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ABSTRACT 2D image quality assessment (IQA) and stereoscopic 3D IQA are considered as two different

tasks in the literature. In this paper, we present an index for both no-reference 2D and 3D IQA. We propose

to transform the IQA task into a task of quality comparison between images. By generating image pairs,

the amount of training data reaches the square of the original amount of data, effectively solving the

lacking of training samples. We also propose a learning to rank model using Siamese convolutional neural

networks (LRSN) for quality comparison. The presented LRSN has two branches that have the same

structure, share weights with each other, and take two image patches as inputs. The goal of LRSN is learning

to rank the quality scores between the two input image patches. The relative quality score of a test image

is obtained by first comparing its image patches with many image patches of other images and counts the

number of times that its image patches are ranked superior to other patches. The experimental results on

three 2D (LIVE, CSIQ, and TID2013) and three 3D (LIVE 3D Phase-I, LIVE 3D Phase-II, and NBU) IQA

databases demonstrate that the proposed LRSN model works well for both 2D and 3D IQA and outperforms

the state-of-the-art no-reference 2D and 3D IQA metrics.

INDEX TERMS No-reference image quality assessment, stereoscopic image quality assessment, Siamese

convolutional neural networks, learning to rank.

I. INTRODUCTION

Digital images are usually distorted during acquisition, com-

pression, and transmission. The distortions usually reduce

the fidelity of the images. Therefore, image quality assess-

ment (IQA) has been a topic of intense research in the fields

of multimedia, image processing, and computer vision. In this

paper, we use IQA refers to distortion related image fidelity

quality assessment.

IQA metrics can be divided into two categories: subjec-

tive IQA and objective IQA. Subjective IQA is conducted

by people. The process of subjective IQA is often com-

plex, expensive, and time-consuming. Therefore, subjective

IQA is difficult to apply in real applications, especially in

The associate editor coordinating the review of this manuscript and
approving it for publication was Haiyong Zheng.

real-time systems. Objective IQA aims to simulate the subjec-

tive perception of the human visual system (HVS) by means

of mathematical models, machine learning, etc. Objective

IQA can be divided into three types: no-reference, reduced-

reference, and full-reference. Full-reference IQA requires the

original image as a comparison to evaluate the quality of the

distorted image. Reduced-reference IQA only needs partial

information of the original image. No-reference IQA does not

need the information of the original image which is usually

unavailable in real applications. So no-reference IQA has

broader application prospects than full-reference IQA and

reduced-reference IQA. Therefore, we focus on no-reference

IQA in this paper.

Early objective IQA metrics rely on hand-crafted HVS

related features. Because of the limited understanding of

HVS, the performance of conventional IQA metrics shows
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a significant gap to the subjective perception. In recent years,

deep learning, like Convolutional Neural Networks (CNN),

has been successfully applied to many image processing

and compute vision tasks, such as image recognition, super-

resolution, and face recognition. Many researchers have used

deep learning for 2D [1]–[3] and 3D [4] no-reference IQA.

The IQA metrics based on deep learning can automatically

extract features without relying on the understanding of HVS.

Moreover, the IQAmetrics based on deep learning have effec-

tively reduced the gap between objective IQA and subjective

perception.

A 3D image consists of a pair of monocular views,

i.e. left and right views, taken by two cameras to simulate

human binocular vision. The main factors that affect 3D

image quality include fidelity, aesthetics, and visual com-

fort. Distortion-free and highly appealing 3D images may

still be considered to be of visually low-quality if they have

low visual comforts. Some 3D image aesthetics and visual

comfort assessment metrics have been presented. Aesthet-

ics assessment and visual comfort assessment metrics focus

on aspects different from image fidelity quality assessment.

In this paper, we focus on image fidelity quality assessment

and use IQA for image fidelity quality assessment when

without introducing ambiguity. Please refer to the survey [5]

for more details on aesthetics assessment and visual comfort

assessment.

Compared with objective 2D IQA, stereoscopic 3D IQA

is more complicated, and it is necessary to consider the

interaction between the left and right views. 3D IQA metrics

can be mainly divided into three categories according to the

type of information they utilize: 1) metrics that only consider

left and right views; 2) metrics that consider depth/disparity

information; and 3) metrics that consider binocular character-

istics. In the literature, 2D IQA and 3D IQA are considered

as two different tasks. In this paper, we represent a 3D image

using a 2D image and present an index for both 2D and 3D

no-reference IQA.

Despite the performance improvements achieved by the

CNN-based IQA models, lacking training samples is one of

the challenges for CNN-based objective IQA [5]–[7]. Exist-

ing CNN-based no-reference IQA models solve this problem

by two types of methods. The first type of methods [1], [2]

divides the image into a number of image patches, and assigns

the subjective mean opinion score (MOS) of an image to

its image patches. However, using MOS as the quality of

each image patch is questionable because different image

patches have different image contents and image content

influences the quality. The second type of methods [3] uses

full-reference IQA metrics to compute the quality score

which serves as the MOS of an image. The drawback of this

type of methods is that the performance of the no-reference

IQA models directly depends on the performance of the

full-reference IQA metrics used.

In this paper, we present a no-reference IQA model based

on learning to rank method using Siamese Convolutional

Neural Networks (LRSN) for both 2D and 3D images.

