
SiamCAR: Siamese Fully Convolutional Classification and Regression

for Visual Tracking

Dongyan Guo †, Jun Wang †, Ying Cui †∗, Zhenhua Wang †, Shengyong Chen ‡

† Zhejiang University of Technology, China
‡ Tianjin University of Technology, China

{guodongyan, 1111912011, cuiying, zhhwang}@zjut.edu.cn, sy@ieee.org

Abstract

By decomposing the visual tracking task into two sub-

problems as classification for pixel category and regression

for object bounding box at this pixel, we propose a novel

fully convolutional Siamese network to solve visual tracking

end-to-end in a per-pixel manner. The proposed framework

SiamCAR consists of two simple subnetworks: one Siamese

subnetwork for feature extraction and one classification-

regression subnetwork for bounding box prediction. Dif-

ferent from state-of-the-art trackers like Siamese-RPN,

SiamRPN++ and SPM, which are based on region pro-

posal, the proposed framework is both proposal and anchor

free. Consequently, we are able to avoid the tricky hyper-

parameter tuning of anchors and reduce human interven-

tion. The proposed framework is simple, neat and effective.

Extensive experiments and comparisons with state-of-the-

art trackers are conducted on challenging benchmarks in-

cluding GOT-10K, LaSOT, UAV123 and OTB-50. Without

bells and whistles, our SiamCAR achieves the leading per-

formance with a considerable real-time speed. The code is

available at https://github.com/ohhhyeahhh/SiamCAR.

1. Introduction

Visual object tracking has received considerable atten-

tion due to its wide application such as intelligent surveil-

lance, human-machine interaction and unmanned vehicles.

Rapid progress has been made on visual tracking. However,

it remains a challenging task especially for real world ap-

plications, as object in unconstrained recording conditions

often suffers from large illumination variation, scale varia-

tion, background clutters and heavy occlusions, etc. More-

over, the appearance of non-rigid objects may change sig-

nificantly due to extreme pose variation.

Current popular visual tracking methods [1, 21, 14, 35,

20, 42, 11, 33] revolve around the Siamese network based

architectures. The Siamese network formulates the visual

#016 #064 #119

#020 #048 #085

#047 #200 #417

SiamCAR SiamRPN++ ECOSPM

Figure 1. Comparisons of the proposed SiamCAR with three state-of-the-

art trackers on three challenging sequences from GOT-10K. Our SiamCAR

can accurately predict the bounding boxes even when objects suffer from

similar distractors, large scale variation and large pose variation, while

SiamRPN++ and SPM give much rougher results and ECO drifts to the

background.

tracking task as a target matching problem and aims to learn

a general similarity map between the target template and

the search region. Since one single similarity map typically

contains limited spatial information, a common strategy is

to perform matching on multiple scales of the search re-

gions to determine the object scale variation [1, 14, 35],

which explains why these trackers are time-consuming and

labor-intensive. SiamRPN [21] attaches the Siamese net-

work a subnetwork for the extraction of region proposals

(RPN). By jointly training a classification branch and a re-

gression branch for visual tracking, SiamRPN avoids the

time-consuming step of extracting multi-scale feature maps

for the object scale invariance. It achieves state-of-the-

art results on multiple benchmarks. Later works such as

DaSiam [42] , CSiam [11] and SiamRPN++ [20] improve

SiamRPN. However, since anchors are introduced for re-

gion proposal, these trackers are sensitive to the numbers,

sizes and aspect ratios of anchor boxes, and expertise on

hyper-parameter tuning is crucial to obtain successful track-

ing with these trackers.

43216269

In this paper, we show that an anchor-free Siamese net-

work based tracker can perform better than the state-of-the-

art RPN based trackers. Essentially we decompose tracking

into two subproblems: one classification problem and one

regression task. The classification branch aims to predict

each spatial location a label, while the regression branch

considers regressing each location one relative bounding

box. With such decomposition, the tracking task can be

solved in a per-pixel prediction manner. We then craft a

simple yet effective Siamese based classification and regres-

sion network (SiamCAR) to learn the classification and re-

gression models simultaneously in an end-to-end manner.

Previous work [4] leverages object semantic information

to improve the bounding box regression. Inspired by this,

SiamCAR is designed to extract response maps which in-

clude affluent category information and semantic informa-

tion. Different from RPN models [21, 42, 20], which use

two response maps for region proposal detection and regres-

sion respectively, SiamCAR takes one unique response map

to predict object location and bounding box directly.

SiamCAR adopts the strategy of online training and of-

fline tracking, without using any data enhancement during

training. Our main contributions are:

• We propose the so-called Siamese classification and

regression framework (SiamCAR) for visual tracking.

The framework is very simple in construction but pow-

erful in performance.

• The proposed tracker is both anchor and proposal

free. The number of hyper-parameters has been sig-

nificantly reduced, which keeps the tracker from com-

plicated parameter tuning during training.

• Without bells and whistles, the proposed tracker

achieves the state-of-the-art tracking performance in

terms of both accuracy and speed.

2. Related Work

We mainly review the family of Siamese RPN track-

ers since they dominate the tracking performance in recent

years.

