminal work of Avidan [1] and Grabner et

al. [21]. Re-detection is challenging due to the existence

of distractor objects that are very similar to the template ob-

ject. In the past, the problem of distractors has mainly been

approached by strong spatial priors from previous predic-

tions [4, 38, 37], or by online adaptation [1, 21, 2, 56, 23,

57, 32]. Both of these strategies are prone to drift.

We instead approach the problem of distractors by mak-

ing two novel contributions beyond our Siam R-CNN re-
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a research visit at the University of Oxford.
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Figure 1: Example results of Siam R-CNN on 3 different

tracking tasks where it obtains new state-of-the-art results.

detector design. Firstly we introduce a novel hard example

mining procedure which trains our re-detector specifically

for difficult distractors. Secondly we propose a novel Track-

let Dynamic Programming Algorithm (TDPA) which simul-

taneously tracks all potential objects, including distractor

objects, by re-detecting all object candidate boxes from the

previous frame, and grouping boxes over time into tracklets

(short object tracks). It then uses dynamic programming to

select the best object in the current timestep based on the

complete history of all target object and distractor object

tracklets. By explicitly modeling the motion and interac-

tion of all potential objects and pooling similarity informa-

tion from detections grouped into tracklets, Siam R-CNN

is able to effectively perform long-term tracking, while be-

ing resistant to tracker drift, and being able to immediately

re-detect objects after disappearance. Our TDPA requires

only a small set of new re-detections in each timestep, up-

dating its tracking history iteratively online. This allows

Siam R-CNN to run at 4.7 frames per second (FPS) and its
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speed-optimized variant to run at more than 15 FPS.

We present evaluation results on a large number of

datasets. Siam R-CNN outperforms all previous methods

on six short-term tracking benchmarks as well as on four

long-term tracking benchmarks, where it achieves espe-

cially strong results, up to 10 percentage points higher than

previous methods. By obtaining segmentation masks us-

ing an off-the-shelf box-to-segmentation network, Siam R-

CNN also outperforms all previous Video Object Segmen-

tation methods that only use the first-frame bounding box

(without the mask) on four recent VOS benchmarks.

2. Related Work

Visual Object Tracking (VOT). VOT is the task of track-

ing an object through a video given the first-frame bounding

box of the object. VOT is commonly evaluated on bench-

marks such as OTB [69, 70], VOT [36, 34], and many more

[49, 30, 81, 48, 33]. Recently a number of long-term track-

ing benchmarks have been proposed [45, 62, 18] which ex-

tend VOT to a more difficult and realistic setting, where

objects must be tracked over many frames, with objects dis-

appearing and reappearing.

Many classical methods use an online learned classi-

fier to re-detect the object of interest over the full image

[1, 21, 2, 56, 23, 57, 32]. In contrast, Siam R-CNN learns

the expected appearance variations by offline training in-

stead of learning a classifier online.

Like our Siam R-CNN, many recent methods approach

VOT using Siamese architectures. Siamese region proposal

networks (SiamRPN [38]) use a single-stage RPN [54] de-

tector adapted to re-detect a template by cross-correlating

the deep template features with the deep features of the cur-

rent frame. Here, single-stage means directly classifying

anchor boxes [42] which is in contrast to two-stage archi-

tectures [54] which first generate proposals, and then align

their features and classify them in the second stage.

Recent tracking approaches improve upon SiamRPN,

making it distractor aware (DaSiamRPN [82]), adding

a cascade (C-RPN [19]), producing masks (SiamMask

[66]), using deeper architectures (SiamRPN+ [79] and

SiamRPN++ [37]) and maintaining a set of diverse tem-

plates (THOR [58]). These (and many more [7, 27, 46])

only search for the object within a small window of the pre-

vious prediction. DiMP [5] follows this paradigm while

meta-learning a robust target and background appearance

model.

Other recent developments in VOT include using do-

main specific layers with online learning [50], learning an

adaptive spatial filter regularizer [14], exploiting category-

specific semantic information [61], using continuous [17] or

factorized [15] convolutions, and achieving accurate bound-

ing box predictions using an overlap prediction network

[16]. Huang et al. [31] propose a framework to convert any

detector into a tracker. Like Siam R-CNN, they also ap-

ply two-stage architectures, but their method relies on meta-

learning and it achieves a much lower accuracy.

Long-term tracking is mainly addressed by enlarging the

search window of these Siamese trackers when the detection

confidence is low [82, 37]. In contrast, we use a two-stage

Siamese re-detector which searches over the whole image,

producing stronger results across many benchmarks.