In order to solve the problem of lacking training samples,

we propose to transform the IQA task into a task of quality

comparison between image patches. By generating pairs of

image patches, the amount of training data reaches the square

of the original amount of data. Furthermore, the pairwise

comparison is a very effective way to obtain image quality

scores. It is more in line with the perception of image quality

of the HVS to compare and rank the distorted image with the

reference image or two distorted images [8].

To solve the problem of quality difference between differ-

ent image patches caused by varying image contents, we first

sort the image patches according to their standard devia-

tions. Subsequently, a number of image patches ranked in

the middle are selected as the representative image patches

for training, thereby reducing the influence of an uneven

image quality distribution. We use Siamese CNN (SCNN) to

achieve learning to rank for no-reference IQA. The proposed

SCNN consists of two branches that have the same structure,

share weights with each other, and take two image patches as

inputs. Because the two branches share weights, the parame-

ter size of the proposed SCNN is reduced to be comparable

to a single-branch network.

We evaluate the proposed LRSN model on three 2D IQA

databases and three 3D IQA databases. The experimental

results show that the proposed LRSN model outperforms

state-of-the-art 2D and 3D no-reference IQA metrics. In par-

ticular, the performance on the TID2013 database and the

LIVE 3D Phase-II database is significantly improved.

The main contributions of this paper are as follows.

1) We propose to transform the IQA task into a task of

quality comparison between image patches. The generated

image patch pairs effectively solve the problem of lacking

training samples. 2) We propose a new no-reference IQA

model (LRSN) for no-reference IQA based on Siamese CNN.

The presented Siamese CNN has two branches that have the

same structure, share weights, and take two image patches

as inputs. 3) The proposed LRSN model works well for

both 2D and 3D no-reference IQA. Experimental results

show that the proposed LRSC model achieves superior per-

formance to the state-of-the-art 2D and 3D no-reference

IQA models.

The rest of the paper is organized as follows. Section II

provides related works on objective no-reference 2D and 3D

IQA metric. In Section III, we present detailed description of

the proposed LRSN model. In Section IV, the experimental

results are presented. Section V concludes the paper.

II. RELATED WORKS

Unlike full-reference IQA and reduced-reference IQA,

no-reference IQA does not use the information from the refer-

ence image. Therefore, no-reference IQA has more practical

prospects than full-reference IQA and reduced-reference IQA

in real applications without reference images. No-reference

IQA has become a topic of intense research in the past decade.

We describe related works on 2D and 3D IQA metrics in

subsections II-A and II-B, respectively.
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A. 2D IMAGE QUALITY ASSESSMENT

Many natural scene statistic based no-reference IQA

metrics [9]–[12] are proposed to assess the quality of images

distorted by various distortion types. Mittal et al. [9] pro-

posed a natural image quality evaluator (NIQE), which is pre-

sented based on the construction of a quality aware collection

of statistical features. Zhang et al. [10] proposed integrated

local NIQE (ILNIQE) as an improvement of NIQE by using

five types of natural scene statistic features to learn a multi-

variate Gaussian model of pristine images. The blind image

spatial quality evaluator (BRISQUE) [11] extracts natural

scene statistic features from a statistical model of locally

normalized luminance coefficients in the spatial domain and

demonstrates that these features correlate well with human

judgments of quality. The blind image integrity notator

using discrete cosine transform statistics (BLIINDS-II) [12]

is a fast single-stage framework that relies on a statistical

model of local discrete cosine transform coefficients. Dis-

crete cosine transform features are extracted from the natural

scene statistic model and thereafter fed to a Bayesian proba-

bilistic inference model to evaluate image quality.

Some machine-learning-based no-reference IQA models

have also been presented [13], [14]. Xue et al. [13] proposed

a quality-aware clustering (QAC) based no-reference IQA

model, which can learn a set of quality-aware centroids and

estimate the quality level of image patches as a codebook.

Ye et al. [14] proposed a blind learning model of image qual-

ity using synthetic scores (BLISS) which combines multiple

full-reference measures into a single synthetic score.

In recent years, CNN has been applied to IQA.

Kang et al. [1] applied a shallow CNN to no-reference IQA,

which achieved an improved performance than the previous

no-reference IQA models based on hand-crafted features.

Zeng et al. [15] used a pretrained ResNet to extract features

and fine-tune the network to learn the probability repre-

sentation of a distorted image instead of its IQA score.

Bosse et al. [2] proposed a no-reference IQA model based

on deep CNN. In addition, they also adjusted the network

to handle the full-reference IQA task. Kim and Lee [3]

pretrained a model using the local score of a full-reference

IQA index as ground truth, and subsequently fine-tuned

the model using MOSs, whose performance depends on

the performance of the selected full-reference IQA index.

Ma et al. [16] proposed a quality-discriminable image pair

inferred quality (dipIQ) index that uses a large number of

image pairs for training. The premise of this model is that

the distortion type and level of each distorted image are

known. However, in practical applications without a refer-

ence image, the distortion type and level are unknown and

sometimes are difficult to compute accurately. Ma et al. [17]

proposed a multi-task end-to-end optimized deep neural

network (MEON) for no-reference IQA. The training of

MEON includes two steps: a distortion-type identification

sub-network is first trained and thereafter a quality prediction

sub-network is trained starting with the pre-trained early

layers and the outputs of the first sub-network.