Tracking researchers devote to design faster and more

accurate trackers from different aspects like feature extrac-

tion [16, 17], template updating [35, 12], classifier design

[40] and bounding box regression [4]. Early feature ex-

traction mainly uses color features, texture features or other

hand-crafted ones. Due to the rapid progress of deep learn-

ing, convolutional neural network (CNN)-based feature has

widely been adopted. Though the adaptability of trackers

could be improved via template updating, the online track-

ing is less efficient. Besides, template updating suffers from

tracking drift. The introduction of correlation filter methods

[2, 6, 16, 22, 41, 25] improves the tracking performance

significantly in terms of both efficiency and accuracy. Cur-

rent researches demonstrated that the Siamese based online

training and offline tracking approaches with CNNs have

achieved the best balance between accuracy and efficiency

[21, 20].

As one of the pioneering works, SiamFC [1] constructs a

fully convolutional Siamese network to train a tracker. En-

couraged by its success, many researchers follow the work

and propose some updated models [9, 35, 14, 13, 21, 20]

. CFNet [35] introduces the Correlation Filter layer to the

SiamFC framework and performs online tracking to im-

prove the accuracy. By modifying the Siamese branches

with two online transformations, DSiam [13] proposes to

learn a dynamic Siamese network, which achieves better

tracking accuracy with acceptable tradeoff of speed. SA-

siam [14] builds a two-fold Siamese network with a seman-

tic branch and an appearance branch. The two branches are

trained separately to keep the heterogeneity of features but

combined at the testing time to improve the tracking accu-

racy. In order to tackle the scale variation problem, these

Siamese networks resort to multi-scale searching and result

in increase of time-consuming.

Inspired by the region proposal network for object de-

tection [31], the SiamRPN [21] tracker performs the re-

gion proposal extraction using the output of Siamese net-

work. By jointly learning a classification branch and a

regression branch for region proposal, SiamRPN avoids

the time-consuming step of extracting multi-scale feature

maps. However, it has difficulty in dealing with distrac-

tors with similar appearance to the target object. Based

on SiamRPN, DaSiamRPN [42] increases the hard neg-

ative training data during the training phase. Through

data enhancement, they improve the discrimination of the

tracker, hence a much more robust tracking result is ob-

tained. The tracker is further extended to long-term visual

tracking. Though these aforementioned approaches mod-

ified the original SiamFC [1] on many aspects, the perfor-

mance stall mainly because the backbone network they used

(AlexNet) is weak. SiamRPN++ [20] replaces AlexNet

with ResNet [15]. Meanwhile it randomly shifts the train-

ing object location in the search region during training to

eliminate the center bias. Such modifications boost track-

ing accuracy.

Anchors are adopted in these RPN based trackers for re-

gion proposal. Besides, anchor boxes can make use of the

deep feature maps and avoid repeated computation, which

can significantly speed up the tracking process. The state-

of-the-art trackers, such as SPM [36] and SiamRPN [21]

track in a very high frame rate. Though SiamRPN++ [20]

adopts a very deep neural network, it still works in a con-

siderable real-time speed. The accuracy and speed of the

state-of-the-art anchor-free trackers (e.g., ECO [3]) are still

much worse than these anchor-based trackers [36, 20] on the

43226270

CNN

CNN

CNN

CNN

Center-ness

Regression

25×25×𝑚

L T R B

7×7×𝑛

31×31×𝑛

25×25×𝑚

25×25×𝑚

Siamese Subnetwork

Classification

Template patch

Search region

backbone

25×25×2

25×25×1

25×25×4

Classification-Regression Subnetwork

Conv

Conv

Conv

Conv

foreground background

Figure 2. Illustration of SiamCAR: The left side is a Siamese subnetwork with a depth-wise cross correlation layer (denoted by ⋆) for multi-channel

response map extraction. The right side shows the classification and regression subnetwork for bounding box prediction, which is taken to decode the

location and scale information of the object from multi-channel response map. Note that SiamCAR can be implemented as a fully convolutional network,

which is simple, neat and easy to interpret.

challenging benchmarks like GOT-10K [18]. Nevertheless,

the performance of anchor-based trackers is very sensitive

to the hyper-parameters of anchors, which need to be care-

fully tuned to achieve ideal performance. Moreover, since

the size and aspect ratio of anchor boxes are fixed, even

with tuned parameters, these trackers still have difficulty in

processing objects with large shape deformation and pose

variation. In this paper, we show that these issues could be

significantly alleviated with our proposed SiamCAR. Mean-

while, we demonstrate that a tracker with much simpler

architecture can achieve even better performance than the

state-of-the-arts.

3. Proposed Method

We now introduce our SiamCAR network in detail. As

mentioned, we decompose the tracking task into two sub-

problems as classification and regression, and then solve

them in a per-pixel manner. As show in Figure 2, the

framework mainly consists of two simple subnetworks: one

Siamese network for feature extraction and the other net-

work for bounding box prediction.