Video Object Segmentation (VOS). VOS is an extension

of VOT where a set of template segmentation masks are

given, and segmentation masks need to be produced in each

frame. Many methods perform fine-tuning on the template

masks [8, 47, 64, 39, 3, 44], which leads to strong results but

is slow. Recently, several methods have used the first-frame

masks without fine-tuning [11, 75, 12, 29, 71, 72, 63, 52],

running faster but often not performing as well.

Very few methods [66, 76] tackle the harder problem of

producing mask tracking results while only using the given

template bounding box and not the mask. We adapt our

method to perform VOS in this setting by using a second

network to produce masks for our box tracking results.

3. Method

Inspired by the success of Siamese trackers [34, 70, 36],

we use a Siamese architecture for our re-detector. Many re-

cent trackers [82, 66, 37, 38, 5] adopt a single-stage detector

architecture. For the task of single-image object detection,

two-stage detector networks such as Faster R-CNN [54]

have been shown to outperform single-stage detectors. In-

spired by this, we design our tracker as a Siamese two-stage

detection network. The second stage can directly compare

a proposed Region of Interest (RoI) to a template region

by concatenating their RoI aligned features. By aligning

proposals and reference to the same size, Siam R-CNN

achieves robustness against changes in object size and as-

pect ratio, which is hard to achieve when using the popular

cross-correlation operation [38]. Fig. 2 shows an overview

of Siam R-CNN including the Tracklet Dynamic Program-

ming Algorithm (TDPA).

3.1. Siam R­CNN

Siam R-CNN is a Siamese re-detector based on a two-

stage detection architecture. Specifically, we take a Faster

R-CNN network that has been pre-trained on the COCO

[41] dataset for detecting 80 object classes. This network

consists of a backbone feature extractor followed by two de-

tection stages; first a category-agnostic RPN, followed by a

category-specific detection head. We fix the weights of the

backbone and the RPN and replace the category-specific de-

tection head with our re-detection head.

We create input features for the re-detection head for

each region proposed by the RPN by performing RoI Align

[25] to extract deep features from this proposed region. We
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Figure 2: Overview of Siam R-CNN. A Siamese R-CNN provides re-detections of the object given in the first-frame bounding

box, which are used by our Tracklet Dynamic Programming Algorithm along with re-detections from the previous frame.

The results are bounding box level tracks which can be converted to segmentation masks by the Box2Seg network.

also take the RoI Aligned deep features of the initializa-

tion bounding box in the first frame, and then concatenate

these together and feed the combined features into a 1 × 1
convolution which reduces the number of features channels

back down by half. These joined features are then fed into

the re-detection head with two output classes; the proposed

region is either the reference object or it is not. Our re-

detection head uses a three-stage cascade [9] without shared

weights. The structure of the re-detection head is the same

as the structure of the detection head of Faster R-CNN, ex-

cept for using only two classes and for the way the input

features for the re-detection head are created by concatena-

tion. The backbone and RPN are frozen and only the re-

detection head (after concatenation) is trained for tracking,

using pairs of frames from video datasets. Here, an object

in one frame is used as reference and the network is trained

to re-detect the same object in another frame.

3.2. Video Hard Example Mining

During conventional Faster R-CNN training, the nega-

tive examples for the second stage are sampled from the

regions proposed by the RPN in the target image. How-

ever, in many images there are only few relevant negative

examples. In order to maximize the discriminative power

of the re-detection head, we need to train it on hard nega-

tive examples. Mining hard examples for detection has been

explored in previous works (e.g. [20, 59]). However, rather

than finding general hard examples for detection, we find

hard examples for re-detection conditioned on the reference

object by retrieving objects from other videos.

Embedding Network. A straightforward approach to se-

lecting relevant videos from which to get hard negative ex-

amples for the current video, is taking videos in which an

object has the same class as the current object [82]. How-

ever, object class labels are not always available, and some

objects of the same class could be easy to distinguish, while

some objects of different classes could also be potentially

hard negatives. Hence, we propose to use an embedding

network, inspired by person re-identification, which ex-

Figure 3: Hard negative mining examples retrieved from

other videos for the reference objects shown in red.

tracts an embedding vector for every ground truth bounding

box which represents the appearance of that object. We use

the network from PReMVOS [44], which is trained with

batch-hard triplet loss [28] to separate classes on COCO

before being trained on YouTube-VOS to disambiguate be-

tween individual object instances. E.g., two distinct persons

should be far away in the embedding space, while two crops

of the same person in different frames should be close.