B. 3D IMAGE QUALITY ASSESSMENT

Compared with objective 2D IQA, 3D IQA is more

complicated, and it is necessary to consider the influ-

ence of distortions on left view, right view, and left and

right eye parallax. Many binocular perception-based met-

rics have been proposed to improve the performance of

no-reference 3D IQAmetrics by incorporating binocular per-

ception. Zhou et al. [18] proposed two binocular combina-

tions of stimuli, which were generated by the eye-weighting

model and the contrast-gain control model, and then

used the extreme learning machine for quality prediction.

Shao et al. [19] proposed a framework for 3D no-reference

IQA using joint sparse representation. The feature-prior

and feature-distribution are combined to formulate a stereo-

scopic 3D quality prediction. Shao et al. [20] proposed a 3D

no-reference IQA method, which transfers the information

from the source feature domain to its target quality domain

by dictionary learning.

Some depth perception-based metrics assess the image

quality based on the disparity map or synthesized cyclo-

pean image. Chen et al. [21] proposed a 3D no-reference

IQA model that combines 2D and 3D features extracted

from a stereoscopic image to estimate the perceptual qual-

ity. Jiang et al. [22] proposed an index based on deep

non-negativity constrained sparse autoencoder with the input

of the cyclopean image, left, and right views.

Some 3D IQA methods based on difference perception

use the difference between the left and right views to assess

image quality. Shen et al. [23] proposed combining the spa-

tial frequency information and statistic feature extracted from

the cyclopean and difference map to represent the binocu-

lar characteristic and asymmetric information of a stereo-

scopic image. Zhang et al. [4] proposed a CNN-based 3D

no-reference IQA model, which considers the difference

image as the representation of the depth and distortion in a

stereoscopic image.

III. PROPOSED METHOD

In this section, we describe the proposed LRSN model

that based on preference learning using SCNN. The frame-

work of the proposed model is shown in Fig. 1. Firstly,

we give the process of generating 2D and 3D image pairs in

subsection III-A. Then, we describe the structure of SCNN

proposed in this paper. Finally, we give the image quality

score prediction method.

A. IMAGE PAIR GENERATION

1) IMAGE PREPARATION

For a 2D distorted image, inspired by the paper [11],

the proposed LRSN model first performs local contrast nor-

malization on the image. Local contrast normalization not

only alleviates the saturation problem usually caused by using

sigmoid neurons in CNN, but also makes the network more

robust to changes in brightness and contrast. Given intensity

image I (i, j), the formulas for calculating the normalized
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FIGURE 1. Framework of the proposed LRSN model.

value Î (i, j) are as follows:

Î =
I (i, j) − µ(i, j)

σ (i, j) + C
, (1)

µ(i, j) =

K
∑

k=−K

L
∑

l=−L

ωk,lIk,l(i, j), (2)

σ (i, j) =

√

√

√

√

K
∑

k=−K

L
∑

l=−L

ωk,l(Ik,l(i, j) − µ(i, j))2, (3)

where C is a constant used to prevent the denominator from

being zero, K and L are the width and height of the normal-

ization window. The paper [11] proves that using a smaller

normalized window can achieve good performance, so we

set K = L = 3. ωk,l is a 2D circularly-symmetric Gaussian

weighting function sampled out to 3 standard deviations and

rescaled to a unit volume.

For a stereoscopic 3D image which consists of two monoc-

ular 2D images, namely left view Il and right view Ir , we use

the difference image presented by Zhang et al. [4] as the rep-

resentation of both two views and depth information. Specifi-

cally, we first conduct local contrast normalization on the left

and right views and obtain normalized left and right views Îl ,

Îr , and then compute the difference image Îd as follows:

Îd = Îl − Îr . (4)

Fig. 2 shows an example of image preparation for a 3D image.

After normalization, some pixels in the normalized left and

right views and the difference image have positive values, and

others have non-positive values. For illustration, we further

normalize the pixel values in the normalized left and right

FIGURE 2. Example of image preparation for a 3D image. For illustration,
figures (e)-(g) are normalized using the min-max normalization method.

views and the difference image to the range of [0, 1] and show

the results in Fig. 2 (e)-(f). Take the normalized left image,

Îl for example, we use the min-max normalization method to
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FIGURE 3. Architecture of the proposed LRSN model. The SCNN consists of two parallel branches, which have the same structure and share the weights.

normalize its pixel values to the range of [0,1] as follows,

Î ′l =
Îl − min

max − min
, (5)

where min and max represent the minimum and maximum

values in the normalized left image, Îl . It is worth mentioning

that the min-max normalization (Equation (5)) is performed

only for illustration, and not for the image preparation of the

proposed LRSN model. Fig. 2 (e) and (f) are the normalized

left and right views of the distorted 3D image. Fig. 2 (g) is

the difference image between Fig. 2 (e) and (f).

2) IMAGE PATCH PAIRS

After image preparation, we divide each result image into

equally sized image patches. Then we sort all image patches

using the standard deviation of each image patch in ascending

order and take a certain number (n) of image patches in the

middle of the order as training data for the image.