3.1. Feature Extraction

Here we take advantage of the fully convolution network

to construct the Siamese subnetwork for the visual feature

extraction. The subnetwork consists of two branches: a tar-

get branch which takes the tracking template patch Z as

input, and a search branch which takes the search region

X as input. The two branches share the same CNN archi-

tecture as their backbone models, which output two feature

maps ϕ(Z) and ϕ(X). In order to embed the information of

these two branches, a response map R can be obtained by

performing the cross-correlation on ϕ(X) with ϕ(Z) as a

kernel. Since we need to decode the response map R in the

subsequent prediction subnetwork to obtain the location and

scale information of the target, we hope that R retains abun-

dant information. However, the cross-correlation layer can

only generate a single-channel compressed response map,

which lacks useful features and important information for

tracking, as suggested by [20] that different feature chan-

nels typically take distinct semantic information. Inspired

by [20], we also use a depth-wise correlation layer to pro-

duce multiple semantic similarity maps:

R = ϕ(X) ⋆ ϕ(Z), (1)

where ⋆ denotes the channel-by-channel correlation opera-

tion. The generated response map R has the same number

of channels as ϕ(X), and it contains massive information

for classification and regression.

Low-level features like edge, corner, color and shape that

represent better visual attributes are indispensable for loca-

tion, while high-level features are better to represent seman-

tic attributes that are crucial for discrimination. Many meth-

ods take advantage of fusing both low-level and high-level

features to improve the tracking accuracy [27, 20]. Here

we also consider to aggregate multi-layer deep features for

tracking. We use the modified ResNet-50 as the same in

[20] as our backbone networks. To achieve better inference

for recognition and discrimination, we combine the features

extracted from the last three residual blocks of the back-

bone, which are denoted respectively as F3(X), F4(X),
F5(X). Specifically, we perform a channel-wise concate-

nation:

ϕ(X) = Cat(F3(X),F4(X),F5(X)), (2)

where Fi=3:5(X) includes 256 channels. Consequently

ϕ(X) contains 3× 256 channels.

43236271

The Depth-wise Cross Correlation is performed between

the searching map ϕ(X) and the template map ϕ(Z) to get

a multi-channel response map. The response map is then

convoluted with a 1 × 1 kernel to reduce its dimension to

256 channels. Through the dimension-reduction, the num-

ber of parameters can be significantly reduced, and the fol-

lowing computation can be sped up. The final dimension-

reduced response map R∗ is adopted as the input to the

classification-regression subnetwork.

3.2. Bounding Box Prediction

Each location (i, j) in the response map R∗ can be

mapped back onto the input search region as (x, y). The

RPN-based trackers consider the corresponding location on

the search region as the center of multi-scale anchor boxes,

and regress the target bounding box with these anchor boxes

as references. Different from them, our network directly

classifies and regresses the target bounding box at each lo-

cation. The associated training can be accomplished by the

fully convolution operation in an end-to-end fashion, which

avoids tricky parameter tuning and reduces human interven-

tion.

The tracking task is decomposed into two subtasks: a

classification branch to predict the category for each loca-

tion, and a regression branch to compute the target bound-

ing box at this location (see Figure 2 for an illustration of

the subnetwork). For a response map R∗

w×h×m extracted

using the Siamese subnetwork, the classification branch

outputs a classification feature map Acls
w×h×2 and the re-

gression branch outputs a regression feature map A
reg
w×h×4.

Here w and h represent the width and the height of the ex-

tracted feature maps respectively. As that shown in Fig-

ure 2, each point (i, j, :) in Acls
w×h×2 contains a 2D vector,

which represents the foreground and background scores of

the corresponding location in the input search region. Sim-

ilarly, each point (i, j, :) in A
reg
w×h×4 contains a 4D vector

t(i, j) = (l, t, r, b), which represents the distances from the

corresponding location to the four sides of the bounding box

in the input search region.

Since the ratio of areas occupied by the target and the

background in the input search region is not very large, sam-

ple imbalance is not a problem. Therefore, we simply adopt

the cross-entropy loss for classification and the IOU loss for

regression. Let (x0, y0) and (x1, y1) denote the left-top and

right-bottom corner of the ground truth bounding box, and

let (x, y) denote the corresponding location of point (i, j),
the regression targets t̃(i,j) at A

reg
w×h×4(i, j, :) can be calcu-

lated by:

t̃0(i,j) = l̃ = x− x0, t̃
1
(i,j) = t̃ = y − y0,

t̃2(i,j) = r̃ = x1 − x, t̃3(i,j) = b̃ = y1 − y.
(3)

With t̃(i,j), the IOU between the ground-truth bounding box

and the predicted bounding box can be computed. Then we

compute the regression loss using

Lreg =
1

∑

I(t̃(i,j))

∑

i,j
I(t̃(i,j))LIOU (A

reg(i, j, :), t̃(x,y)),

(4)

where LIOU is the IOU loss as in [38] and I(·) is an indica-

tor function defined by:

I(t̃(i,j)) =

{

1 if t̃k(i,j) > 0, k = 0, 1, 2, 3

0 otherwise.
(5)

An observation is that the locations far away from the

center of an target tend to produce low-quality predicted

bounding boxes, which reduces the performance of the

tracking system. Following [34], we add a centerness

branch in parallel with the classification branch to remove

the outliers. As shown in Figure 2, the branch outputs a

centerness feature map Acen
w×h×1, where each point value

gives the centerness score of the corresponding location.