Index Structure. We next create an efficient indexing

structure for approximate nearest neighbor queries (see sup-

plemental material) and use it to find nearest neighbors of

the tracked object in the embedding space. Fig. 3 shows ex-

amples of the retrieved hard negative examples. As can be

seen, most of the negative examples are very relevant and

hard.

Training Procedure. Evaluating the backbone on-the-fly

on other videos to retrieve hard negative examples for the

current video frame would be very costly. Instead, we pre-

compute the RoI-aligned features for every ground truth box

of the training data. For each training step, as usual, a ran-

dom video and object in this video is selected and then a

random reference and a random target frame. Afterwards,

we use the indexing structure to retrieve for the reference

box the 10,000 nearest neighbor bounding boxes from other

videos and sample 100 of them as additional negative train-

ing examples. More details about video hard example min-

ing can be found in the supplemental material.
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Algorithm 1 Update tracklets for one time-step t

1: Inputs ff gt feats, tracklets, imaget, detst−1

2: backbone feats← backbone(image
t
)

3: RoIs← RPN(backbone feats) ∪ detst−1

4: detst ← redetection head(RoIs,ff gt feats)
5: ⊲ scores are set to −∞ if spatial distance is > γ

6: scores← score pairwise redetection(detst, detst−1, γ)
7: for dt ∈ detst do

8: s1 ← maxdt−1∈detst−1
scores[dt, dt−1]

9: d̂t−1 ← argmaxdt−1∈detst−1
scores[dt, dt−1]

10: ⊲ Max score of all other current detections

11: s2 ← max
d̃t∈detst\{dt}

scores[d̃t, d̂t−1]
12: ⊲ Max score of all other previous detections

13: s3 ← max
dt−1∈detst−1\{d̂t−1}

scores[dt, dt−1]

14: if s1 > α ∧ s2 ≤ s1 − β ∧ s3 ≤ s1 − β then

15: tracklet(d̂t−1).append(dt) ⊲ Extend tracklet

16: else ⊲ Start new tracklet

17: tracklets← tracklets ∪ {{dt}}
18: end if

19: end for

3.3. Tracklet Dynamic Programming Algorithm

Our Tracklet Dynamic Programming Algorithm (TDPA)

implicitly tracks both the object of interest and potential

similar-looking distractors using spatio-temporal cues. In

this way, distractors can be consistently suppressed, which

would not be possible using only visual similarity. To this

end, TDPA maintains a set of tracklets, i.e., short sequences

of detections which almost certainly belong to the same ob-

ject. It then uses a dynamic programming based scoring

algorithm to select the most likely sequence of tracklets for

the template object between the first and the current frame.

Each detection is part of exactly one tracklet and it is

defined by a bounding box, a re-detection score, and its RoI-

aligned features. A tracklet is defined by a set of detections,

exactly one for each time step from its start to its end time.

Tracklet Building. We extract the RoI aligned features

for the first-frame ground truth bounding box (ff gt feats)
and initialize a tracklet consisting of just this box. For each

new frame, we update the set of tracklets as follows (c.f .

Algorithm 1): We extract backbone features of the current

frame and evaluate the region proposal network (RPN) to

get regions of interest (RoIs, lines 2–3). To compensate for

potential RPN false negatives, the set of RoIs is extended

by the bounding box outputs from the previous frame. We

run the re-detection head (including bounding box regres-

sion) on these RoIs to produce a set of re-detections of

the first-frame template (line 4). Afterwards, we re-run the

classification part of the re-detection head (line 6) on the

current detections detst, but this time with the detections

detst−1 from the previous frame as reference instead of the

first-frame ground truth box, to calculate similarity scores

(scores) between each pair of detections.

To measure the spatial distance of two detections, we

represent their bounding boxes by their center coordinates

x and y, and their width w and height h, of which x and

w are normalized with the image width, and y and h are

normalized with the image height, so that all values are be-

tween 0 and 1. The spatial distance between two bound-

ing boxes (x1, y1, w1, h1) and (x2, y2, w2, h2) is then given

by the L∞ norm, i.e., max(|x1 − x2|, |y1 − y2|, |w1 −
w2|, |h1 − h2|). In order to save computation and to avoid

false matches, we calculate the pairwise similarity scores

only for pairs of detections where this spatial distance is

less than γ and set the similarity score to −∞ otherwise.