There are mainly two reasons for taking image patches in

the middle of the order. 1) It is difficult to use a small number

of image patches to represent the entire image. However,

if the number of image patches is large, it will inevitably lead

to a large amount of training data. For efficiency, we select

some image patches instead of using all image patches. 2) The

quality scores of different image patches may be different.

Therefore, we take the image patches in the middle of the

order to reduce the impact of different image patches. In sub-

section IV-D, we show the effects of selecting image patches

in different positions of the order, including image patches

with the smallest, medium, and largest standard deviations.

Finally, the image patches selected from all the training

images are combined into pairs to generate training data.

In this way, the number of training data is increased to the

square of the original number, which can overcome the short-

age of training data for CNN-based IQA models.

We also compute a label for each pair of image patches.

Because images in existing IQA databases have homoge-

neous distortions, we use the subjective quality score for

each image as the quality scores for the patches obtained

from it as in [1], [2]. For an IQA database, the quality score

of an image is provided in the form of mean opinion score

(MOS) or difference mean opinion score (DMOS) which is

obtained through subjective evaluations. A higher MOS and

a lower DMOS indicate a higher quality score. We compare

the quality of two image patches by comparing their quality

scores as follow,

LA,B = {MOSA > MOSB?1 : 0}, (6)

or

LA,B = {DMOSA < DMOSB?1 : 0}, (7)

where, A and B comprise an image patch pair 〈A,B〉, LA,B

is the label of pair 〈A,B〉, MOSA (MOSB) and DMOSA
(DMOSB) are the quality scores of patch A (B) in the form of

MOS and DMOS, respectively. IfMOSA >MOSB orDMOSA
< DMOSB, the label of the image pair 〈A,B〉 is 1, otherwise

it is 0.

To achieve high efficiency and effectiveness of the pro-

posed LRSN, we compose image patch pairs using the fol-

lowing principles: 1) The image patch is not combined with

the image patch from the same image; 2) If image patch A and

image patch B composed an image patch pair, then B is no

longer combined with A, thereby avoiding data redundancy;

3) Due to the small difference in quality between image

patches with similar quality scores, composing image patch

pairs with similar quality scores will increase the difficulty of

preference learning. Therefore, if the difference in the quality

scores between the two image patches smaller than a certain

threshold, the image pair is not composed.

B. SIAMESE CONVOLUTIONAL NEURAL NETWORKS

In this paper, we propose a new SCNN whose structure

is shown in Fig. 3. The SCNN consists of two parts:

subnetworks I and II. Subnetwork I consists of two identi-

cal branches using five stacked convolutional structures for

image feature extraction. Specifically, the structure of one of
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the branches is composed of 13 convolution layers and 5 pool-

ing layers (conv1-1, conv1-2, maxpool1, conv2-1, conv2-2,

maxpool2, conv3-1, conv3-2, conv3-3, maxpool3, conv4-1,

conv4-2, conv4-3, maxpool4, conv5-1, conv5-2, conv5-3, and

maxpool5). The rectified linear units (ReLU) is used as an

activation function for each convolution layer. Zero padding

is used for all convolution layers. The convolution kernel size

is 3× 3, and the stride is one. All max-pool layers have 2× 2

pixel-sized kernels, and strides in both directions are two.

Subnetwork II consists of three fully connected layers.

The specific components are: FC6, FC7, and FC8. FC6 and

FC7 both use ReLU as the activation function. In order to

prevent overfitting, the dropout ratio is set to be 0.5. The

features extracted by sub-network I are fused and used as

input to the sub-network II. Sub-network II distinguishes the

quality of the two input image patches according to the fused

features.

The network uses cross entropy as loss function, and its

formula is as follows:

L = −
1

N

N
∑

i=1

(y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))), (8)

where N represents the number of image patch pairs; y(i) =

[y
(i)
1 , y

(i)
2 ] is a two-dimensional vector used to indicate the

quality of two images. For the ith image patch pair 〈A,B〉,

if the quality of image patch A is greater than that of B,

then y(i) = [1, 0], otherwise y(i) = [0, 1]. ŷ(i) = [ŷ
(i)
1 , ŷ

(i)
2 ]

is also a two-dimensional vector, indicating the probability

that the first image is better than the second. Conversely,

the probability that the second image is better than the first

image is 1 − ŷ(i).

SCNN is iteratively trained over multiple epochs, and an

epoch is defined as traversing the entire training set. In each

epoch, the training set is divided into multiple mini-batches

for batch optimization. We set the size of a mini-batch to 128.

The initial learning rate is set to be 1 × 10−4, and the

batch-optimized learning rate of each parameter is adaptively

controlled by the Adam method based on gradient variance.

The parameters of Adam are referenced in the paper [24],

β1 = 0.9, β2 = 0.999, ε = 10−8, and α = 10−4.

C. IMAGE QUALITY SCORE PREDICTION

Most of the traditional IQA models directly predict the qual-

ity score of the image by regression. In this paper, the relative

quality score of the image is obtained by first comparing its

image patches with many image patches of other images and

counts the number of times that its image patches are ranked

superior to other patches.