The score C(i, j) in Acen
w×h×1(i, j) is defined by

C(i, j) = I(t̃(i,j)) ∗

√

min(l̃, r̃)

max(l̃, r̃)
×

min(t̃, b̃)

max(t̃, b̃)
, (6)

where C(i, j) is in contrast with the distance between the

corresponding location (x, y) and the object center in the

search region. If (x, y) is a location within background, the

value of C(i, j) is set to 0. The centerness loss is

Lcen =
−1

∑

I(t̃(i,j))

∑

I(t̃(i,j))==1
C(i, j) ∗ logAcen

w×h×1(i, j)

+ (1− C(i, j)) ∗ log(1−Acen
w×h×1(i, j)).

(7)

The overall loss function is

L = Lcls + λ1Lcen + λ2Lreg, (8)

where Lcls represents the cross-entropy loss for classifica-

tion. Constants λ1 and λ2 weight the centerness loss and the

regression loss. During training, we empirically set λ1 = 1
and λ2 = 3 for all experiments.

3.3. The Tracking Phase

Tracking aims at predicting a bounding box for the tar-

get in current frame. For a location (i, j), the proposed

method produces a 6D vector Tij = (cls, cen, l, t, r, b),
where cls represents the foreground score of classifica-

tion, cen represents the centerness socre, and l + r and

t + b represent the predicted width and height of the tar-

get in current frame. During tracking, the size and as-

pect ratio of the bounding box typically see minor change

across consecutive frames. To supervise the prediction

using this spatial-temporal consistency, we adopt a scale

43246272

A B

CD

cls cen

l rt bsequence

template

Figure 3. Tracking process: Sub-figure A shows a pair of inputs

while B presents the corresponding outputs of the model, where

we show our model gives good prediction for different attributes of

the object. C shows the predicted bounding boxes corresponding

to the top-k points. D shows the final predicted bounding box by

averaging those boxes in C.

change penalty pij as that introduced in [21] to re-rank the

classification score cls, which admits an updated 6D vector

PTij = (clsij ×pij , cen, l, t, r, b). Then the tracking phase

can be formulated as:

q = argmax
i,j

{(1− λd)clsij × pij + λdHij}, (9)

where H is the cosine window and λd is the balance weight.

The output q is a queried location with the highest score

being a target pixel.

Since our model solves the object tracking with a per-

pixel prediction manner, each location is relative to a pre-

dicted bounding box. In the real tracking process, it will be

jittering between adjacent frames if only one bounding box

of q is used as the target box. We observed that the pix-

els located around q are more likely to be the target pixel.

Hence we choose the top-k points from n neighborhoods of

q according to the value clsij × pij . The final prediction

is the weighted average of the selected k regression boxes.

Empirically, we found that setting n = 8 and k = 3 delivers

stable tracking results.

4. Experiments

4.1. Implementation Details

The proposed SiamCAR is implemented in Python with

PyTorch and trained on 4 RTX 2080 Ti cards. For fair com-

parison, the input size of the template patch and search re-

gions are set as the same with [20], respectively to 127 pix-

els and 255 pixels. The modified ResNet-50 as in [20] is

adopted as the backbone of our Siamese subnetwork. The

network is pretrained on ImageNet [32]. Then we use the

pretrained weights as initialization to train our model.

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s r

at
e

Success plots on GOT-10k

SiamCAR: [0.569]
SiamRPN++: [0.517]
SPM: [0.513]
SiamRPN_R18: [0.483]
THOR: [0.447]
SiamFC: [0.348]
CCOT: [0.325]
ECO: [0.316]
MDNet: [0.299]
CFNetc2: [0.293]
ECOhc: [0.286]
BACF: [0.260]
MEEM: [0.253]
DAT: [0.251]
DSST: [0.247]
SAMF: [0.246]
Staple: [0.246]
SRDCF: [0.236]
fDSST: [0.206]
KCF: [0.203]

Figure 4. Comparisons on GOT-10K [18]. Our SiamCAR signif-

icantly outperforms the baselines and other state-of-the-art meth-

ods.

Training Details. During the training process, the batch

size is set as 96 and totally 20 epochs are performed by us-

ing stochastic gradient descent (SGD) with an initial learn-

ing rate 0.001. For the first 10 epochs, the parameters of the

Siamese subnetwork are frozen when training the classifica-

tion and regression subnetwork. For the last 10 epochs, the

last 3 blocks of ResNet-50 are unfrozen for training. The

whole training phase takes around 42 hours. We train our

SiamCAR with the data from COCO [24], ImageNet DET,

ImageNet VID [32] and YouTube-BB [30] for experiments

on UAV and OTB [37]. It should be noticed that for experi-

ments on GOT-10K [18] and LaSOT [10], our SiamCAR is

trained with only the specified training set provided by the

official website for fair comparison.

Testing Details. The testing phase uses the offline track-

ing strategy. Only the object in first frame of a sequence

is adopted as the template patch. Consequently, the target

branch of the Siamese subnetwork can be pre-computed and

fixed during the whole tracking period. The search region

in the current frame is adopted as the input of the search

branch. In Figure 3 we show the whole tracking process.