We extend the tracklets from the previous frame by the

current frame detections (lines 7–19) when the similarity

score to a new detection is high (>α) and there is no am-

biguity, i.e., there is no other detection which has an almost

as high similarity (less than β margin) with that tracklet,

and there is no other tracklet which has an almost as high

similarity (less than β margin) with that detection. When-

ever there is any ambiguity, we start a new tracklet which

initially consists of a single detection. The ambiguities will

then be resolved in the tracklet scoring step.

Scoring. A track A = (a1, . . . , aN ) is a sequence of N

non-overlapping tracklets, i.e., end(ai) < start(ai+1) ∀i ∈
{1, . . . , N − 1}, where start and end denote the start and

end times of a tracklet, respectively. The total score of a

track consists of a unary score measuring the quality of the

individual tracklets, and of a location score which penalizes

spatial jumps between tracklets, i.e.

score(A) =

N∑

i=1

unary(ai) +

N−1∑

i=1

wlocloc score(ai, ai+1).

(1)

unary(ai) =

end(ai)∑

t=start(ai)

wffff score(ai,t) (2)

+ (1− wff)ff tracklet score(ai,t),

where ff score denotes the re-detection confidence for the

detection ai,t of tracklet ai at time t from the re-detection

head using the first-frame ground truth bounding box as ref-

erence. There is always one tracklet which contains the

first-frame ground truth bounding box, which we denote

as the first-frame tracklet aff . All detections in a tracklet

have a very high chance of being a correct continuation of

the initial detection of this tracklet, because in cases of am-

biguities tracklets are terminated. Hence, the most recent

detection of the first-frame tracklet is also the most recent

observation that is almost certain to be the correct object.

Thus, we use this detection as an additional reference for

re-detection producing a score denoted by ff tracklet score
which is linearly combined with the ff score.

The location score between two tracklets ai and aj is

given by the negative L1 norm of the difference between
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Figure 4: Results on OTB2015 [70].

the bounding box (x, y, w, h) of the last detection of ai and

the bounding box of the first detection of aj , i.e.

loc score(ai, aj) = −|end bbox(ai)− start bbox(aj)|1.

Online Dynamic Programming. We efficiently find the

sequence of tracklets with the maximum total score (Eq. 1)

by maintaining an array θ which for each tracklet a stores

the total score θ[a] of the optimal sequence of tracklets

which starts with the first-frame tracklet and ends with a.

Once a tracklet is not extended, it is terminated. Thus,

for each new frame only the scores for tracklets which have

been extended or newly created need to be newly computed.

For a new time-step, first we set θ[aff ] = 0 for the first-

frame tracklet aff , since all tracks have to start with that

tracklet. Afterwards, for every tracklet a which has been

updated or newly created, θ[a] is calculated as

θ[a] = unary(a) + max
ã:end(ã)<start(a)

θ[ã] + wlocloc score(ã, a).

To retain efficiency for very long sequences, we allow

a maximum temporal gap between two tracklets of 1500
frames, which is long enough for most applications.

After updating θ for the current frame, we select the

tracklet â with the highest dynamic programming score, i.e.

â = argmaxa θ[a]. If the selected tracklet does not contain

a detection in the current frame, then our algorithm has in-

dicated that the object is not present. For benchmarks that

require a prediction in every frame we use the most recent

box from the selected tracklet, and assign it a score of 0.

3.4. Box2Seg

To produce segmentation masks for the VOS task, we use

an off-the-shelf bounding-box-to-segmentation (Box2Seg)

network from PReMVOS [44]. Box2Seg is a fully convolu-

tional DeepLabV3+ [10] network with an Xception-65 [13]

backbone. It has been trained on Mapillary [51] and COCO

[41] to output the mask for a bounding box crop. Box2Seg

is fast, running it after tracking only requires 0.025 seconds

per object per frame. We combine overlapping masks such

that masks with less pixels are on top.

3.5. Training Details

Siam R-CNN is built upon the Faster R-CNN [54] im-

plementation from [67], with a ResNet-101-FPN backbone

[26, 40], group normalization [68] and cascade [9]. It has
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Figure 5: Results on UAV123 [48].

been pre-trained from scratch [24] on COCO [41]. Ex-

cept where specified otherwise, we train Siam R-CNN on

the training sets of multiple tracking datasets simultane-

ously: ImageNet VID [55] (4000 videos), YouTube-VOS

2018 [72] (3471 videos), GOT-10k [30] (9335 videos) and

LaSOT [18] (1120 videos). In total, we use 18k videos

and 119k static images from COCO, which is a signifi-

cant amount of data, but it is actually less than what pre-

vious methods used, e.g. SiamRPN++ uses 384k videos

and 1867k static images. More details about the amount

of training data are in the supplemental material.