Similar to the training phase, in the prediction phase,

we first perform image preparation. Thenwe divide the image

into equal-sized image patches, sort all image patches by

standard deviation, and select a number of image patches

ranked in the middle. Finally, we generate image pairs for

comparison. To ensure that the final score for each image is

in the same range, we compare each image patch to all image

patches in the test set, except for the image patch of its own

image. The formula for predicting quality score for image I

is as follows:

SI =
∑

A∈I

∑

B/∈I

PA,B, (9)

where image patch A belongs to image I , image patch B does

not belong to image I , PA,B denotes the result of comparison

between image patches A with B. PA,B = 1 represents that

the quality of image patch A is better than B. Otherwise the

quality of image patch B is better than A. SI represents the

score of the image I .

In practical applications, there may be only one test image

or the quality concentration of the test set. If there is only

one image in the test set, there will be no comparable image.

If the quality of the image in the test set is too centralized,

the quality score of the image cannot be given accurately.

Therefore, we also provide a test image set. When testing,

the test image is compared to all the images in the test image

set we provide.

IV. EXPERMENTS

In this section, we give the experimental protocol in sub-

section IV-A, show the performance comparison for 2D

and 3D IQA in subsection IV-B, validate the generalization

ability of the proposed model via cross-database tests in

subsection IV-C, and discuss the effects of different strategies

of image patch selection in subsection IV-D.

A. EXPERIMENTAL PROTOCOL

We use three 2D IQA databases to verify the performance of

the proposed LRSN model for 2D IQA task.

1) LIVE [25]: The LIVE database consists of 29 reference

images and 779 distorted images, each impaired by one of

four or five levels of five types of synthetic distortions: JPEG

compression (JPEG), JPEG2000 compression (JP2K), White

noise (WN), BLUR and Fast-Fading (FF). Each distortion

type contains 7 or 8 distortion levels. The subjective values

for the distorted images are given by DMOS. A lower DMOS

indicates higher visual quality.

2) CSIQ [26]: The CSIQ database consists of 30 reference

images and 800 distorted images. Among them, 800 distor-

tion images are generated from 30 reference images through

six distortion types, each with 4 or 5 distortion levels. Its

distortion types include JPEG, JP2K, WN, BLUR, FNOISE

and CONTRAST. The subjective values for the distorted

images are given by DMOS.

3) TID2013 [27]: The TID2013 database consists of

25 reference images and 3000 distortion images. The

3000 distortion images are transformed from 25 reference

images through 24 distortion types and 5 distortion levels.

The subjective values for the distorted images are given by

MOS. A higher MOS indicates higher visual quality.
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Besides, we use three 3D IQA databases to verify the

performance of the proposed LRSN model for 3D IQA

task.

1) LIVE 3D Phase-I [28]: The LIVE 3D Phase-I database

consists of 20 reference stereoscopic images and 365 dis-

torted stereoscopic images. This database includes five dis-

tortion types: JPEG, JP2K, WN, BLUR, and FF. Each image

in the database is symmetrically distorted on its left and right

views. Each distorted stereoscopic image is given a DMOS

from subjective evaluation.

2) LIVE 3D Phase-II [29]: The LIVE 3D Phase-II database

consists of 8 reference images and 360 symmetrically or

asymmetrically distorted stereoscopic images. An asymmet-

rically distorted image has different distortion levels in its

left and right views. This database includes five distortion

types: JPEG, JP2K, WN, BLUR, and FF. For each distortion

type, a reference image pair generates three symmetrically

distorted images and six asymmetrically distorted images.

The subjective evaluation values in the database are given in

the form of DMOS.

3) NBU 3D IQA Database [30]: The NBU 3D IQA

database consists of 12 reference images and 312 symmetri-

cally distorted images. This database includes five distortion

types: JPEG, JP2K, WN, BLUR, and H.264. The subjective

values for the distorted images are given by DMOS.

We use Spearman Rank Order Correlation Coeffi-

cient (SROCC) and Pearson Linear Correlation Coeffi-

cient (PLCC) to measure the performance of the IQAmodels.

In our experiment, we randomly selected the distorted image

corresponding to 80% of the reference images as the training

set, and the remaining 20% of the data was used as the test set.

All the results of the multi-distortion-type experiment were

obtained by taking the median of 20 repeated experiments,

and the results of the single-distortion-type experiment were

obtained by taking the median of 10 repeated experiments.

The number of image patches selected for a single image

is 8 (n = 8) in the four distortion-type experiments on all

2D IQA databases and all distortion-type experiments on all

3D IQA databases. Since the amount of data in every single

distortion-type experiment is small, we set n = 16 for every

single distortion-type experiment on 2D IQA database. The

size of each image patch is 64 × 64.

Because composing image patch pairs with similar quality

scores will increase the difficulty of preference learning,

the image pair is not composed if the difference in the qual-

ity scores between the two image patches smaller than a

certain threshold. In the experiments, we set the threshold

based on the range of values of the image scores in each

dataset. The MOS/DMOS ranges of values for three 2D IQA

databases (LIVE, CSIQ, and TID2013) are 0−100, 0−1, and

0 − 10, respectively, so we set their thresholds to be 4, 0.03,

and 0.2, respectively. The DMOS ranges of values for three

3D IQA databases (LIVE 3D Phase-I, LIVE 3D Phase-II,

and NBU) are all 0 − 100, so we set their thresholds

to be 4.