With the outputs of classification-regression subnetwork,

a location q is queried through Equation (9). In order to

achieve a more stable and smoother prediction between ad-

jacent frames, a weighted average of regression boxes cor-

responding to the top-3 neighbors of q is computed as the

final tracking result. For evaluations on different datasets,

we use the official measurements provided there, which can

be different from each other.

4.2. Results on GOT-10K

GOT-10K [18] is a recently released large-scale and

high-diversity benchmark for generic object tracking in the

wild. It contains more than 10, 000 video segments of real-

43256273

Tracker AO SR0.5 SR0.75 FPS Hardware Language

KCF [16] 0.203 0.177 0.065 94.66 CPU Matlab

fDSST [6] 0.206 0.187 0.075 30.43 CPU Matlab

SRDCF [5] 0.236 0.227 0.094 5.58 CPU Matlab

Staple [26] 0.246 0.239 0.089 28.87 CPU Matlab

SAMF [23] 0.246 0.241 0.084 7.43 CPU Matlab

DSST [7] 0.247 0.223 0.081 18.25 CPU Matlab

DAT [29] 0.251 0.242 0.048 45.52 CPU Matlab

MEEM [39] 0.253 0.235 0.068 20.59 CPU Matlab

BACF [19] 0.260 0.262 0.101 14.44 CPU Matlab

ECO-HC 0.286 0.276 0.096 44.55 CPU Matlab

CFnet [35] 0.293 0.265 0.087 35.62 Titan X Matlab

MDnet [28] 0.299 0.303 0.099 1.52 Titan X Python

ECO [3] 0.316 0.309 0.111 2.62 CPU Matlab

CCOT [8] 0.325 0.328 0.107 0.68 CPU Matlab

SiamFC [1] 0.374 0.404 0.144 25.81 Titan X Matlab

THOR 0.447 0.538 0.204 1.00 RTX 2070 Python

SiamRPN R18 0.483 0.581 0.270 97.55 Titan X Python

SPM [36] 0.513 0.593 0.359 72.30 Titan Xp Python

SiamRPN++ [20] 0.517 0.616 0.325 49.83 RTX 2080ti Python

SiamCAR 0.569 0.670 0.415 52.27 RTX 2080ti Python

Table 1. The evaluation on GOT-10K [18]. Top-2 results are highlighted in red and blue respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

c
is

io
n

Normalized Precision plots of OPE on LaSOT Testing Set

[0.600] SiamCAR

[0.569] SiamRPN++

[0.460] MDNet

[0.453] VITAL

[0.420] SiamFC

[0.418] StructSiam

[0.405] DSiam

[0.354] SINT

[0.340] STRCF

[0.338] ECO

[0.320] ECO_HC

[0.312] CFNet

[0.286] HCFT

[0.283] BACF

[0.278] TRACA

[0.278] Staple

[0.274] PTAV

[0.270] Staple_CA

[0.265] MEEM

[0.254] CSRDCF

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

c
is

io
n

Precision plots of OPE on LaSOT Testing Set

[0.510] SiamCAR

[0.491] SiamRPN++

[0.373] MDNet

[0.360] VITAL

[0.339] SiamFC

[0.333] StructSiam

[0.322] DSiam

[0.301] ECO

[0.298] STRCF

[0.295] SINT

[0.279] ECO_HC

[0.259] CFNet

[0.254] PTAV

[0.241] HCFT

[0.239] Staple

[0.239] BACF

[0.235] Staple_CA

[0.227] TRACA

[0.227] MEEM

[0.220] CSRDCF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE on LaSOT Testing Set

[0.507] SiamCAR

[0.496] SiamRPN++

[0.397] MDNet

[0.390] VITAL

[0.336] SiamFC

[0.335] StructSiam

[0.333] DSiam

[0.324] ECO

[0.314] SINT

[0.308] STRCF

[0.304] ECO_HC

[0.275] CFNet

[0.259] BACF

[0.257] TRACA

[0.257] MEEM

[0.250] HCFT

[0.250] PTAV

[0.245] SRDCF

[0.244] CSRDCF

[0.243] Staple

Figure 5. Comparison with top-20 trackers on LaSOT [10]. Our SiamCAR significantly outperforms baselines and the state-of-the-arts.

world moving objects. Fair comparison of deep trackers

is ensured with the protocol that all approaches use the

same training and testing data provided by the dataset. The

classes in training dataset and testing dataset are zero over-

lapped. After uploading the tracking results, the analysis is

taken automatically by the official website. The provided

evaluation metrics include success plots, average overlap

(AO) and success rate (SR). The AO represents the av-

erage overlaps between all estimated bounding boxes and

ground-truth boxes. The SR0.5 represents the rate of suc-

cessfully tracked frames whose overlap exceeds 0.5, while

SR0.75 represents this overlap exceeds 0.75.

We evaluate SiamCAR on GOT-10K and compare it

with state-of-the-art trackers including SiamRPN++ [20],

SiamRPN [21], SiamFC [1], ECO [3], CFNET [35] and

other baselines or state-of-the art approaches. All the results

are provided by the official website of GOT-10K. Figure 1

shows that SiamCAR can outperforms all the trackers on

GOT-10K and Table 1 lists quantitative results on different

metrics. Clearly, our tracker performs best in terms of all

metrics. Compared with SiamRPN++, SiamCAR improves

the scores by 5.2%, 5.4% and 9.0% respectively for AO,

SR0.5 and SR0.75.