During training, we use motion blur [82], grayscale,

gamma, flip, and scale augmentations.

4. Experiments

We evaluate Siam R-CNN for standard visual object

tracking, for long-term tracking, and on VOS benchmarks.

We tune a single set of hyper-parameters for our Tracklet

Dynamic Programming Algorithm (c.f . Section 3.3) on the

DAVIS 2017 training set, as this is a training set that we

did not use to train our re-detector. We present results us-

ing these hyper-parameters on all benchmarks, rather than

tuning the parameters separately for each one.

4.1. Short­Term Visual Object Tracking Evaluation

We evaluate short-term VOT on six benchmarks, and on

five further benchmarks in the supplemental material.

OTB2015. We evaluate on OTB2015 [70] (100 videos, 590

frames average length), calculating the success and preci-

sion over varying overlap thresholds. Methods are ranked

by the area under the success curve (AUC). Fig. 4 com-

pares our results to eight state-of-the-art (SOTA) trackers

[6, 37, 15, 5, 50, 17, 16, 82]. Siam R-CNN achieves 70.1%
AUC, which equals the previous best result by UPDT [6].

UAV123. Fig. 5 shows our results on UAV123 [48] (123

videos, 915 frames average length) on the same metrics as

OTB2015 compared to six SOTA approaches [5, 16, 37, 82,

6, 15]. We achieve an AUC of 64.9%, which is close to the

previous best result of DiMP-50 [5] with 65.4%.

NfS. Tab. 1 shows our results on the NfS dataset [33]

(30FPS, 100 videos, 479 frames average length) compared

to five SOTA approaches. Siam R-CNN achieves a success

score of 63.9%, which is 1.9 percentage points higher than
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Huang et al. UPDT ATOM Tripathi et al. DiMP-50 Siam

[31] [6] [16] [61] [5] R-CNN

Success 51.5 53.7 58.4 60.5 62.0 63.9

Table 1: Results on NfS [5].

DaSiamRPN UPDT ATOM SiamRPN++ DiMP-50 Siam

[82] [6] [16] [37] [5] R-CNN

Precision 59.1 55.7 64.8 69.4 68.7 80.0

Norm. Prec. 73.3 70.2 77.1 80.0 80.1 85.4

Success 63.8 61.1 70.3 73.3 74.0 81.2

Table 2: Results on TrackingNet [49].

LADCF ATOM SiamRPN++ THOR DiMP-50 Ours Ours

[73] [16] [37] [5] [58] (short-t.)

EAO 0.389 0.401 0.414 0.416 0.440 0.140 0.408

Accuracy 0.503 0.590 0.600 0.582 0.597 0.624 0.609

Robustn. 0.159 0.204 0.234 0.234 0.153 1.039 0.220

AO 0.421 - 0.498 - - 0.476 0.462

Table 3: Results on VOT2018 [34].

the previous best result by DiMP-50 [5].

TrackingNet. Tab. 2 shows our results on the TrackingNet

test set [49] (511 videos, 442 frames average length), com-

pared to five SOTA approaches. Siam R-CNN achieves a

success score of 81.2%, i.e., 7.2 percentage points higher

than the previous best result of DiMP-50 [5]. In terms of

precision the gap is more than 10 percentage points.

GOT-10k. Fig. 6 shows our results on the GOT-10k [30]

test set (180 videos, 127 frames average length) compared

to six SOTA approaches [5, 80, 16, 65, 37, 15]. On this

benchmark, methods are only allowed to use the GOT-10k

training set as video data for training. Therefore we train a

new model starting from COCO pre-training, and train only

on GOT-10k. We achieve a success rate of 64.9% which

is 3.8 percentage points higher than the previous best result

from DiMP-50 [5]. This shows that Siam R-CNN’s advan-

tage over all previous methods is not just due to different

training data, but from the tracking approach itself.