B. PERFORMANCE COMPARISON

1) PERFORMANCE FOR 2D IQA

In order to validate the performance of the proposed

LRSN model on 2D IQA task, we compared it with

eight no-reference IQA models, including QAC [13],

NIQE [9], ILNIQE [10], BLIINDS−II [12], BRISQUE [11],

BLISS [14], dipIQ [16], and MEON [17]. Following previ-

ous no-reference IQA metrics [1]–[3], we also compared

the proposed LRSN model with four typical full-reference

IQA metrics, including peak signal-to-noise ratio (PSNR),

structural similarity index (SSIM) [31], an index based on

perceptual similarity measure (PSIM) [32], and an index

based on distortion distribution-based gradient similar-

ity (ADD-GSIM) [33]. Full-reference IQA uses the orig-

inal image as a reference, and it usually achieves a

higher consistency with human perception than no-reference

IQA. We compare the proposed LRSN model with

full-reference IQA to show the performance difference

between no-reference IQA and full-reference IQA. A small

difference indicates a good no-reference IQA index. Follow-

ing works [14], [16], [17], in order to verify the generaliza-

tion ability of the method, we experimented on four distortion

types common to the three 2D IQA databases, including

JPEG, JP2K, WN, and BLUR.

TABLE 1. Median SROCC and PLCC results on LIVE.

Experimental results on LIVE, CSIQ and TID2013

databases are shown in Table 1, Table 2, and Table 3, respec-

tively. We show the top two performance values achieved

by full-reference IQA or no-reference IQA models in bold

and underlined the best performance values. A symbol ‘‘-’’
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TABLE 2. Median SROCC and PLCC results on CSIQ.

indicates that the corresponding experimental result was not

provided in the original paper and the corresponding source

code was not found for reproducing the result.

Tables 1, 2, and 3 show the results on LIVE, CSIQ,

and TID2013, respectively. From the three tables, we can

get the following conclusions: 1) The performance of the

proposed LRSN model is superior to six state-of-the-art

no-reference IQA models on the three databases, and even

exceeds two classic full-reference IQA metrics. 2) For the

single-distortion-type experiments on the LIVE Database,

the performance of the proposed LRSN model surpasses six

no-reference IQA models and two classic full-reference IQA

models in the JP2K, JPEG, WN, and BLUR distortion types.

Moreover, the performance on both JPEG and WN distortion

types is close to the other two state-of-the-art full-reference

IQAmodels. 3) For the single-distortion-type experiments on

the CSIQ Database, the proposed LRSN model is superior

to 6 no-reference IQA models in all four distortion types,

and exceeds four full-reference IQA models in JPEG and

WN distortion types. 4) For the single-distortion-type exper-

iments on the TID2013 Database, the proposed LRSN model

achieves improved performance compared to the 6 compari-

son no-reference IQA models, and the improvement in WN

distortion type is significant. For WN distortion type, the per-

formance of the proposed LRSN model is close to the best

performance among the four full-reference IQA metrics.

2) PERFORMANCE FOR 3D IQA

In order to validate the performance of the proposed

LRSN model on the 3D IQA task, we compared it with

TABLE 3. Median SROCC and PLCC results on TID2013.

nine no-reference IQA models, including BRISQUE [11],

BLIINDS-II [12], Shao et al. [19], Chen et al. [21],

Zhou et al. [18], Jiang et al. [22], Shao et al. [20],

Zhang et al. [4], and Shen et al. [23]. Among these nine

no-reference IQA metrics, BRISQUE [11] and

BLIINDS-II [12] were initially presented for 2D IQA. The

quality scores of these 2D IQA metrics were obtained by

calculating the average of the quality scores of the left view

and right view. Zhou et al. [18] and Shao et al. [19], [20] are

3D no-reference IQA metrics based on binocular perception.

Chen et al. [13] and Jiang et al. [22] are 3D no-reference

IQA metrics based on depth perception. Shen et al. [23] and

Zhang et al. [4] are 3D no-reference IQA metrics based on

difference perception.

To compare the performance difference between the pro-

posed LRSN model and the full-reference IQA, we also

compared the proposed LRSNmodel with nine full-reference

IQA models, including SSIM [31], FSIM [34], gradient

magnitude similarity deviation (GMSD) [35], DCT sub-

bands similarity (DSS) [36], Benoit et al. [37], Bensalma

and Larabi [38], Chen et al. [29], Wang et al. [39], and

Shao et al. [40]. Among these nine full-reference IQA met-

rics, SSIM [31], FSIM [34], GMSD [35], and DSS [36]

were initially presented for 2D IQA. The quality scores

of these 2D IQA metrics were computed in the same way

as BRISQUE [11] and BLIINDS-II [12]. Benoit et al. [37]

and Chen et al. [29] are 3D full-reference IQA metrics that

combine depth/disparity and 2D IQA metrics. Bensalma and

Larabi [38], Wang et al. [39], and Shao et al. [40] are binoc-

ular characteristics-based 3D full-reference IQA metrics.
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TABLE 4. Experimental results on LIVE 3D IQA Phase-I, LIVE 3D IQA Phase-II, and NBU 3D IQA databases.