In Table 1, we also show the tracking frame rate in

frame-per-second (FPS). The reported speed is evaluated

on a machine with one RTX2080ti and others are provided

by the GOT-10K official results. As that shown here, our

SiamCAR is much faster than most evaluated trackers at a

real-time speed of 52.27 FPS.

43266274

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - low resolution (10)

SiamCAR [0.873]

SiamRPN++ [0.822]

SiamRPN [0.789]

SiamFC [0.749]

ECO-HC [0.739]

cfnet [0.729]

MEEM [0.618]

KCFDP [0.605]

SRDCF [0.603]

fDSST [0.593]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - background clutter (20)

SiamCAR [0.786]

ECO-HC [0.715]

SiamRPN++ [0.711]

SiamRPN [0.703]

fDSST [0.680]

SRDCF [0.648]

KCFDP [0.619]

MEEM [0.589]

cfnet [0.575]

SiamFC [0.574]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE - out-of-plane rotation (32)

SiamCAR [0.782]

SiamRPN++ [0.746]

SiamRPN [0.742]

ECO-HC [0.720]

MEEM [0.613]

SRDCF [0.606]

KCFDP [0.606]

SiamFC [0.605]

cfnet [0.596]

Staple [0.582]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

c
is

io
n

Precision plots of OPE - deformation (23)

SiamCAR [0.740]

SiamRPN++ [0.732]

SiamRPN [0.721]

ECO-HC [0.692]

Staple [0.636]

SRDCF [0.609]

KCFDP [0.576]

cfnet [0.568]

SiamFC [0.546]

MEEM [0.545]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - low resolution (10)

SiamCAR [0.677]

SiamRPN++ [0.649]

SiamRPN [0.601]

SiamFC [0.573]

ECO-HC [0.564]

cfnet [0.549]

SRDCF [0.481]

fDSST [0.446]

KCFDP [0.445]

MEEM [0.420]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - background clutter (20)

SiamCAR [0.627]

SiamRPN++ [0.586]

ECO-HC [0.577]

SiamRPN [0.576]

fDSST [0.543]

SRDCF [0.530]

KCFDP [0.495]

SiamFC [0.476]

Staple [0.476]

cfnet [0.470]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - out-of-plane rotation (32)

SiamCAR [0.601]

SiamRPN++ [0.598]

SiamRPN [0.586]

ECO-HC [0.560]

SRDCF [0.485]

SiamFC [0.482]

KCFDP [0.480]

Staple [0.463]

fDSST [0.454]

MEEM [0.453]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - deformation (23)

SiamCAR [0.588]

SiamRPN++ [0.573]

SiamRPN [0.571]

ECO-HC [0.536]

Staple [0.518]

SRDCF [0.476]

KCFDP [0.452]

SiamFC [0.433]

fDSST [0.422]

cfnet [0.400]

Figure 6. The evaluation on OTB-50 [37] with challenging aspects including low resolution, background clutter, out-of-plane rotation and

deformation. Our SiamCAR achieves the best results against the impacts of all these aspects.

4.3. Results on LaSOT

LaSOT is a recently released benchmark for single ob-

ject tracking. The dataset contains more than 3.52 million

manually annotated frames and 1400 videos. It contains 70
classes and each class includes 20 tracking sequences. Such

a large-scale dataset brings a great challenge to tracking al-

gorithms. The official website of LaSOT provides 35 algo-

rithms as baselines. Normalized precision plots, precision

plots and success plots in one-pass evaluation (OPE) are

considered as the evaluation metrics.

We compare our SiamCAR with the top-19 trackers in-

cluding SiamRPN++ [20], MDNet [28], DSiam [13], ECO

[3] and other baselines. The results of SiamRPN++ [20] are

provided by the website of its authors, while other results

are provided by the official website of LaSOT. As shown

in Figure 5, our SiamCAR achieves the best performance.

Compared with SiamRPN++, our SiamCAR improves the

scores by 3.1%, 1.9% and 1.1% respectively for the three

metrics. Notably, our SiamCAR improves by over 14%,

13.7% and 11% respectively for the three indicators in com-

parison with the baseline approaches.

The leading results on such a large dataset demonstrate

that our proposed network has a good generalization for vi-

sual object.

4.4. Results on OTB50

OTB-50 contains 50 challenging videos with substantial

variations. The test sequences are manually tagged with

9 attributes to represent the challenging aspects, includ-

ing illumination variation, scale variation, occlusion, de-

formation, motion blur, fast motion, in-plane rotation, out-

backbone ResNet-50 ResNet-34 alexnet

Precision 0.76 0.751 0.713

FPS 52 77 170

Table 2. Comparisons on UAV123 with different backbone archi-

tecture.

of-plane rotation, out-of-view, background clutters and low

resolution. We compare our network with 9 state-of-the-

art approaches including SiamRPN++ [20], SiamRPN [21],

SiamFC [1] and ECO [3]. We evaluate success plots and

precision plots in OPE for each tracker. As shown in Fig-

ure 6, the proposed SiamCAR ranks the first in terms of both

metrics. Especially, our SiamCAR significantly improves

the tracking accuracy against the impacts of low resolu-

tion, out-of-plane rotation and background clutter. The re-

sults demonstrate that SiamCAR can better deal with chal-

lenging distractors and large pose variation, which benefits

from the implicitly decoded semantic information by our

classification-regression subnetwork.