VOT2018. Tab. 3 shows our results on VOT2018 [34] (60

videos, 356 frames average length), where a reset-based

evaluation is used. Once the object is lost, the tracker is

restarted with the ground truth box five frames later and re-

ceives a penalty. The main evaluation criterion is the Ex-

pected Average Overlap (EAO) [35]. This extreme short-

term tracking scenario is not what Siam R-CNN with the

TDPA was designed for. It often triggers resets, which

without reset-based evaluation Siam R-CNN could auto-

matically recover from, resulting in an EAO of 0.140. For

this setup, we created a simple short-term version of Siam

R-CNN which averages the predictions of re-detecting the

first-frame reference and re-detecting the previous predic-

tion and combines them with a strong spatial prior. With

0.408 EAO this variant is competitive with many SOTA ap-

proaches. Notably, both versions of Siam R-CNN achieve
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Figure 6: Results on GOT-10k [30].

the highest accuracy scores. The last row shows the average

overlap (AO), when using the normal (non-reset) evalua-

tion. When estimating rotated bounding boxes from seg-

mentation masks produced by Box2Seg, Siam R-CNN’s

EAO increases to 0.423 and the accuracy greatly improves

to 0.684. More details on rotated boxes and on the short-

term tracking algorithm are in the supplemental material.

4.2. Long­Term Visual Object Tracking Evaluation

We evaluate Siam R-CNN’s ability to perform long-term

tracking on three benchmarks, LTB35 [45], LaSOT [18] and

OxUvA [62]. In the supplemental material we also evalu-

ate on UAV20L [48]. In long-term tracking, sequences are

much longer, and objects may disappear and reappear again

(LTB35 has on average 12.4 disappearances per video, each

one on average 40.6 frames long). Siam R-CNN signif-

icantly outperforms all previous methods on all of these

benchmarks, indicating the strength of our tracking by re-

detection approach. By searching globally over the whole

image rather than within a local window of a previous pre-

diction, our method is more resistant to drift, and can easily

re-detect a target after disappearance.

LTB35. Fig. 7 shows the results of our method on the

LTB35 benchmark (also known as VOT18-LT) [45] (35

videos, 4200 frames average length) compared to eight

SOTA approaches. Trackers are required to output a con-

fidence of the target being present for the prediction in each

frame. Precision (Pr) and Recall (Re) are evaluated for a

range of confidence thresholds, and the F -score is calcu-

lated as F = 2PrRe
Pr+Re

. Trackers are ranked by the maxi-

mum F -score over all thresholds. We compare to the 6 best-

performing methods in the 2018 VOT-LT challenge [34] and

to SiamRPN++ [37] and SPLT [74]. Siam R-CNN outper-

forms all previous methods with an F -score of 66.8%, i.e.,

3.9 percentage points higher than the previous best result.

LaSOT. Fig. 8 shows results on the LaSOT test set [18]

(280 videos, 2448 frames average length) compared to nine

SOTA methods [5, 16, 37, 50, 60, 4, 78, 22, 15]. Siam R-

CNN achieves an unprecedented result with a success rate

of 64.8% and 72.2% normalized precision. This is 8 per-

centage points higher in success and 7.4 points higher in

normalized precision than the previous best method.

OxUvA. Tab. 4 shows results on the OxUvA test set [62]
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Figure 7: Results on LTB35 [45] (VOT18-LongTerm).
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DaSiam LT TLD SiamFC+R MBMD SPLT Siam

[34] [32] [62] [77] [74] R-CNN

MaxGM 41.5 43.1 45.4 54.4 62.2 72.3

TPR 68.9 20.8 42.7 60.9 49.8 70.1

TNR 0 89.5 48.1 48.5 77.6 74.5

Table 4: Results on OxUvA [62].
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Figure 9: Quality versus timing on DAVIS 2017 (validation

set). Only SiamMask [66] and our method (red) can work

without the first-frame ground truth mask and require just

the bounding box. Methods shown in blue fine-tune on the

first-frame mask. Ours (fastest) denotes Siam R-CNN with

ResNet-50, half resolution, and 100 RoIs, see Section 4.5.

(166 videos, 3293 frames average length) compared to five

SOTA methods. Trackers must make a hard decision each

frame whether the object is present. We do this by compar-

ing the detector confidence to a threshold tuned on the dev

set. Methods are ranked by the maximum geometric mean

(MaxGM) of the true positive rate (TPR) and the true neg-

ative rate (TNR). Siam R-CNN achieves a MaxGM more

than 10 percentage points higher than all previous methods.

4.3. Video Object Segmentation (VOS) Evaluation

We further evaluate the ability to track multiple objects

and to segment them on VOS datasets using the J metric

(mask intersection over union (IoU)), the F metric (mask

boundary similarity), and the bounding box IoU Jbox.