Experimental results on LIVE 3D Phase-I, LIVE 3D

Phase-II, and NBU 3D IQA databases are shown in Table 4.

We show the top two performance values achieved by full-

reference or no-reference IQAmodels in bold and underlined

the best performance values. The symbol ‘‘-’’ indicates that

the corresponding experimental result was not provided in

the original paper and the corresponding source code was not

found for reproducing the result.

From Table 4, we can get the following conclusions:

1) The proposed LRSN model outperforms the state-of-the-

art full-reference and no-reference IQA metrics for 3D IQA.

2) For the experiments on the LIVE 3D Phase-I database,

the proposed LRSN model achieves the best PLCC value

and the third best SROCC value among all no-reference IQA

models. 3) For the experiments on the LIVE 3D Phase-II

database, the proposed LRSN model achieves the best PLCC

and SROCC values among all no-reference IQA models.

It worth mentioning that, the proposed LRSN model also

outperforms all compared full-reference IQA models on the

LIVE 3D Phase-II database which has both symmetrically

and asymmetrically distorted 3D images. 4) For the exper-

iments on the NBU 3D IQA database, the proposed LRSN

model achieves the best SROCC value and the second best

PLCC value among all no-reference IQA models.

In summary, the experimental results show that the pro-

posed LRSN model can achieve good performance on both

2D and 3D IQA databases, which verify the effectiveness

of the proposed LRSN model for both 2D and 3D IQA.

Furthermore, the proposed LRSN model achieves significant

improvements on the TID2013 database and the LIVE 3D

Phase-II database.

C. CROSS-DATABASE TEST

To evaluate the generalization ability of the proposed model,

we trained the proposed LRSN model on LIVE database and

tested it on the CSIQ and TID2013 databases for 2D IQA,

and trained the proposed LRSN model on LIVE 3D Phase-I

and tested it on LIVE 3D Phase-II or NBU databases for

3D IQA.

For 2D IQA test, following the protocol of previous

works [3], [16], we trained and tested the proposed LRSN

model using four common distortion types in the LIVE,

CSIQ, and TID2013 databases: JPEG, JP2K, WN, and

BLUR. We used all the images contained in the four dis-

tortion types in the LIVE database for training, and used

all the images contained in the four distortion types in

the CSIQ and TID2013 databases for testing. We com-

pared the proposed LRSN model with four no-reference IQA

models: BRISQUE [11], DIIVINE [41], CORNIA [42], and

dipIQ [16]. The experimental results are shown in Table 5.

TABLE 5. Cross-dataset evaluation (SROCC). Models are trained on LIVE
and tested on CSIQ and TID2013.

For 3D IQA test, we used all the images contained

in the LIVE 3D Phase-I database for training, and used

all the images contained in the LIVE 3D Phase-II and

NBU databases for testing. It should be noted that the

H.264 distortion type in the NBU database does not appear

in the LIVE 3D Phase-I database, so the results on the

NBU database is not as good as those on the LIVE

3D Phase-II database. We compared the proposed LRSN

model with three no-reference IQA models: BRISQUE [11],

BLIINDS-II [12], and Jiang et al. [22]. Among them, metrics

BRISQUE [11] and BLIINDS-II [12] were presented for 2D

images, and Jiang et al. [22] was a depth perception-based
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TABLE 6. Cross-dataset evaluation (SROCC). Models are trained on LIVE
3D Phase-I, and tested on LIVE 3D Phase-II or NBU.

3D no-reference IQA metric. The experimental results are

shown in Table 6.

As can be seen from Table 5, the proposed LRSN

model achieves the best and second best performance on

TID2013 and CSIQ databases, respectively. In the last col-

umn of Table 5, we show the database size weighted average

over CSIQ and TID2013 databases. The weight for each

database is the number of test images in the database. The

weighted average values demonstrate the superior perfor-

mance of the proposed LRSN model for 2D IQA. As can be

seen from Table 6, the proposed LRSN model achieves the

best and second best performance on LIVE 3D Phase-II and

NBU databases, respectively. The weighted average values

demonstrate the superior performance of the proposed LRSN

model for 3D IQA.

In summary, the results of these cross-database experi-

ments show that the proposed LRSN model does not depend

on a specific database and has good generalization ability for

both 2D and 3D IQA tasks.

D. DISCUSSION

In this subsection, we mainly discuss the effects of different

strategies of image patch selection, effects of testing strate-

gies, and effects of visual attention on the performance of the

proposed LRSN model.

1) EFFECTS OF DIFFERENT STRATEGIES OF

IMAGE PATCH SELECTION

We experimented with image patches obtained by using

different strategies of image patch selection. Specifically,

the same number of image patches with the smallest, medium,

and largest standard deviations for each image were used

as the selected image patches in the experiments. In Fig. 4,

we show three image patches with the largest (a), medium

(b), and smallest (c) standard deviations of an example image.

Image patches (a) and (c) belong to the foreground and back-

ground, respectively. While image patch (b) partially belong

to the foreground and partially belong to the background so

that it can represent the image content better. We also carried

out the experiment of selecting the number of image patches

per image on LIVE database. The experimental results are

shown in Table 7 and Table 8.