4.5. Results on UAV123

UAV123 dataset contains 123 video sequences and more

than 110K frames. All sequences are fully annotated with

upright bounding boxes. Objects in the dataset see fast mo-

tion, large scale and illumination variations and occlusions,

which make tracking using this dataset challenging.

We compare our SiamCAR with 9 state-of-the-art ap-

proaches including SiamRPN++ [20], SiamRPN [21],

SiamFC [1] and ECO [3] on this dataset. The success plot

and precision plot of OPE are used to evaluate the overall

43276275

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

c
is

io
n

Precision plots of OPE

SiamCAR [0.760]

SiamRPN++ [0.752]

DaSiamRPN [0.724]

SiamRPN [0.710]

ECO [0.688]

ECO-HC [0.667]

SiamFC [0.648]

SRDCF [0.627]

Staple [0.614]

MEEM [0.570]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

SiamCAR [0.614]

SiamRPN++ [0.610]

DaSiamRPN [0.569]

SiamRPN [0.557]

ECO [0.525]

ECO-HC [0.506]

SiamFC [0.485]

SRDCF [0.463]

Staple [0.450]

KCFDP [0.412]

Figure 7. The evaluation on UAV123. Our SiamCAR performs the best on all evaluation metrics.

performance here. As shown in Figure 7, our SiamCAR

outperforms all other trackers on both metrics. Compared

with state-of-the-art RPN trackers [20, 42, 21], SiamCAR

obtains competitive results with a much simpler network,

and it does not require to tune parameters heuristically.

4.6. Backbone Architecture Evaluation

To verify the effectiveness of the proposed framework,

we compare different backbone architectures for object

tracking. Table 2 shows the tracking performance using

ResNet-50, ResNet-34 and AlexNet as backbones. We re-

port results with respect to precision and frame-per-second

(FPS) on UAV123 by replacing the backbone. One can

see that the proposed SiamCAR can achieve comparable

results with different backbones. Notably, a speed of 170

FPS can be achieved with Alexnet. Obviously the proposed

framework can benefit from deeper networks. By replacing

AlexNet with ResNet50, the precision increase by around

6.5% while the tracking speed decreases to 52 FPS, which

is still in real-time speed. The evaluation also suggests that

by changing the backbone network, it is easy to fit the pro-

posed SiamCAR to different real tasks with a trade-off be-

tween accuracy and efficiency.

5. Conclusions

In this paper, we have presented a Siamese classifica-

tion and regression framework, namely SiamCAR which

enables the end-to-end training of a deep Siamese network

for visual tracking. We show that tracking tasks can be re-

solved in a per-pixel manner using the proposed neat fully

convolution framework. The proposed framework is very

simple in terms of its architecture but achieves new state-

of-the-art results without bells and whistles on GOT-10K

and other challenging benchmarks. It also achieves the best

performance on large-scale dataset like LaSOT, which ver-

ifies the generalization ability of the proposed framework.

Since our SiamCAR is simple and neat, several modifica-

tions could be performed next to achieve further improve-

ment.

Acknowledments

This work is supported in part by the National Key

R&D Program of China (2018YFB1305200), the National

Natural Science Foundation of China (61802348), and in

part by Natural Science Foundation of Zhejiang Province

(LQ18F030013, LQ18F030014).

References

[1] L. Bertinetto, J. Valmadre, J.F. Henriques, A. Vedaldi, and

P.H. Torr. Fully-convolutional siamese networks for object

tracking. In ECCV, 2016.

[2] D. Bolme, J. Beveridge, B. Draper, and Y. Lui. Visual object

tracking using adaptive correlation filters. In CVPR, 2010.

[3] M. Danelljan, G. Bhat, F.S. Khan, and M. Felsberg. Eco:

Efficient convolution operators for tracking. In CVPR, 2017.

[4] M. Danelljan, G. Bhat, F.S. Khan, and M. Felsberg. Accurate

tracking by overlap maximization. In CVPR, 2019.

[5] M. Danelljan, G. Hager, K.S. Fahad, and M. Felsberg. Learn-

ing spatially regularized correlation filters for visual track-

ing. In ICCV, 2015.

[6] M. Danelljan, G. Hager, K.S. Fahad, and M. Felsberg. Dis-

criminative scale space tracking. TPAMI, 2016.

[7] M. Danelljan, G. Hager, and F. Khan. Accurate scale estima-

tion for robust visual tracking. In BMVC, 2014.

[8] M. Danelljan, A. Robinson, F.S. Khan, and M. Felsberg. Be-

yond correlation filters:learning continuous convolution op-

erators for visual tracking. In ECCV, 2016.

43286276

[9] X.P. Dong and J.B. Shen. Triplet loss in siamese network for

object tracking. In ECCV, 2018.