Init Method FT M J&F J F Jbox t(s)

b
b

o
x

Siam R-CNN (ours) ✗ ✗ 70.6 66.1 75.0 78.3 0.32

Siam R-CNN (fastest) ✗ ✗ 70.5 66.4 74.6 76.9 0.12

SiamMask [66] ✗ ✗ 55.8 54.3 58.5 64.3 0.06
†

SiamMask [66] (Box2Seg) ✗ ✗ 63.3 59.5 67.3 64.3 0.11

SiamRPN++ [37] (Box2Seg) ✗ ✗ 61.6 56.8 66.3 64.0 0.11

DiMP-50 [5] (Box2Seg) ✗ ✗ 63.7 60.1 67.3 65.6 0.10

m
as

k STM-VOS [52] ✗ ✓ 81.8 79.2 84.3 − 0.32
†

FEELVOS [63] ✗ ✓ 71.5 69.1 74.0 71.4 0.51

RGMP [71] ✗ ✓ 66.7 64.8 68.6 66.5 0.28
†

m
as

k
+

ft PReMVOS [44] ✓ ✓ 77.8 73.9 81.7 81.4 37.6

Ours (Fine-tun. Box2Seg) ✓ ✓ 74.8 69.3 80.2 78.3 1.0

DyeNet [39] ✓ ✓ 74.1 − − − 9.32
†

GT boxes (Box2Seg) ✗ ✗ 82.6 79.3 85.8 100.0 −

GT boxes (Fine-t. Box2Seg) ✓ ✓ 86.2 81.8 90.5 100.0 −

Table 5: Results on the DAVIS 2017 validation set. FT:

fine-tuning, M: using the first-frame masks, t(s): time per

frame in seconds. †: timing extrapolated from DAVIS 2016.

An extended table is in the supplemental material. Siam R-

CNN (fastest) denotes Siam R-CNN with ResNet-50 back-

bone, half input resolution, and 100 RoIs, see Section 4.5.

Init Method FT M O Jseen Junseen t(s)

b
b

o
x Siam R-CNN (ours) ✗ ✗ 68.3 69.9 61.4 0.32

Siam R-CNN (fastest) ✗ ✗ 66.2 69.2 57.7 0.12

SiamMask [66] ✗ ✗ 52.8 60.2 45.1 0.06

m
as

k STM-VOS [52] ✗ ✓ 79.4 79.7 72.8 0.30
†

RGMP [71] ✗ ✓ 53.8 59.5 45.2 0.26
†

m
as

k
+

ft

Ours (Fi.-tu. Box2Seg) ✓ ✓ 73.2 73.5 66.2 0.65

PReMVOS [44, 43] ✓ ✓ 66.9 71.4 56.5 6

OnAVOS [64] ✓ ✓ 55.2 60.1 46.6 24.5

OSVOS [8] ✓ ✓ 58.8 59.8 54.2 17
†

Table 6: Results on the YouTube-VOS 2018 [72] validation

set. The notation is explained in the caption of Tab. 5.

DAVIS 2017. Tab. 5 and Fig. 9 show results on the

DAVIS 2017 validation set (30 videos, 2.03 objects and

67.4 frames average length per video). Methods are ranked

by the mean of J and F . Siam R-CNN significantly out-

performs the previous best method that only uses the first-

frame bounding boxes, SiamMask [66], by 14.8 percentage

points. To evaluate how much of this improvement comes

from Box2Seg and how much from our tracking, we applied

Box2Seg to the output of SiamMask. This does improve the

results while still being 7.3 percentage points worse than

our method. We also run SiamRPN++ [37] and DiMP-50

[5] with Box2Seg for comparison. As a reference for the

achievable performance for our tracker, we ran Box2Seg on

the ground truth boxes which resulted in a score of 82.6%.

Even without using the first-frame mask, Siam R-CNN

outperforms many methods that use the mask such as

RGMP [71] and VideoMatch [29], and even some meth-

ods like OSVOS-S [47] that perform slow first-frame fine-

tuning. Our method is also more practical, as it is far more

tedious to create a perfect first-frame segmentation mask by

hand than a bounding box initialization. If the first-frame

mask is available, then we are able to fine-tune Box2Seg on

6584



Dataset Speed OTB2015 LaSOT LTB35

Eval measure FPS AUC AUC F

Siam R-CNN 4.7 70.1 64.8 66.8

No hard ex. mining 4.7 68.4 63.2 66.5

Argmax 4.9 63.8 62.9 65.5

Short-term 4.6 67.2 55.7 57.2

1

2
res. + 100 RoIs 13.6 69.1 63.2 66.0

ResNet-50 5.1 68.0 62.3 64.4

ResNet-50 + 1

2
res. + 100 RoIs 15.2 67.7 61.1 63.7

Table 7: Ablation and timing analysis of Siam R-CNN.

this, improving results by 4.2 percentage points at the cost

of speed. We evaluate on the DAVIS 2017 test-dev bench-

mark and on DAVIS 2016 [53] in the supplemental material.