As can be seen from Table 7, when selecting the image

patches with the standard deviation ranked in the middle

for training, the experimental results are better than those

when selecting image patches with the largest and smallest

FIGURE 4. Three image patches with the largest (a), medium (b), and
smallest (c) standard deviations of an example image.

TABLE 7. Experimental results of different values of the standard
deviation of image patches on LIVE database.

TABLE 8. Experimental results of selecting a different number of image
patches for per image on the LIVE database.

standard deviations. Therefore, selecting the image patches

with the standard deviation ranked in the middle for training

can reduce the impact of uneven image quality distribution

and achieve a high consistency with subjective perception.

To further evaluate the effect of the number of image

patches selected from each distorted image on the perfor-

mance of the proposed LRSN model, we experimented with

different numbers of image patches. Specifically, we exper-

imented with four different numbers of image patches,

namely 4, 8, 12, and 16. The experimental results are shown

in Table 8.

From Table 8, we can see that a larger number of image

patches selected for each image cannot guarantee a better per-

formance of the proposed LRSNmodel. Specifically, the per-

formance of selecting 4 image patches per image is inferior

to the performance of selecting 8 image patches per image.

However, when increasing the number from 8 to 12 and

16, the performance remains almost the same. Meanwhile,

increasing the number of image patches will increase the

training and testing time. Considering both performance and
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efficiency, the number of image patches selected for each

image is 8.

2) EFFECTS OF TESTING STRATEGIES

We experimented with different testing strategies on

TID2013 database. During testing, we experimented with the

different number of comparison for each test image to investi-

gate the influence of the number of comparisons. Specifically,

we compared each test image patchwith a different number of

image patches. It should be noted that there are 100 images

in our test set and 8 image patches are selected from each

image. Our original test strategy was to compare the patches

of each image with the patches of all other 99 images. In the

experiment, we compared each image with 99 images and

the randomly selected 90, 80, 70, 60, 50, 40, 30, 20, and

10 images from the test set. The experiments were repeated

three times. The experimental results are shown in Table 9.

TABLE 9. Experimental results of comparing each image with the
different numbers of test images on TID2013 database. The best
performance values for each of the three repeated experiments are
formatted in bold.

From Table 9, we can conclude that the number of com-

pared images and image patches has little effect on the IQA

results when using image patches no less than 160. Because

comparing using randomly chosen images, the performance

varies. In order to make the experimental results can be

reproduced by others, we compared each test image with all

other images in the test set in all experiments. In practice,

good performance can be achieved when using image patches

no less than 400.

Furthermore, we investigated the influence of different test

sets of images. Specifically, we compared each test image in

TID2013 test set with the same number of images in LIVE

and CSIQ databases. The experimental results are shown

in Table 10.

TABLE 10. Experimental results of TID2013 database when using the
same number of images in TID2013, LIVE, or CSIQ databases as the
test set.

From Table 10, we can conclude that the change of the test

set has little effect on the results. This also proves that the

proposed LRSN model has good generalization ability.

3) EFFECTS OF VISUAL ATTENTION

Because visual attention has an important impact on IQA,

we conducted experiments on TID2013 database to incor-

porate visual attention into IQA. Firstly, we use the method

proposed by Hou et al. [43] to generate saliency maps of the

distorted images, as shown in Fig. 5 (b). Then the average

saliency values of all image patches (as shown in Fig. 5 (c))

of an image are computed and sorted in a non-ascending

order. We experimented with three sets of image patches for

training and testing, namely eight image patches with middle

standard deviations, eight image patches with the largest

average saliency values, four image patches with middle

standard deviations and four image patches with the largest

average saliency values. The experimental results are shown

in Table 11.

FIGURE 5. Example of visual attention.

TABLE 11. Experimental results of incorporating visual attention into IQA
on the TID2013 database.

From Table 11, we can conclude that using image patches

with the largest visual attention for training and testing has

limited influence on the overall performance of IQA. One

reason is that images usually have salient objects of different

sizes, therefore using the same number of image patches

to represent the salient objects is not a good choice. Sec-

ondly, distortions usually have a negative influence on the
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performance of salient object detection algorithms. There-

fore, we will investigate more effective ways of incorporating

visual attention into IQA in the future.

V. CONCLUSION

In this paper, we propose a 2D and 3D no-reference IQA

model based on learning to rank, using SCNN for training.

The SCNN uses two branches that share weights to extract

features of the input two image patches. Then the relative

quality of the two input image patches is compared. The

relative quality score of the image is obtained by comparing

image patches and counting times of preference. Extensive

experiments on both 2D and 3D IQA databases show that the

proposed LRSC model achieves superior performance to the

state-of-the-art no-reference IQA models.

Existing researches evaluate the quality of a 3D image

from an isolated perspective, such as distortion, aesthetics,

or visual comfort. However, these perspectives should be

all considered to get a comprehensive quality assessment

for 3D images because they influence each other. To facili-

tate the research on objective comprehensive quality assess-

ment for 3D images, we plan to carry out the subjective

assessment using 3D images with different distortion types

and levels, aesthetics values, and visual comfort values, and

then construct a new database. We also plan to explore the

SCNN-based preference learning for image restoration and

enhancement [44].
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