[10] H. Fan, L.T. Lin, F. Yang, P. Chu, G. Deng, S.J. Yu, H.X.

Bai, Y. Xu, C.Y. Liao, and H.B. Ling. Lasot: A high-quality

benchmark for large-scale single object tracking. In CVPR,

2019.

[11] H. Fan and H.B. Ling. Siamese cascaded region proposal

networks for real-time visual tracking. In CVPR, 2019.

[12] J.Y. Gao, T.Z. Zhang, and C.S. Xu. Graph convolutional

tracking. In CVPR, 2019.

[13] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang.

Learning dynamic siamese network for visual object track-

ing. In ICCV, 2017.

[14] A.F. He, C. Luo, X.M. Tian, and W.J. Zeng. A twofold

siamese network for real-time object tracking. In CVPR,

2018.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[16] Joao.F. Henriques, R. Caseiro, M. Pedro, and B. Jorge. High-

speed tracking with kernelized correlation filters. TPAMI,

2014.

[17] P. Horst, M. Thomas, and B. Horst. In defense of color-based

model-free tracking. In CVPR, 2015.

[18] L.H. Huang, X. Zhao, and K.Q. Huang. Got-10k: A large

high-diversity benchmark for generic object tracking in the

wild. TPAMI, 2018.

[19] G. Kiani, Hamed, F. Ashton, and L. Simon. Learning

background-aware correlation filters for visual tracking. In

ICCV, 2017.

[20] B. Li, W. Wu, Q. Wang, F.Y. Zhang, J.L. Xing, and J.J. Yan.

Siamrpn++: Evolution of siamese visual tracking with very

deep networks. In CVPR, 2019.

[21] B. Li, J.J. Yan, W. Wu, Z. Zhu, and X.L. Hu. High perfor-

mance visual tracking with siamese region proposal network.

In CVPR, 2018.

[22] F. Li, Y.J. Yao, P.H. Li, D. Zhang, W.M. Zuo, and M.H. Yang.

Integrating boundary and center correlation filters for visual

tracking with aspect ratio variation. In ICCV, 2017.

[23] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCV, 2014.

[24] T.Y. Lin, M. Michael, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollar, and C.L. Zitnick. Microsoft coco: Com-

mon objects in context. In ECCV, 2014.

[25] T. Liu, G. Wang, Q.X. Yang, and L. Wang. Part-based track-

ing via discriminative correlation filters. TCSVT, 2016.

[26] B. Luca, V. Jack, G. Stuart, M. Ondrej, and T. Philip HS.

Staple: Complementary learners for real-time tracking. In

CVPR, 2016.

[27] C. Ma, J.B. Huang, X.K. Yang, and M.H. Yang. Robust vi-

sual tracking via hierarchical convolutional features. TPAMI,

2018.

[28] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In CVPR, 2016.

[29] S. Pu, Y. Song, and C. Ma. Deep attentive tracking via recip-

rocative learning. In NIPS, 2018.

[30] E. Real, J. Shlens, S. Mazzocchi, X. Pan, and V. Van-

houcke. Youtube-boundingboxes: A large high-precision

human-annotated data set for object detection in video. In

CVPR, 2017.

[31] S.Q. Ren, K.M. He, R. Girshick, and J. Sun. Faster r-cnn:

Towards real-time object detection with region proposal net-

works. In NIPS, 2015.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein.

Imagenet large scale visual recognition challenge. IJCV,

2015.

[33] Y.B. Song, C. Ma, L.J. Gong, J.W. Zhang, R.W. Lau, and

M.H. Yang. Crest: Convolutional residual learning for visual

tracking. In ICCV, 2017.

[34] Z. Tian, C.H. Shen, H. Chen, and T. He. Fcos: Fully convo-

lutional one-stage object detection. ICCV, 2019.

[35] J. Valmadre, L. Bertinetto, J.F. Henriques, A. Vedaldi, and

P.H. Torr. End-to-end representation learning for correlation

filter based tracking. In CVPR, 2017.

[36] G.T. Wang, C. Luo, Z.W. Xiong, and W.J. Zeng. Spm-

tracker: Series-parallel matching for real-time visual object

tracking. 2019.

[37] Y. Wu, J. Lim, and M.H. Yang. Online object tracking: A

benchmark. In CVPR, 2013.

[38] J.H. Yu, Y.N. Jiang, Z.Y. Wang, Z.M. Cao, and T. Huang.

Unitbox: An advanced object detection network. In MM,

2016.

[39] J.M. Zhang, S.G. Ma, and S. Stan. Meem: robust tracking

via multiple experts using entropy minimization. In ECCV,

2014.

[40] L. Zhang, V. Jagannadan, N.S. Ponnuthurai, A. Narendra,

and M. Pierre. Robust visual tracking using oblique random

forests. In CVPR, 2017.

[41] T.Z. Zhang, C.S. Xu, and M.H. Yang. Multi-task correlation

particle filter for robust object tracking. In CVPR, 2017.

[42] Z. Zhu, Q. Wang, B. Li, W. Wu, J.J. Yan, and W.M. Hu.

Distractor-aware siamese networks for visual object track-

ing. In ECCV, 2018.

43296277