YouTube-VOS. Tab. 6 shows results on YouTube-VOS

2018 [72] (474 videos, 1.89 objects and 26.6 frames average

length per video). Methods are ranked by the mean O of the

J and F metrics over classes in the training set (seen) and

unseen classes. Siam R-CNN again outperforms all meth-

ods which do not use the first-frame mask (by 15.5 percent-

age points), and also outperforms PReMVOS [44, 43] and

all other previous methods except for STM-VOS [52].

4.4. Ablation and Timing Analysis

Tab. 7 shows a number of ablations of Siam R-CNN

on three datasets together with their speed (using a V100

GPU). Siam R-CNN runs at 4.7 frames per second (FPS)

using a ResNet-101 backbone, 1000 RPN proposals per

frame, and TDPA. The row “No hard ex. mining” shows the

results without hard example mining (c.f . Sec. 3.2). Hard

example mining improves results on all datasets, by up to

1.7 percentage points. We compare TDPA to using just the

highest scoring re-detection in each frame (“Argmax”) and

the short-term algorithm we used for the reset-based VOT18

evaluation (“Short-term”). TDPA outperforms both of these

on all datasets. A per-attribute analysis of the influence of

TDPA can be found in the supplemental material. For the

long-term datasets, Argmax significantly outperforms both

the short-term variant and even all previous methods.

4.5. Making Siam R­CNN Even Faster

Tab. 7 also shows the result of three changes aimed at

increasing the speed of Siam R-CNN (smaller backbone,

smaller input resolution, and less RoI proposals). More de-

tails and analyses are in the supplemental material.

When evaluating with a ResNet-50 backbone, Siam R-

CNN performs slightly faster and still achieves SOTA re-

sults (62.3 on LaSOT, compared to 56.8 for DiMP-50 with

the same backbone). This shows that the results are not

only due to a larger backbone. When using half input res-

olution and only 100 RoIs from the RPN, the speed in-

creases from 4.7 FPS to 13.6 FPS, or even 15.2 FPS in the

case of ResNet-50. These setups still show very strong re-
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Figure 10: RPN recall with varying number of proposals.

Dotted lines have up to 100 re-detections from the previ-

ous frame added. Left: comparison on COCO/non-COCO

classes of OTB2015. Right: comparison over three datasets.

sults, especially for long-term tracking. Note that even the

fastest variant is not real-time and our work focuses on ac-

curacy achieving much better results, especially for long-

term tracking, while still running at a reasonable speed.

4.6. Generic Object Tracking Analysis

Siam R-CNN should be able to track any generic object.

However, its backbone and RPN have been trained only on

80 object classes in COCO and have then been frozen. In

Fig. 10, we investigate the recall of our RPN on the 44%
of OTB2015 sequences that contain objects not in COCO,

compared to the rest. With the default of 1000 proposals,

the RPN achieves only 69.1% recall for unknown objects,

compared to 98.2% for known ones. One solution is to in-

crease the number of proposals used. When using 10, 000
proposals the RPN achieves 98.7% recall for unknown ob-

jects but causes Siam R-CNN to run much slower (around 1
FPS). Our solution is to instead include the previous-frame

re-detections (up to 100) as additional proposals. This in-

creases the recall to 95.5% for unknown objects when us-

ing 1000 RPN proposals. This shows why Siam R-CNN

is able to outperform all previous methods on OTB2015,

even though almost half of the objects are not from COCO

classes. We also run a recall analysis on the DAVIS 2017

and LTB35 datasets where most objects belong to COCO

classes and we achieve excellent recall (see Fig. 10 right).

5. Conclusion

We introduce Siam R-CNN as a Siamese two-stage full-

image re-detection architecture with a Tracklet Dynamic

Programming Algorithm. Siam R-CNN outperforms all

previous methods on ten tracking benchmarks, with espe-

cially strong results for long-term tracking. We hope that

our work will inspire future work on using two-stage archi-

tectures and full-image re-detection for tracking.
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